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Abstract

The complete classification of solutions to the defocusing complex modified KdV
equation with step-like initial condition is studied by the finite-gap integration
approach and Whitham modulation theory. All kinds of combination solutions consist-
ing of genus-0 regions, genus-1 regions, or genus-2 regions are found by classifying
the Riemann invariants. The behaviors of wave breaking in Riemann problem of the
defocusing complex modified KdV equation are much richer and more complicated
than those in the nonlinear Schrodinger equation. It is demonstrated that a large oscil-
lating region can be composed of four basic genus-1 dispersive shock waves, a case
of solution may be consisted of up to six regions, and the plateau, vacuum, rarefaction
wave, and dispersive shock wave can coexist in the same solution region. Moreover,
the genus-2 region, produced from the collision of two dispersive shock waves, is
described detailedly by the genus-2 Whitham equations. The direct numerical simula-
tions on the defocusing complex modified KdV equation show remarkable agreement
with the results from Whitham modulation theory.
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1 Introduction

The Whitham theory was first formulated by G.B. Whitham in his seminal publi-
cation (Whitham 1965) in which he gave the Whitham modulation equations based
on the averaged conservation laws to describe some physical phenomena such as
undular bore in water and formed the basis of impressive development of dispersive
hydrodynamics. The first application of Whitham theory to Korteweg—de Vries (KdV)
equation was achieved by Gurevich and Pitaevskii (1974) who studied the self-similar
solutions for dispersive shock wave (DSW), called collisionless shock, whose evo-
Iution can be described by the diagonal Whitham equation. One of its edge appears
to be a soliton wave, the harmonic wave for its opposite. The simplest expanding
oscillating structure described by a Jacobian elliptic function was also obtained in
Gurevich and Pitaevskii (1974) with a step-like initial jump known as Riemann prob-
lem. The analytical description of DSW that transformed the Whitham equation to
Euler—Poisson—-Darboux equation for the nonlinear Schrodinger equation (NLS) has
been presented in Tian and Ye (1999).

The Riemann problem of the evolution waves has been discussed in various impor-
tant physical fields. In photon fluid, all the possible wave patterns propagating in
the normal fiber has been discussed with account of steepening effects (Ivanov and
Kamchatnov 2017). Ivanov et al. (2017) gives the classification of possible flows in
two-component Bose—Einstein condensate and the solutions of Riemann problem for
Gardner equation (related to modified KdV equation) are completely classified in
Kamchatnov et al. (2012) which appears some new structures and more complicated
cases compared to the KdV case. Indeed, this can also be found in the case of defo-
cusing complex modified KdV (cmKdV) equation with special step-like initial data
(Kodama et al. 2008; Kong et al. 2019). However, the studies on general step-like
initial problem of the defocusing cmKdV equation are even more complicated.

Except the pseudo-phase method introduced by Whitham himself, there are sev-
eral way to average the original equation to get the Whitham equations. For example,
Luke (1966) used a perturbation procedure to investigate the nonlinear wave prob-
lem, which could recover the Whitham equations of slow variations. Flaschka et al.
(1980) extended the finite-gap integration theory to study the multiphase averaging of
integrable system of KdV type. Dubrovin and Novikov (1989) proposed a procedure
for averaging the local Poisson brackets to derive the Whitham equations. Lax and
Levermore (1983) opened another way to describe the DSW rigorously by utilizing the
method of inverse scattering transform and Whitham modulation theory. Moreover,
the combinations of Whitham modulation theory with numerical techniques have been
studied by Grava and Klein (2007) and Ablowitz et al. (2016).

This paper focuses on the complete classification of Riemann problem for the
defocusing cmKdV equation with small dispersion

qr — 6|Q|2%c + 82‘1xxx =0, (1)
where g = q(x, t) represents the complex wave envelope and ¢ < 1 is a small mod-

ulation scale. This equation is analyzed by means of Whitham modulation theory,
in which the corresponding Whitham equations are neither strictly hyperbolic nor
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genuinely elliptic systems (Kodama et al. 2008) compared with the defocusing and
focusing NLS equations. Self-similar solutions in such kind of systems have be inves-
tigated and discussed in KdV hierarchy (Pierce and Tian 2007), mKdV (Kamchatnov
et al. 2012), Landau—Lipshitz equation (Ivanov et al. 2017), Camassa-Holm equation
(Abenda and Grava 2005), etc. However, it is found in this work that the solutions in
the defocusing cmKdV equation are much richer such as an oscillating shock wave
region may be composed of four basic shock wave structures and a case of solution
can be consisted of up to six regions, etc. In addition, the whole solutions we have
classified are even more than 50 categories, which has never been found before.
The Madelung transformation

qx, 1) = Jpe'?lt, ¢y =, (2)

where p and v, analogs of density and velocity of the hydrodynamics, are all real
functions, maps the defocusing cmKdV equation (1) to the dispersive hydrodynamics-
like system

{a—@ﬁ+%%»=—£mﬁﬂwﬁ“» 3

v — (6pv 4+ v3)y = —e2(Bvpxx /20 — 30(px)?/40% 4 3vx 02 /2P + Vxr)xs

which suffice to give the solutions as ¢ — 0 until it develops a shock formed at once
when multi-value region appears. After the moment when multi-value region appears,
this limit is converted into the Whitham equations in the diagonal Riemann form
Grava and Klein (2007), Ablowitz et al. (2016), Pierce and Tian (2007), Abenda and
Grava (2005), Hoefer (2014), Ivanov and Kamchatnov (2017), Ablowitz et al. (2020),
Bridges and Ratliff (2021) and Congy et al. (2019)

oA oA .
E—i—v,‘(kl,)\z,...,)xzj\q_z)a =0, i=1,2,...,2N + 2, 4)

where v; are called the Whitham velocities, A; are Riemann invariants and N represents
the number of phases in the oscillations. The boundaries connecting N = 0 and N = 1
regions including in Whitham equations (4) are exactly the same with the diagonal
Riemann form of dispersionless limit of hydrodynamics-like system (3), which will
be explained below. Here we concentrate only on the case of 0 < N < 2, while the
case N > 2 will be discussed in the future work.

This paper is constructed as follows. In Sect. 2, the zero-phase, one-phase and two-
phase periodic solutions and the corresponding Whitham equations are derived by
employing the finite-gap integration approach. In Sect. 3, five types of basic rarefaction
wave structures and ten types of basic dispersive shock wave structures are proposed
by considering the self-similar solutions of the Whitham equations. The complete
classification of solutions to the Riemann problem of the defocusing cmKdV equation
(1) is investigated analytically and numerically in Sect. 4. We conclude this work in
Sect. 5.
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2 Finite-Gap Periodic Solutions and Whitham Equations

In this section, the finite-gap periodic solutions and Whitham equations for the defo-
cusing cmKdV equation (1) are derived by the Flaschka—Forest—-McLaughlin (FFM)
approach (Flaschka et al. 1980; Kamchatnov 1994, 1997) to describe its evolutions of
initial discontinuities in Riemann problem. For our purpose, this section only focuses
on the zero-phase, one-phase, and two-phase solutions in view of the form of the
step-like initial data considered in this work.

It is known that the defocusing cmKdV equation (1) is the second flow in the
defocusing NLS hierarchy, which has Lax pair of the form

v\ _(F G\ (1 Y1\ _ (A B\ (1
’ (wz)x B (H —F) (wz) - (wz), B (C —A) <w2> @
where the entries of the matrices above are

F=—ih, G=q, H=q" A=—4i)>=2i\q]>—eqq" +eq*qx,
B = 4)%q +2ireqy +2qlq)? — €%qyx, C =4)7g* — 2ireq; + 2¢%|q|* — gzq;x.
(6)

The linear systems (5) and (6) have two independent basic solutions (1, ¥2) and
(¢1, ¢¥2), which can be used to define the “squared” eigenfunctions as follows

fz—gmm+wwxg=wmhh=—wm, )

which dates back to the work of Its and Kotlyarov Kotlyarov (1976), Its and Kotlyarov
(1976). Obviously, the “squared” eigenfunctions f, g and & satisfy the following linear
systems

efe = —iHg+iGh, eg.=2iGf+2Fg, ehy=—2iHf —2Fh, (8)

and
efy = —iCg+iBh, cg =2iBf +2Ag, eh; = =2iCf —2Ah. )

In fact, the linear systems (8) and (9) compose a three-order Lax pair of the defocusing
cmKdV equation (1). Further, it is convenient to prove that the quantity f> — gh =
(—=1/8) (12— Y1 )2 isindependent of x and ¢, and is only dependent on the spectral
parameter A, which can be denoted by

f2—gh=PQ), (10)

where P (1) is polynomial of parameter A.
One merit of the linear systems (8) and (9) is that they can be used to derive the
conservation laws of the defocusing cmKdV equation (1). Indeed, the second equations
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in both equation (8) and (9) can be rewritten as
G B
e(log(g)x = £55 = 2if 4 2F, e(og(g) =5 =2if 2 +24. (1)
8 8 8 8
The compatibility condition of these two equations indicates that

i (0 o) = (o)
—(2if—+2F )= —(2if—+2A), (12)
ot g dx g

which can be simplified to

i <€) — i <§> =0. (13)
at \ g ox \ g

This is just the conservation law of the defocusing cmKdV equation (1) in term of the
“squared” eigenfunction g.

