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Abstract
The complete classification of solutions to the defocusing complex modified KdV
equation with step-like initial condition is studied by the finite-gap integration
approach andWhithammodulation theory. All kinds of combination solutions consist-
ing of genus-0 regions, genus-1 regions, or genus-2 regions are found by classifying
the Riemann invariants. The behaviors of wave breaking in Riemann problem of the
defocusing complex modified KdV equation are much richer and more complicated
than those in the nonlinear Schrödinger equation. It is demonstrated that a large oscil-
lating region can be composed of four basic genus-1 dispersive shock waves, a case
of solution may be consisted of up to six regions, and the plateau, vacuum, rarefaction
wave, and dispersive shock wave can coexist in the same solution region. Moreover,
the genus-2 region, produced from the collision of two dispersive shock waves, is
described detailedly by the genus-2Whitham equations. The direct numerical simula-
tions on the defocusing complex modified KdV equation show remarkable agreement
with the results from Whitham modulation theory.
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1 Introduction

The Whitham theory was first formulated by G.B. Whitham in his seminal publi-
cation (Whitham 1965) in which he gave the Whitham modulation equations based
on the averaged conservation laws to describe some physical phenomena such as
undular bore in water and formed the basis of impressive development of dispersive
hydrodynamics. The first application ofWhitham theory to Korteweg–de Vries (KdV)
equation was achieved by Gurevich and Pitaevskii (1974) who studied the self-similar
solutions for dispersive shock wave (DSW), called collisionless shock, whose evo-
lution can be described by the diagonal Whitham equation. One of its edge appears
to be a soliton wave, the harmonic wave for its opposite. The simplest expanding
oscillating structure described by a Jacobian elliptic function was also obtained in
Gurevich and Pitaevskii (1974) with a step-like initial jump known as Riemann prob-
lem. The analytical description of DSW that transformed the Whitham equation to
Euler–Poisson–Darboux equation for the nonlinear Schrödinger equation (NLS) has
been presented in Tian and Ye (1999).

The Riemann problem of the evolution waves has been discussed in various impor-
tant physical fields. In photon fluid, all the possible wave patterns propagating in
the normal fiber has been discussed with account of steepening effects (Ivanov and
Kamchatnov 2017). Ivanov et al. (2017) gives the classification of possible flows in
two-component Bose–Einstein condensate and the solutions of Riemann problem for
Gardner equation (related to modified KdV equation) are completely classified in
Kamchatnov et al. (2012) which appears some new structures and more complicated
cases compared to the KdV case. Indeed, this can also be found in the case of defo-
cusing complex modified KdV (cmKdV) equation with special step-like initial data
(Kodama et al. 2008; Kong et al. 2019). However, the studies on general step-like
initial problem of the defocusing cmKdV equation are even more complicated.

Except the pseudo-phase method introduced by Whitham himself, there are sev-
eral way to average the original equation to get the Whitham equations. For example,
Luke (1966) used a perturbation procedure to investigate the nonlinear wave prob-
lem, which could recover the Whitham equations of slow variations. Flaschka et al.
(1980) extended the finite-gap integration theory to study the multiphase averaging of
integrable system of KdV type. Dubrovin and Novikov (1989) proposed a procedure
for averaging the local Poisson brackets to derive the Whitham equations. Lax and
Levermore (1983) opened another way to describe theDSW rigorously by utilizing the
method of inverse scattering transform and Whitham modulation theory. Moreover,
the combinations ofWhithammodulation theory with numerical techniques have been
studied by Grava and Klein (2007) and Ablowitz et al. (2016).

This paper focuses on the complete classification of Riemann problem for the
defocusing cmKdV equation with small dispersion

qt − 6|q|2qx + ε2qxxx = 0, (1)

where q = q(x, t) represents the complex wave envelope and ε � 1 is a small mod-
ulation scale. This equation is analyzed by means of Whitham modulation theory,
in which the corresponding Whitham equations are neither strictly hyperbolic nor
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genuinely elliptic systems (Kodama et al. 2008) compared with the defocusing and
focusing NLS equations. Self-similar solutions in such kind of systems have be inves-
tigated and discussed in KdV hierarchy (Pierce and Tian 2007), mKdV (Kamchatnov
et al. 2012), Landau–Lipshitz equation (Ivanov et al. 2017), Camassa-Holm equation
(Abenda and Grava 2005), etc. However, it is found in this work that the solutions in
the defocusing cmKdV equation are much richer such as an oscillating shock wave
region may be composed of four basic shock wave structures and a case of solution
can be consisted of up to six regions, etc. In addition, the whole solutions we have
classified are even more than 50 categories, which has never been found before.

The Madelung transformation

q(x, t) = √
ρeiφ/ε, φx = v, (2)

where ρ and v, analogs of density and velocity of the hydrodynamics, are all real
functions, maps the defocusing cmKdV equation (1) to the dispersive hydrodynamics-
like system

{
ρt − (3ρ2 + 3v2ρ)x = −ε2(4ρ3/4(ρ1/4)xx )x ,

vt − (6ρv + v3)x = −ε2(3vρxx/2ρ − 3v(ρx )
2/4ρ2 + 3vxρx/2ρ + vxx )x ,

(3)

which suffice to give the solutions as ε → 0 until it develops a shock formed at once
when multi-value region appears. After the moment when multi-value region appears,
this limit is converted into the Whitham equations in the diagonal Riemann form
Grava and Klein (2007), Ablowitz et al. (2016), Pierce and Tian (2007), Abenda and
Grava (2005), Hoefer (2014), Ivanov and Kamchatnov (2017), Ablowitz et al. (2020),
Bridges and Ratliff (2021) and Congy et al. (2019)

∂λi

∂t
+ vi (λ1, λ2, . . . , λ2N+2)

∂λi

∂x
= 0, i = 1, 2, . . . , 2N + 2, (4)

where vi are called theWhithamvelocities,λi areRiemann invariants and N represents
the number of phases in the oscillations. The boundaries connecting N = 0 and N = 1
regions including in Whitham equations (4) are exactly the same with the diagonal
Riemann form of dispersionless limit of hydrodynamics-like system (3), which will
be explained below. Here we concentrate only on the case of 0 ≤ N ≤ 2, while the
case N > 2 will be discussed in the future work.

This paper is constructed as follows. In Sect. 2, the zero-phase, one-phase and two-
phase periodic solutions and the corresponding Whitham equations are derived by
employing the finite-gap integration approach. In Sect. 3, five types of basic rarefaction
wave structures and ten types of basic dispersive shock wave structures are proposed
by considering the self-similar solutions of the Whitham equations. The complete
classification of solutions to the Riemann problem of the defocusing cmKdV equation
(1) is investigated analytically and numerically in Sect. 4. We conclude this work in
Sect. 5.
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2 Finite-Gap Periodic Solutions andWhitham Equations

In this section, the finite-gap periodic solutions and Whitham equations for the defo-
cusing cmKdV equation (1) are derived by the Flaschka–Forest–McLaughlin (FFM)
approach (Flaschka et al. 1980; Kamchatnov 1994, 1997) to describe its evolutions of
initial discontinuities in Riemann problem. For our purpose, this section only focuses
on the zero-phase, one-phase, and two-phase solutions in view of the form of the
step-like initial data considered in this work.

It is known that the defocusing cmKdV equation (1) is the second flow in the
defocusing NLS hierarchy, which has Lax pair of the form

ε

(
ψ1
ψ2

)
x

=
(
F G
H −F

) (
ψ1
ψ2

)
, ε

(
ψ1
ψ2

)
t
=

(
A B
C −A

) (
ψ1
ψ2

)
, (5)

where the entries of the matrices above are

F = −iλ, G = q, H = q∗, A = −4iλ3 − 2iλ|q|2 − εqq∗
x + εq∗qx ,

B = 4λ2q + 2iλεqx + 2q|q|2 − ε2qxx , C = 4λ2q∗ − 2iλεq∗
x + 2q∗|q|2 − ε2q∗

xx .

(6)

The linear systems (5) and (6) have two independent basic solutions (ψ1, ψ2) and
(φ1, φ2), which can be used to define the “squared” eigenfunctions as follows

f = − i

2
(ψ1φ2 + ψ2φ1), g = ψ1φ1, h = −ψ2φ2, (7)

which dates back to the work of Its and Kotlyarov Kotlyarov (1976), Its and Kotlyarov
(1976). Obviously, the “squared” eigenfunctions f , g and h satisfy the following linear
systems

ε fx = −i Hg + iGh, εgx = 2iG f + 2Fg, εhx = −2i H f − 2Fh, (8)

and
ε ft = −iCg + i Bh, εgt = 2i B f + 2Ag, εht = −2iC f − 2Ah. (9)

In fact, the linear systems (8) and (9) compose a three-order Lax pair of the defocusing
cmKdV equation (1). Further, it is convenient to prove that the quantity f 2 − gh =
(−1/4)(ψ1φ2−ψ2φ1)

2 is independent of x and t , and is only dependent on the spectral
parameter λ, which can be denoted by

f 2 − gh = P(λ), (10)

where P(λ) is polynomial of parameter λ.
One merit of the linear systems (8) and (9) is that they can be used to derive the

conservation laws of the defocusing cmKdVequation (1). Indeed, the second equations
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in both equation (8) and (9) can be rewritten as

ε(log(g))x = ε
gx
g

= 2i f
G

g
+ 2F, ε(log(g))t = ε

gt
g

= 2i f
B

g
+ 2A. (11)

The compatibility condition of these two equations indicates that

∂

∂t

(
2i f

G

g
+ 2F

)
= ∂

∂x

(
2i f

B

g
+ 2A

)
, (12)

which can be simplified to

∂

∂t

(
G

g

)
− ∂

∂x

(
B

g

)
= 0. (13)

This is just the conservation law of the defocusing cmKdV equation (1) in term of the
“squared” eigenfunction g.

For the AKNS system like the defocusing cmKdV equation (1), it is convenient to
expand f , g and h to finite-order polynomials in λ

f (x, t, λ) =
N+1∑
j=0

f j (x, t)λ
j , g(x, t, λ) =

N+1∑
j=0

g j (x, t)λ
j , h(x, t, λ) =

N+1∑
j=0

h j (x, t)λ
j .

(14)
The second and third equations in Eq. (8) show that both g and h must be of order
N in λ (i.e., gN+1 = hN+1 = 0), thus the first equation in Eq. (8) indicates that the
coefficient fN+1 of λN+1 is a constant. Without any loss of generality, one can set
fN+1 = 1. In order to derive the N -phase solution, assume

g(x, t, λ) = q
N∏
j=1

(λ − μ j (x, t)), (15)

where μ j = μ j (x, t) is called auxiliary spectrum, N is the genus of the hyperelliptic
curve

w2 = P(λ). (16)

Plugging Eq. (15) into Eqs. (8) and (9) and letting λ = μk(x, t) (k = 1, 2, . . . , N ),
yield Dubrovin-type equation for μk(x, t) as

ε
∂μk

∂x
= − 2i G̃

√
P(μk)∏

j �=k(μk − μ j )
,

ε
∂μk

∂t
= − 2i B̃

√
P(μk)∏

j �=k(μk − μ j )
, j = 1, 2, . . . , N , (17)

where G̃(μk) = G(μk)/q = 1, B̃(μk) = B(μk)/q = 4μ2
k + 2iεμk(lnq)x + 2|q|2 −

ε2qxx/q.
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Substituting Eq. (14) with Eq. (15) into the second equation in Eqs. (8) and (9),
respectively, yields

εqx = 2iq

⎛
⎝ fN +

N∑
j=1

μ j

⎞
⎠ ,

εqt = 2i[4q fN−2 + 2iεqx fN−1 + fN (2q|q|2 − ε2qxx )]

+ 2

⎡
⎣q(εq∗qx − εqq∗

x ) + 4iq
∑

i< j<k

μiμ jμk + 2i |q|2
N∑
j=1

μ j

⎤
⎦ . (18)

An algebro-geometric representation of q(x, t) in Eq. (18) can be developed by inte-
grating the Dubrovin-type equation (17) for μk (k = 1, 2, . . . , N ) with the aid of the
Abel transform, which leads to the expressions forμk and q(x, t) in terms of Riemann
theta functions depending on phase variables

θ j = κ j x + ω j t + θ0 j , j = 1, 2, . . . , N , (19)

where κ j and ω j are determined by integrating over certain cycles on the Riemann
surface of the hyperelliptic curve (16), and θ0 j are constants.

