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Abstract
The aim of this paper is the study of the center-focus and cyclicity problems inside the
classX of 3-dimensional vector fields that admit a first integral that leaves invariant any
sphere centered at the origin.We classify the centers of linear, quadratic homogeneous
and a family of quadratic vector fields F ⊂ X, restricted to one of these spheres.
Moreover, we show the existence of at least 4 limit cycles in family F .

Keywords Vector fields on invariant spheres · Integrability · Center-focus problem ·
Local cyclicity

Mathematics Subject Classification Primary 34C07; Secondary 34C23 · 37C27

1 Introduction

Differential equations and dynamical systems appear naturally in the description of
many phenomena for which local processes are known. The central problem is then to
obtain global information on these phenomena. Once the local equations are formu-
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lated in a particular context, the next usual step is to solve them. But, as in general,
the evolution of these process is governed by nonlinear differential equations, it is not
always simple to solve them. The basic idea behind the first works in the eighteenth and
nineteenth centuries was to seek solutions that are combinations of known functions.
That is why it is imperative to search for new more geometric methods for a better
understanding of the behavior of the solutions of a system of differential equations.
Integrability is one of them.

The integrability is an intrinsic property of a given system that imposes strong con-
straints on the way solutions evolve in phase space. The notion of integrability was
introduced to describe the property of equations for which all local and global informa-
tion can be obtained either explicitly from the solutions or implicitly from invariants.
The first class of invariants is the constants of motion, conserved quantities, or first
integrals. Of course, there are also other invariants such as integral invariants, integrat-
ing factors, Jacobi multipliers, or symmetries which give rise to different techniques
for integrating differential equations, see, for instance, Ablowitz et al. (1980), Berrone
and Giacomini (2003), Goriely (2001), Olver (1986) and references therein. We have
been motivated to consider the existence of first integrals.

The importance of the existence of a nonconstant first integral lies in the fact that
the trajectories of the vector field remain in the level sets of the function that defines
the first integral, and hence, this is a strong constraint on the dynamical behavior. In the
theory of ordinary differential equations, the existence of first integrals is important
not only because they allow decreasing the dimension where the differential system
is defined but also because they simplify the characterization of the phase portrait.
It is important to mention that if we are working in a space of dimension n and the
system of equations has n − 1 independent first integrals, then we say that the system
is completely integrable. The complete integrability means that we can obtain the
trajectories just intersecting the level sets of the first integrals.

In this work, we consider the class X of vector fields on R
3 that admit the first

integral H(x, y, z) = x2 + y2 + z2, and we denote by Xn when we restrict to the
polynomial of degree n class. It means that 〈x, X(x)〉 = 0, for all x ∈ R

3, and that any
sphere centered at the origin is invariant by the flow of X ∈ X. We are interested on
the center-focus and cyclicity problems inside this class of systems. These problems
are strongly related to the study and definition of limit cycle (i.e., isolated periodic
orbit) for planar polynomials vector fields. This concept is due to H. Poincaré, in
1880s. At the end of the XIX century, D Hilbert presented a list of 23 problems at
the International Congress of Mathematicians, in Paris. The question on the second
part of the sixteenth problem about an estimation of the maximal number and relative
positions of the limit cycles of a planar polynomial vector field remains unsolved.
For more details on the history of this important and open problem, we refer to the
interesting survey written by Ilyashenko (2002).

Throughout the work, our strategy is to consider the restriction of the system of
differential equations to a 2-dimensional sphere and to use a stereographic projection
to consider a planar vector field. From there, we can use all the tools that are normally
used to study the dynamics of planar differential systems.
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Let X ∈ X1 be a linear vector field, we will see that it is always homogeneous and
it writes in the form

ẋ = −a1y − a2z,

ẏ = a1x − a3z,

ż = a2x + a3y.

(1)

The following result provides a qualitative classification of the equilibrium points
of the above differential system.

Theorem 1 Let p ∈ S
2
ρ = {(x, y, z) : x2 + y2 + z2 = ρ2} be an equilibrium point of

system (1) which is isolated on S
2
ρ. Then, p is of center type. Moreover, the system is

completely integrable.

As we have commented above, if X ∈ X1 is linear, then X is homogeneous and
hence XH

1 = X1, where the superscript denotes the homogeneous property and the
subscript the degree of the vector field. Inspired by this fact, we study and classify the
center equilibrium points in the class of homogeneous quadratic vector fields, that is
in XH

2 .
In Sect. 3, we prove that, without loss of generality, a vector field X ∈ XH

2 writes
in the following canonical form

ẋ = −a4xy − a5xz − (a6 + a7)yz − a8z
2,

ẏ = a4x
2 + a6xz − a9z

2,

ż = a5x
2 + a7xy + a8xz + a9yz.

(2)

We notice that the equilibrium point is located at (0, 1, 0). On the following result, we
classify the equilibrium points of center type.

Theorem 2 The equilibrium point (0, 1, 0) of system (2) is a nondegenerate center if,
and only if, a7 �= 0, a4 = a9, and a4a5a8a9+a5a6a7a8+a25a7a9+a5a8a29−a7a28a9 =
0.

Also, in Sect. 3, we will see that the behavior of linear and quadratic homogeneous
vector fields is the same on all spheres. But this special property cannot be extended
for all quadratic vector fields X2. Because of the difficulty of doing a general study,
we restrict our analysis to the unit sphere S21 = {(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1}.
In this case, we will show that, generically, any X ∈ X2 writes in its canonical form
as

ẋ = −a1y − a2z − a4xy − a5xz − a10y
2 − (a6 + a7)yz − a8z

2,

ẏ = a1x − a3z + a4x
2 + a10xy + a6xz − a11yz − a9z

2,

ż = a2x + a3y + a5x
2 + a7xy + a8xz + a11y

2 + a9yz.

(3)

In the following result, we provide some center families for the above system when
a1+a10 = 0, a2+a7 = 1, a3+a11 = 0, and a9 = 0. In Sect. 4, wewill justify whywe
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have restricted our analysis to this special family. Although the study of local cyclicity
presented in Theorem 4 has been done for this family, when the centers of Theorem 3
are perturbed without these conditions, no more limit cycles of small amplitude are
obtained. This is explained in Sect. 4.2. Finally, the monodromic property around the
equilibrium point is guaranteed by w2 = a6 + 1 > 0 and it is not restrictive to study
only w > 0.

Theorem 3 The differential system

ẋ = −a1y − (1 − a7)z − a4xy − a5xz + a1y
2 + (1 − a7 − w2)yz − a8z

2,

ẏ = a1x + a11z + a4x
2 − a1xy + (w2 − 1)xz − a11yz,

ż = (1 − a7)x − a11y + a5x
2 + a7xy + a8xz + a11y

2,

(4)

has a center at the equilibrium point (0, 1, 0) if a4 = 0, and one of the following
conditions is satisfied:

(a) w = 1, a1a5 + a8a11 = 0;
(b) a1 = 0, a8 = 0;
(c) a5 = 0, a11 = 0;
(d) a1 = a8, a5 = −a11;

(e) w �= 1, a1 = w2 − 1

w2 + 1
a8, a5 = w2 + 1

w2 − 1
a11, a7 = 1

w2 + 1
− 1

(w2 + 1)
a28 −

w2 + 1

(w2 − 1)2
a211.

We think that the above result provides (generically) a complete center classification
for the considered family. In Sect. 4, we have checked it for w ∈ {1/2, 2, 3}, but the
expressions to be manipulated are too big to get the proof for every w.

Finally, we have also analyzed the local cyclicity of the families in Theorem 3,
studying bifurcations of small amplitude limit cycles from a weak focus on S

2
1. Next

result provides the highest number of limit cycles surrounding a monodromic equilib-
rium point in the quadratic family X2 that we have found.

Theorem 4 Consider the system

ẋ = 2αy + 9

20
z − xz − 2αy2 − 89

20
yz − αz2,

ẏ = −2αx + 2z + 2αxy + 3xz − 2yz,

ż = − 9

20
x − 2y + x2 + 29

20
xy + αxz + 2y2.