For the AKNS system like the defocusing cmKdV equation (1), it is convenient to
expand f, g and & to finite-order polynomials in A

N+1 N+1 N+1

et )= fianr, gt 0= gix.OM, hx,t, 1) =Y hjx,H\.
j=0 j=0 j=0

(14)
The second and third equations in Eq. (8) show that both g and # must be of order
N in X (i.e., gy+1 = hy41 = 0), thus the first equation in Eq. (8) indicates that the
coefficient fyy1 of N1 is a constant. Without any loss of generality, one can set
fn+1 = L. In order to derive the N-phase solution, assume

N
ge, 1,0 =g [ [0 = wjtx, 1), (15)
j=1

where (1 = ;j(x,t) is called auxiliary spectrum, N is the genus of the hyperelliptic
curve
w? = P(}). (16)
Plugging Eq. (15) into Eqgs. (8) and (9) and letting A = ux(x,1) (k=1,2,..., N),
yield Dubrovin-type equation for px(x, t) as

3k 2iG /P (k)

€—— =— ’
ax [Tk (eie = 1)
3 2iB\/P

Qe __ 2BVPG) sy (17)
ot Hj;ék('u“k _:uj)

where G (1) = G(ux)/q = 1, B(u) = B(ue)/q = 4ug + 2iepi(Ing)x + 2lg|* —
2
°qxx/q.
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Substituting Eq. (14) with Eq. (15) into the second equation in Egs. (8) and (9),
respectively, yields

N

eq. =2ig [ fn+ D 1|,
j=1

€qr = 2i[4qfn-2 + 2ieqy fn—1 + fn(2qlq1* — €2qn)]

N
+2 | qeq*qe —eqql) +4iq Y pimj +2ilgP Y p | (18)
i<j<k j=1

An algebro-geometric representation of g (x, ) in Eq. (18) can be developed by inte-
grating the Dubrovin-type equation (17) for u (k = 1,2, ..., N) with the aid of the
Abel transform, which leads to the expressions for p; and g (x, ¢) in terms of Riemann
theta functions depending on phase variables

0 =kjx+wjt+6;, j=12,...,N, (19)

where «; and w; are determined by integrating over certain cycles on the Riemann
surface of the hyperelliptic curve (16), and 6 ; are constants.

In the framework of Whitham theory, it is vital to derive the Whitham equations of
Riemann invariants, which are the zero points 1; (i = 1, 2, ..., 2N +2) of the polyno-
mial P (A) in Eq. (10). The FEM approach (Flaschka et al. 1980) for studying Whitham
equations is based on the finite-gap integration theory, which is an important extension
of the inverse scattering transform to the problems of periodic boundary conditions
(Belokolos et al. 1994). The construction of multiphase averaging in FFM way is fur-
ther extended by Kamchatnov (1994, 1997) without use of algebro-geometric tools
like FFM approach. We now outline the basic procedure for deriving the Whitham
equations of the defocusing cmKdV equation (1).

Firstly, normalizing the equation > — gh = P(}) according to the transformation

f— f/VPQ), g — g/v/PA)and h — h//P(}) yields
2
(FVP®) = (/P (/PG = 1.

Under the same transformation, the conservation law (13) becomes

9 (@) _2 (@) _o0. 20)

ot g ax g

Secondly, assume the function Q = Q(g(x, t)) to be either a flux or a density in
the conservation law and define the average of function Q in the form of

L
(Q) = lim ﬁ [ Qg . 1)
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In order to describe the modulated waves, two scales should be introduced: a fast
scale (x,t) and a slow scale (X = ex,T = et) with € small. As done in FFM
approach (Flaschka et al. 1980), the phase parameters «; and w; depend only on the
slow variables (X, T), but not on the fast variables (x, ). Moreover, the Riemann
invariants A; (i = 1,2,...,2N + 2) also depend only on the slow variables (X, T).
However, during the averaging procedure, the slow variables (X, T') are frozen. The
integral (21) over the spatial variable x can be replaced by the integral over the N-
torus as parameterized by the phases 6; (j = 1,2..., N) variables provided the
spatial wave numbers «; are incommensurate (see Eq. (19)). Thus the integral (21) is
written as

1 2 2
(Q) = —f 0(q01,0,...,0N))d0:dO; ...d0y, (22)
Q2m)y™ Jo 0

which is further transformed to the integration over the variables u; (j = 1,2, ..., N)
in Dubrovin-type equation (17)

IRCE T S N T77 R

where C; (j = 1,2,..., N) are the cycles defined by Abel maps and % is the
Jacobian (Flaschka et al. 1980) defined below

1 80) 1 [Tken — i)

Qry" 0 V- I )

(24)

where V is a constant.
Thirdly, imposing the definition of the integral (21) on the conservation law (20)

and considering the Riemann invariants A; (i = 1,2, ..., 2N + 2) as functions of the
slow variables X and T give rise to
G\ oA; B\ 0A; .
—)——(—)—=0, i=1,2,...,2N + 2. (25)
gl oT gl oX

Finally, reminding the average defined in (23) and canceling the small quantity € in
Eq. (25) the desired Whitham equations for Riemann invariants A; (i = 1,2,...,2N+
2) are obtained as follows (Kamchatnov 1994)

oA oA .
W-i—vi()\l,)»g,...,)xyv_,_z)a—=O, i=1,2,...,2N + 2, (26)
X
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where the characteristic velocities v; are given by

(A1, A2, ..o Aong2)
Lk, A2y ooy don2)

G 9(9)
Il(Kl,)»z,..-,?»zN+2)=/ / ———durdus - - -duy,
for cy & 9(w)

B 9(0)
LA, A2, .., AoNg2) = ——dm 2 -duy. 27
C1 Cy

Vi(A1, A2, .. AoNg2) = —

In the following three subsections, we will take N = O, N = land N = 2
to investigate the zero-phase, one-phase, and two-phase solutions of the defocusing
cmKdV equation (1), respectively.

2.1 Zero-Phase Solution and Whitham Equations

For N = 0, take f to be degree one polynomial in spectral parameter A and g, / to be
functions independent of 1, i.e.,

f. 6, 0) =r+ fox,0), gx.1,4) =go(x, 1), h(x,t,1) =ho(x,1). (28)
Substituting them into Eqgs. (8)—(9) and collecting the coefficients of A yield
fo(x, 1) = constant, go(x,1) =q(x,1), ho(x,1) =q"(x,1), (29)

and
eqr = 2iqfo, eq = (12ifopo + 8if3)q, (30)

with pp = |¢|?, which has exact solution of the form

x+(6ﬂ0+4fo i (31)

g = /he'

This is the zero-phase solution of the defocusing cmKdV equation (1), in which the
function

6o = 210 [x+(6p0+4f0) ] 32)
is a fast variable. The density pg and phase velocity — (6,09 + 4 foz) are slowly varying,
and we have ¢ = 2 fox and v = 2 fj in the Madelung transformation (2).

In viewing the form of functions f, g and 4, we have

fP—gh=2242for+ fe—p=2>—siA+52, (33)

where s1 = —2fp and s, = fo — p. Moreover, assume the term f2 — gh has two
roots A and Aj, i.e., f2 —gh=PA) = —Xx)(X — Ap), then we have

A A =51, Arhr = 5. (34)
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The equality fo = v/2 gives s = —v and 5o = v>/4 — p, so the equation (34) can be
rewritten as
Mtre=—v, k=0 /4—p, (35)

which can be solved for A; and A, as

v v
)»1=—§—\/_, )»2=—5+\/5- (36)

In order to derive the Whitham equation for the slow variables A; and A, we
transform the conservation law (13) into

d G d B
(vP@$) - 5 (vP@y) =o. a7

a1

In the sense of zero-phase solution (31), the modified conservation law (37) is simpli-
fied to

%(JP()L)) - %(\/P(A)(Mz — 200 +2p +v?) = 0. (38)

Expanding the partial derivatives in the above equation and taking limits A — A and
A — Ao, respectively, yield the Whitham equations for the slow variables A1 and A;
as follows:

EYS 1512 323\ ang

R g+ 22 ) 22—,

a1 ( ; TMA T o

BV 1513 Y 3a7\ 9y 0 (39
a1 2 25 ) ox —

2.2 One-Phase Periodic Solution and Whitham Equations

It suffices to suppose that P(}) is a polynomial of degree four in XA for the one-phase
periodic solution, that is

4
fP=gh=Po)=[]0n—n)
i=1
=2 — 5123 + 9002 — s34 + 54, (40)

where s; (i = 1, 2, 3, 4) are called elementary symmetric polynomials related to the
four roots of the polynomial P ()). Recalling the Egs. (8)—(9) for f, g and &, one has

f=3—fix+fo, g=q0.—w), h=q*"n—pn"), (41)
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where
fix = fu=0, efor =ilgl(n—p",
e fo = 2ilql*(n — 1) —ie2qqi o +ietq g ®, (42)
and
eqx = 2iqg(n — f1), 82qxx = =2iQ2igf> + qx f18), (43)
£qr = 2ie*qex 1 + 261917 qx — q1q° — 242 f2) + 4ilgPq(n — f1), (44)
e(que = =2iqf, (@i =2iequ fr + 2e(qclq1” = 74%) — 4iflqlq,
(45)

as well as the complex conjugate of all coefficients of Eq. (41). Substituting Eq. (41)
into Eq. (40) and comparing the coefficients of A¥, the condition (41) gives the con-
servation laws

s1=2f1.s2=—lgl* + fE+2f2.53 =2f1fr— g (w+u*). ss = 7 — lqlPun*,

(46)
which indicates that fi = s1/2, > = (Iq|> — f# +52)/2. Thus Eq. (42) for f> can be
reduced to