In the framework of Whitham theory, it is vital to derive the Whitham equations of
Riemann invariants, which are the zero points λi (i = 1, 2, . . . , 2N+2) of the polyno-
mial P(λ) in Eq. (10). The FFM approach (Flaschka et al. 1980) for studyingWhitham
equations is based on the finite-gap integration theory, which is an important extension
of the inverse scattering transform to the problems of periodic boundary conditions
(Belokolos et al. 1994). The construction of multiphase averaging in FFM way is fur-
ther extended by Kamchatnov (1994, 1997) without use of algebro-geometric tools
like FFM approach. We now outline the basic procedure for deriving the Whitham
equations of the defocusing cmKdV equation (1).

Firstly, normalizing the equation f 2 − gh = P(λ) according to the transformation
f → f /

√
P(λ), g → g/

√
P(λ) and h → h/

√
P(λ) yields

(
f /

√
P(λ)

)2 −
(
g/

√
P(λ)

) (
h/

√
P(λ)

)
= 1.

Under the same transformation, the conservation law (13) becomes

∂

∂t

(
G

√
P(λ)

g

)
− ∂

∂x

(
B

√
P(λ)

g

)
= 0. (20)

Secondly, assume the function Q = Q(q(x, t)) to be either a flux or a density in
the conservation law and define the average of function Q in the form of

〈Q〉 = lim
L→∞

1

2L

∫ L

−L
Q(q(x, t))dx . (21)

123



Journal of Nonlinear Science (2022) 32 :3 Page 7 of 46 3

In order to describe the modulated waves, two scales should be introduced: a fast
scale (x, t) and a slow scale (X = εx, T = εt) with ε small. As done in FFM
approach (Flaschka et al. 1980), the phase parameters κ j and ω j depend only on the
slow variables (X , T ), but not on the fast variables (x, t). Moreover, the Riemann
invariants λi (i = 1, 2, . . . , 2N + 2) also depend only on the slow variables (X , T ).
However, during the averaging procedure, the slow variables (X , T ) are frozen. The
integral (21) over the spatial variable x can be replaced by the integral over the N -
torus as parameterized by the phases θ j ( j = 1, 2 . . . , N ) variables provided the
spatial wave numbers κ j are incommensurate (see Eq. (19)). Thus the integral (21) is
written as

〈Q〉 = 1

(2π)m

∫ 2π

0
· · ·

∫ 2π

0
Q(q(θ1, θ2, . . . , θN ))dθ1dθ2 . . . dθN , (22)

which is further transformed to the integration over the variablesμ j ( j = 1, 2, . . . , N )

in Dubrovin-type equation (17)

〈Q〉 = 1

(2π)m

∫
C1

· · ·
∫
CN

Q
∂(θ)

∂(μ)
dμ1dμ2, . . . , dμN , (23)

where C j ( j = 1, 2, . . . , N ) are the cycles defined by Abel maps and ∂θ
∂μ

is the
Jacobian (Flaschka et al. 1980) defined below

1

(2π)m

∂(θ)

∂(μ)
= 1

V

∏
n>k(μn − μk)√∏N

j=1 P(μ j )

, (24)

where V is a constant.
Thirdly, imposing the definition of the integral (21) on the conservation law (20)

and considering the Riemann invariants λi (i = 1, 2, . . . , 2N + 2) as functions of the
slow variables X and T give rise to

〈
G

g

〉
∂λi

∂T
−

〈
B

g

〉
∂λi

∂X
= 0, i = 1, 2, . . . , 2N + 2. (25)

Finally, reminding the average defined in (23) and canceling the small quantity ε in
Eq. (25) the desiredWhithamequations forRiemann invariantsλi (i = 1, 2, . . . , 2N+
2) are obtained as follows (Kamchatnov 1994)

∂λi

∂t
+ vi (λ1, λ2, . . . , λ2N+2)

∂λi

∂x
= 0, i = 1, 2, . . . , 2N + 2, (26)
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where the characteristic velocities vi are given by

vi (λ1, λ2, . . . , λ2N+2) = − I2(λ1, λ2, . . . , λ2N+2)

I1(λ1, λ2, . . . , λ2N+2)
,

I1(λ1, λ2, . . . , λ2N+2) =
∫
C1

· · ·
∫
CN

G

g

∂(θ)

∂(μ)
dμ1dμ2 · · · dμN ,

I2(λ1, λ2, . . . , λ2N+2) =
∫
C1

· · ·
∫
CN

B

g

∂(θ)

∂(μ)
dμ1dμ2 · · · dμN . (27)

In the following three subsections, we will take N = 0, N = 1 and N = 2
to investigate the zero-phase, one-phase, and two-phase solutions of the defocusing
cmKdV equation (1), respectively.

2.1 Zero-Phase Solution andWhitham Equations

For N = 0, take f to be degree one polynomial in spectral parameter λ and g, h to be
functions independent of λ, i.e.,

f (x, t, λ) = λ + f0(x, t), g(x, t, λ) = g0(x, t), h(x, t, λ) = h0(x, t). (28)

Substituting them into Eqs. (8)–(9) and collecting the coefficients of λ yield

f0(x, t) = constant, g0(x, t) = q(x, t), h0(x, t) = q∗(x, t), (29)

and
εqx = 2iq f0, εqt = (12i f0ρ0 + 8i f 30 )q, (30)

with ρ0 = |q|2, which has exact solution of the form

q = √
ρ0e

2i f0
ε

[x+(6ρ0+4 f 20 )t]. (31)

This is the zero-phase solution of the defocusing cmKdV equation (1), in which the
function

θ0 = 2 f0
ε

[
x +

(
6ρ0 + 4 f 20

)
t
]

(32)

is a fast variable. The density ρ0 and phase velocity−(6ρ0 +4 f 20 ) are slowly varying,
and we have φ = 2 f0x and v = 2 f0 in the Madelung transformation (2).

In viewing the form of functions f , g and h, we have

f 2 − gh = λ2 + 2 f0λ + f 20 − ρ = λ2 − s1λ + s2, (33)

where s1 = −2 f0 and s2 = f 20 − ρ. Moreover, assume the term f 2 − gh has two
roots λ1 and λ2, i.e., f 2 − gh = P(λ) = (λ − λ1)(λ − λ2), then we have

λ1 + λ2 = s1, λ1λ2 = s2. (34)
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The equality f0 = v/2 gives s1 = −v and s2 = v2/4− ρ, so the equation (34) can be
rewritten as

λ1 + λ2 = −v, λ1λ2 = v2/4 − ρ, (35)

which can be solved for λ1 and λ2 as

λ1 = −v

2
− √

ρ, λ2 = −v

2
+ √

ρ. (36)

In order to derive the Whitham equation for the slow variables λ1 and λ2, we
transform the conservation law (13) into

∂

∂t

(√
P(λ)

G

g

)
− ∂

∂x

(√
P(λ)

B

g

)
= 0. (37)

In the sense of zero-phase solution (31), the modified conservation law (37) is simpli-
fied to

∂

∂t
(
√
P(λ)) − ∂

∂x
(
√
P(λ)(4λ2 − 2λv + 2ρ + v2)) = 0. (38)

Expanding the partial derivatives in the above equation and taking limits λ → λ1 and
λ → λ2, respectively, yield the Whitham equations for the slow variables λ1 and λ2
as follows:

∂λ1

∂t
−

(
15λ21
2

+ 3λ1λ2 + 3λ22
2

)
∂λ1

∂x
= 0,

∂λ2

∂t
−

(
15λ22
2

+ 3λ1λ2 + 3λ21
2

)
∂λ2

∂x
= 0. (39)

2.2 One-Phase Periodic Solution andWhitham Equations

It suffices to suppose that P(λ) is a polynomial of degree four in λ for the one-phase
periodic solution, that is

f 2 − gh = P(λ) =
4∏

i=1

(λ − λi )

= λ4 − s1λ
3 + s2λ

2 − s3λ + s4, (40)

where si (i = 1, 2, 3, 4) are called elementary symmetric polynomials related to the
four roots of the polynomial P(λ). Recalling the Eqs. (8)–(9) for f , g and h, one has

f = λ2 − f1λ + f2, g = q(λ − μ), h = q∗(λ − μ∗), (41)
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where

f1x = f1t = 0, ε f2x = i |q|2(μ − μ∗),
ε f2t = 2i |q|4(μ − μ∗) − iε2qq∗

xxμ + iε2q∗qxxμ∗, (42)

and

εqx = 2iq(μ − f1), ε2qxx = −2i(2iq f2 + qx f1ε), (43)

εqt = 2iε2qxx f1 + 2ε(|q|2qx − q∗
x q

2 − 2qx f2) + 4i |q|2q(μ − f1), (44)

ε(qμ)x = −2iq f2, ε(qμ)t = 2iε2qxx f2 + 2εμ(qx |q|2 − q∗
x q

2) − 4i f2|q|2q,

(45)

as well as the complex conjugate of all coefficients of Eq. (41). Substituting Eq. (41)
into Eq. (40) and comparing the coefficients of λk , the condition (41) gives the con-
servation laws

s1 = 2 f1, s2 = −|q|2 + f 21 + 2 f2, s3 = 2 f1 f2 − |q|2(μ + μ∗), s4 = f 22 − |q|2μμ∗,
(46)

which indicates that f1 = s1/2, f2 = (|q|2 − f 21 + s2)/2. Thus Eq. (42) for f2 can be
reduced to

ερx = 2iρ(μ − μ∗), ερt = 2iρ(μ − μ∗)(3
2
s21 − 2s2), (47)

where ρ = |q|2 and the evolution of μ can be expressed by Eq. (45) for μ as

εμx = −2i f (μ) = −2i
√
P(μ), εμt = −2i f (μ)

(
3

2
s21 − 2s2

)
, (48)

in which the second equality of the first equation (48) can be achieved by substituting
λ = μ into Eq. (40). The relations given by Eqs. (47)–(48) indicate that μ and ρ

depend on the phase

ξ = x − V t, with V = 2s2 − 3

2
s21 . (49)

Notice that the defocusing cmKdV equation (1) is the second flow in the defocusing
NLS hierarchy, thus following the procedure of Appendix B.1 in the book of Kam-
chatnov (2000), the one-phase periodic solution ρ = |q|2 can be expressed in term of
the elliptic function

ρ = ρ3 + (ρ2 − ρ3)sn
2
(√

ρ1 − ρ3

ε
(ξ − ξ0),m

)
, (50)

where sn is the Jacobi elliptic function, the modulus m = (ρ2 − ρ3)/(ρ1 − ρ3), the
parameter ξ0 is the phase shift which is actually equal to zero in this work, and the
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parameters ρ1, ρ2, ρ3 are

ρ1 = 1

4
(λ1 + λ2 − λ3 − λ4)

2,

ρ2 = 1

4
(λ1 − λ2 + λ3 − λ4)

2,

ρ3 = 1

4
(λ1 − λ2 − λ3 + λ4)