(5)

The equilibrium point p = (0, 1, 0) of (5) is of center type if α = 0. Otherwise, it
is a weak focus of order 4 when α = ±√

857/488, or of order 3 when α /∈ A :=
{0,±√

857/488}.Moreover, if α = ±√
857/488 (α /∈ A), there exist 4 (resp. 3) small

amplitude limit cycles, on S
2
1, bifurcating from p considering a perturbation of (5)

inside family (4).
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Remark 5 We notice that near the centers of (5) for α = 0 only weak foci of order
three exist. Consequently, the cyclicity of the center should be also three.

Theorem 1 shows that there exists some similarity between the linear case on R
2

and the linear case on S
2, since for both we do not have limit cycles, but instead of

the many different types of equilibrium points for linear vector fields on R
2, in X1

we only have centers. For planar quadratic polynomials vector fields, N.N. Bautin
proves (see Bautin 1954) that there exists at most 3 limit cycles bifurcating from a
monodromic equilibrium point. But our last main theorem exhibits a weak focus of
order four that unfolds 4 limit cycles in X2. That is, we have at least one limit cycle
more than in the classical planar case. Another final difference is obtained, considering
also the case with complex coefficients. In this case, we prove that the local (complex)
cyclicity of centers (e) in Theorem 3 is at least 6 perturbing inside family (4). The fact
that the cyclicity is higher when complex coefficients are considered, can explain the
difficulties that we have found to look for vector fields with high cyclicity values in
the real coefficients study, as well as in the center classification.

This paper is structured as follows. Section 2 is devoted to recall the necessary
classical results for proving our main theorems. In particular, the projection of a
3-dimensional vector field with invariant spheres and the definitions of Lyapunov
constants, first integrals, inverse integrating factors, and integrability. In Sect. 3, we
study the linear and quadratic homogeneous case and we also prove Theorems 1 and
2. In Sect. 4, we study the quadratic case and we prove Theorems 3 and 4. We finish
studying the family considering that the coefficients are complex numbers.

2 Preliminary Results

In this section, we recall some classical concepts and bifurcation techniques that are
necessary for the proofs of the results stated in the paper. Firstly, we introduce the
general vector fields X : R3 → R

3 having H(x, y, z) = x2+ y2+ z2 as a first integral
together with some properties that they satisfy. Secondly, as the main results will be
proved projecting each 3-dimensional vector field to a planar one, we recall some usual
notions and definitions for planar vector fields. We mainly study the center-focus and
local cyclicity problems for polynomial systems. So we need to introduce briefly
the Darboux integrability concept and the computation of the Lyapunov constants.
This last notion is the usual planar mechanism to distinguish when a monodromic
equilibrium point is of center or of focus type.

2.1 Setting the Problem

Consider a vector field X : R3 → R
3 and its associated differential system ẋ = X(x).

Assume that 〈x, X(x)〉 = 0, for all x ∈ R
3. That means that X admits H(x, y, z) =

x2 + y2 + z2 as a first integral. In other words, all the spheres of center at (0, 0, 0)
and radius ρ, S2ρ = {(x, y, z) : x2 + y2 + z2 = ρ2}, are invariant by the flow of X .
We recall that in the previous section, we have denoted by X this class of vector fields
and by Xn when the components are polynomials of degree n.
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Next results show that an orthogonal change of coordinates keeps all the spheres
invariant and that it is not restrictive to assume that the equilibrium point, that always
exists, can be located at (0, ρ, 0).

Lemma 6 Let M be an orthogonal matrix. If X ∈ X, then M · X(Mt ) ∈ X.

Proof The differential equation ẋ = X(x), with the orthogonal change of coordinates
y = M · x, moves to ẏ = M · ẋ = M · X(x) = M · X(Mt · y) = Y (y) because
M−1 = Mt . The proof follows just checking that 〈y,Y (y)〉 = 〈

M · x, M · X(Mt · y)〉
= (M · x)t · M · X(Mt · y) = xt · X(x) = 〈x, X(x)〉 = 0 for all y ∈ R

3. 	

Lemma 7 The equilibrium point of X ∈ X can be always located at (0, ρ, 0).

Proof Let p = (x0, y0, z0) ∈ S
2
ρ be an equilibrium point of X . Then, X(p) = 0 and

‖p‖ = ρ > 0. Consider the unit vector v = (x0, y0, z0) /ρ and the plane

P =
{
(x, y, z) : xx0

ρ
+ yy0

ρ
+ zz0

ρ
= 0

}
,

passing through the origin, which is perpendicular to the vector v. Note that the inter-
section of P with the sphere x2 + y2 + z2 = 1 is a circumference and we can take

u = (0,−z0, y0)/
√
y20 + z20 as a unit vector on this circumference. So, we have a new

orthogonal basis B = {u, v,w}, where w is obtained by the cross product of u and v.
The matrix M that changes the canonical bases to B is orthogonal and this change of
coordinates sends the equilibrium point p = (x0, y0, z0) to (0, ρ, 0). We notice that
Lemma 6 ensures that the new vector field also is in class X. 	


The stereographic projection with respect to the antipodal point of the equilib-
rium point located at (0, ρ, 0) allows us to consider planar vector fields instead of
3-dimensional vector fields restricted to spheres.

Let π : S
2
ρ\{(0,−ρ, 0)} → R

2 be the stereographic projection on the plane
{(x, y, z) ∈ R

3 : y = ρ} given byπ(x, y, z) = 2ρ(x, z)/(y+ρ).Then, the projection
Y : R2 → R

2 of the vector field X writes as

Y (x) = dππ−1(x) ◦ X ◦ π−1(x), (6)

where X = X |S2ρ . Note that π preserves closed curves and contact between curves

contained on its domain of definition. We say that p ∈ S
2
ρ is an equilibrium point

of center type of X |S2ρ if π(p) = q and q is an equilibrium point of center type of
Y (x) defined in (6). Moreover, as π(0, ρ, 0) = (0, 0) we can assume that (0, 0) is an
equilibrium point of the planar projected system (6).

There are other transformations to project a 3-dimensional vector field to a planar
one, for example, the one used in Llibre and Pessoa (2006a, b). Although these works
study vector fields defined on the sphere, the objectives are completely different. In
particular, they study when the maximal circles are invariant for the considered vector
fields. Some of the above properties are used but without proving them.
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2.2 Darboux Integrability

Consider the planar differential system

ẋ = P(x, y),

ẏ = Q(x, y),
(7)

where P and Q are polynomials in the variables x and y with coefficients on F,
where F is the field of reals or complex numbers. As usual, we also denote by F[x, y]
the ring of polynomials in the variables x and y and coefficients in F. Let m be the
maximum between the degree of P and Q. We say that (7) is integrable or completely
integrable on an open subset U ⊂ F

2 if there exists an analytic function H : U → F,
nonconstant, such that

P
∂H

∂x
+ Q

∂H

∂ y
= 0,

onU . In this case, H is called a first integral. In addition, a vector field X : R3 → R
3

is completely integrable if it has two independent first integrals. Note that if X ∈ X,
then, by definition, it has at least one first integral. We say that an analytic (and not
identically zero) function V : U → F is an inverse integrating factor of (7) on U if

div(P/V , Q/V ) = ∂(P/V )

∂x
+ ∂(Q/V )

∂ y
≡ 0,

and, consequently, a first integral can be obtained by direct integration.
Let f ∈ C[x, y] being not identically zero. We say that f (x, y) = 0 is an invariant

algebraic curve of (7) if there exists a cofactor K ∈ C[x, y] such that

X f = P
∂ f

∂x
+ Q

∂ f

∂ y
= K f . (8)

If the degree of the polynomial differential system ism, then the cofactor K has degree
at most m − 1. By (8), we could see that the gradient of f is orthogonal to the vector
field (7) and, because of that, the flow of (7) is tangent to the curve f (x, y) = 0. Thus,
this curve is formed by trajectories of the vector field.