. , 3
epx = 2ip( — pu*), ep = 2ip( — u*)(islz —252), 47)

where p = |¢|? and the evolution of x can be expressed by Eq. (45) for p as

3
ey = =2if () = =2iy/P(w), e = —2if () <§s% - 2s2) L)

in which the second equality of the first equation (48) can be achieved by substituting
A = p into Eq. (40). The relations given by Egs. (47)—(48) indicate that © and p
depend on the phase

3
£=x—Vr, with V =2s — Es%. (49)

Notice that the defocusing cmKdV equation (1) is the second flow in the defocusing
NLS hierarchy, thus following the procedure of Appendix B.1 in the book of Kam-
chatnov (2000), the one-phase periodic solution p = |g|> can be expressed in term of
the elliptic function

p = p3+ (p2 — p3)sn? (—””8_”3(5 — &), m) : (50)

where sn is the Jacobi elliptic function, the modulus m = (p2 — p3)/(p1 — p3), the
parameter &g is the phase shift which is actually equal to zero in this work, and the
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parameters p1, p2, p3 are

1
pL= Z(/\l + A2 — A3 — M),
1 2
02=Z()»1—?»2+)»3—?»4) ,

1
Py =7 — A2 — A3+ M), (51)

from which it is easy to see that p; > py > p3 provided that A} > Ay > A3z > A4.
Reminding the derivation of the Whitham equations in Eqs. (26) and (27), the
Whitham equations corresponding to the one-phase periodic solution (50) are obtained

as
0ri  D(ri, Ao, A3, ha) 0

ori =0, i=1,2734, (52)
ot I1(A, A2, A3, A4) Ox
where 5oL 3 5
L==—, L=/(Zs—2s) 11 + =(s1 +20)L, (53)
£ oA 2 £

where the L represents the wavelength of the one-phase periodic solution (50), i.e.,

26K (m)

_ : 54
V(1 —A3) (A2 — A4) o

where K (m) is the complete elliptic integral of the first kind and the modulus m of
the elliptic function is

o P27 (A1 — A2)(A3 — A4)

- . (55)
p1—p3 (A1 —A3)(A2 — Ag)

Finally, substituting the wavelength L formulated by Eq. (54) into Egs. (52)—(53) the
Whitham equations for the one-phase periodic solution (50) can be rewritten explicitly

oA

IA;
— + v (A1, A2, A3, ha)—— =0, i=1,2,34, (56)
ot 0x
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where the characteristic velocities v; = v; (A1, A2, A3, A q) (i = 1,2, 3,4) are

_ 35,2 : 2001 = 22)(n1 — A)K (m)
il PO 52*1‘ - (ZA’ HA‘) (r — ) K (m) + (kg — k) E(m)’

i<j i=1

2k — A2)(A2 — A3)K (m)
(A2 — A3)K (m) + (b3 — A1) E(m)’

Z)‘i + 2}\3> 2(A2 — A3)(A3 — Ag) K (m)

v2

4
- ZAM,-—}—%ZA? +(Dom+2n
i=1

i<j

(A2 — A3)K (m) + (g — A2)E(m)’

i<j
21 — A4)(A3 — Ag) K (m)
(M — A)K(m) + (A3 — ) E(m)’
(57)

4

vy = — ZAM_;-i—%ZAI-Z —(
i=1

34 4

vy = — ZMM-!—EZK? +<ZM+2K4
i=1 i

i<j

where E (m) is complete elliptic integral of the second kind.

2.3 Two-Phase Periodic Solution and Whitham Equations

In this subsection, Kamchatnov’s way (Kamchatnov 1997) is carried out to explore
the two-phase periodic solution and the corresponding Whitham equations for the
defocusing cmKdV equation (1). In doing so, take P ()) to be a polynomial of degree
six in A

6

fA=gh=P0o)=]]0—n)

i=1

=20 — 5100 + 5oa* — 5303 + 5422 — ssA + s6, (58)
where A1 > Ay > A3 > Ag4 > A5 > Ag aresixroots and s; (i = 1,2,...,6) are
the elementary symmetric polynomials related to the six roots A; (i = 1,2,...,6),
furthermore s and s, are

6 6
S1=Z)uj, Sy = Z Aidj. 59)
j=1 i,j=1i#]

Recalling the Egs. (14)—(15) for f, g and &, we have
f=R=filtpi=fs, §=q0—p)G—p2), h=q"G=pH)(—p3). (60)
Thus Eq. (58) along with Eq. (60) further gives
si=2f1. s2=2fr+ f{ —lql. (61)
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In a similar way, the Dubrovin-type equation for functions 11 (x, t) and po(x, )
can be formulated from Eq. (17) for N = 2. Substituting the f, g and & in Eq. (60)
into equation egy = 2iGf 4+ 2F g and collecting the coefficients of A yields

eqy =2iq(u1 + 2 — f1), elqu)y +elqua)y =2ig(uipz — f2),
e(quipa)x = —2iqfs.

The same substitution can be done for equation eg; = 2i Bf + 2Ag and one arrives
at the “trace formula” for function ¢ (x, t) from Eq. (18) with N = 2, which finally
gives rise to the two-phase periodic solution of the defocusing cmKdV equation (1)
with phase functions

01 = k1x + wit +6p1, 6 = Kkox + wyt + Opy. (62)

Next we return to the construction of the Whitham equations for this two-phase
periodic solution. Recalling that g = g(A — 1)(A — u2) one has

G _ 1

g (G—p)—p)’
B _ 1

g A—u)A—pu2)

1
[4)»2 — 4 (Ml + w2 — 551>
1 1 3
—4 (Elﬂsl + FHas1 = M1M2) + Eslz - 2S2} . (63)

Therefore, following Kamchatnov’s way (Kamchatnov 1997) which is based on the
general procedure of FFM approach (Flaschka et al. 1980), the Whitham equations
for two-phase periodic solution can be derived as

aIr; oA .
_+vl()"la)"2’)\'3a)\'45)"57)“6)_:Oa 4 =1’25"'76a (64)
at ax

where the characteristic velocities v; (i = 1,2, ..., 6) are given by

(A1, A2, A3, A4, A5, Ag)

Vi (A1, A2, A3, Mg, As, Ae) = — , (65)
I (M1, A2, A3, Ag, A5, A6)
where Iy = I1 (A1, A2, A3, A4, A5, Ag) and Ir = Ip (A1, A2, A3, A4, A5, Ag) are
7/ dp du B dup du

: ¢, VPG Joy G =P Joy VP Joy G — VP’
3

L= (5512 7252> 104)

+/ f [4k2 —4x (m +up — %51) *4(%1—151 + %/tzsl - uwz) + %Sf 72sz] (no — m)d J
Hiap,

e, Je, (i = 11) O — 1)y PRDIPG12) e
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where P(u) = H?:l(ﬂ — Ai), and Cy and C, are the cycles defining the solution

of genus-2 Dubrovin-type equation (i.e., Eq. (18) with N = 2) according to the Abel
transform. In our case, Cj is cycle from A5 to A4 and C» is cycle from A3 to A,. After
tedious calculations, it is found that the characteristic velocities v; (i = 1,2, ..., 6)
are rewritten as

3
Vi (M1, A2, 23, ha, As, Ag) = 250 — Es% — (4h; +2s1)

N [(QU11/02;)Uz1 — (U321 /02;)U1]1 +4(8U12/02;)(0U23/02;) — 4(9U13/9A;)(0U22/92;)
U11(8U21/02;) — Up1 (0U11/04;) '

(66)

where Uj; are the hyperelliptic integrals

wi=!

Ui= | L—au, i=1,2. j=1223.
=) VP /

3 Basic Wave Structures

This section starts to study what kinds of basic wave structures will appear for the
defocusing cmKdV equation (1) with the general step-like initial data

q(x,0) = /p(x, 0™ g (x,0) = v(x,0), (67)

where p(x, 0) and v(x, 0) are

r

o x>0,
’O(x’o)_{,ol,x<0,

r

and v(x,0) = {v » ¥ >0, (68)

v, x <0,

where p”, ,ol ,v" and v! are four arbitrary real constants. The solution under the initial
data (67) with (68) consisting of basic structures of rarefaction wave and dispersive
shock wave are quite fruitful, which will be discussed in details below.