2, (51)

from which it is easy to see that ρ1 > ρ2 > ρ3 provided that λ1 > λ2 > λ3 > λ4.
Reminding the derivation of the Whitham equations in Eqs. (26) and (27), the

Whitham equations corresponding to the one-phase periodic solution (50) are obtained
as

∂λi

∂t
− I2(λ1, λ2, λ3, λ4)

I1(λ1, λ2, λ3, λ4)

∂λi

∂x
= 0, i = 1, 2, 3, 4, (52)

where

I1 = 2

ε

∂L

∂λi
, I2 =

(
3

2
s21 − 2s2

)
I1 + 2

ε
(s1 + 2λi )L, (53)

where the L represents the wavelength of the one-phase periodic solution (50), i.e.,

L = 2εK (m)√
(λ1 − λ3)(λ2 − λ4)

, (54)

where K (m) is the complete elliptic integral of the first kind and the modulus m of
the elliptic function is

m = ρ2 − ρ3

ρ1 − ρ3
= (λ1 − λ2)(λ3 − λ4)

(λ1 − λ3)(λ2 − λ4)
. (55)

Finally, substituting the wavelength L formulated by Eq. (54) into Eqs. (52)–(53) the
Whitham equations for the one-phase periodic solution (50) can be rewritten explicitly

∂λi

∂t
+ vi (λ1, λ2, λ3, λ4)

∂λi

∂x
= 0, i = 1, 2, 3, 4, (56)
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where the characteristic velocities vi = vi (λ1, λ2, λ3, λ4) (i = 1, 2, 3, 4) are

v1 = −
⎛
⎝∑

i< j

λiλ j + 3

2

4∑
i=1

λ2i

⎞
⎠ −

(
4∑

i=1

λi + 2λ1

)
2(λ1 − λ2)(λ1 − λ4)K (m)

(λ1 − λ4)K (m) + (λ4 − λ2)E(m)
,

v2 = −
⎛
⎝∑

i< j

λiλ j + 3

2

4∑
i=1

λ2i

⎞
⎠ +

(
4∑

i=1

λi + 2λ2

)
2(λ1 − λ2)(λ2 − λ3)K (m)

(λ2 − λ3)K (m) + (λ3 − λ1)E(m)
,

v3 = −
⎛
⎝∑

i< j

λiλ j + 3

2

4∑
i=1

λ2i

⎞
⎠ −

(
4∑

i=1

λi + 2λ3

)
2(λ2 − λ3)(λ3 − λ4)K (m)

(λ2 − λ3)K (m) + (λ4 − λ2)E(m)
,

v4 = −
⎛
⎝∑

i< j

λiλ j + 3

2

4∑
i=1

λ2i

⎞
⎠ +

(
4∑

i=1

λi + 2λ4

)
2(λ1 − λ4)(λ3 − λ4)K (m)

(λ1 − λ4)K (m) + (λ3 − λ1)E(m)
,

(57)

where E(m) is complete elliptic integral of the second kind.

2.3 Two-Phase Periodic Solution andWhitham Equations

In this subsection, Kamchatnov’s way (Kamchatnov 1997) is carried out to explore
the two-phase periodic solution and the corresponding Whitham equations for the
defocusing cmKdV equation (1). In doing so, take P(λ) to be a polynomial of degree
six in λ

f 2 − gh = P(λ) =
6∏

i=1

(λ − λi )

= λ6 − s1λ
5 + s2λ

4 − s3λ
3 + s4λ

2 − s5λ + s6, (58)

where λ1 > λ2 > λ3 > λ4 > λ5 > λ6 are six roots and si (i = 1, 2, . . . , 6) are
the elementary symmetric polynomials related to the six roots λi (i = 1, 2, . . . , 6),
furthermore s1 and s2 are

s1 =
6∑
j=1

λ j , s2 =
6∑

i, j=1;i �= j

λiλ j . (59)

Recalling the Eqs. (14)–(15) for f , g and h, we have

f = λ3− f1λ
2+ f2λ− f3, g = q(λ−μ1)(λ−μ2), h = q∗(λ−μ∗

1)(λ−μ∗
2). (60)

Thus Eq. (58) along with Eq. (60) further gives

s1 = 2 f1, s2 = 2 f2 + f 21 − |q|2. (61)
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In a similar way, the Dubrovin-type equation for functions μ1(x, t) and μ2(x, t)
can be formulated from Eq. (17) for N = 2. Substituting the f , g and h in Eq. (60)
into equation εgx = 2iG f + 2Fg and collecting the coefficients of λ yields

εqx = 2iq(μ1 + μ2 − f1), ε(qμ1)x + ε(qμ2)x = 2iq(μ1μ2 − f2),

ε(qμ1μ2)x = −2iq f3.

The same substitution can be done for equation εgt = 2i B f + 2Ag and one arrives
at the “trace formula” for function q(x, t) from Eq. (18) with N = 2, which finally
gives rise to the two-phase periodic solution of the defocusing cmKdV equation (1)
with phase functions

θ1 = κ1x + ω1t + θ01, θ2 = κ2x + ω2t + θ02. (62)

Next we return to the construction of the Whitham equations for this two-phase
periodic solution. Recalling that g = q(λ − μ1)(λ − μ2) one has

G

g
= 1

(λ − μ1)(λ − μ2)
,

B

g
= 1

(λ − μ1)(λ − μ2)[
4λ2 − 4λ

(
μ1 + μ2 − 1

2
s1

)

−4

(
1

2
μ1s1 + 1

2
μ2s1 − μ1μ2

)
+ 3

2
s21 − 2s2

]
. (63)

Therefore, following Kamchatnov’s way (Kamchatnov 1997) which is based on the
general procedure of FFM approach (Flaschka et al. 1980), the Whitham equations
for two-phase periodic solution can be derived as

∂λi

∂t
+ vi (λ1, λ2, λ3, λ4, λ5, λ6)

∂λi

∂x
= 0, i = 1, 2, . . . , 6, (64)

where the characteristic velocities vi (i = 1, 2, . . . , 6) are given by

vi (λ1, λ2, λ3, λ4, λ5, λ6) = − I2(λ1, λ2, λ3, λ4, λ5, λ6)

I1(λ1, λ2, λ3, λ4, λ5, λ6)
, (65)

where I1 = I1(λ1, λ2, λ3, λ4, λ5, λ6) and I2 = I2(λ1, λ2, λ3, λ4, λ5, λ6) are

I1 =
∫
C1

dμ√
P(μ)

∫
C2

dμ

(λi − μ)
√
P(μ)

−
∫
C2

dμ√
P(μ)

∫
C1

dμ

(λi − μ)
√
P(μ)

,

I2 =
(
3

2
s21 − 2s2

)
I1(λi )

+
∫
C1

∫
C2

[
4λ2 − 4λ

(
μ1 + μ2 − 1

2 s1
)

− 4
(
1
2μ1s1 + 1

2μ2s1 − μ1μ2

)
+ 3

2 s
2
1 − 2s2

]
(μ2 − μ1)

(λi − μ1)(λi − μ2)
√
P(μ1)P(μ2)

dμ1dμ2,
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where P(μ) = ∏6
i=1(μ − λi ), and C1 and C2 are the cycles defining the solution

of genus-2 Dubrovin-type equation (i.e., Eq. (18) with N = 2) according to the Abel
transform. In our case, C1 is cycle from λ5 to λ4 and C2 is cycle from λ3 to λ2. After
tedious calculations, it is found that the characteristic velocities vi (i = 1, 2, . . . , 6)
are rewritten as

vi (λ1, λ2, λ3, λ4, λ5, λ6) = 2s2 − 3

2
s21 − (4λi + 2s1)

× [(∂U11/∂λi )U21 − (∂U21/∂λi )U11] + 4(∂U12/∂λi )(∂U23/∂λi ) − 4(∂U13/∂λi )(∂U22/∂λi )

U11(∂U21/∂λi ) −U21(∂U11/∂λi )
,

(66)

where Ui j are the hyperelliptic integrals

Ui j =
∫
Ci

μ j−1

√
P(μ)

dμ, i = 1, 2; j = 1, 2, 3.

3 Basic Wave Structures

This section starts to study what kinds of basic wave structures will appear for the
defocusing cmKdV equation (1) with the general step-like initial data

q(x, 0) = √
ρ(x, 0)eiφ(x,0)/ε, φx (x, 0) = v(x, 0), (67)

where ρ(x, 0) and v(x, 0) are

ρ(x, 0) =
{

ρr , x > 0,
ρl , x < 0,

and v(x, 0) =
{

vr , x > 0,
vl , x < 0,

(68)

where ρr , ρl , vr and vl are four arbitrary real constants. The solution under the initial
data (67) with (68) consisting of basic structures of rarefaction wave and dispersive
shock wave are quite fruitful, which will be discussed in details below.

3.1 RarefactionWaves

The genus-0Whitham equation (39) corresponding to the zero-phase solution (31) can
also be derived in a different way. To be specific, the rarefaction wave solution can be
derived by taking the dispersionless limit as ε → 0 for the dispersive hydrodynamics-
like system (3) due to the property of smoothness itself. The system governing the
rarefaction wave satisfies the following non-strictly hyperbolic system

{
ρt − (3ρ2 + 3v2ρ)x = 0,
vt − (6ρv + v3)x = 0.

(69)
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This limit provides the solution correctly up to the solution develops to a shock. A
standard procedure shows that the system (69) can be transformed into diagonal form

(r±)t + V±(r+, r−) (r±)x = 0, (70)

which is the genus-0Whitham equation equivalent to theWhitham equation (39) under
the scale transformation r+ = −λ1, r− = −λ2, where the Riemann invariants r+ and
r− are

r+ = v

2
+ √

ρ, r− = v

2
− √

ρ, (71)

and the characteristic velocities in terms of the Riemann invariants are expressed by

V+ = −
(
15

2
r2+ + 3r+r− + 3

2
r2−

)
, V− = −

(
15

2
r2− + 3r+r− + 3

2
r2+

)
. (72)

Thus the initial data (67) with (68) in physical variables can be converted into the
forms of Riemann invariants with the aid of the transformation (71)

r+(x, 0) =
{
rr+ = vr

2 + √
ρr , x > 0,

rl+ = vl

2 + √
ρl , x < 0,

r−(x, 0) =
{
rr− = vr

2 − √
ρr , x > 0,

rl− = vl

2 − √
ρl , x < 0.