An object that also satisfies (8) is the exponential factor that we define on the
following. Let g, h ∈ C[x, y] such that g, h are relative prime in C[x, y] or h ≡ 1.
The function exp(g/h) is called an exponential factor of (7) if there exists a cofactor
K ∈ C[x, y] of degree at most m − 1 such that

X
(
exp

(g
h

))
= K exp

(g
h

)
.

Note that although the function exp(g/h) satisfies (8), as it is always nonzero, an
exponential factor does not define invariant curves.
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The Darboux integrability theory for complex polynomial systems gives us some
conditions in which the existence of invariant algebraic curves and exponential fac-
tors ensures that the vector field is integrable. In this sense, suppose that the vector
field (7), of degree m, admits p irreducible invariant algebraic curves fi = 0,
with cofactors Ki , i = 1, . . . , p and q exponential factors exp(g j/h j ) with cofac-
tors Kp+ j , j = 1, . . . , q. Then, there exist λi , μ j ∈ C not all zero such that∑p

i=1 λi Ki + ∑q
j=1 μ j K p+ j = 0 if and only if the (multivalued) function

f λ1
1 · · · f λp

p

(
exp

(
g1
h1

))μ1

· · ·
(
exp

(
gq
hq

))μq

(9)

is a first integral of system (7). Beside of that, (9) is an inverse integrating factor for
system (7) if, and only if, there exist λi , μ j ∈ C not all zero such that

∑p
i=1 λi Ki +∑q

j=1 μ j K p+ j = div(P, Q).We emphasize that fi and exp(g j/h j ) could be complex
but when system (7) is real, the Darbouxian function (9) is also real. See Dumortier
et al. (2006) for more details.

2.3 Lyapunov Constants and Local Cyclicity

We will recall the stability algorithm for equilibrium points of nondegenerate center-
focus type having its linear part in Jordan’s normal form:

ẋ = αx − β y +
n∑

k=2

Pk(x, y),

ẏ = βx + αy +
n∑

k=2

Qk(x, y),

(10)

where Pk and Qk are homogeneous polynomials of degree k in the variables x and
y. The nondegeneracity condition is β �= 0. The above system writes, in usual polar
coordinates, (x, y) = (r cos θ, r sin θ), as

ṙ = R(r , θ),

θ̇ = β + 	(r , θ),

whereR and	 are polynomials in r and trigonometric polynomials in cos θ and sin θ .
Removing the time dependence, we consider the 1-dimensional differential equation

dr

dθ
= R(r , θ)

β + 	(r , θ)
= R(r , θ), (11)

which is well defined in a small neighborhood of the origin.
Let r(θ, r0) be the solution of (11) satisfying r(0, r0) = r0. If α �= 0 by the

Grobman–Hartman theorem, we conclude that (0, 0) is a hyperbolic focus and the
sign of α provides the stability of the origin. When α = 0, the stability depends on
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the higher-order terms. For r0 sufficiently small, we expand the solution in Taylor’s
series and write

r(θ, r0) = r0 +
∞∑

k=2

rk(θ)rk0 ,

with rk(0) = 0, for all k ≥ 2. The Poincaré first return map is defined evaluating the
above solution at 2π :


(r0) = r(2π, r0).

The corresponding solution of (10) turns around the origin. The stability of the origin
depends on the sign of the displacement function

�(r) = 
(r0) − r0,

for r0 is small enough. If there exists k such that �′(0) = · · · = �(k−1)(0) = 0 and
�(k)(0) �= 0, then k is always an odd integer number andwewrite k = 2K+1, for K ≥
0. The K -thLyapunov constant is defined as LK = r2K+1(2π) = �(2K+1)(r0)/(2K+
1)! when L1 = · · · = LK−1 = 0 and LK �= 0. Then, we say that the origin of system
(10) is a weak focus of order K if there exists K ≥ 1 such that LK �= 0; otherwise,
we say that the origin is a center.

The above described method to study the center-focus problem comes from Lya-
punov. There is an alternative method due to Poincaré, also when α = 0. It consists
in looking for a function H(x, y) = x2 + y2 + O3(x, y) which satisfies

Ḣ = dH

dt
= P

∂H

∂x
+ Q

∂H

∂ y
=

∞∑

k=2

h2k r
2k,

being r2 = x2 + y2. The first nonvanishing coefficient of Ḣ , which always has
an even subscript, h2K , is called a focal value and determines the stability of the
origin of (10). In this case, H acts as a Lyapunov function. It is well known that
both coefficients, h2K+2 and L2K+1, differ only by a multiplicative nonzero constant
and by the Poincaré–Lyapunov theorem, the origin is a center of (10) if, and only if,
h2K = 0 for all K and, in others words, if and only if (10) admits an analytical first
integral. We notice that the Taylor series of H(x, y) = x2 + y2 +O3(x, y) converges
to an analytic first integral because the differential system also is. For more details,
we refer the reader to Andronov et al. (1973), Dumortier et al. (2006) and Roussarie
(1998).

From the computational point of view, it is better to consider the last method in
complex variables z = x + i y. In this case, if α = 0, the system (10) writes as

ż = R(z, z̄) = i z +
n∑

k=2

Rk(z, z̄),
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being Rk(z, z̄) homogeneous polynomials of degree k in z and z̄. We only write the
first equation because as (10) has real coefficients, the second one is its conjugate. In
this case, we have H(z, z̄) = zz̄ + O3(z, z̄) and, consequently,

dH

dt
= Ḣ = ż

∂H

∂z
+ ˙̄z ∂H

∂ z̄
=

∞∑

k=2

gk(zz̄)
2k .

Thus, the focal values are the coefficients gk .
It is well known that the Lyapunov constants and the focal values differ in mul-

tiplicative constants and that they are polynomials in the coefficients of Pk and Qk .

Moreover, each LK is always defined modulus the previous vanish. So, independently
of the used mechanism, we will denote them by Lk . The last approach provides some
good algebraic properties about degree and weighted homogeneity with respect to
the perturbation parameters. See them in Cima et al. (1997). For more details on the
center-focus problem and related problems, we refer the reader to Andronov et al.
(1973) and Romanovski and Shafer (2009).

The classical Hopf bifurcation occurs near α = 0 and when the first Lyapunov
constant (when α = 0) is nonvanishing. It is not restrictive if we assume L1 > 0.
In this case, when α = 0, the origin is unstable and a small amplitude stable limit
cycle bifurcates from the origin when the trace parameter α becomes negative but
small enough. The degenerate Hopf bifurcation occurs when the limit cycles of small
amplitude bifurcate from a weak focus of higher order. It is known that at most K ,
limit cycles bifurcate from an order K weak focus under analytic perturbations (see
Roussarie 1998), but the unfolding is not always complete when the perturbation is
restricted to a polynomial family of fixed degree. As we are interested in polynomial
perturbations, we need a simple condition for proving the existence of K limit cycles
bifurcating from the origin. Instead of looking for weak focus of higher order and its
unfolding, we will study degenerate Hopf bifurcations from centers. The key point is
an interesting application of the implicit function theorem due to Chicone and Jacobs
in Chicone and Jacobs (1989). Also, Han (1999) uses it. We will present the approach
of Christopher (2005) that uses the Taylor developments of first order of the Lyapunov
constants with respect to the perturbation parameters.

Theorem 8 (Christopher 2005) Suppose that p is a point on the center variety and
that the first k-Lyapunov constants, L1, . . . , Lk have independent linear parts (with
respect to the Taylor expansion of Li about p), then p lies on a component of the center
variety of codimension at least k and there are bifurcationswhich produce k limit cycles
locally from the center corresponding to the parameter value p. If, furthermore, we
know that p lies on a component of the center variety of codimension k, then p is a
smooth point of the variety, and the cyclicity of the center for the parameter value p is
exactly k. In the latter case, k is also the cyclicity of a generic point on this component
of the center variety.