3.1 Rarefaction Waves

The genus-0 Whitham equation (39) corresponding to the zero-phase solution (31) can
also be derived in a different way. To be specific, the rarefaction wave solution can be
derived by taking the dispersionless limit as ¢ — 0 for the dispersive hydrodynamics-
like system (3) due to the property of smoothness itself. The system governing the
rarefaction wave satisfies the following non-strictly hyperbolic system

(69)

pr — (3p* +3v?p), =0,
vy — (6pv + v3), =0.
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This limit provides the solution correctly up to the solution develops to a shock. A
standard procedure shows that the system (69) can be transformed into diagonal form

(re) + Velry, ro) (re), =0, (70)

which is the genus-0 Whitham equation equivalent to the Whitham equation (39) under
the scale transformation . = —XA, r— = —A;, where the Riemann invariants 4 and

r_ are
v

v
r+:§+f, r-=5 =P (71)

and the characteristic velocities in terms of the Riemann invariants are expressed by

15 3 15 3
Vy=-— (752r +3rpr_ + §r2> , Vo=— (7r2 +3rpr_ + Eri) . (72

Thus the initial data (67) with (68) in physical variables can be converted into the
forms of Riemann invariants with the aid of the transformation (71)

N

rh=% +p x>0,
P, =1 3TV
ry =5+ pl, x <0,

0) = r’_:%—ﬁ,x>0,
r-.0) = rﬂ:%—\/ﬁ, x < 0.
(73)
Introducing the self-similar variable t = x/t, the Whitham equations (70) are

rewritten as
dry dr_
Vy—1)— =0, (V- —-1)— =0. (74)
dt dr
Similar to the case of the defocusing NLS equation (El et al. 1995), the bi-directionality
determines three cases of rarefaction waves, i.e., only r is a constant, only r_ is a
constant, and both 4 and r_ are constants. However, different from the defocusing
NLS case, the characteristic of the defocusing cmKdV equation (1) propagates along
single direction and divides into five types basic rarefaction wave structures. The first

two types are

1 1
rp = r_?_ = constant, r_ = —grg_ + s —36(r$)2 —-30- ;, (75)

and the characteristic velocity V_ = V_ (rg, r_). The middle two types are

1 1
ry = —grg + s —36(r2)2 — 30 - ; r— = r% = constant, (76)

with the velocity Vi = V4 (r4, r2), and the fifth type is

1 X 1 X a7
rp=—,/——, r—=———— /-,
VA VeV t
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with the velocities Vi = V. (ry,r—) = © = V_. It is observed that the evolution of
Riemann invariants for any choice of the rarefaction waves will be on the parabola

15 3
— 24+ 3r0 + —(ro)2 +1t=0 (78)
2 2
for the cases in (75)—(76) and on the parabola
6r+17=0 (79)

for the case in (77), which are displayed in blue dot lines in Fig. 1a—f. It is remarked
that we denote r to represent the Riemann invariants r+ and A; (i = 1,2,...,2N) in
all the figures in this work. As we shall see, there exists the case when two Riemann
invariants collide, and the coalescence of the Riemann invariants results from the
property of the defocusing cmKdV equation (1), i.e., not genuinely nonlinear [see
Kodama et al. (2008)], which does not appear in the defocusing NLS case. In addition,
we call the solution to be a plateau if both ry = and r_ = are constants. The pure
rarefaction wave or the plateau, excluding any type of dispersive shock wave, will
occur in three situations, i.e., ry, > > rl > " > ¥ 7l > > r* >0 > L
and r* > ri > ri_ >rl > Pl , where r* represents the point on which % changes
sign. Otherwise, the oscillating region will appear that will be discussed in the next
subsection. The distributions of Riemann invariants along with the basic structures
of rarefaction waves are shown in Fig. 1, which are denoted as {RW-1}, {RW-II},
..., {RW-VI}, where “RW” is the abbreviation of rarefaction wave. The formation
of the two parabolas in the third type of rarefaction wave degenerates to linearity
eventually. It is remarked that the rarefaction wave structure {RW-III} is a new basic
wave structure in the defocusing cmKdV equation (1), which has not been proposed
by Kodama et al. (2008) and Kong et al. (2019) and other studies before.

Examples of the combination of rarefaction wave are demonstrated in Fig. 2,
where the combined rarefaction wave consists of five regions, from left to right,
which are plateau, {RW-II}, {RW-III}, {RW-1} and plateau again. The boundary
velocity between each regions are given by analyzing the three cases of the rar-
efaction waves. In this example, they are separated by, from left to right, x/r =
—13.875, —6, —1.5, —0.3, respectively. The combined rarefaction wave evolving
from the initial condition rﬁr =15,r, =05, L= —1,r" = -0.1 displays excel-
lent agreement with the direct numerical simulations; see Fig. 2b.

3.2 Dispersive Shock Waves

From the analysis of the last subsection, it is clear that the rarefaction wave solutions
are valid for the defocusing cmKdV equation (1) until the wave breaking appears. The
solution of equation (1) is governed by smooth enough rarefaction wave in term of
two Riemann invariants, but soon after the breaking, one of the Riemann invariants
develops into three branches governed by the averaging Whitham equation (56) and
(57). The corresponding multi-valued region is replaced by an oscillating region.
However, in the case of self-similar solution, the oscillating region can be determined

@ Springer



Journal of Nonlinear Science (2022) 32:3 Page 17 of46 3

(V]
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N
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"o R

I 1,7
-0.5 |

I

|

15
=3
)

— Parabola (94)
- = Parabola (93)

-6 -4 270 2

Fig. 1 (Color online) Sketches of Riemann invariants and five possible basic rarefaction waves structures:
arl =L =1l =-1./" =-05:brk =1, =05 =" =—Lierl =17, =05,/ =
—1,r" = 70‘5;dr£_ =7l = 15/ =1,/ = O.S;eri_ =-1,rh = —05,7L =" =-15

(b)

=== Numerical solution
== = Analytical solution

05F

-15 -0 7 -5 0 -30 200 ¢ -10 0

Fig.2 (Color online) Examples of self-similar solution of the combined rarefaction wave at time r = 2. The
initial condition is ry = 1.5, ri =0.5, ri = —1,r" = —0.1: a distributions of the Riemann invariants; b
comparison of the analytical solution from Whitham modulation theory with direct numerical simulations,
where the red dashed line indicates analytical solution and the blue solid line represents the numerical
solution
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immediately once the initial data are given. In this subsection, all kinds of structures of
basic DSWs that may appear in the defocusing cmKdV equation (1) will be discussed
in details.

Let us now list the basic structures of DSWs possibly appearing in the defocusing
cmKdV equation (1), in which part of them have been given in Kodama et al. (2008).
The first four types of DSWs are similar to the defocusing NLS case, where three
Riemann invariants are constants while the fourth one changes, either A, or A3. The
reason for existing four types of DSWs in equation (1) instead of only two of them
in the defocusing NLS case lies in the fact that there still exists a parametric parabola
determined by three constants. Thus the four basic structures of DSWs can be obtained
by truncating the upper or lower part of the parabola on each Riemann invariant A
and A3. The distributions of such kinds of Riemann invariants describing DSWs are
displayed in Fig. 3. The second four types of DSW rising from the non-genuine
nonlinear system (56) with (57) satisfy the solution in which two Riemann invariants
are constants and the other two change, as shown in Fig. 4. For simplicity, denote the
eight basic structures of DSWs as {DSW-1}, {DSW-I1}, ..., {DSW-VIIL}, respectively.
The two black dotted lines in Figs. 3 and 4 represent two distinct speeds characterized
the DSWs which is known as the leading and trailing speed of their edges. The leading
and trailing speeds of two edges can be found from Eq. (57) by taking the limitation
m — 1 for A3 = Ay, and m — 0 for A3 = A4 or A = Aq, respectively. In the
eight basic structures of DSWs listed in Figs. 3 and 4, the spatial structure is divided
into three regions, i.e., the plateau for )t—‘ < Vlleft, the DSW for Vg < % < Vlright
and the plateau again for )76 > Vlright. It is remarked that the distributions of DSWs
shown in Figs. 3 and 4 are obtained numerically via the scheme of two-step variant of
Lax-Wendroff with nonlinear filter for the step-like function (Engquist et al. 1989).

For simplicity, we only analyze the boundary speeds of two types of DSWs, the
other types can be explained easily in a similar way. For the case of {DSW-I}, it is
seen that

r:§=v3 (ri,rlf,)g,ri), (80)

which indicates that the speeds of the right edge 7 |iight and the left edge 7l can be
expressed as

l !
Tlighe = v3(rl, 2, A3, P s There = w3, 1o, A3, rD) =
For the case of {DSW-V}, one has
— X — 1 r _ X _ l r
T=o= vy, A2, A3, 1), T = 7= v3(ry, A2, Az, rl),
Thett = V3 22, A3, P = s Thight = v2(rh, 2, A3, T =iy (81)
It is noted that all of above cases are obviously the extension of the basic structures
of rarefaction waves. The vertex of parabola r*, at which the signs of dv; /or (i =
1,2, 3, 4) change, plays an important role in distinguishing the types of {DSW-I}-

{DSW-IV} and the types of {DSW-V}-{DSW-VIII}. The regions of DSW in Fig. 4
include vertex of parabola r* connecting the two Riemann invariants such as A, and
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Fig.3 (Color online) Four typical distributions of the Riemann invariants A1, A5, A3, and A4 for the DSWs
with only A or A3 varying. a Type I: rﬂ_ =rl =1, L =-05,r" =—1;b Type II: ri_ =051 =
1;r[_ zlri = —1; ¢ Type III: rf,_ =rl = Lrl =077 =0.5;d Type IV: rf,_ =0.r} = -0.5,rL =
ro=—

A3 in Fig. 4a, b, A3 and A4 in Fig. 4¢, A1 and X, in Fig. 4d, and the vertex r* in Fig. 4a,
b can be determined by
dvz(h, r*, r*, da)

0, 82
Py (82)
from which we arrive at r*(A1, Ag4) = —%()\1 + X4). The same way can be utilized
to formulate the vertex r* in Fig. 4c, d, which do not display here because of their

complexity.