(73)
Introducing the self-similar variable τ = x/t , the Whitham equations (70) are

rewritten as

(V+ − τ)
dr+
dτ

= 0, (V− − τ)
dr−
dτ

= 0. (74)

Similar to the case of the defocusingNLS equation (El et al. 1995), the bi-directionality
determines three cases of rarefaction waves, i.e., only r+ is a constant, only r− is a
constant, and both r+ and r− are constants. However, different from the defocusing
NLS case, the characteristic of the defocusing cmKdV equation (1) propagates along
single direction and divides into five types basic rarefaction wave structures. The first
two types are

r+ = r0+ = constant, r− = −1

5
r0+ ± 1

15

√
−36(r0+)2 − 30 · x

t
, (75)

and the characteristic velocity V− = V−(r0+, r−). The middle two types are

r+ = −1

5
r0− ± 1

15

√
−36(r0−)2 − 30 · x

t
, r− = r0− = constant, (76)

with the velocity V+ = V+(r+, r0−), and the fifth type is

r+ = 1√
6

√
− x

t
, r− = − 1√

6

√
− x

t
, (77)
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with the velocities V+ = V+(r+, r−) = τ = V−. It is observed that the evolution of
Riemann invariants for any choice of the rarefaction waves will be on the parabola

15

2
r2 + 3rr0 + 3

2
(r0)2 + τ = 0 (78)

for the cases in (75)–(76) and on the parabola

6r2 + τ = 0 (79)

for the case in (77), which are displayed in blue dot lines in Fig. 1a–f. It is remarked
that we denote r to represent the Riemann invariants r± and λi (i = 1, 2, . . . , 2N ) in
all the figures in this work. As we shall see, there exists the case when two Riemann
invariants collide, and the coalescence of the Riemann invariants results from the
property of the defocusing cmKdV equation (1), i.e., not genuinely nonlinear [see
Kodama et al. (2008)], which does not appear in the defocusing NLS case. In addition,
we call the solution to be a plateau if both r+ = and r− = are constants. The pure
rarefaction wave or the plateau, excluding any type of dispersive shock wave, will
occur in three situations, i.e., rl+ ≥ rr+ ≥ rl− ≥ rr− ≥ r∗, rl+ ≥ rr+ ≥ r∗ ≥ rr− ≥ rl−
and r∗ ≥ rr+ ≥ rl+ ≥ rr− ≥ rl−, where r∗ represents the point on which ∂V±

∂r changes
sign. Otherwise, the oscillating region will appear that will be discussed in the next
subsection. The distributions of Riemann invariants along with the basic structures
of rarefaction waves are shown in Fig. 1, which are denoted as {RW-I}, {RW-II},
. . ., {RW-VI}, where “RW” is the abbreviation of rarefaction wave. The formation
of the two parabolas in the third type of rarefaction wave degenerates to linearity
eventually. It is remarked that the rarefaction wave structure {RW-III} is a new basic
wave structure in the defocusing cmKdV equation (1), which has not been proposed
by Kodama et al. (2008) and Kong et al. (2019) and other studies before.

Examples of the combination of rarefaction wave are demonstrated in Fig. 2,
where the combined rarefaction wave consists of five regions, from left to right,
which are plateau, {RW-II}, {RW-III}, {RW-I} and plateau again. The boundary
velocity between each regions are given by analyzing the three cases of the rar-
efaction waves. In this example, they are separated by, from left to right, x/t =
−13.875,−6,−1.5,−0.3, respectively. The combined rarefaction wave evolving
from the initial condition rl+ = 1.5, rr+ = 0.5, rl− = −1, rr− = −0.1 displays excel-
lent agreement with the direct numerical simulations; see Fig. 2b.

3.2 Dispersive ShockWaves

From the analysis of the last subsection, it is clear that the rarefaction wave solutions
are valid for the defocusing cmKdV equation (1) until the wave breaking appears. The
solution of equation (1) is governed by smooth enough rarefaction wave in term of
two Riemann invariants, but soon after the breaking, one of the Riemann invariants
develops into three branches governed by the averaging Whitham equation (56) and
(57). The corresponding multi-valued region is replaced by an oscillating region.
However, in the case of self-similar solution, the oscillating region can be determined
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Fig. 1 (Color online) Sketches of Riemann invariants and five possible basic rarefaction waves structures:
a rl+ = rr+ = 1, rl− = −1, rr− = −0.5; b rl+ = 1, rr+ = 0.5, rl− = rr− = −1; c rl+ = 1, rr+ = 0.5, rl− =
−1, rr− = −0.5; d rl+ = rr+ = 1.5, rl− = 1, rr− = 0.5; e rl+ = −1, rr+ = −0.5, rl− = rr− = −1.5

-15 -10 -5 0
-1.5

-1

-0.5

0

0.5

1

1.5

(a)

-30 -20 -10 0
0

0.5

1

1.5

(b)

Numerical solution
Analytical solution

Fig. 2 (Color online) Examples of self-similar solution of the combined rarefaction wave at time t = 2. The
initial condition is rl+ = 1.5, rr+ = 0.5, rl− = −1, rr− = −0.1: a distributions of the Riemann invariants; b
comparison of the analytical solution from Whitham modulation theory with direct numerical simulations,
where the red dashed line indicates analytical solution and the blue solid line represents the numerical
solution
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immediately once the initial data are given. In this subsection, all kinds of structures of
basic DSWs that may appear in the defocusing cmKdV equation (1) will be discussed
in details.

Let us now list the basic structures of DSWs possibly appearing in the defocusing
cmKdV equation (1), in which part of them have been given in Kodama et al. (2008).
The first four types of DSWs are similar to the defocusing NLS case, where three
Riemann invariants are constants while the fourth one changes, either λ2 or λ3. The
reason for existing four types of DSWs in equation (1) instead of only two of them
in the defocusing NLS case lies in the fact that there still exists a parametric parabola
determined by three constants. Thus the four basic structures of DSWs can be obtained
by truncating the upper or lower part of the parabola on each Riemann invariant λ2
and λ3. The distributions of such kinds of Riemann invariants describing DSWs are
displayed in Fig. 3. The second four types of DSW rising from the non-genuine
nonlinear system (56) with (57) satisfy the solution in which two Riemann invariants
are constants and the other two change, as shown in Fig. 4. For simplicity, denote the
eight basic structures ofDSWs as {DSW-I}, {DSW-II},…, {DSW-VIII}, respectively.
The two black dotted lines in Figs. 3 and 4 represent two distinct speeds characterized
the DSWs which is known as the leading and trailing speed of their edges. The leading
and trailing speeds of two edges can be found from Eq. (57) by taking the limitation
m → 1 for λ3 = λ2, and m → 0 for λ3 = λ4 or λ2 = λ1, respectively. In the
eight basic structures of DSWs listed in Figs. 3 and 4, the spatial structure is divided
into three regions, i.e., the plateau for x

t < v|left, the DSW for V |left < x
t < v|right

and the plateau again for x
t > v|right. It is remarked that the distributions of DSWs

shown in Figs. 3 and 4 are obtained numerically via the scheme of two-step variant of
Lax-Wendroff with nonlinear filter for the step-like function (Engquist et al. 1989).

For simplicity, we only analyze the boundary speeds of two types of DSWs, the
other types can be explained easily in a similar way. For the case of {DSW-I}, it is
seen that

τ = x

t
= v3

(
rr+, rl−, λ3, r

r−
)

, (80)

which indicates that the speeds of the right edge τ |right and the left edge τ |left can be
expressed as

τ |right = v3(r
r+, rl−, λ3, r

r−)|λ3=rl− , τ |left = v3(r
r+, rl−, λ3, r

r−)|λ3=rr− .

For the case of {DSW-V}, one has

τ = x

t
= v2(r

l+, λ2, λ3, r
r−), τ = x

t
= v3(r

l+, λ2, λ3, r
r−),

τ |left = v3(r
l+, λ2, λ3, r

r−)|λ3=rr− , τ |right = v2(r
l+, λ2, λ3, r

r−)|λ3=λ2 . (81)

It is noted that all of above cases are obviously the extension of the basic structures
of rarefaction waves. The vertex of parabola r∗, at which the signs of ∂vi/∂r (i =
1, 2, 3, 4) change, plays an important role in distinguishing the types of {DSW-I}-
{DSW-IV} and the types of {DSW-V}-{DSW-VIII}. The regions of DSW in Fig. 4
include vertex of parabola r∗ connecting the two Riemann invariants such as λ2 and
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Fig. 3 (Color online) Four typical distributions of the Riemann invariants λ1, λ2, λ3, and λ4 for the DSWs
with only λ2 or λ3 varying. a Type I: rl+ = rr+ = 1, rl− = −0.5, rr− = −1; b Type II: rl+ = 0.5, rr+ =
1, rl− = rr− = −1; c Type III: rl+ = rr+ = 1, rl− = 0, rr− = 0.5; d Type IV: rl+ = 0, rr+ = −0.5, rl− =
rr− = −1

λ3 in Fig. 4a, b, λ3 and λ4 in Fig. 4c, λ1 and λ2 in Fig. 4d, and the vertex r∗ in Fig. 4a,
b can be determined by

∂v3(λ1, r∗, r∗, λ4)
∂r∗ = 0, (82)

from which we arrive at r∗(λ1, λ4) = − 1
4 (λ1 + λ4). The same way can be utilized

to formulate the vertex r∗ in Fig. 4c, d, which do not display here because of their
complexity.

The remaining twobasic structures ofDSWs, i.e., {DSW-IX}and{DSW-X}, are the
one people have never seen before including the pioneering work on the defocusing
cmKdV equation (1) in Kodama et al. (2008) and have not been appear neither in
the strictly hyperbolic system such as the defocusing NLS equation nor in the non-
strictly hyperbolic system for which r+ or r− is constant. This kind of structure also
requires two variables slowly varying, but importantly they must be on both sides of
the parabola. Otherwise, it develops a combination of DSWs and rarefaction waves.
For this case, we suffice to show that the velocity of leading edge in Fig. 5a (two
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Fig. 4 (Color online) Four typical distributions of the Riemann invariants λ1, λ2, λ3, and λ4 for the DSWs
with two of them varying. a Type V: r∗ = − 1

8 , rl+ = rr+ = 1, rl− = − 3
2 + 1

2

√
13, rr− = −0.5; b Type VI:

r∗ = 1
8 , rl+ = 3

2 − 1
2

√
13, rr+ = 0.5, rl− = rr− = −1; c Type VII: r∗ = −0.0378, rl+ = rr+ = 1, rl− =

− 2
3 , rr− = 0.5; d Type VIII: r∗ = 0.0378, rl+ = 2

3 , rr+ = −0.5, rl− = rr− = −1

variable on the one side) is

v3|λ3=λ2 = −
(
3

2
λ21 + 4λ22 + 3

2
λ24 + 2λ1λ2 + 2λ2λ4 + λ1λ4

)
. (83)

One may find at once that it exactly coincide with the trailing speed of rarefaction
wave when taking λ2 = λ1, thus we have

v3|λ3=λ2,λ2=λ1 = −
(
15

2
λ21 + 3λ1λ4 + 3

2
λ24

)
= v1|λ3=λ2. (84)

As followed from the last subsection, the velocity in (84) for the negative direction
of the Riemann invariant λ1 is an increasing function on the interval [−λ4/5,+∞),
i.e., the upper part of the parabola. The same procedure can be applied to Fig. 5b
immediately.
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Fig. 5 (Color online) Two typical distributions of the Riemann invariants λ1, λ2, λ3, and λ4 for the DSWs
with two of them varying. a Type IX: rl+ = √
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3

4 Complete Classification of the Solution to Riemann Problem

In the last section, five types of rarefaction waves and ten types of DSWs have been
figured out, in which except for {RW-III} all basic wave structures have common
feature with one of the initial data, i.e., either rl+ = rr+ or rl− = rr−. With the fifteen
basic wave structures at hand, we are ready to carry out the classification of the
solutions for the defocusing cmKdV equation (1) with step-like initial data (67) with
(68). In doing so, recall that r+ = v

2 + √
ρ and r− = v

2 − √
ρ. Fixing the initial value

(68) at the left-hand side (vl , ρl), the Riemann invariants rl− and rl+ are determined.
So we have two parabolas

ρ =
(
rl+ − v

2

)2
and ρ =

(
rl− − v

2

)2
, (85)

with vertexes 2rl+ > 2rl− on the horizontal v-axis, which are shown in the solid lines
in Fig. 6. It is observed that the two parabolas divide the (v, ρ) plane into six regions.
The order among rl+, rl−, rr+, rr− can be determined easily in each region. Taking the
region F as an example, for a point (vF , ρF ) = (vr , ρr ) in this region, similarly, two
parabolas ρ = (rr+ − v

2 )2 and ρ = (rr− − v
2 )2 with vertexes 2rr+ > 2rr− are obtained,

which are displayed in the dotted lines in Fig. 6. It is clear that rr+ > rr− > rl+ > rl−
in region F . The orders of the left and right Riemann invariants for the other regions
can be found in the same way:

A. rl+ > rr+ > rr− > rl−, B. rl+ > rr+ > rl− > rr−,

C. rl+ > rl− > rr+ > rr−, D. rr+ > rl+ > rl− > rr−,

E. rr+ > rl+ > rr− > rl−, F. rr+ > rr− > rl+ > rl−. (86)
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Fig. 6 Regions in the (v, ρ) plane corresponding to different classes of the solution for Riemann problem
(67) with (68)

In this section, the complete classification of the solution for the Riemann prob-
lem of the defocusing cmKdV equation (1) are given by analyzing the six possible
cases above based on the Whitham equations proposed in Sect. 2 and the basic wave
structures in Sect. 3.