We notice that in the above result, we are moving also the trace parameter α. In
Christopher (2005), we can also find another result for bifurcating limit cycles of
small amplitude using higher-order developments of the Lyapunov constants. These

123



Journal of Nonlinear Science (2021) 31 :92 Page 11 of 28 92

higher-order studies are better explained and developed in Giné et al. (2021) and
Gouveia and Torregrosa (2021).

3 Centers for Linear and Quadratic Homogeneous Vector Fields

In this section, we classify the type of equilibrium points that a linear vector field
X ∈ X can have proving Theorem 1. As we have already commented before, when
X ∈ X is linear, then X is also homogeneous, so X ∈ XH

1 .Wehave used thismotivation
for studying the centers inXH

2 . They are classified in Theorem 2. Before proving these
results, we give some technical lemmas about homogeneous vector fields on X.

Lemma 9 The homogeneity property is invariant by an orthogonal change of coordi-
nates.

Proof The proof follows directly from the proof of Lemma 6, just checking that the
change of variables does not break the homogeneity. 	

Lemma 10 Let X ∈ XH . The phase portrait in each sphere is topologically equivalent
to the one in the sphere of radius 1. Moreover, X has a straight line passing through
the origin filled of equilibrium points.

Proof The proof follows just doing the change of coordinates y = x/ρ and a time
rescaling, if necessary. 	


In the above lemma, the existence of an equilibrium point in one sphere is trans-
formed by continuity using a dilation when the vector field is homogeneous.We notice
that this is not the case for a general vector field in X nor for the quadratic family X2.

Lemma 11 Let X ∈ XH . Then, the projected system Y defined in (6) is homogeneous
if, and only if, X is linear.

Proof First, we will study the projection of X ∈ XH
1 defined in (1). By Lemma 7, we

can suppose that any equilibrium point can be located at (0, ρ, 0). This implies that
a1 = a3 = 0. So, system (1) writes as

(X1, X2, X3) = (−a2z, 0, a2x)

and the corresponding projected system (6) is

(Y1,Y2) = (−a2v, a2u), (12)

which is also homogeneous and linear.
The proof finishes just checking that for degree two, for example, the projection

breaks the homogeneity property. Although we will see in the proof of Theorem 2
the general case, here we consider a particular system (2) choosing, for example,
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a4 = a7 = 1 and a5 = a6 = a8 = a9 = 0. Then, the corresponding projected
system (6) writes as the nonhomogeneous cubic system

u̇ = −4 u − 4 v − u3 + u2v + uv2 + v3,

v̇ = 4 u − u3 − 2 u2v − uv2.

	


3.1 Linear Case

We recall that if X ∈ X1, then it writes in the canonical form (1). On the following,
we prove Theorem 1.

Proof of Theorem 1 By Lemma 10, all the spheres are equivalent, so we can restrict
to the sphere of radius ρ = 1. The proof follows directly from Lemma 11, because
the projected system (12) has a center at the origin when it is an isolated equilibrium
point, that is, when a2 �= 0.

Note that H2(x, y, z) = a3x −a2y+a1z− k is a first integral for the linear system
(1). As, by definition, H1(x, y, z) = x2 + y2 + z2 is also a first integral, system (1) is
completely integrable. 	


3.2 Quadratic Homogeneous Case

The next technical result ensures that we can assume that the equilibrium point is
located at (0, 1, 0) and so we only work with X defined on S

2
1. Then, we prove our

second main result.

Lemma 12 The canonical form of X ∈ XH
2 is system (2).

Proof The proof follows straightforward using Lemmas 7, 9, and 10. 	

Proof of Theorem 2 Using Lemma 12, we can consider system (2) restricted to the
sphereS21 and its projectionY defined in (6).We restrict our attention to the equilibrium
point of (2) which is located at the origin after projection. It will be of nondegenerate
center-focus type if the Jacobian matrix J associated with the projected vector field Y
has zero trace and positive determinant. Straightforward computations ensure that it
occurs if, and only if, a4 − a9 = 0 and a6a7 + a27 − a29 > 0. So under these conditions
we have a weak focus at the origin and, writing w2 = a6a7 + a27 − a29 , the projected
system Y can be written as

u̇ = −4a4u − 4ξv − 4a5uv − 4a8v
2 − a4u

3

− (ξ − 2a7)u
2v + (a4 + 2a9)uv2 + ξv3,

v̇ = 4a7u + 4a9v + 4a5u
2 + 4a8uv − a7u

3

− (2a4 + a9)u
2v − (2ξ − a7)uv2 + a9v

3,

(13)
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where ξ = (w2 + a4a9)/a7. It is easy to check that the trace and determinant of J
are −4(a4 − a9) and 16w2, respectively. So, when a4 �= a9, the origin is a hyperbolic
focus for system (13) and a4 − a9 = 0 provides the first condition in the statement
to have a weak focus. In this last case, as we have explained in Sect. 2.3, the stability
depends on the computation of the Lyapunov constants corresponding to the origin of
system (13). Here, we only need to compute the first one, that is

L1 = 16(a27 + a29 + w2)C

3(a29 + w2)2
,

whereC = −a25a7a9+a5a27a8−a5a8a29 −a5a8w2+a7a28a9. Asw �= 0, the condition
C = 0 is also necessary to have a center at the origin. The second condition in the
statement follows substituting the value of w2 in the above expression of C .

The proof finishes just showing that under the two conditions in the statement,
system (2) is time reversible with respect to an straight line passing through the origin.
We will show this property proving that there exists ϕ such that the transformation

(û, v̂) = (cosϕ u − sin ϕ v, sin ϕ u + cosϕ v) (14)

changes the vector field (13) to a new one Yϕ(û, v̂) that is time reversible with respect
to the new v̂-axis, i.e., its phase portrait is invariant under reflection with respect to
the v̂-axis in the direction of time. In other words, it is invariant with respect to the
change (û, v̂, t) �→ (−û, v̂,−t), being t the time variable. Note that if a system is
time reversible with respect to a line, then the equilibrium points on it are not attractors
or repellers. See Lamb and Roberts (1998) for more details.

Using the rational parameterization sin ϕ = 2τ/(1+τ 2) and cosϕ = (1−τ 2)/(1+
τ 2), the vector field Yϕ(û, v̂) is time reversible with respect to the v̂-axis if, and only
if,

1

a7(τ 2 + 1)2

(
(4 + û2 − 3v̂2) f1(τ )û + 4a7(τ

2 + 1) f2(τ )ûv̂
)

≡ 0,

1

a7(τ 2 + 1)2

(
(4 − 3û2 + v̂2) f1(τ )v̂ + 4a7(τ

2 + 1) f2(τ )û2
)

≡ 0,

where

f1(τ ) = −a7a9τ
4 + 2(a27 − a29 − w2)τ 3 + 6a7a9τ

2 − 2(a27 − a29 − w2)τ − a7a9,

f2(τ ) = a5τ
2 + 2a8τ − a5.

Therefore, we only need to check that there exists a common root of the polynomials
f1(τ ) and f2(τ ). We notice that f2(τ ) always has simple real solutions or it vanishes
identically (a5 = a8 = 0). The resultant between f1(τ ) and f2(τ ) with respect to
τ is res( f1, f2, τ ) = 16C2. Hence, there exists a solution for { f1(τ ) = f2(τ ) = 0}
if, and only if, our second condition C = 0 is satisfied. When a9 �= 0, as a7 �= 0,
there exists a real solution because f1(0) f1(1) = −(a7a9)2, while when a9 = 0, we
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Fig. 1 Phrase portrait of (15) for a = 0 (left) and a > 0 (right)

have C = a5a8(a27 − w2) and f1(τ ) = 2(a27 − w2)τ (τ 2 − 1) and some cases must be
distinguished: a5 = 0, a8 = 0, or a7 = ±w. When a5 = 0, we take τ = 0, and when
a8 = 0, we take τ = 1. If a7 = ±w, then f1(τ ) ≡ 0 and the proof is finished because
f2(τ ) always has real solutions. 	