The remaining two basic structures of DSWs, i.e., {DSW-IX} and { DSW-X}, are the
one people have never seen before including the pioneering work on the defocusing
cmKdV equation (1) in Kodama et al. (2008) and have not been appear neither in
the strictly hyperbolic system such as the defocusing NLS equation nor in the non-
strictly hyperbolic system for which r or r_ is constant. This kind of structure also
requires two variables slowly varying, but importantly they must be on both sides of
the parabola. Otherwise, it develops a combination of DSWs and rarefaction waves.
For this case, we suffice to show that the velocity of leading edge in Fig. 5a (two
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5 4 3 271 0 1 "5 4 3 2T 0 1

Fig.4 (Color online) Four typical distributions of the Riemann invariants A1, A2, 13, and A4 for the DSWs
with two ofthem varying. a Type V: r* = 21;, ﬂ_ =rl =1, il = —3 l\/13,r£ = —0.5; b Type VI:
pr=dr =3 1, r+ = 05,71 =" = —1;¢Type VII: r* = —00%78,r£r = =1 =
—3.r" =0.5:d Type VIIL: r* = 0.0378,r, = 3./, = —0.5,/L =+" =1

variable on the one side) is
_ (324232
V3la=n, = 2)\1 + 415 + 2)\.4“’_2)\.1)\.2"_2).2)\.4—’_}.1)\.4 . (83)

One may find at once that it exactly coincide with the trailing speed of rarefaction
wave when taking Ap = X1, thus we have

V3lay=hp k0= = — ?M +3AAg + 5)\4 = V1 lp3=1,. (84)

As followed from the last subsection, the velocity in (84) for the negative direction
of the Riemann invariant 1| is an increasing function on the interval [—14/5, +00),
i.e., the upper part of the parabola. The same procedure can be applied to Fig. 5b
immediately.
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(@) (b)
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Fig.5 (Color online) Two typical distributions of the Riemann invariants A1, A2, A3, and A4 for the DSWs
with two of them varying. a Type IX: rﬂr =.3- % rho= %, o= —%, r” = —1; b Type X: rl+ =
=1l =3 -3 =3

4 Complete Classification of the Solution to Riemann Problem

In the last section, five types of rarefaction waves and ten types of DSWs have been
figured out, in which except for {RW-III} all basic wave structures have common
feature with one of the initial data, i.e., either rl+ = rj_ or . = r’ . With the fifteen
basic wave structures at hand, we are ready to carry out the classification of the
solutions for the defocusing cmKdV equation (1) with step-like initial data (67) with
(68). In doing so, recall that 7 = 5 + /p and r_ = 5 — ,/p. Fixing the initial value
(68) at the left-hand side (vl , ,ol), the Riemann invariants . and ri are determined.
So we have two parabolas

I V)? AT
p:(r+—§> and p:(r_——), (85)

with vertexes 2rﬂr > 2r! on the horizontal v-axis, which are shown in the solid lines
in Fig. 6. It is observed that the two parabolas divide the (v, p) plane into six regions.
The order among rﬂr, rl, r!., r” can be determined easily in each region. Taking the
region F as an example, for a point (vg, pr) = (v", p") in this region, similarly, two
parabolas p = (r} — %)2 and p = (r" — %)2 with vertexes 2r, > 2r” are obtained,
which are displayed in the dotted lines in Fig. 6. It is clear that v, > r” > rﬂr >l
in region F'. The orders of the left and right Riemann invariants for the other regions

can be found in the same way:

1 r r 1 1 r 1 r
Ary>rl>rl>rl, Bori>rl >rl >rl,

1 l r r r l l r
C.r+>r7>r+>r7, D.r+>r+>r7>r7,

r 1 r 1 r r l l
Erl>ry>rl>rl, Fri>rl>r >r_. (86)

@ Springer



3 Page22of46 Journal of Nonlinear Science (2022) 32:3

;
2r! v

Fig. 6 Regions in the (v, p) plane corresponding to different classes of the solution for Riemann problem
(67) with (68)

In this section, the complete classification of the solution for the Riemann prob-
lem of the defocusing cmKdV equation (1) are given by analyzing the six possible
cases above based on the Whitham equations proposed in Sect. 2 and the basic wave
structures in Sect. 3.

4.1 CaseA.r > >r >r

In each case, the vertexes of the parabolas (78) and (79) play a vital role in the
classification of the solution for the Riemann problem of equation (1). In what follows,
four subcases are discussed, which combine the complete classification of Case A.

4.1.1 Subcase A1:r" > r*

Here the vertex of the parabola r* satisfies

vz (ry, rl,r*, r¥)

=0. 87
o (87)

Note that putting 7" = r* into (87) yields r* = —r', /5, which is the critical condition
followed from Sect. 3.1, and the ri > r! located in the upper part of parabola will
develop to a rarefaction wave. The whole scenarios under this condition are analyzed
in eight more cases, which are A;; — A g. See Figs. 7, 8 and Table 1 for details.

e Ay ri_>ri>r£>rl_, rlo>rx,

In this case, the solution of the Riemann invariants consists of five regions (see
Fig. 7a), and in each region, the Riemann invariants can be formulated below.
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(1) For x/t < vy (rﬂr, rr,r”, Pl ), the solution is in the plateau region with Riemann
invariants

ry = rﬂr, ro=rl.

(2) Forvi(rl, rm, r" rh) < x/t < v, r",r",rl), the solution is in the {RW-IT}
region with Riemann invariants

1 1 X
_ [ 1y2 _ 1
ry =——r_+— /-36(0r1)*=30-—, r_=r_.
s 15\/ =) ‘
(3) For vy (ry,rl,r", by < x/t < vl rt ot rL), the solution is in the plateau
region with Riemann invariants

ry=rl, ro= L.

4) For v3(rl,, 1, 1", rl) <x/t <wv3(rl,r, rl, ri), the solution is in the {DSW-
[T} region with Riemann invariants

x
M=rl, A=rl, ?=v3(rj_,ri,k3,rl_), rg =7l

(5) For x/t > v3(rl,r", Pl , Pl ), the solution is also in the plateau region with Rie-
mann invariants

ry=rl, r_= .

Figure 7b shows that the analytical result from Whitham modulation theory agrees
well with the direct numerical simulations.

e Ao ri_>rfr>ri>rl_, S S

Here the point ** is determined by

vl rD e ) = g, D e . (83)

The solution regions in this case is very similar to the case Aj 1, but the {DSW-III}
region in case Aj 1 is divided into two combined DSWs, i.e., {DSW-III} and {DSW-
VII}. The Riemann invariants corresponding to the regions of the two combined DSWs
are formulated as follows.

For v3(r,, r" " rl) < x/t < va(rl, 1", r¥, rl), where r} solves the implicit
equation v3(r',, r", ¥, rL) = va(r’, ", r¥, rl), the solution is in the {DSW-IIT}

region with Riemann invariants

X roor 1 1
M=rl, A=rl, ?=v3(r+,r_,)»3,r_), ha=r_.
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Fig.7 (Color online) Example of the self-similar solution for case Aj | combined by {RW-II} and {DSW-

111} with initial condition 7} = 1,77 = 0.8,rL = 0,r" = 0.5 at time r = 2: a distributions of the

Riemann invariants in five regions; b comparison of the analytical solution from Whitham modulation
theory (solid red line) with direct numerical simulations (dash blue line)

For va(rly, r", r}, by < x/t < vg(rly, v, r*, r*), the solution is in the {DSW-
VII} region with Riemann invariants

X X
M=rl, A=rl, 7= v3(rl, 1, A3, Ag), 7= va(rly, rl, A3, Ag).

oA1,3:rl+>ri>r’_>r£, >t =l <l

This case emerges by dividing the intermediate plateau in case A into a plateau
and a {RW-I} rarefaction wave, where the other regions are similar to case A
except the {RW-1} region, whose Riemann invariants are expressed by

1 < PR

1 1 \/ X
T _ r ry2
ro=r., ro=—=r_——_[=-36(")—30-—,
tT 57 15 + 1
for v (7, r7, 1!, by < x/t < va(rly, et ).
- r r I r * l l r
o Ajg:ry>rh>rl>rl, L >r* —rp <rl < -rl.

This case comes from case A;3 by dividing the {RW-II} region into two
different regions of rarefaction waves, i.e., {RW-II} and {RW-III}. The solu-

tion of Riemann invariants for {RW-II} region is the same as case A3 for

vl(ri_,ri.ri,r[_) < x/t < v4(—rl_,r’,ri,rl_), but for v4(—rl_,ri,ri,rl_) <

x/t < vg(rl e, rl_), the solution is in the {RW-III} region with Riemann

invariants
1 X 1 X
ry=—,/—, r—-=——72,/——.
N N
o A - r r l r * I _ .l
5oy >rl>rl >l D>t ol < -1l

This case emerges by dividing the left plateau in case A4 into a plateau
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Fig. 8 (Color online) Distributions of Riemann invariants for all the possible cases in Case A under the
condition r” > r*: a the characteristic velocity rL is chosen to divide the corresponding region into two

smaller regions; b the characteristic velocity rL is chosen to equal to the boundary velocities

Table 1 Classification of solutions and region distributions in eight subcases under condition A1, where
“Null” means there does not exist this region

Cases Regions
Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Al Plateau {RW-II} Plateau {DSW-III} Plateau Null
Aln Plateau {RW-II} Plateau {DSW-IIT} {DSW-VII} Plateau
A3 Plateau {RW-II} Plateau {RW-I} {DSW-VII} Plateau
Alg Plateau {RW-II} {RW-II1} {RW-I} {DSW-VII} Plateau
Als Plateau {RW-1} {RW-II1} {RW-1} {DSW-VII} Plateau
Al Plateau {RW-II} Plateau {DSW-VII} Plateau Null
Ar7 Plateau {RW-II} {RW-I} {DSW-VII} Plateau Null
Arg Plateau {RW-I1I} {RW-1} {DSW-VII} Plateau Null

and a {RW-I} rarefaction wave, in which for v4(ri,r£, ri,rl_ ) < x/t <
V1 (ri, St —rﬂ_), the solution is in the {RW-I} region with Riemann invari-
ants

1 1
ry = ri_, r_ = ——rﬂ_ BT —36(r,)2 —30 - )t_c

for va(r4+4, r" 1" rl) < x/t < vl(ri_,ri,ri, —r_ﬂ_).