4.1 Case A. rl+ > rr+ > rr− > rl−

In each case, the vertexes of the parabolas (78) and (79) play a vital role in the
classification of the solution for the Riemann problem of equation (1). In what follows,
four subcases are discussed, which combine the complete classification of Case A.

4.1.1 Subcase A1: rr− > r∗

Here the vertex of the parabola r∗ satisfies

∂v3(rr+, rr−, r∗, r∗)
∂r∗ = 0. (87)

Note that putting rr− = r∗ into (87) yields r∗ = −rr+/5, which is the critical condition
followed from Sect. 3.1, and the rl+ > rr+ located in the upper part of parabola will
develop to a rarefaction wave. The whole scenarios under this condition are analyzed
in eight more cases, which are A1.1 − A1.8. See Figs. 7, 8 and Table 1 for details.

• A1.1 : rl+ > rr+ > rr− > rl−, rl− ≥ r∗.

In this case, the solution of the Riemann invariants consists of five regions (see
Fig. 7a), and in each region, the Riemann invariants can be formulated below.

123



Journal of Nonlinear Science (2022) 32 :3 Page 23 of 46 3

(1) For x/t ≤ v1(rl+, rr−, rr−, rl−), the solution is in the plateau region with Riemann
invariants

r+ = rl+, r− = rl−.

(2) For v1(rl+, rr−, rr−, rl−) < x/t < v1(rr+, rr−, rr−, rl−), the solution is in the {RW-II}
region with Riemann invariants

r+ = −1

5
rl− + 1

15

√
−36(rl−)2 − 30 · x

t
, r− = rl−.

(3) For v1(rr+, rr−, rr−, rl−) ≤ x/t ≤ v3(rr+, rr−, rr−, rl−), the solution is in the plateau
region with Riemann invariants

r+ = rr+, r− = rl−.

(4) For v3(rr+, rr−, rr−, rl−) < x/t < v3(rr+, rr−, rl−, rl−), the solution is in the {DSW-
III} region with Riemann invariants

λ1 = rr+, λ2 = rr−,
x

t
= v3(r

r+, rr−, λ3, r
l−), λ4 = rl−.

(5) For x/t ≥ v3(rr+, rr−, rl−, rl−), the solution is also in the plateau region with Rie-
mann invariants

r+ = rr+, r− = rl−.

Figure 7b shows that the analytical result fromWhithammodulation theory agrees
well with the direct numerical simulations.

• A1.2 : rl+ > rr+ > rr− > rl−, rr− > r∗, r∗ ≥ rl− ≥ r∗∗.

Here the point r∗∗ is determined by

v3(r
r+, rr−, rr−, r∗∗) = v4(r

r+, rr−, rr−, r∗∗). (88)

The solution regions in this case is very similar to the case A1.1, but the {DSW-III}
region in case A1.1 is divided into two combined DSWs, i.e., {DSW-III} and {DSW-
VII}. TheRiemann invariants corresponding to the regions of the two combinedDSWs
are formulated as follows.

For v3(rr+, rr−, rr−, rl−) < x/t < v4(rr+, rr−, r∗
e , rl−), where r∗

e solves the implicit
equation v3(rr+, rr−, r∗

e , rl−) = v4(rr+, rr−, r∗
e , rl−), the solution is in the {DSW-III}

region with Riemann invariants

λ1 = rr+, λ2 = rr−,
x

t
= v3(r

r+, rr−, λ3, r
l−), λ4 = rl−.
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Fig. 7 (Color online) Example of the self-similar solution for case A1.1 combined by {RW-II} and {DSW-
III} with initial condition rl+ = 1, rr+ = 0.8, rl− = 0, rr− = 0.5 at time t = 2: a distributions of the
Riemann invariants in five regions; b comparison of the analytical solution from Whitham modulation
theory (solid red line) with direct numerical simulations (dash blue line)

For v4(rr+, rr−, r∗
e , rl−) ≤ x/t ≤ v4(rr+, rr−, r∗, r∗), the solution is in the {DSW-

VII} region with Riemann invariants

λ1 = rr+, λ2 = rr−,
x

t
= v3(r

r+, rr−, λ3, λ4),
x

t
= v4(r

r+, rr−, λ3, λ4).

• A1.3 : rl+ > rr+ > rr− > rl−, rr− > r∗, − rr+ ≤ rl− ≤ r∗∗.
This case emerges by dividing the intermediate plateau in case A1.2 into a plateau
and a {RW-I} rarefaction wave, where the other regions are similar to case A1.2
except the {RW-I} region, whose Riemann invariants are expressed by

r+ = rr+, r− = −1

5
rr+ − 1

15

√
−36(rr+)2 − 30 · x

t
,

for v1(rr+, rr−, rr−, rl−) < x/t < v4(rr+, rr−, rr−, r∗∗).
• A1.4 : rl+ > rr+ > rr− > rl−, rr− > r∗, −rl+ ≤ rl− ≤ −rr+.
This case comes from case A1.3 by dividing the {RW-II} region into two
different regions of rarefaction waves, i.e., {RW-II} and {RW-III}. The solu-
tion of Riemann invariants for {RW-II} region is the same as case A1.3 for
v1(rl+, rr−.rr−, rl−) < x/t < v4(−rl−, rr−, rr−, rl−), but for v4(−rl−, rr−, rr−, rl−) <

x/t < v4(rr+, rr−.rr−, rl−), the solution is in the {RW-III} region with Riemann
invariants

r+ = 1√
6

√
− x

t
, r− = − 1√

6

√
− x

t
.

• A1.5 : rl+ > rr+ > rr− > rl−, rr− > r∗, rl− < −rl+.

This case emerges by dividing the left plateau in case A1.4 into a plateau
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(a) (b)

Fig. 8 (Color online) Distributions of Riemann invariants for all the possible cases in Case A1 under the
condition rr− > r∗: a the characteristic velocity rl− is chosen to divide the corresponding region into two

smaller regions; b the characteristic velocity rl− is chosen to equal to the boundary velocities

Table 1 Classification of solutions and region distributions in eight subcases under condition A1, where
“Null” means there does not exist this region

Cases Regions
Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

A1.1 Plateau {RW-II} Plateau {DSW-III} Plateau Null

A1.2 Plateau {RW-II} Plateau {DSW-III} {DSW-VII} Plateau

A1.3 Plateau {RW-II} Plateau {RW-I} {DSW-VII} Plateau

A1.4 Plateau {RW-II} {RW-III} {RW-I} {DSW-VII} Plateau

A1.5 Plateau {RW-I} {RW-III} {RW-I} {DSW-VII} Plateau

A1.6 Plateau {RW-II} Plateau {DSW-VII} Plateau Null

A1.7 Plateau {RW-II} {RW-I} {DSW-VII} Plateau Null

A1.8 Plateau {RW-III} {RW-I} {DSW-VII} Plateau Null

and a {RW-I} rarefaction wave, in which for v4(rl+, rr−, rr−, rl−) < x/t <

v1(rl+, , rr−, rr−,−rl+), the solution is in the {RW-I} region with Riemann invari-
ants

r+ = rl+, r− = −1

5
rl+ − 1

15

√
−36(rl+)2 − 30 · x

t

for v4(r+l , rr−, rr−, rl−) < x/t < v1(rl+, rr−, rr−,−rl+).

The cases A1.6 − A1.8, where the characteristic velocity rl− is chosen to equal to
the boundary velocities, can also be analyzed in the same way. All these cases can be
seen clearly in Fig. 8 and Table 1. It is remarked that all the descriptions of regions
here and below are from left to right. For instance, the solution regions of case A1.2
in Table 1 from left to right are Region 1 (plateau) to Region 6 (plateau).
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4.1.2 Subcase A2: rr+ < r∗A2

Here the critical point r∗
A2

satisfies

∂v2(r∗
A2

, r∗
A2

, rr+, rr−)

∂r∗
A2

= 0. (89)

Substituting rr+ = r∗
A2

into equation (89) yields r∗
A2

= −1/rr−. The distributions of
the Riemann invariants under condition A2 are much similar to that under condition
A1, moreover, the density ρ in each case of A2 are exactly the same with that in case
A1. Thus, we ignore the analysis and only list the results of the classification in this
case. See Table 2 for details, where the other critical point r∗∗

A2
solves the following

implicit equation
v1(r

∗∗
A2

, rr+, rr+, rr−) = v2(r
∗∗
A2

, rr+, rr+, rr−). (90)

In fact, the Riemann invariants in all the cases of A1 and A2 are symmetric with
respect to x-axis. More specifically, {RW-II} in A1 is symmetrical to {RW-I} in
A2, {DSW-III} in A1 is symmetrical to {DSW-IV} in A2, and {DSW-VII} in A1 is
symmetrical to {DSW-VIII} in A2, which can also be understood through equation
(57) and the equality below:

v1(λ
0
1, λ

0
2, λ

0
3, λ

0
4) = v4(−λ04,−λ03,−λ02,−λ01),

v2(λ
0
1, λ

0
2, λ

0
3, λ

0
4) = v3(−λ04,−λ03,−λ02,−λ01).

where λ0i (i = 1, 2, 3, 4) represent constants (see equation (96) for details).
It is seen that DSWs emerge in both case A1 and A2. In what follows, the case

in which only plateau and rarefaction wave regions are produced is discussed under
special conditions.

4.1.3 Subcase A3: rr− ≤ r∗ and rr+ ≥ r∗A2

In this case, the solution regions only evolve the combination of plateau and rarefaction
waves,whichmakes the classification to be simpler than cases A1 and A2 above. Firstly,
all the possible cases under condition A3 are listed in Table 3.

The classification of solutions and region distributions for the subcases listed in
Table 3 are given in Table 4. It is remarked that except case A3.42, which is in fact
one of the basic rarefaction wave structures of {RW-III}, all cases evolve at least four
regions. In each case, the boundary velocities can also be derived in the similar way.
For simplicity, we only analyze A3.31 in details, which are found in Sect. 3.1 and Fig. 2.

(1) For x/t < v+(rl+, rl−), the solution is in the plateau region with Riemann invari-
ants

r+ = rl+, r− = rl−.
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Table 4 Classification of solutions and region distributions for the subcases listed in Table 3 under condition
A3

Cases Regions
Region 1 Region 2 Region 3 Region 4 Region 5

A3.11 Plateau {RW-II} Plateau {RW-I} Plateau

A3.21 Plateau {RW-II} {RW-I} Plateau Null

A3.31 Plateau {RW-II} {RW-III} {RW-I} Plateau

A3.41 Plateau {RW-III} {RW-I} Plateau Null

A3.51 Plateau {RW-I} {RW-III} {RW-I} Plateau

A3.32 Plateau {RW-II} {RW-III} Plateau Null

A3.42 Plateau {RW-III} Plateau Null Null

A3.52 Plateau {RW-I} {RW-III} Plateau Null

A3.33 Plateau {RW-II} {RW-III} {RW-II} Plateau

A3.43 Plateau {RW-III} {RW-II} Plateau Null

A3.53 Plateau {RW-I} {RW-III} {RW-II} Plateau

A3.54 Plateau {RW-I} {RW-II} Plateau Null

A3.55 Plateau {RW-I} Plateau {RW-II} Plateau

(2) For v+(rl+, rl−) ≤ x/t < v+(−rl−, rl−), the solution is in the {RW-II} region with
Riemann invariants

r+ = −1

5
rl− + 1

15

√
−36(rl−)2 − 30 · x

t
, r− = rl−.