Aswehaveproved inLemmas7 and10,when X ∈ XH , a straight line of equilibrium

points always exists and it passes through (0, 1, 0) and (0,−1, 0).The projected vector
field (6) has an equilibrium at the origin and another at infinity. Moreover, when the
degree n is odd, the system is invariant by the change of coordinates (x, y, z) �→
(−x,−y,−z) and the point (0, 1, 0) moves to (0,−1, 0). On the other hand, when n
is even, the invariance needs an inversion of the time. So, if the origin is a center of
(13), the infinity is also a center that rotates in the opposite (resp. same) direction when
n is even (resp. odd). This property is exhibited in Theorem 1 for vector fields in XH

1
because the unique phase portrait is a global center. For vector fields inXH

2 , the centers
in Theorem 2 located at the origin and at infinity turn in opposite directions and we
can have different global phase portraits. We can see two of them in Figure 1, where
we have drawn the phase portraits of the one-parameter cubic family (15) studied in
Proposition 13. We notice that the systems are time reversible with respect to the x-
axis, so the origin and infinity are simultaneously centers. The other symmetric points
can be centers or antisaddles, in this last case, with opposite stability.

In Caubergh et al. (2012) and Caubergh and Torregrosa (2013), we can find the
classification of the global phase portraits of reversible cubic centers where the infinity
and the origin rotate in the same direction.

Proposition 13 The system

u̇ = −8v − 4auv − u2v + 2v3,

v̇ = 2u + 4au2 − 7

2
uv2 − 1

2
u3,

(15)

has centers at the origin and at the infinity simultaneously for all a. These centers
rotate in opposite directions, and the only possible phase portraits are those shown in
Figure 1.
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Proof We notice that system (15) is (13) choosing a5 = a, a7 = 1/2, a8 = a9 = 0,
and w = 1. So, by Theorem 2 the origin is a center. We have already explained
that, by the symmetry of the corresponding vector field in R

3, the infinity is also
a center which rotates in an opposite direction with respect to the origin. With the
change of coordinates (u, v) �→ (−u,−v), if necessary, we can assume that a ≥ 0.
Furthermore, system (15) is time reversible with respect to the u-axis and if a = 0, it
is also time reversible with respect to the v-axis. In particular, as the line of infinity has
no equilibrium points, we do not need to use the Poincaré compactification to study the
dynamics near the infinity. Only the finite real equilibrium points are necessary to be
analyzed, and the nonexistence of limit cycles property. Straightforward computations
show that they are (0, 0), A± = (4a±2

√
4a2 + 1, 0) and B± = (0,±2). Let J be the

Jacobian matrix of the vector field associated to (15). Then, A± are saddles because of
the time reversibility and the fact that the determinant of J at A± is−48(2a

√
4a2 + 1±

4a2 ± 1)2 < 0. The matrix J at the equilibrium points B± has positive determinant.
So, the local stability is determined by the sign of the trace of J , which is ∓8a. So, as
a > 0, B+ is an attractor and B− is a repeller. When a = 0, the symmetry with respect
to the v-axis proves the existence of a center at each of those points, obtaining the
phase portrait depicted in Figure 1 (left). In this case, we have also the first integral

H(u, v) = u2 + 4v2

(u2 + v2 + 4)2
.

When a �= 0, the Lie derivative of H with respect to (15) is

u̇
∂H

∂u
+ v̇

∂H

∂v
= 24au4v

(u2 + v2 + 4)2

and it is always positive (resp. negative) when v > 0 (resp. v < 0). So, we can use H
as a Lyapunov function on {(u, v) ∈ R

2 : v > 0} (resp. on {(u, v) ∈ R
2 : v < 0}).

Hence, if a �= 0, we have no periodic orbits completely contained in the half planes
v > 0 or v < 0. Considering this last property, together with the time symmetry
and the local phase portraits of all equilibrium points, we have that the global phase
portrait is the one depicted in Fig. 1 (right) when a > 0. 	


4 Centers and Cyclicity for Quadratic Vector Fields

In this section, we fix our attention to the quadratic vector fields (3), proving our main
Theorems 3 and 4. Firstly, we will prove some center characterization and secondly
some results on limit cycle bifurcation near centers. Before the proofs, we will show
with the next example that the qualitative behavior of a vector field in X2 on a sphere
of radius ρ1 centered at the origin can be totally different from the behavior on another
sphere of radius ρ2 �= ρ1. In particular, the number of equilibrium points can change.

Example 14 All the spheres x2 + y2 + z2 = ρ2 are invariant for the quadratic system

(ẋ, ẏ, ż) = (−xz − yz − z2 − z,−z2, x2 + xy + xz + yz + x).
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There are two straight lines full of equilibrium points: {x = z = 0} and {x + y + 1 =
z = 0}. So, for every fixed invariant sphere of radius ρ centered at the origin, we have
four equilibrium points when ρ > 1/

√
2, three when ρ = 1/

√
2, and only two when

ρ < 1/
√
2.

In the following, we will study the existence of periodic orbits and limit cycles on
the invariant spheres. Due to the above example, we will concentrate our efforts to
study them fixing one sphere, describing the centers and the existence of limit cycles
of small amplitude. So, we fix our attention to the unit sphere S21 = {(x, y, z) ∈ R

3 :
x2+y2+z2 = 1} and, as we have explained previously, wewill assume that (0, 1, 0) is
an equilibrium point of a quadratic vector field X ∈ X2. This fact forces the conditions
a10 + a1 = 0 and a3 + a11 = 0 in system (3) that we can write as

ẋ = −a1y − a2z − a4xy − a5xz + a1y
2 − (a6 + a7)yz − a8z

2,

ẏ = a1x + a11z + a4x
2 − a1xy + a6xz − a11yz − a9z

2,

ż = a2x − a11y + a5x
2 + a7xy + a8xz + a11y

2 + a9yz.

(16)

We notice that (0,−1, 0) is an equilibrium point of the above differential system if, and
only if, a1 = a11 = 0. So, in contrary with the homogeneous case, not always exists
the line of equilibrium points passing through the two antipodal points (0,±1, 0).

The main objective of the next subsections is to exhibit some differences between
the quadratic vector fields in the plane with respect to the quadratic vector fields in
the sphere S1, emphasizing in the number of limit cycles of small amplitude that can
bifurcate from a monodromic nondegenerate equilibrium point. We will see that the
weak focus order is higher in S

2
1 than in R

2 and also the number of limit cycles of
small amplitude.

4.1 Center Characterizations

In order to have a monodromic equilibrium point at (0, 1, 0), we will add some extra
conditions in the projected system Y obtained doing the transformation (6) to the
quadratic differential equation (16). As before, we denote by J the Jacobian matrix
associated with Y at an equilibrium point. The origin is a monodromic nondegenerate
equilibrium point of Y if, and only if, the trace and the determinant of J are zero and
positive, respectively, that is,whena4 = a9 anda2a6+a6a7+2a2a7+a22+a27−a29 > 0.
Due to the big number of free parameters and to simplify a little the computational
difficulties, we will restrict our analysis adding two extra conditions: a9 = 0 and
a2 +a7 = 1. In this case, the projected vector field Y has a weak focus at the origin if,
and only if, a4 = 0 and a6 + 1 > 0. Moreover, when the trace is zero, the matrix J is
in the real Jordan normal form. Taking all into account and writing w2 = a6 + 1, with
w �= 0, we obtain system (4). After a reparametrization of the time, the corresponding
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projected system for (4) is

u̇ = −a4
w
u − v − a1

2
u2 − a5

w
uv − a1 + 2a8

2w2 v2 − a4w

4
u3 + 2a7 − w2

4
u2v

+ a4
4w

uv2 + w2 + 2a7 − 2

4w2 v3 − a1w2

8
u4 − a11w

4
u3v − a11

4w
uv3 + a1

8w2 v4,

v̇ = u + (2a5 − a11)w

2
u2 + a8uv − a11

2w
v2 − (2a7 − 1)w2

4
u3 − a4w

2
u2v

− 2w2 + 2a7 − 3

4
uv2 + w3a11

8
u4 − w2a1

4
u3v − a1

4
uv3 − a11

8w
v4.