The cases A1 — A1.8, where the characteristic velocity L is chosen to equal to
the boundary velocities, can also be analyzed in the same way. All these cases can be
seen clearly in Fig. 8 and Table 1. It is remarked that all the descriptions of regions
here and below are from left to right. For instance, the solution regions of case Aj»
in Table 1 from left to right are Region 1 (plateau) to Region 6 (plateau).
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4.1.2 Subcase Ay: r!, < rj“z

Here the critical point r;‘;z satisfies

ovp(r* ,rt ,rt ., r")
Ay Ay 77, (89)

*
BrAz

Substituting 1!, = r/’gz into equation (89) yields r;‘;z = —1/r". The distributions of
the Riemann invariants under condition A, are much similar to that under condition
A1, moreover, the density p in each case of A; are exactly the same with that in case
Aj. Thus, we ignore the analysis and only list the results of the classification in this
case. See Table 2 for details, where the other critical point r;‘;’; solves the following
implicit equation
v (s, T P D) = vl e D). (90)
In fact, the Riemann invariants in all the cases of A| and A are symmetric with
respect to x-axis. More specifically, {RW-II} in A is symmetrical to {RW-I} in
Ay, {DSW-III} in Aj is symmetrical to {DSW-IV} in A,, and {DSW-VII} in A is
symmetrical to {DSW-VIII} in A, which can also be understood through equation
(57) and the equality below:

v, 29,29, 09) = va(=19, =19, =19, =),
v (A9, 29,19, 49) = v3(=A9, =19, =29, —29).

where A? (i =1,2,3,4) represent constants (see equation (96) for details).

It is seen that DSWs emerge in both case A; and A;. In what follows, the case
in which only plateau and rarefaction wave regions are produced is discussed under
special conditions.

4.1.3 Subcase A3:r” < r*andr > rzz

In this case, the solution regions only evolve the combination of plateau and rarefaction
waves, which makes the classification to be simpler than cases A and A, above. Firstly,
all the possible cases under condition A3 are listed in Table 3.

The classification of solutions and region distributions for the subcases listed in
Table 3 are given in Table 4. It is remarked that except case A3 4>, which is in fact
one of the basic rarefaction wave structures of {RW-III}, all cases evolve at least four
regions. In each case, the boundary velocities can also be derived in the similar way.
For simplicity, we only analyze A3 31 in details, which are found in Sect. 3.1 and Fig. 2.

(1) Forx/t < vy (rﬁr, rL), the solution is in the plateau region with Riemann invari-
ants

ry = rﬂr, ro=rl.
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Table4 Classification of solutions and region distributions for the subcases listed in Table 3 under condition

A3
Cases Regions

Region 1 Region 2 Region 3 Region 4 Region 5
A311 Plateau {RW-II} Plateau {RW-I} Plateau
A3 Plateau {RW-II} {RW-1} Plateau Null
A331 Plateau {RW-II} {RW-III} {RW-1} Plateau
Az 4 Plateau {RW-II1} {RW-1} Plateau Null
A3z 51 Plateau {RW-I} {RW-III} {RW-I} Plateau
A332 Plateau {RW-II} {RW-III} Plateau Null
A342 Plateau {RW-IIT} Plateau Null Null
A3 Plateau {RW-1} {RW-IIT} Plateau Null
A333 Plateau {RW-II} {RW-IIT} {RW-II} Plateau
A3.43 Plateau {RW-IIT} {RW-II} Plateau Null
A3 53 Plateau {RW-I} {RW-IIT} {RW-II} Plateau
A3z 54 Plateau {RW-1} {RW-II} Plateau Null
A3z s5 Plateau {RW-1} Plateau {RW-I1} Plateau
(2) Forvy(rh,r') <x/t <vi(—rl,rl), the solution is in the {RW-II} region with

3)

“)

&)

Riemann invariants

1, 1
re=—orl 55 /-3601)2 = 30 %‘ ro=rl

For v (—r',rl) < x/t < vi(r!, —r"), the solution is in the {RW-III} region
with Riemann invariants

1 X 1 X
VL = — -, V= —— —_ .
N JoV it

For vy (ry, —rl) < x/t < vy (v, r"), the solution is in the {RW-I} region with
Riemann invariants

1 1
ry=rl, r_= —gr_ri_ — 1—5\/—36(r_r‘_)2 —-30- )76

For x/t > vy (r!., r"), the solution is again in the plateau region with Riemann
invariants

rp=rh, ro=r
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Table 5 All of possible solution cases under condition Bj

Conditions rlo< r;l o= r;l rz,l <rh < r?lk rho= rZT rh > rz’;
o<y Bi11 Null Null Null Null
rh = 3, B2 Null Null Null Null
r;l < ri_ < rZT B131 B132 B133 Null Null
ri_ = FET By .41 Bi 4o Bi43 Null Null
rho> B By s ) B 53 B s4 By 55

4.2 CaseB.r >r, >r >r
This is a particular case in which certain exotic phenomena of wave breakings are
demonstrated. The vertex r ., of the parabolas connecting Riemann invariants A,
with A3 plays a vital role in the classification of the solution for the Riemann problem
in Case B, where rj -, solves

dv3(rl rgeps Tgep )
- =
oryg

0, O

from which one has rj,, = —}T(rfr + r”). In viewing Fig. 4 and its descriptions, it
is observed that there are several subcases in Case B (also in Cases C and D).

oyl * r *
4.2.1 Subcase By:r_ < rzpandrl >rg

Similar to case A1, there also exist many subcases in B, where a new basic dispersive
shock wave structure { DSW-IX} emerges. The classification of almost all subcases in

. . . . x _l r _g [
By are display in Table 5, in which rp, = —3rL — 3 solves
* 1 l ry * / 1 r
vl(rBlar_yr_’r_)_v3(rBlvr_»r_7r_)1 (92)

and rgf =r" —rl + . /507)2 — 4rl 1" solves
!

v el ) = vt el e ). (93)

The classification of solutions and region distributions for the subcases listed in
Table 5 are given in Table 6. It is remarked that except case Bj 42, which is in fact one
of the basic rarefaction wave structures of {DSW-IX} displayed in Fig. 5 (and there
exists only three regions), all cases evolve at least four regions, and in each case, the
boundary velocities can be given easily.

In what follows, only case Bj 33 is discussed in details, see also Fig. 9, where the
initial conditions for Riemann invariants are chosen to be rﬂr = 1,7y =038, rb =

—0.5,r" = —1. So one has r; = 0.6 and FZT =3- % Figure 9 demonstrates the
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Table6 Classification of solutions and region distributions for the subcases listed in Table 5 under condition

By
Cases Regions
Region 1 Region 2 Region 3 Region 4 Region 5
B111 Plateau {DSW-I} Plateau {RW-II'} Plateau
Bi21 Plateau {DSW-1} {RW-II} Plateau Null
B131 Plateau {DSW-1} {DSW-IX} {RW-II} Plateau
B 41 Plateau {DSW-IX} {RW-II} Plateau Null
B 51 Plateau {RW-II} {DSW-IX} {RW-II} Plateau
B3 Plateau {DSW-1} {DSW-IX} Plateau Null
B4 Plateau {DSW-IX} Plateau Null Null
Bis2 Plateau {RW-I1} {DSW-IX} Plateau Null
Bi33 Plateau {DSW-1} {DSW-IX} {DSW-T} Plateau
B1.43 Plateau {DSW-IX} {DSW-I} Plateau Null
B1 53 Plateau {RW-II} {DSW-IX} {DSW-1} Plateau
Bisa Plateau {RW-II} {DSW-1} Plateau Null
Bi 55 Plateau {RW-I1} Plateau {DSW-1} Plateau
(a) (b)
BT T L I s
frﬂr \ AL, \ - = - Numerics |I
1 : : R S ‘ Whitham theory |!
\ o~ + 08t [ . —|
| | ' | | !
| | |
05 [ [ [ ” \
| | |
T 0 | | ‘
| | |
rto \ \
_0 5 - | | |
: | | |
[ [
L I |
. (S [
| |
15 L [
-12 -10 8T -6 -4 -2 -12 -10 L T -6 -4 -2

Fig. 9 (Color online) Example of the self-similar solution for case Bj 33 with initial condition r[+ =

Ll = 0.8,71 = —0.5,77 = —1 at time t = 1: a distributions of the Riemann invariants in five
regions; b comparison of the analytical solution from Whitham modulation theory (solid red line) with
direct numerical simulations (dash blue line)

distributions of the Riemann invariants and the comparison of the analytical solution
from Whitham modulation theory with direct numerical simulations. It is observed
that the three middle regions form a larger genus-1 dispersive shock wave consisting
of three genus-1 DSWs, in which an exotic DSW structure {DSW-IX} is evolved. The
boundaries of those regions are separated by four black dotted lines, see Fig. 9a, which
is quite different from the structures of wave breaking in the oscillation region observed
before (Kodama et al. 2008). Moreover, Fig. 9b shows that the analytical result from
Whitham modulation theory agrees well with the direct numerical simulations.
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In case Bj 33, the solution of the Riemann invariants consists of five regions (see
Fig. 9a), and in each region, the Riemann invariants can be formulated below.