(3) For v+(−rl−, rl−) ≤ x/t < v+(rr+,−rr+), the solution is in the {RW-III} region
with Riemann invariants

r+ = 1√
6

√
− x

t
, r− = − 1√

6

√
− x

t
.

(4) For v+(rr+,−rr+) ≤ x/t < v+(rr+, rr−), the solution is in the {RW-I} region with
Riemann invariants

r+ = rr+, r− = −1

5
rr+ − 1

15

√
−36(rr+)2 − 30 · x

t
.

(5) For x/t ≥ v+(rr+, rr−), the solution is again in the plateau region with Riemann
invariants

r+ = rr+, r− = rr−.
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Table 5 All of possible solution cases under condition B1

Conditions rr+ < r∗
B1

rr+ = r∗
B1

r∗
B1

< rr+ < r∗∗
B1

rr+ = r∗∗
B1

rr+ > r∗∗
B1

rl+ < r∗
B1

B1.11 Null Null Null Null

rl+ = r∗
B1

B1.21 Null Null Null Null

r∗
B1

< rl+ < r∗∗
B1

B1.31 B1.32 B1.33 Null Null

rl+ = r∗∗
B1

B1.41 B1.42 B1.43 Null Null

rl+ > r∗∗
B1

B1.51 B1.52 B1.53 B1.54 B1.55

4.2 Case B. rl+ > rr+ > rl− > rr−

This is a particular case in which certain exotic phenomena of wave breakings are
demonstrated. The vertex r∗

BCD of the parabolas connecting Riemann invariants λ2
with λ3 plays a vital role in the classification of the solution for the Riemann problem
in Case B, where r∗

BCD solves

∂v3(rr+, r∗
BCD, r∗

BCD, rr−)

∂r∗
B

= 0, (91)

from which one has r∗
BCD = − 1

4 (r
r+ + rr−). In viewing Fig. 4 and its descriptions, it

is observed that there are several subcases in Case B (also in Cases C and D).

4.2.1 Subcase B1: rl− ≤ r∗BCD and r
r+ > r∗BCD

Similar to case A1, there also exist many subcases in B1, where a new basic dispersive
shock wave structure {DSW-IX} emerges. The classification of almost all subcases in
B1 are display in Table 5, in which r∗

B1
= − 1

3r
r− − 2

3r
l− solves

v1(r
∗
B1 , r

l−, rl−, rr−) = v3(r
∗
B1, r

l−, rl−, rr−), (92)

and r∗∗
B1

= rr− − rl− +
√
5(rr−)2 − 4rl−rr− solves

v1(r
∗∗
B1 , r

l−, rr−, rr−) = v3(r
∗∗
B1 , r

l−, rr−, rr−). (93)

The classification of solutions and region distributions for the subcases listed in
Table 5 are given in Table 6. It is remarked that except case B1.42, which is in fact one
of the basic rarefaction wave structures of {DSW-IX} displayed in Fig. 5 (and there
exists only three regions), all cases evolve at least four regions, and in each case, the
boundary velocities can be given easily.

In what follows, only case B1.33 is discussed in details, see also Fig. 9, where the
initial conditions for Riemann invariants are chosen to be rl+ = 1, rr+ = 0.8, rl− =
−0.5, rr− = −1. So one has r∗

B1
= 0.6 and r∗∗

B1
= √

3 − 1
2 . Figure 9 demonstrates the
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Table 6 Classification of solutions and region distributions for the subcases listed in Table 5 under condition
B1

Cases Regions
Region 1 Region 2 Region 3 Region 4 Region 5

B1.11 Plateau {DSW-I} Plateau {RW-II} Plateau

B1.21 Plateau {DSW-I} {RW-II} Plateau Null

B1.31 Plateau {DSW-I} {DSW-IX} {RW-II} Plateau

B1.41 Plateau {DSW-IX} {RW-II} Plateau Null

B1.51 Plateau {RW-II} {DSW-IX} {RW-II} Plateau

B1.32 Plateau {DSW-I} {DSW-IX} Plateau Null

B1.42 Plateau {DSW-IX} Plateau Null Null

B1.52 Plateau {RW-II} {DSW-IX} Plateau Null

B1.33 Plateau {DSW-I} {DSW-IX} {DSW-I} Plateau

B1.43 Plateau {DSW-IX} {DSW-I} Plateau Null

B1.53 Plateau {RW-II} {DSW-IX} {DSW-I} Plateau

B1.54 Plateau {RW-II} {DSW-I} Plateau Null

B1.55 Plateau {RW-II} Plateau {DSW-I} Plateau
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Fig. 9 (Color online) Example of the self-similar solution for case B1.33 with initial condition rl+ =
1, rr+ = 0.8, rl− = −0.5, rr− = −1 at time t = 1: a distributions of the Riemann invariants in five
regions; b comparison of the analytical solution from Whitham modulation theory (solid red line) with
direct numerical simulations (dash blue line)

distributions of the Riemann invariants and the comparison of the analytical solution
from Whitham modulation theory with direct numerical simulations. It is observed
that the three middle regions form a larger genus-1 dispersive shock wave consisting
of three genus-1 DSWs, in which an exotic DSW structure {DSW-IX} is evolved. The
boundaries of those regions are separated by four black dotted lines, see Fig. 9a, which
is quite different from the structures ofwave breaking in the oscillation region observed
before (Kodama et al. 2008). Moreover, Fig. 9b shows that the analytical result from
Whitham modulation theory agrees well with the direct numerical simulations.
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In case B1.33, the solution of the Riemann invariants consists of five regions (see
Fig. 9a), and in each region, the Riemann invariants can be formulated below.

(1) For x/t ≤ v3(rl+, rl−, rr−, rr−), the solution is in the plateau region with Riemann
invariants

r+ = rl+, r− = rl−.

(2) For v3(rl+, rl−, rr−, rr−) < x/t < v1(rl+, rl−, r∗
Be, r

r−), where r∗
Be solves v1(rl+, rl−,

r∗
Be, r

r−) = v3(rl+, rl−, r∗
Be, r

r−) and locates in the interval [rr−, rl−], the solution is
in the {DSW-I} region with Riemann invariants

λ1 = rl+, λ2 = rl−,
x

t
= v3(r

l+, rl−, λ3, r
r−), λ4 = rr−.

(3) For v1(rl+, rl−, r∗∗
Be, r

r−) ≤ x/t < v3(rr+, rl−, r∗∗
Be, r

r−), where r∗∗
Be satisfies

v1(rr+, rl−, r∗∗
Be, r

r−) = v3(rr+, rl−, r∗∗
Be, r

r−) located in the interval [rr−, rl−], the solu-
tion is in the {DSW-IX} region with Riemann invariants

x

t
= v1(λ1, r

l−, λ3, r
r−), λ2 = rl−,

x

t
= v3(λ1, r

l−, λ3, r
r−), λ4 = rr−.

(4) For v3(rr+, rl−, r∗∗
Be, r

r−) ≤ x/t < v3(rr+, rl−, rl−, rr−), the solution is in the {DSW-
I} region with Riemann invariants

λ1 = rr+, λ2 = rl−,
x

t
= v3(r

r+, rl−, λ3, r
r−), λ4 = rr−.

(5) For x/t ≥ v3(rr+, rl−, rl−, rr−), the solution is in the plateau region with Riemann
invariants

r+ = rr+, r− = rl−.

The boundary velocities x/t = v3(rl+, rl−, rr−, rr−) and x/t = v3(rr+, rl−, rl−, rr−)

are known as trailing edge and leading edge, respectively. The Riemann invariants
match at the boundaries of zero-phase solution region and one-phase solution region,
see below.

At the trailing edge, i.e., harmonic front with λ3 = λ4 and m = 0 (see Eq. 55), we
have

(λ1, λ2) = the rarefaction wave solution outside the oscillation region.

At leading edge, i.e., soliton front with λ3 = λ2 and m = 0 (see Eq. 55), we have

(λ1, λ4) = the rarefaction wave solution outside the oscillation region.
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Table 7 Classification of solutions and region distributions for the subcases listed in Table 5 under condition
B2

Cases Regions
Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

B2.1 Plateau {DSW-I} {DSW-IX} {DSW-I} {DSW-V} Plateau

B2.2 Plateau {RW-II} {DSW-I} {DSW-V} Plateau Null

B2.3 Plateau {RW-II} Plateau {DSW-I} {DSW-V} Plateau

B2.4 Plateau {RW-II} Plateau {DSW-V} Plateau Null

B2.5 Plateau {RW-II} Plateau {RW-I} {DSW-V} Plateau

4.2.2 Subcase B2: rl− > r∗BCD and r
r− < r∗BCD

Taking r∗
B2

= rr−−rl−+
√
5(rr−)2 − 4rl−rr−, the complete classification under condition

B2 is given below:
For rl− < r∗

B2
, there are three cases as follows

• B2.1 : rr+ < r∗
B2

, rl+ < r∗
B2
.

• B2.2 : rr+ = r∗
B2

, rl+ > r∗
B2
.

• B2.3 : rr+ > r∗
B2

, rl+ > r∗
B2
.

For rl− = r∗
B2
, there is only one case

• B2.4 : rr+ > r∗
B2

, rl+ > r∗
B2
.

For rl− > r∗
B2
, there is also only one case

• B2.5 : rr+ > r∗
B2, r

l+ > r∗
B2.

The classification of solutions and region distributions for these subcases are given
in Table 7. It is shown that all cases evolve at least five regions, in which the exotic
DSW structure {DSW-IX} appears again.

In the following, the case B2.1 is taken as an example to exhibit the novel wave
breaking appearing under the condition B2. Figure 10 demonstrates the distributions
of the Riemann invariants and the comparison of the analytical solution fromWhitham
modulation theory with direct numerical simulations. It is seen that the four middle
regions form a larger genus-1 dispersive shockwave consisting of four genus-1DSWs,
which definitely does not appear under condition B1. The boundaries of those regions
are separated by five black dotted lines, see Fig. 10a, which has not been found before
(Kodama et al. 2008). It is also found from Fig. 10b that the analytical result from
Whithammodulation theory agrees well with the direct numerical simulations. In fact,
the fourth and fifth regions for case B2.1 shown in Fig. 10 is generated by dividing the
fourth region in case B1.33 displayed in Fig. 9. Thus only the boundary velocities of
the fifth region, i.e., the {DSW-VI} region, is proposed below and the other regions
are the same as case B1.33.

For the {DSW-VI} region in Fig. 10, the Riemann invariants are

λ1 = rr+,
x

t
= v2(r

r+, λ2, λ3, r
r−),

x

t
= v3(r

r+, λ2, λ3, r
r−), λ4 = rr−, (94)
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Fig. 10 (Color online) Example of the self-similar solution for case B2.1 with initial conditions rl+ =
1, rr+ = 0.8, rl− = 0.5, rr− = −1 at time t = 1: a distributions of the Riemann invariants in five regions; b
comparison of the analytical solution fromWhithammodulation theory (solid red line)with direct numerical
simulations (dash blue line)

for v2(rr+, rl−, r∗∗
Be, r

r−) < x/t ≤ v3(rr+, r∗
Be, r

∗
Be, r

l−), where r∗
Be = r∗

B = − 1
4 (r

r+ +
rr−) and r∗∗

Be satisfies an implicit equation

v2(r
r+, rl−, r∗∗

Be, r
r−) = v3(r

r+, rl−, r∗∗
Be, r

r−). (95)

In particular, it can be calculated that r∗
Be = r∗

B = 0.05 and r∗∗
Be ≈ −0.4195 in case

B2.1 with the initial conditions rl+ = 1, rr+ = 0.8, rl− = 0.5, rr− = −1.