(17)

The following result shows that when we fix the value of the determinant of the
Jacobianmatrix, or equivalentlyw, the center-focus problemcan be completely solved.
The proof of case (a) in Theorem 3 follows directly from it.

Proposition 15 Consider system (4) with w = 1. Then, (0, 1, 0) is a center on S
2
1 if,

and only if, a4 = 0 and a1a5 + a8a11 = 0.

Proof Instead of working with system (4), we will work with the equivalent projected
planar differential system (17). It is easy to check that if a4 �= 0, then (0, 0) is
a hyperbolic focus. So a4 = 0 is the first center condition in the statement. The
second center condition detailed in the statement, a1a5+a8a11 = 0, follows using the
algorithm described in Sect. 2.3 for computing the Lyapunov constants for providing
the stability of the origin. In fact, it appears as a common factor in the first three:

L1 = −2

3
(a1a5 + a8a11),

L2 = 1

15
(a1a5 + a8a11)(3a

2
1 − 6a1a8 + a25 − 18a5a11 + 51a211 − 7a28 − 6a7),

L3 = − 1

630
(a1a5 + a8a11)(3a

4
1 − 6a31a8 + 195a21a

2
5 − 858a21a5a11 − 186a21a

2
11

+ 543a21a
2
8 + 478a1a

2
5a8 − 832a1a5a8a11 − 7182a1a8a

2
11 + 798a1a

3
8 − 18a45

+ 242a35a11 − 509a25a
2
11 + 72a25a

2
8 − 6242a5a

3
11 + 2146a5a8a

2
11 + 14267a411

− 8041a28a
2
11 + 282a48 − 276a21a7 + 600a1a7a8 − 84a25a7 + 1752a5a7a11

− 6276a7a
2
11 + 516a7a

2
8 − 108a21 − 324a1a8 + 24a25 − 324a5a11 + 540a211

+ 144a27 − 168a28 − 72a7).

The next step is to prove that under these two conditions, the origin is a time-
reversible center with respect to a straight line. It follows using the same idea as
in the proof of Theorem 2. That is, from the change (14) again with the rational
parameterization sin ϕ = 2τ/(1+τ 2) and cosϕ = (1−τ 2)/(1+τ 2). Straightforward
computations show that the transformed vector field (with a4 = 0) is invariant with
respect to the change (û, v̂, t) �→ (−û, v̂,−t), being (û, v̂) the new variables, if and
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only if

ûv̂((û2 + v̂2) f1(τ ) − 4 f2(τ )) ≡ 0,

(û2 + v̂2)(û2 − v̂2 − 4) f1(τ ) − 8 f2(τ )û2 ≡ 0,

where f1(τ ) = −a11τ 2 + 2a1τ + a11 and f2(τ ) = a5τ 2 + 2a8τ − a5. The proof
finishes because, when the second condition a1a5 + a11a8 = 0 holds, f1 and f2 have
a common real root, which provides the symmetry line. 	


Now, we prove the remaining center families in our third main result.

Proof of Theorem 3 As in the above proof, we will start with the projected system (17).
Moreover, we assume a4 = 0; otherwise, we have a hyperbolic focus at the origin.

The case (a) follows directly from Theorem 15 and cases (b) and (c) because
the corresponding systems are time reversible with respect to the u-axis and v-axis,
respectively. The system in the fourth case (d) is Darboux integrable, having the next
rational first integral

H(u, v) = (a11wu − a8v − 2a7 + 1)(w2u2 + v2) − (w2 − 1)v2 − 4(a7 − 1)

(w2u2 + v2 + 4)2
.

The remaining case (e) is also Darboux integrable. But the proof of the existence of
an inverse integrating factor is more intricate. We will prove the existence of four
(complex) invariant straight lines for the projected system (17), and then, we will
provide an inverse integrating factor of the form (9).

We denote by (Y1,Y2) the vector field (17) and by F = au+bv+1 a generic straight
line. We recall that if F is invariant, its respective cofactor K will be a polynomial of
degree 3. Equating the coefficients in u and v of the identity

Y1
∂F

∂u
+ Y2

∂F

∂v
= F K ,

we can obtain four possible pairs of values (a, b) �= 0 that depend on the (complex)
roots of the polynomial

pA(Z) = Z4 + A3Z
3 + A2Z

2 + A1Z
4 + A0, (18)

where A0 = (w2−1)2

16(w2+1)2
, A1 = w2−1

2(w2+1)2
a8, A2 = 1

(w2−1)2
a211 + 1

(w2+1)2
a28 − w2−1

2(w2+1)
,

and A3 = −2
w2+1

a8. Note that if z1 and z2 are roots of (18), then z3 = 1−w2

4z1(w2+1)

and z4 = 1−w2

4z2(w2+1)
also are. So, writing the parameters a8 and a11 of (17) in

terms of the two roots z1 and z2, that is, a8 = (z1+z2)(4z1z2(w2+1)−w2+1)
8z1z2

and

a11 = i(z1−z2)(w2−1)(4z1z2(w2+1)+w2−1)
8z1z2(w2+1)

, we have a complete factorization of the poly-

nomial pA(Z) = ∏4
i=1(Z−zi ).Wenotice thatwe are assuming that all the coefficients
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are real, so we have that z2 = z̄1 and z4 = z̄3. Hence, we can write the four invariant
straight lines and its respective cofactors as

F1 = 1 + i z1wu + z1v,

F2 = 1 − i z2wu + z2v,

F3 = 1 − (w2 − 1)(v + iwu)

4(w2 + 1)z1
,

F4 = 1 − (w2 − 1)(v − iwu)

4(w2 + 1)z2
,

and

K1 = 1

32z2w(w2 + 1)
((−w3 + w)u + i((w2 − 1)v − 4z1(w

2 + 1))

w2(4z22(w
2 + 1) − w2 + 1)u2 + (4z22(w

2 + 1) − w2 + 1)v2

+ 8z2w
2v + 8 i z2wu),

K2 = 1

32z1w(w2 + 1)
((w3 − w)u + i((w2 − 1)v − 4z2(w

2 + 1))

(w2(−4z21(w
2+ 1) + w2− 1)u2− (4z21(w

2+ 1) − w2+ 1)v2

− 8z1w
2v + 8 i z1wu),

K3 = (−z1wu + i(z1v + 1))(w2 − 1)

z1((−w3 + w)u + i((w2 − 1)v − 4z1(w2 + 1)))
K1,

K4 = (z2wu + i(z2v + 1))(w2 − 1)

z2((w3 − w)u + i((w2 − 1)v − 4z2(w2 + 1)))
K2.

The proof finishes showing that
∏4

i=1 F
λi
i is an inverse integrating factor of the system.

This last property holds because taking

λ1 = 4(w2 + 1)z21 + 2(w2 − 1)

4(w2 + 1)z21 + w2 − 1
, λ2 = 4(w2 + 1)z22 + 2(w2 − 1)

4(w2 + 1)z22 + w2 − 1
,

λ3 = 8(w2 + 1)z21 + w2 − 1

4(w2 + 1)z21 + w2 − 1
, λ4 = 8(w2 + 1)z22 + w2 − 1

4(w2 + 1)z22 + w2 − 1
,

the condition

4∑

i=1

λi Ki = div(Y1,Y2)

is satisfied. Moreover, not all λi , for i = 1, . . . , 4, are zero. 	
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Remark 16 We notice that the above proof is also valid when all the parameters are
complex. But in this case, we will have no relation between the two main roots z1 and
z2.

If we fix the value of the special parameter w, we conclude that there are no other
centers cases different from the ones detailed in Theorem 3. But the expressions that
appear are very big to provide a complete proof for an arbitrary w. This is why in the
next result we have chosen some explicit values.

Proposition 17 Consider the differential system (3) with w ∈ {1/2, 2, 3}. Then,
(0, 1, 0) is a center if, and only if, a4 = 0 and one of the conditions (b), (c), (d),
or (e) in Theorem 3 is satisfied.