L r",rl), the solution is in the plateau region with Riemann

(1) Forx/t < v3(rl,r
invariants

ry = rﬂr, ro=rl.

(2) For v3(rﬂr, Loy < x/t < vl(ri, rl, Ther ), Where 1y, solves vl(ri, L,
f'Ee’ r’)y=uv3 (ri_, r‘l_, ”Ee_v ri)' and loqates ?n the interval [r”, r ], the solution is
in the {DSW-I} region with Riemann invariants

X
a=ry, h=rl, ;=v3(rﬁr,rl_,k3,ri), hg=rl.

kk
Be

vi(rly, rl, rhes ") = v3(rl, L, e, ") located in the interval [r”, r! 1, the solu-
tion is in the {DSW-IX} region with Riemann invariants

(3) For vl(ri_,rl_,r?;,ri) < x/t < v3(rfr,rl_,r§’2,r£), where ri* satisfies

X _ l r _ 1 X _ 1 r _.r
?—vl()»l,r_,)@,f”_), Ay =7, ?—v3(l1,r_,)»3,r_), Ay =71l

(4) For v3(r!,, rk, The17) < x/t < w3(rl, rL,rl, r), the solution is in the {DSW-
I} region with Riemann invariants

X
r=rl, da=rl ;:w(ri,r’_,xg,r:), =1l

(5) Forx/t = v3 (ri, Pl , Pl , r"), the solution is in the plateau region with Riemann
invariants

ry=r, ro=r..

The boundary velocities x/t = vg(r_ﬂ_, rLorm P and x/t = v3(r!, rborl )

are known as trailing edge and leading edge, respectively. The Riemann invariants

match at the boundaries of zero-phase solution region and one-phase solution region,
see below.

At the trailing edge, i.e., harmonic front with A3 = A4 and m = 0 (see Eq. 55), we
have

(M1, X2) = the rarefaction wave solution outside the oscillation region.
At leading edge, i.e., soliton front with A3 = A, and m = 0 (see Eq. 55), we have

(A1, A4) = the rarefaction wave solution outside the oscillation region.
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Table7 Classification of solutions and region distributions for the subcases listed in Table 5 under condition

By
Cases Regions

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6
By 1 Plateau {DSW-1} {DSW-IX} {DSW-1} {DSW-V} Plateau
Br» Plateau {RW-II} {DSW-1} {DSW-V} Plateau Null
By 3 Plateau {RW-II} Plateau {DSW-1} {DSW-V} Plateau
By 4 Plateau {RW-II} Plateau {DSW-V} Plateau Null
By 5 Plateau {RW-II} Plateau {RW-I} {DSW-V} Plateau

ool * r *
4.2.2 Subcase By:r_ > rgpandrl <rge

Taking rgz =r" —rl +./5(7)% — 4rl r" , the complete classification under condition

B; is given below:
Forrl < rgz, there are three cases as follows

R * l *
e Byyp:rl < gy T+ <Tp,-
R I *
e Byo:rl =Tp,. Ty > Tp,-
o Byz:rl > r§2,rj_ > rzz.
or . = rj_, there is only one case
Forrl =r} ,th ly
o Byy:rl > rzz, ri_ > rgz.
For rl > rzz, there is also only one case
LT * 1 *
® Bys:rl >rpyry >rp,.

The classification of solutions and region distributions for these subcases are given
in Table 7. It is shown that all cases evolve at least five regions, in which the exotic
DSW structure {DSW-IX} appears again.

In the following, the case B; | is taken as an example to exhibit the novel wave
breaking appearing under the condition B,. Figure 10 demonstrates the distributions
of the Riemann invariants and the comparison of the analytical solution from Whitham
modulation theory with direct numerical simulations. It is seen that the four middle
regions form a larger genus-1 dispersive shock wave consisting of four genus-1 DSWs,
which definitely does not appear under condition Bj. The boundaries of those regions
are separated by five black dotted lines, see Fig. 10a, which has not been found before
(Kodama et al. 2008). It is also found from Fig. 10b that the analytical result from
Whitham modulation theory agrees well with the direct numerical simulations. In fact,
the fourth and fifth regions for case B 1 shown in Fig. 10 is generated by dividing the
fourth region in case Bj 33 displayed in Fig. 9. Thus only the boundary velocities of
the fifth region, i.e., the {DSW-VI} region, is proposed below and the other regions
are the same as case B 33.

For the {DSW-VI} region in Fig. 10, the Riemann invariants are

X X
)"1 :r-’"_’ ?sz(r_r’_’)"zﬂ)“?ﬂr:)v ?=U3(}”_’."_,)\,2,)\,3,r1), )\'4:rr—7 (94)
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Fig.
Ll

(b)
1 T T T T T T
} } = = Numerics
I I —— Whitham theory
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10 (Color online) Example of the self-similar solution for case By 1 with initial conditions rﬁ_ =

=0.8, ri =0.5,r" = —1 attime r = 1: a distributions of the Riemann invariants in five regions; b

comparison of the analytical solution from Whitham modulation theory (solid red line) with direct numerical
simulations (dash blue line)

ro0 k% r * * l * ok _Loor
for vz(r+,r7,r.3e,r_) < x/.t .5 v3(r‘+,rBe, FpesT—), Where rp, = rp = —3(rl +
r’) and rg} satisfies an implicit equation

vl g ) = vl el g ). 95)

In particular, it can be calculated that rJ . = rj = 0.05 and rz’z ~ —0.4195 in case

By 1 with the initial conditions rﬂr =1, ri =08, =05, =—1.

4.2.3 Subcase B3: 1’ > rg

1

The condition 7~ > r} indicates r” > —<r! which only produces rarefaction waves,
see Sect. 3.1 for details. Thus the solution regions in this case only consist of plateau,
{RW-II}, plateau, { RW-1}, plateau. Figure 11 displays the distributions of the Riemann
invariants and the comparison of the analytical solution from Whitham modulation
theory with direct numerical simulations, which shows that the result of Whitham
modulation theory agrees well with the direct numerical simulations.

4.2.4 Subcase Bs: rfF <z

In this case, the four initial values rﬁr, i

*
;]
[ ]

! “and r”_ are all below the critical point

Define four critical points r Ba "By TR, and rr B, 1N the following way:

Letry, € [r], r! 1solve the implicit equation vi(rg,, s rl, D) = v, i, v, rl).
Kk r I : : k% k% T T *k
Let g, € [, r ] satisfy equation 8v1(r34, Py Ty rf)/arB4 =0.
* * l . .« . . * 1 l r _
Let rrg, € [”347 ri] solve the implicit equation vl(rrB4, rt,rir’) =

v3(rr§4, rLorl ).
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(b)
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Fig. 11 (Color online) Examples of self-similar solutions of of case B3 with initial condition rﬂr =27 =

1.5, rl_ =1,r" = —0.3 attime t = 1: a distributions of Riemann invariants; b comparison of numerical
simulation (dash blue line) with analytical solution (solid red line) of the defocusing cmKdV equation (1)

ok

T
TR,

*
T,

¥k
B, r

T T
Fig. 12 (Color online) Distributions of Riemann invariants for all the possible cases in Case By: a the
characteristic velocity rf‘_ is chosen to divide the corresponding region into two smaller regions; b the

e . l et * *k * K%k
characteristic velocity 7, is chosen to equal to the boundary velocities r By "By "By and rr By

sk . .. . w% 0 skl
o Let g, solve the implicit equation vl(rr34, ri,rl ) = v3(rrB4, ri,rl ).

The complete classification of case B4 can be given by adjusting the initial value
ri, which is, more or less, similar to case A and is described in Fig. 12.

The classification of solutions and region distributions for the subcases in Fig. 12
are given in Table 8, which shows that all cases evolve at least five regions. It is
worth mentioning that three DSWs are separated by a plateau in case By 2, two DSWs
are separated by a plateau and a rarefaction wave in case B44, and three DSWs are
separated by a rarefaction wave in case By . These are the main features in case Bj.

We only take case B4 4 as an example to exhibit the phenomena of wave breaking
under the condition B;. Figure 13 shows that the solution for case B4 4 consists of six
regions with two different patterns of the oscillating DSWs separated by a plateau and
ararefaction wave, in which the left oscillating pattern corresponding to {DSW-I} and
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Table8 Classification of solutions and region distributions for the subcases listed in Table 5 under condition

By
Cases Regions

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6
By Plateau {DSW-I} Plateau {DSW-1V} Plateau Null
Byo Plateau {DSW-1} Plateau {DSW-1V} {DSW-VIII} Plateau
By3 Plateau {DSW-1} Plateau {DSW-VIII} Plateau Null
By Plateau {DSW-1} Plateau {RW-II} {DSW-VIII} Plateau
By s Plateau {DSW-1} {RW-II} {DSW-VIII} Plateau Null
Bsg Plateau {DSW-1} {DSW-IX} {RW-II} {DSW-VIII} Plateau
By7 Plateau {DSW-IX} {RW-II} {DSW-VIII} Plateau Null
Bsg Plateau {RW-II} {DSW-IX} {RW-II} {DSW-VIII} Plateau

— = = Numerics
—— Whitham theory

|
|
|
| T T T
|
|
I

-4 12 -0 8p 6 -4 2 0
Fig. 13 (Color online) Example of self-similar solution of case B4 4 with initial condition ri_ =0.8, r_ﬁ_ =

—0.3, ri = —1,r" = —1.2attime ¢ = 1: adistributions of Riemann invariants; b comparison of numerical
simulation (dash blue line) with analytical solution (solid red line) of the defocusing cmKdV equation (1)

the right pattern corresponding to { DSW-VIII}. Figure 13b indicates that the result of
Whitham modulation theory agrees well with the direct numerical simulations. The
boundary velocities in each region are given below.