4.2.3 Subcase B3: rr− ≥ r∗BCD

The condition rr− ≥ r∗
B indicates rr− ≥ − 1

5r
r+ which only produces rarefaction waves,

see Sect. 3.1 for details. Thus the solution regions in this case only consist of plateau,
{RW-II}, plateau, {RW-I}, plateau. Figure 11 displays the distributions of theRiemann
invariants and the comparison of the analytical solution from Whitham modulation
theory with direct numerical simulations, which shows that the result of Whitham
modulation theory agrees well with the direct numerical simulations.

4.2.4 Subcase B4: rl+ < r∗BCD

In this case, the four initial values rl+, rr+, rl− and rr− are all below the critical point
r∗
B . Define four critical points r

∗
B4

, r∗∗
B4
, rr∗

B4
and rr∗∗

B4
in the following way:

• Let r∗
B4

∈ [rr+, rl+] solve the implicit equationv1(r∗
B4

, rr+, rr+, rr−) = v2(r∗
B4

, rr+, rr+, rr−).

• Let r∗∗
B4

∈ [rr+, rl+] satisfy equation ∂v1(r∗∗
B4

, r∗∗
B4

, rr+, rr−)/∂r∗∗
B4

= 0.

• Let rr∗
B4

∈ [r∗
B4

, rl+] solve the implicit equation v1(rr∗
B4

, rl−, rl−, rr−) =
v3(rr∗

B4
, rl−, rl−, rr−).
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Fig. 11 (Color online) Examples of self-similar solutions of of case B3 with initial condition r
l+ = 2, rr+ =

1.5, rl− = 1, rr− = −0.3 at time t = 1: a distributions of Riemann invariants; b comparison of numerical
simulation (dash blue line) with analytical solution (solid red line) of the defocusing cmKdV equation (1)

(a) (b)

Fig. 12 (Color online) Distributions of Riemann invariants for all the possible cases in Case B4: a the
characteristic velocity rl+ is chosen to divide the corresponding region into two smaller regions; b the

characteristic velocity rl+ is chosen to equal to the boundary velocities r∗
B4

, r∗∗
B4

, rr∗
B4

and rr∗∗
B4

• Let rr∗∗
B4

solve the implicit equation v1(rr∗∗
B4

, rl−, rr−, rr−) = v3(rr∗∗
B4

, rl−, rr−, rr−).

The complete classification of case B4 can be given by adjusting the initial value
rl+, which is, more or less, similar to case A1 and is described in Fig. 12.

The classification of solutions and region distributions for the subcases in Fig. 12
are given in Table 8, which shows that all cases evolve at least five regions. It is
worth mentioning that three DSWs are separated by a plateau in case B4.2, two DSWs
are separated by a plateau and a rarefaction wave in case B4.4, and three DSWs are
separated by a rarefaction wave in case B4.6. These are the main features in case B4.

We only take case B4.4 as an example to exhibit the phenomena of wave breaking
under the condition B2. Figure 13 shows that the solution for case B4.4 consists of six
regions with two different patterns of the oscillating DSWs separated by a plateau and
a rarefaction wave, in which the left oscillating pattern corresponding to {DSW-I} and
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Table 8 Classification of solutions and region distributions for the subcases listed in Table 5 under condition
B4

Cases Regions
Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

B4.1 Plateau {DSW-I} Plateau {DSW-IV} Plateau Null

B4.2 Plateau {DSW-I} Plateau {DSW-IV} {DSW-VIII} Plateau

B4.3 Plateau {DSW-I} Plateau {DSW-VIII} Plateau Null

B4.4 Plateau {DSW-I} Plateau {RW-II} {DSW-VIII} Plateau

B4.5 Plateau {DSW-I} {RW-II} {DSW-VIII} Plateau Null

B4.6 Plateau {DSW-I} {DSW-IX} {RW-II} {DSW-VIII} Plateau

B4.7 Plateau {DSW-IX} {RW-II} {DSW-VIII} Plateau Null

B4.8 Plateau {RW-II} {DSW-IX} {RW-II} {DSW-VIII} Plateau
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Fig. 13 (Color online) Example of self-similar solution of case B4.4 with initial condition r
l+ = 0.8, rr+ =

−0.3, rl− = −1, rr− = −1.2 at time t = 1: a distributions ofRiemann invariants;b comparison of numerical
simulation (dash blue line) with analytical solution (solid red line) of the defocusing cmKdV equation (1)

the right pattern corresponding to {DSW-VIII}. Figure 13b indicates that the result of
Whitham modulation theory agrees well with the direct numerical simulations. The
boundary velocities in each region are given below.

(1) For x/t ≤ v3(rl+, rl−, rr−, rr−), the solution is in the plateau region with Riemann
invariants

r+ = rl+, r− = rl−.

(2) For v3(rl+, rl−, rr−, rr−) < x/t < v3(rl+, rl−, rl−, rr−), the solution is in the {DSW-I}
region with Riemann invariants

λ1 = rl+, λ2 = rl−,
x

t
= v3(r

l+, rl−, λ3, r
r−), λ4 = rr−.
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(3) For v3(rl+, rl−, rl−, rr−) ≤ x/t ≤ v1(rl+, rr+, rr+, rr−), the solution is in the plateau
region with Riemann invariants

r+ = rl+, r− = rr−.

(4) For v1(rl+, rr+, rr+, rr−) < x/t < v1(r∗
B4, r

r+, rr+, rr−), the solution is in the {RW-II}
region with Riemann invariants

r+ = −1

5
rr− + 1

15

√
−36(rr−)2 − 30 · x

t
, r− = rr−.

(5) Forv1(r∗
B4, r

r+, rr+, rr−) ≤ x/t ≤ v1(r∗∗
B4, r

∗∗
B4, r

r+, rr−), the solution is in the {DSW-
VIII} region with Riemann invariants

x

t
= v1(λ1, λ2, r

r+, rr−),
x

t
= v2(λ1, λ2, r

r+, rr−), λ3 = rr+, λ4 = rr−.

(6) For x/t > v1(r∗∗
B4, r

∗∗
B4, r

r+, rr−), the solution is again in the plateau region with
Riemann invariants

r+ = rr+, r− = rr−.

Notice that the directions of leading and trailing edges of two DSWs in Fig. 13 are
opposite.

4.3 Case C. rl+ > rl− > rr+ > rr−

This is an special case, in which the vacuum region and genus-2 region appear. The
vertex r∗

BCD in equation (91) is a vital point in classifying the solution of the Riemann
problem in Case C. In what follows, the subcase that only rarefaction wave emerges
is discussed firstly.

4.3.1 Subcase C1: rr− ≥ r∗BCD

This case only contains one class of solution, where one vacuum and two rarefaction
waves are produced. Figure 14 shows that the solution for case C1 consists of five
regions, where two different patterns of rarefaction waves are separated by a vacuum,
see also Table 10. Figure 14b indicates that the result of Whitham modulation theory
agrees well with the direct numerical simulations. The formation of these profiles is
much similar to the case under B3 except the intermediate plateau connecting the two
rarefaction waves is replaced with the vacuum region. This result can also be observed
in theRiemann problemof the defocusingNLS equation (El et al. 1995). The boundary
velocities in this case is omitted since it can also be easily derived in the same way.
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Fig. 14 (Color online) Example of the self-similar solution of case C1 with initial condition r
l+ = 2, rr+ =

1, rl− = 1.5, rr− = 0 at time t = 1: a distributions of Riemann invariants; b comparison of numerical
simulation (dash blue line) with analytical solution (solid red line) of the defocusing cmKdV equation (1)

Table 9 All of possible solution cases under conditions C1 and C2

Conditions rr− ≥ r∗
BCD r∗

C2
< rr− < r∗

BCD rr− = r∗
C2

−rl− < rr− < r∗
C2

Cases C1 C2.1 C2.2 C2.3

Conditions rr− = −rl− −rl+ < rr− < −rl− rr− = −rl+ rr− < −rl+
Cases C2.4 C2.5 C2.6 C2.7

4.3.2 Subcase C2: rr+ > r∗BCD and r
r− < r∗BCD

The inequality rr− < r∗
BCD indicates that rr− < − 1

5r
r+, which provides a condition of

producing DSW. The complete classification under condition C2 can be obtained
by adjusting the value of rr− in comparison with r∗

BCD and r∗
C2 = rr+ − rr− −√

5(rr+)2 − 4rr+rr−, see Table 9.
The classification of solutions and region distributions for the subcases listed in

Table 9 are given in Table 10. It is observed that there are plateau, vacuum, rarefaction
waves, and DSW in case C2.3, which will be displayed in Fig. 15 below. Moreover, in
cases C2.5 −C2.7 there exist oscillatory regions, which are also genus-1 DSW regions
but they do not belong to any basic structures of DSW shown in Sect. 3.2. Notice
that oscillatory region is a bit similar to the region that found in El et al. (1995), in
which the amplitude of the oscillation is a constant (a = 0) there. However, different
from the results in El et al. (1995) the oscillation in this work is a variable . It seen in
the oscillatory region that a → 0 when λ3 → λ4 in the left hand side, or λ1 → λ2
in the right hand side. This implies that the left half part of oscillatory region can be
interpreted as the trailing edge of {DSW-IX} and the symmetry with respect to vertical
axis of trailing edge of {DSW-X} for the right part.
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Table 10 Classification of solutions and region distributions for the subcases listed in Table 5 under con-
dition C2

Cases Regions
Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

C1 Plateau {RW-II} Vacuum {RW-I} plataeu Null

C2.1 Plateau {RW-II} Vacuum {RW-I} {DSW-VI} Plateau

C2.2 Plateau {RW-II} Vacuum {DSW-VI} plataeu Null

C2.3 Plateau {RW-II} Vacuum {RW-V} {DSW-VI} Plateau

C2.4 Plateau {RW-II} {RW-V} {DSW-VI} plataeu Null

C2.5 Plateau {RW-II} Oscillation {RW-V} {DSW-VI} Plateau

C2.6 Plateau Oscillation {RW-V} {DSW-VI} Plateau Null

C2.7 Plateau {DSW-I} Oscillation {RW-V} {DSW-VI} Plateau
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Fig. 15 (Color online) Example of the self-similar solution of case C2.3 with initial condition rl+ =
1.2, rr+ = 0.5, rl− = 0.8, rr− = −0.7 at time t = 1: a distributions of Riemann invariants; b comparison
of numerical simulation (dash blue line) with analytical solution (solid red line) of the defocusing cmKdV
equation (1)

Figure 15 shows that the solution for caseC2.3 with initial condition rl+ = 1.2, rr+ =
0.5, rl− = 0.8, rr− = −0.7 consists of six regions including plateau, vacuum, rarefac-
tion waves and DSW. Figure 15b indicates that the analytical solution from Whitham
modulation theory agrees well with the direct numerical simulations. From left to
right, the fourth region is a rarefaction wave followed from equation (57), where

v3|λ1=λ2 = −15

2
r23 − 3r4r3 − 3

2
r24 , v4|λ1=λ2 = −3

2
r23 − 3r4r3 − 15

2
r24 .