Proof From the proof of Theorem 3, we know that all the families detailed in the
statement are centers. Hence, we only need to check that there are no others. We
present only the proof for the case w = 2. The key point is the computation of
enough center conditions as it was done for Proposition 15, but in this case we need
to compute more Lyapunov constants using the method explained in Sect. 2.3 for
system (17). We have needed six to finish the proof. In the proof, we will denote by
SL = {L1 = L2 = · · · = L6 = 0} the system of equations needed to be solved. The
other cases w = 3 and w = 1/2 are completely analogous.

So, we fix w = 2 and the first Lyapunov constant writes as

L1 = −a1
37a5 − 15a11

48
+ a8

15a5 − 11a11
24

.

Clearly, it vanishes when a1 = a8 = 0 which is Family (b), so we have centers in this
case. So, if necessary, we can assume that a1 and a8 do not vanish simultaneously.
The same conclusion holds for a5 = a11 = 0 (Family (c)). Consequently, we have
two possibilities a1 = 15a5 − 11a11 = 0 or a8 = a1(37a5−15a11)

2(15a5−11a11)
.

The first case follows easily computing the next Lyapunov constants using that
a5 and a8 do not vanish; otherwise, we obtain the previous studied families. From
L2 = 0, we obtain

a7 = −507a25 + 1452a28 + 15367

13915
,

and then, Li = a5a8Li (a5, a8), for i = 3, 4, 5, being Li polynomials of degree 4, 6,
and 8, respectively. We have no other families in this case because the system of
equations {L3 = L4 = L5 = 0} reduces to {225a25 − 363 = 225a28 + 9408 = 0},
which has no real solutions.
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For the second case, we can assume that a8 = a1(37a5−15a11)
2(15a5−11a11)

and 15a5−11a11 �= 0.
Straightforward computations show that L1 = 0 and

L2 = a1(a5 + a11)

320(15a5 − 11a11)3
(
196(2a5 − a11)(8a5 − 5a11)(42a5 − 23a11)a

2
1

+ (672a35 − 1124a25a11 + 624a5a
2
11

− 115a311 − 543a5 + 576a11)(15a5 − 11a11)
2

+ 15(106a5 − 67a11)(15a5 − 11a11)
2a7

)
.

(19)

When 106a5 − 67a11 = 0, the numerator of the above expression, up to a nonzero
rational factor, writes as a1a45(1149184a

2
1 + 33856a25 + 59367025) and we have no

new center families when L2 vanishes. When a5 + a11 = 0 ,we have a1 = a8 which
is Family (d) in Theorem 3. Therefore, on the following we write a7, from (19), as a
rational function of (a1, a5, a11). The next Lyapunov constants write as

Li = a1(a5 + a11)(3a5 − 5a11)Li (a1, a5, a11)

(106a5 − 67a11)i−1(15a5 − 11a11)2i−1 (20)

for i = 3, 4, 5, 6, being Li polynomials with rational coefficients of degrees 5(i − 1)
and 50, 120, 235, 406 monomials, respectively. We do not write them here because of
their size. The common factor of the above expressions gets, respectively, the Families
(b), (d), and (e) in Theorem 3.

The proof finishes checking that the noncommon factors Li do not vanish simul-
taneously in R3 in new families, different from the ones detailed in the statement. We
will show this fact computing some crossing resultants between them and proving that
the unique new possible intersection points have complex coordinates.

We start removing the parameter a1 computing the crossing resultants with respect
to the first factor: Rk = res(L3,Lk+3, a1), for k = 1, 2, 3, are polynomials in (a5, a11)
of degrees 30, 40, and 50, respectively, which decompose in some irreducible factors
with some natural powers (multiplicity). As the powers are not essential for solving
the equations, we can remove all, and defining R̂i from Ri , having the same factors
but with multiplicity one. They have the common factor

L̂b = (1200a25 − 1110a5a11 + 225a211 − 169)(2a5 − a11)(11a5 − 9a11)

(8a5 − 5a11)(5a5 + a11)(15a5 − 11a11)(106a5 − 67a11).

The analysis of each new factor in L̂b follows analogously to the ones described before,
15a5 − 11a11 = 0 or 106a5 − 67a11 = 0. When 2a5 − a11 = 0, 11a5 − 9a11 = 0,
8a5−5a11 = 0,or 5a5+a11 = 0,we always obtainFamily (c). The condition 1200a25−
1110a5a11 + 225a211 − 169 = 0 needs a more accurate analysis. Assuming it, the new

real solutions of SL should satisfy a21 = (±19712a5
√
a25 + 1−20288a25 −7744)/225

and a11 = (37a5±13
√
a25 + 1)/15, but as±19712a5

√
a25 + 1−20288a25−7744 ≤ 0,
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for each a5 we have no new center families because, additionally, we are assuming
a1 �= 0.

Hence, from now on we can assume L̂b �= 0 and we can take R̃i = R̂i/L̂b.

Removing the parameter a5 from the resultants R12 = res(R̃1, R̃2, a5) and R13 =
res(R̃1, R̃3, a5), we obtain two polynomials on a11 with degrees 353 and 479, respec-
tively. As above, we define R̂12 and R̂13 leaving only one factor if there aremultiplicity
higher than one after the irreducible factorization in the rationals field. Here, the com-
mon factor is

L̂c = a11(10443a
2
11 + 6875)(48a211 + 1331)(1375a211

− 81)(5125a211 − 507)(15a211 − 1).

As only a11 = 0 gets a real solution of SL , providing Family (c), we can assume that
L̂c �= 0.

The proof finishes because the last resultant R123 = res(R̂12/L̂c, R̂13/L̂c, a11) is a
nonvanishing rational number. 	


In an attempt to conclude the general case, i.e., to prove thatwithout fixingw the only
centers families are the ones stated in Theorem 3, we have followed the same scheme
than in the previous proof but adding the next Lyapunov constant, L7, of (6). The first
steps follow easily. From L1 = 0 and L2 = 0, we write a8 and a7 as rational functions
on (a1, a5, a11, w) and we can define the corresponding Li (a1, a5, a11, w) functions,
after removing all the common factors as in (20). The first crossing resultants, Rk =
res(L3,Lk+3, a1), for k = 1, . . . , 4, are big polynomials with rational coefficients on
(a5, a11, w) of degrees 119, 163, 207, and 251, and the next R1k = res(R̃1, R̃k, a5),
for k = 2, 3, 4 are even big polynomials of degrees 2454, 3438, and 4422, respectively,
on (a11, w). Unfortunately, we are unable to conclude the proof of the general case
because we cannot get the next crossing resultants (removing a11) R123, R124 and
the last (removing w) R1234, due to the huge memory requirements to do all these
computations.

4.2 Bifurcation of Limit Cycles of Small Amplitude

As inmany problems of degenerate Hopf bifurcation, the cyclicity of centers is usually
less than the cyclicity of some special systems having a weak focus of very high order.
This is also the case in our families in X2. Theorem 4 provides a weak focus of order
four, but we have no such points near the centers in Theorem 3. We have studied the
local cyclicity of some of them, and next proposition provides our highest bifurcation
result (near centers) studying Family (e) in Theorem 3. The other families have even
less local cyclicity. We remark that we have also considered the perturbation of some
centers in Theorem 3 without choosing the conditions detailed in Sect. 4.1, but the
local cyclicity is not higher than the presented in the following results. So we have
decided to do not to write such results here.
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Proposition 18 Consider the coefficients of (4) satisfying (e) in Theorem 3. Then, there
exists a perturbation in X2 such that at least 3 small amplitude limit cycles bifurcate
from the equilibrium point (0, 1, 0) on S

2
1.

Proof We take the parameter values (a1, a5, a7, a8, a11,w) satisfying Theorem 3.(e),
and we consider (a1, a5, a7, a8, a11, w) = (a1 + ε1, a5 + ε2, a7 + ε3, a8 + ε4, a11 +
ε5,w+ε6) in the projected system (17).Wedenote by Li (ε),with ε = (ε1, . . . , ε6), the
corresponding Lyapunov constants, computed with the method explained in Sect. 2.3.
Clearly, when ε = 0, the origin is of center type, so Li (0) = 0 for all i . Then, we
write the Taylor series of first order with respect to ε as Li (ε) = L [1]

i (ε) + O2(ε).