(1) For x/t < v3 (rﬂr, Pl ,r",r"), the solution is in the plateau region with Riemann

invariants
ry = rﬂr, ro=rl.

(2) Forvs(rl, rl v r") < x/t < v3(r, rL, rL, r"), the solution is in the {DSW-1}
region with Riemann invariants

I x Il
A =Ty, Ay =71, ? = v3(r+,r_,k3,r£), A4 :ri_
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(3) For v3(rﬂr, rﬂ, rﬂ, ')y <x/t < vl(rﬂr, rl,rl,rl), the solution is in the plateau

region with Riemann invariants

r+=ri_, r—=r".

(4) For vl(rﬂr, rhorl ) < x/t < vi(rgy, ', vl rD), the solution s in the {RW-IT}
region with Riemann invariants

1 1
rp=—grl [ <3607 =30 =1t

®)) Forvl(r§4, rrl ) < x/t < vl(rﬁj, ij, r!, r"), the solutionis in the {DSW-
VIII} region with Riemann invariants

X X
7= vi (A, A2, 7l D), o= v, Ao, rl), Az =l =1l

(6) For x/t > vi(rfy, riy. r’., r’), the solution is again in the plateau region with
Riemann invariants

ry=r, ro=r’.

Notice that the directions of leading and trailing edges of two DSWs in Fig. 13 are
opposite.

43 CaseC.r >r >r >r

This is an special case, in which the vacuum region and genus-2 region appear. The
vertex -, in equation (91) is a vital point in classifying the solution of the Riemann
problem in Case C. In what follows, the subcase that only rarefaction wave emerges
is discussed firstly.

4.3.1 Subcase Cy:r” > rp

This case only contains one class of solution, where one vacuum and two rarefaction
waves are produced. Figure 14 shows that the solution for case C; consists of five
regions, where two different patterns of rarefaction waves are separated by a vacuum,
see also Table 10. Figure 14b indicates that the result of Whitham modulation theory
agrees well with the direct numerical simulations. The formation of these profiles is
much similar to the case under B3 except the intermediate plateau connecting the two
rarefaction waves is replaced with the vacuum region. This result can also be observed
in the Riemann problem of the defocusing NLS equation (El et al. 1995). The boundary
velocities in this case is omitted since it can also be easily derived in the same way.
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Fig. 14 (Color online) Example of the self-similar solution of case C with initial condition rﬂ_ =2, rj_ =
1, ri = 1.5, = 0 at time r = 1: a distributions of Riemann invariants; b comparison of numerical
simulation (dash blue line) with analytical solution (solid red line) of the defocusing cmKdV equation (1)

Table 9 All of possible solution cases under conditions C| and C»

Conditions " =rhen réz <r" <r§ep = réz -l <r" < réz
Cases Ci & (&) C23

Conditions A fr{'_ <rf < —rk o= *ri_ rlo< *”i_
Cases Cog Cys Cr6 Co7

oyl * r &
4.3.2 Subcase C: 1, > rzpandr <rg,

The inequality " < rj ., indicates that 7" < —%rj_, which provides a condition of
producing DSW. The complete classification under condition C, can be obtained
by adjusting the value of r” in comparison with rj;., and rf, = r} —r" —

5(rf)? —4rlr’, see Table 9.

The classification of solutions and region distributions for the subcases listed in
Table 9 are given in Table 10. It is observed that there are plateau, vacuum, rarefaction
waves, and DSW in case C» 3, which will be displayed in Fig. 15 below. Moreover, in
cases Cy 5 — C» 7 there exist oscillatory regions, which are also genus-1 DSW regions
but they do not belong to any basic structures of DSW shown in Sect. 3.2. Notice
that oscillatory region is a bit similar to the region that found in El et al. (1995), in
which the amplitude of the oscillation is a constant (a = 0) there. However, different
from the results in El et al. (1995) the oscillation in this work is a variable . It seen in
the oscillatory region that @ — 0 when A3 — A4 in the left hand side, or A1 — A3
in the right hand side. This implies that the left half part of oscillatory region can be
interpreted as the trailing edge of {DSW-IX} and the symmetry with respect to vertical
axis of trailing edge of {DSW-X} for the right part.
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Table 10 Classification of solutions and region distributions for the subcases listed in Table 5 under con-
dition C;

Cases Regions
Region 1 Region 2 Region 3 Region 4 Region 5 Region 6
C1 Plateau {RW-II} Vacuum {RW-I} plataeu Null
Cr1 Plateau {RW-II} Vacuum {RW-1} {DSW-VI} Plateau
Cr Plateau {RW-II} Vacuum {DSW-VI} plataeu Null
Cr3 Plateau {RW-II} Vacuum {RW-V} {DSW-VI} Plateau
Cra Plateau {RW-II} {RW-V} {DSW-VI} platacu Null
Crs Plateau {RW-II} Oscillation {RW-V} {DSW-VI} Plateau
Cr6 Plateau Oscillation {RW-V} {DSW-VI} Plateau Null
Cr7 Plateau {DSW-I} Oscillation {RW-V} {DSW-VI} Plateau
(b)
1.5 r r r r
| M : |
04t I - = = Numerics I
n ‘ —— Whitham theory |!
| T T T |
r p \ Lo
03} | | |
05F \ [
| | |
| | |
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| | |
| | |
L | | |
-0.5 0l \ Lo
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B . . . . 0 . Dickinsed .
-15 07 S 0 -15 -0 xS 0

Fig. 15 (Color online) Example of the self-similar solution of case C» 3 with initial condition ri_ =

1.2, ri =0.5, = 0.8,r" = —0.7 at time 7 = 1: a distributions of Riemann invariants; b comparison
of numerical simulation (dash blue line) with analytical solution (solid red line) of the defocusing cmKdV
equation (1)

Figure 15 shows that the solution for case C» 3 with initial condition rﬁr =127, =
0.5, L= 0.8, r” = —0.7 consists of six regions including plateau, vacuum, rarefac-
tion waves and DSW. Figure 15b indicates that the analytical solution from Whitham
modulation theory agrees well with the direct numerical simulations. From left to
right, the fourth region is a rarefaction wave followed from equation (57), where

15, 3, 3, 15,
v3l=hy = 5 3rars — 574 Valiy=a, = —575 - 3rary — 5T

The fifth region, the dispersive shock wave region, can be regard as the limitation state
of {DSW-VI} for Ay — A3.
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4.3.3 Subcase C3:rf,_ =5

The condition rj_ < rg cp Shows that ri < — %ri which will result in the collision of
two DSWs as seen in Fig. 13. Moreover, in this case, certain region can not be described
by the genus-1 Whitham equations (56) with (57) definitely. Thus the genus-2 regions
may emerge, which should be analyzed by the genus-2 Whitham equations (64) with
(66). The initial condition of Fig. 16is r}. = 0,r} = —0.8,r. = —0.5,r" = —1.2.
It is shown that the solution for case C3 consists of five regions with two different
genus-1 DSWs separated by a genus-2 DSW. Fig. 16b demonstrates the result of direct
numerical simulations, which displays that the middle genus-2 DSW region oscillates
rapidly, which further verifies the result of Whitham modulation theory shown in
Fig. 16a. The boundaries of the genus-2 DSW region are x = s1¢ and x = s>t with
s1 = —7.3 and 5o = —4.5. In fact, s1 and s are characteristic velocities obtained by
the genus-2 Whitham equations (64) with (66). The new feature of middle genus-2
DSW region can be explained as follows: Two genus-1 dispersive shock waves (genus-
1 undular bores) move toward each other and overlap in region [s, s2] to generate a
genus-2 dispersive shock wave that can be described by the two-phase solution of the
defocusing cmKdV equation (1).

This work does not present the detailed description of the genus-2 DSW region but
give the appropriate solution for the genus-2 averaged Whitham equation

oA

I
— v (A, A2, A3, e, As, he)—— =0, i =1,2,...,6,
ot 0x

where .1 > A2 > A3 > A4 > A5 > Ag. The self-similar solution of this equation in
the region [s1, s2] is expressed by
M=rh, odn=rl as=rl, re=1r",

w3, A da ) = T = gl ds A D),
from which the the boundary characteristic velocities s| and s, are
_ 1 x r r _r _ 1 * r _r
st =v3(ri, r Az, v i rl), so=va(ri rlrl Ay, vl rl).

4.4 CaseD.r', >/ >r >r

More genus-2 DSW regions emerge in this case because of the collisions of the DSWs.
As before, the vertex rj -, in equation (91) is still an important point in classifying
the solution of the Riemann problem for Case D.

4.4.1 Subcase Dy:r'_ > 5o

The genus-2 DSW region also appears due to the collision of {DSW-II} and {DSW-V}
under condition Dj. Since the genus-2 DSWs are more complicated than the genus-1
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