The fifth region, the dispersive shock wave region, can be regard as the limitation state
of {DSW-VI} for λ2 → λ3.
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4.3.3 Subcase C3: rr+ ≤ r∗BCD

The condition rr+ ≤ r∗
BCD shows that rr+ ≤ − 1

5r
r− which will result in the collision of

twoDSWs as seen in Fig. 13.Moreover, in this case, certain region can not be described
by the genus-1 Whitham equations (56) with (57) definitely. Thus the genus-2 regions
may emerge, which should be analyzed by the genus-2 Whitham equations (64) with
(66). The initial condition of Fig. 16 is rl+ = 0, rr+ = −0.8, rl− = −0.5, rr− = −1.2.
It is shown that the solution for case C3 consists of five regions with two different
genus-1 DSWs separated by a genus-2 DSW. Fig. 16b demonstrates the result of direct
numerical simulations, which displays that the middle genus-2 DSW region oscillates
rapidly, which further verifies the result of Whitham modulation theory shown in
Fig. 16a. The boundaries of the genus-2 DSW region are x = s1t and x = s2t with
s1 = −7.3 and s2 = −4.5. In fact, s1 and s2 are characteristic velocities obtained by
the genus-2 Whitham equations (64) with (66). The new feature of middle genus-2
DSW region can be explained as follows: Two genus-1 dispersive shockwaves (genus-
1 undular bores) move toward each other and overlap in region [s1, s2] to generate a
genus-2 dispersive shock wave that can be described by the two-phase solution of the
defocusing cmKdV equation (1).

This work does not present the detailed description of the genus-2 DSW region but
give the appropriate solution for the genus-2 averaged Whitham equation

∂λi

∂t
+ vi (λ1, λ2, λ3, λ4, λ5, λ6)

∂λi

∂x
= 0, i = 1, 2, . . . , 6,

where λ1 > λ2 > λ3 > λ4 > λ5 > λ6. The self-similar solution of this equation in
the region [s1, s2] is expressed by

λ1 = rl+, λ2 = rl−, λ5 = rr+, λ6 = rr−,

v3(r
l+, rl−, λ3, λ4, r

r+, rr−) = τ = v4(r
l+, rl−, λ3, λ4, r

r+, rr−),

from which the the boundary characteristic velocities s1 and s2 are

s1 = v3(r
l+, rl−, λ∗

3, r
r+, rr+, rr−), s2 = v4(r

l+, rl−, rl−, λ∗
4, r

r+, rr−).

4.4 Case D. rr+ > rl+ > rl− > rr−

More genus-2 DSW regions emerge in this case because of the collisions of the DSWs.
As before, the vertex r∗

BCD in equation (91) is still an important point in classifying
the solution of the Riemann problem for Case D.

4.4.1 Subcase D1: rl− > r∗BCD

The genus-2DSW region also appears due to the collision of {DSW-II} and {DSW-V}
under condition D1. Since the genus-2 DSWs are more complicated than the genus-1
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Fig. 16 (Color online) Example of the self-similar solution of case C3 with initial condition r
l+ = 0, rr+ =

−0.8, rl− = −0.5, rr− = −1.2: a distributions of Riemann invariants; b direct numerical simulation, where
the red lines represent the boundary of each region corresponding to the black dotted line in a

Table 11 All of possible solution cases under condition D1

Conditions rr− ≥ r∗
BCD r∗

D1
< rr− < r∗

BCD rr− = r∗
D1

r∗∗
D1

< rr− < r∗
D1

Cases D1.1 D1.2 D1.3 D1.4

Conditions rr− = r∗∗
D1

r∗∗∗
D1

< rr− < r∗∗
D1

rr− = r∗∗∗
D1

rr− < r∗∗∗
D1

Cases D1.5 D1.g2 D1.g2 D1.g2

DSWs, this work only gives the classification cases under condition D1 and lists the
solution regions only including genus-1 DSWs; see Tables 11 and 12, respectively.
Define three critical points r∗

D1
, r∗∗

D1
and r∗∗∗

D1
in the following way:

• Let r∗
D1

solve the implicit equation v2(rr+, rl−, r∗
D1

, rr−) = v3(rr+, rl−, r∗
D1

, rr−).

• Let r∗∗
D1

solve the implicit equation v2(rr+, rl+, rl+, rl−) = v3(rr+, rl−, r∗∗
D1

, r∗∗
D1

) on
the interval (−∞, r∗

D1
).

• Let r∗∗∗
D1

solve the implicit equation v2(rr+, rr+, rl+, rl−) = v3(rr+, rl+, r∗∗∗
D1

, r∗∗∗
D1

)

on the interval (−∞, r∗∗
D1

).

The complete classification of case D1 can be given by adjusting the initial value
rr−, which described in Table 11. The region remarked by D1.g2 is the place where the
genus-2 region appears. The classification of solutions and region distributions for the
subcases D1.1-D1.5 in Table 11 are given in Table 12.

We only take case D1.2 as an example to exhibit the phenomena of wave breaking
under the condition D1. Figure 17 shows that the solution for case D1.2 consists of six
regions with two different patterns of the oscillating DSWs separated by a plateau and
a rarefaction wave. Figure 17b indicates that the analytical result of Whitham theory
agrees well with the direct numerical simulations.
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Table 12 Classification of solutions and region distributions for the subcases D1.1-D1.5 listed in Table 11
under condition D1

Cases Regions
Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

D1.1 Plateau {DSW-II} Plateau {RW-IV} Plataeu Null

D1.2 Plateau {DSW-II} Plateau {RW-IV} {DSW-V} Plateau

D1.3 Plateau {DSW-II} Plateau {DSW-V} Plataeu Null

D1.4 Plateau {DSW-II} Plateau {RW-I} {DSW-V} Plataeu

D1.5 Plateau {DSW-II} {RW-I} {DSW-V} Plataeu Null
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Fig. 17 (Color online) Example of self-similar solution of case D1.2 with initial condition r
l+ = 0.8, rr+ =

1.2, rl− = 0.5, rr− = −0.5 at time t = 1: a distributions of Riemann invariants; b comparison of numerical
simulation (dash blue line) with analytical solution (solid red line) of the defocusing cmKdV equation (1)

4.4.2 Subcase D2: rl− ≤ r∗BCD and r
l+ > r∗BCD

Two genus-1 DSWs and more genus-2 DSW are produced in this case. By adjusting
the parameters rl− and rr− one can control the movement styles of the two genus-1
DSWs including the case when they collide with each other, where the genus-2 DSW
appears. Define two critical points r∗

D2
and r∗∗

D2
as follows:

• Let r∗
D2

solve the implicit equation v2(rr+, rr+, rl+, rl−) = v3(rl+, rl−, , r∗
D2

, r∗
D2

) in
the interval (−∞, r∗∗

D2
), where r∗∗

D2
can be formulated below.

• Let r∗∗
D2

solve the implicit equation v2(rr+, rl+, rl+, rl−) = v3(rr+, rl−, r∗∗
D2

, r∗∗
D2

) in

the interval (−∞, rl−).

The complete classification of case D2 can be given by classifying the initial values
rl− and rr−, which described in Table 13. Similar to Table 11, the region remarked by
D2.g2 also represents the genus-2 region.

The classificationof solutions and regiondistributions for the subcases D2.11, D2.21,

D2.54 and D2.55 listed in Table 13 are given in Table 14. It is seen that there are two
genus-1 DSWs in each case and the rarefaction waves don’t emerge here. The density
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Table 13 All of possible solution cases under condition D2

Conditions rr− < r∗
D2

rr− = r∗
D2

r∗
D2

< rr− < r∗∗
D2

rr− = r∗∗
D2

rr− < r∗∗
D2

rl− < r∗
D2

D2.11 Null Null Null Null

rl− = r∗
D2

D2.21 Null Null Null Null

r∗
D2

< rl− < r∗∗
D2

D2.g2 D2.g2 D2.g2 Null Null

rl− = r∗∗
D2

D2.g2 D2.g2 D2.g2 Null Null

rl− > r∗∗
D2

D2.g2 D2.g2 D2.g2 D2.54 D2.55

Table 14 Classification of solutions and region distributions for the subcases D2.11, D2.21, D2.54 and
D2.55 listed in Table 13 under condition D2

Cases Regions
Region 1 Region 2 Region 3 Region 4 Region 5

D2.11 Plateau {DSW-II} Plateau {DSW-I} plataeu

D2.21 Plateau {DSW-II} {DSW-I} Plateau Null

D2.54 Plateau {DSW-I} {DSW-II} Plateau Null

D2.55 Plateau {DSW-I} Plateau {DSW-II} Plateau

profiles are very similar to case D1 so we don’t display the Riemann invariants and
the comparison of numerical simulation with Whitham modulation theory here.

4.4.3 Subcase D3: rl+ < r∗BCD

Notice that the distribution of Riemann invariants in this case is symmetric with case
D1 and the density profile ρ is exactly the same as case D1. In fact, the symmetry
of {DSW-II}, {DSW-VI}, {RW-IV}, {RW-I} in case D3 is {DSW-I}, {DSW-VI},
{RW-VI}, {RW-II} in case D1, respectively. Thus we omit the whole description here
for simplicity.

4.5 Case E. rr+ > rl+ > rr− > rl−

The classification of solutions under condition E is the same as that in case B. Indeed,
if setting rr+E = −rr−B, rl+E = −rl−B, rr−E = −rr+B, rl−E = −rl+B where subscripts
B and E represent the parameters under conditions B and E , respectively, we have
immediately that rl+B > rr+B > rl−B > rr−B , which exactly coincides with the condi-
tion in case B. Moreover, the same symmetry can also be found inWhitham velocities
as follows:
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v j (−λ4,−λ3,−λ2,−λ1) = V − (−s1 + 2λ j )(∂ ln L/∂λ j )
−1

= V − (−s1 − 2λi )(−∂ ln L/∂λi )
−1

= V − (s1 + 2λi )(∂ ln L/∂λi )
−1

= vi (λ1, λ2, λ3, λ4), i = 5 − j . (96)

This proves our claim, so the detailed analysis for case E can omit for simplicity.

4.6 Case F. rr+ > rr− > rl+ > rl−

Similarly, the classification of solutions in this case is the same as that in case C .
Setting rr+F = −rr−C , rl+F = −rl−C , rr−F = −rr+C , rl−F = −rl+C yields rl+C >

rl−C > rr+C > rr−C , which exactly coincides with the condition in case C .

5 Conclusion

The Riemann problem of the defocusing cmKdV equation has been investigated by
Whithammodulation theory. The periodic solutions alongwith theWhitham equations
in diagonal form are derived by means finite-gap integration approach. The complete
classification for the general step-like initial data of the defocusing cmKdV equation
have been discussed in six cases. Some new basic wave structures that do not appear
in the NLS equation are found. The solution regions in the NLS equation consisted of
five parts, while they can contain six regions in the defocusing cmKdV equation. The
typical density profiles in each class have been compared with the direct numerical
simulation with remarkable agreement.

During the analysis of the initial value problem of the defocusing cmKdV equation,
an asymptotical description of the slowly modulated waves is given by solving the
Whitham equations. However, the Whitham method is not the only way to investigate
the asymptotics of the nonlinear integrable systems and the Riemann-Hilbert method,
especially the Deift–Zhou nonlinear steepest descent approach (Deift and Zhou 1993)
is a rigorous path to explore the asymptotics of various integrable systems, such as the
nonlinear Schrödinger equation (Boutet de Monvel et al. 2020, 2021; Kotlyarov and
Minakov 2019), KdV equation (Andreiev et al. 2016), real modified KdV equation
(Grava and Minakov 2020), Camassa-Holm equation (Chang et al. 2016) and Toda
lattice (Egorova et al. 2018). The results in this work will inspire further exploration
of the long-time behaviors of the defocusing cmKdV equation based on Deift–Zhou
nonlinear steepest descent approach (Deift and Zhou 1993).
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