The proof follows because the linear terms of the first three Lyapunov constants have
rank 3 with respect to ε, and adding the trace parameter and using Theorem 8 or the
implicit function theorem, we can get 3 limit cycles of small amplitude bifurcating
from the origin. 	

Remark 19 We notice that we have nomore limit cycles up to first-order study because
the rank does not increase considering more Lyapunov constants. The second-order
study does not generate more either.

Before proving our last main result, we observe that the system (5) comes taking
a1 = −2α, a4 = 0, a5 = 1, a7 = 29/20, a8 = α, a11 = 2, and w = 2 in (4).

Proof of Theorem 4 As previously, we will work with the projected system (17)
corresponding to system (5). With the algorithm described in Sect. 2.3, the Lya-
punov constants are L1 = L2 = 0, L3 = 248832α(488α2 − 857)/5 and L4 =
−5971968α(361920α4 + 513328α2 − 3529237)/5. As L3 = 0, if, and only if, α = 0
or α = ±√

857/488, the proof of the weak focus order and center statements is clear.
When α = 0, we have a center since we are in Family (b) of Theorem 3. In the
other case, when α = ±√

857/488, the origin is a weak focus of order 4 because
L4 = 6717957338234880α/3721 �= 0. For other values of α, the weak focus order is
only 3.

The cyclicity statement part follows considering the partial perturbation a1 =
−2α+ε1, a7 = 29/20+ε2, and a8 = α+ε3. The other parameters remain unchanged.
Then, we compute the Taylor series of the Lyapunov constants up to first order, writing
Li (ε) = L [1]

i (ε) + O2(ε) with

L [1]
1 (ε) = −7ε1 − 14ε3,

L [1]
2 (ε) = 48

5
(2920α2 + 3809)ε1 − 51840αε2 + 24

5
(2920α2 + 3809)ε3,

L [1]
3 (ε) = 248832

5
α(488α2 − 857) − 72

5
(3886080α4 − 1845344α2 − 380679)ε1

+ 62208α(2272α2 + 1909)ε2

− 36

5
(3886080α4 + 3214240α2 − 3342471)ε3.

When α = ±√
857/488, we have proved above that L [1]

3 (0) = 0. So, as the 3 × 3

matrix formed with the coefficients of (L [1]
1 , L [1]

2 , L [1]
3 )with respect to (ε1, ε2, ε3) has
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nonzero determinant,weget (adding the trace parameter andusing the implicit function
theorem) four limit cycles bifurcating from the origin. When α /∈ A, as L [1]

3 (0) �= 0,
only three limit cycles can bifurcate from the origin. The proof finishes just taking
ε3 = 0 and checking that the matrix formed with the coefficients of L [1]

1 , L [1]
2 with

respect to (ε1, ε2) has rank two. 	


4.3 Cyclicity on Complex Systems

Usually, the cyclicity problem is consideredwhen the coefficients of the vector field are
real numbers. But as, in fact, it depends on the study of the zeros of a polynomial, this
problem can be studied also when the values of the parameters are complex numbers.
In fact the existence of complex solutions increases the difficulties in finding the center
classification, and sometimes, we need to go further in the Lyapunov constants because
of this fact. Of course, they do not provide neither real weak foci nor real centers. As
we have shown in almost all the proofs, there are complex solutions such that the
orders of the complex weak foci are higher than the associated with real solutions
and some difficulties can appear in the discussions. Moreover, the unfoldings can
have more hyperbolic zeros that could be considered as complex limit cycles. The
aim of the last result is to describe this phenomenon in our problem, showing why a
carefully study is very important to distinguish the existence or not of (real) centers,
as, for example, in Proposition 17, or which is the highest (real) weak focus order.
In particular, we show the existence of six (complex) limit cycles near the origin for
family (e) in Theorem 3, instead of the three that appear in Proposition 18 when we
consider the problem in the reals. We notice that we have not found any point in the
corresponding (real) center variety having more than three (real) limit cycles. In fact
these three limit cycles have been appeared generically up to a first-order analysis.
Instead of study higher order, we use the technique detailed in Giné et al. (2021) that
explains that the local cyclicity changes moving parameters inside the center variety.
This technique allows us to increase the number of (complex) limit cycles but not the
real ones.

Proposition 20 Consider system (4)with a1 = w2 − 1

w2 + 1
a8, a5 = w2 + 1

w2 − 1
a11 and a7 =

1

w2 + 1
− 1

(w2 + 1)
a28 − w2 + 1

(w2 − 1)2
a211 for every fixed (a8, a11, w) such thatw2 �= 1,

and a8a11 �= 0. Then, it has a center at p = (0, 1, 0) and there exist (â8, â11, ŵ) ∈ C
3

and complex perturbations inside the class X2 such that at least 6 (complex) small
amplitude limit cycles bifurcate from p.

Proof The center property follows directly from Theorem 3.(e) because the proof does
not change if we consider complex coefficients instead of reals.

As the previous proofs, we will work with the projected (perturbed) system (17)
corresponding to system (4) butwith (a1+ε1, a5+ε2, a7+ε3, a8+ε4, a11+ε5, w+ε6)

instead of (a1, a5, a7, a8, a11, w). The algorithm explained in Sect. 2.3 allows us to
compute the first 6 Lyapunov constants, and the first-order Taylor series write them
as Lk(ε) = L [1]

k (ε) + O2(ε), for k = 1, . . . , 6, being ε = (ε1, . . . , ε6). We notice
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that, from the center property, Lk(0) = L [1]
k (0) = 0. Straightforward computations

show that the 3× 6 matrix generated by the coefficients of (L [1]
1 (ε), L [1]

2 (ε), L [1]
3 (ε))

with respect to ε has rank 3. In fact the 6 × 6 matrix obtained from the first 6 has
also rank three. Hence, adding the trace parameter, a first-order study only provides
(generically) 3 small limit cycles using Theorem 8. Now, we will use in a different
way the implicit function theorem to prove the statement. We will closely follow the
scheme developed in Giné et al. (2021).

Considering only the first two, instead of the first three, we can make an analytic
change of coordinates in the parameter space, changing (ε1, ε2) to (u1, u2) in order
that L1 = u1 and L2 = u2. Then, we can use these new coordinates to continue our
analysis under the condition u1 = u2 = 0. Under this assumption, we can obtain

L [1]
k = a8a11 Mk(a8, a11, w)

w4k−7(w2 + 1)2k−3(w2 − 1)2k−2N (a8, a11, w)
U3(a8, a11, w, ε3, ε4, ε5, ε6),

for k = 3, . . . , 6, being

U3 = −(w2 + 1)2(w2 − 1)3ε3 − 2a8(w
2 + 1)(w2 − 1)3ε4

− 2a11(w
2 − 1)(w2 + 1)3ε5

+ 2w((w2 + 3)(w2 + 1)2a211 + (w2 − 1)3a28 − (w2 − 1)3)ε6,

N = (2(6w6 + 25w4 + 20w2 + 5))(w2 − 1)3a28

+ 2w2(10w8 + 49w6 + 81w4 + 43w2

+ 9)(w2 + 1)2a211 − 3w2(w2 − 1)3(w2 + 1)4

and Mk polynomials with rational coefficients of degrees 30, 46, 62, 78 with 74, 185,
369, 640 monomials, respectively. We only show the first one because of the size of
them.

M3 = −(3w12 + 30w10 − 51w8 + 420w6 + 749w4 + 350w2 + 35)(w2 + 1)4a48

− (35w16 + 350w14 + 752w12 + 450w10 − 102w8 + 450w6 + 752w4

+ 350w2+35)(w4−1)2a28a
2
11−w4(35w12+350w10+749w8+420w6−51w4

+ 30w2 + 3)(w2 + 1)4a411 − (6w16 + 60w14 − 3w12 + 390w10 + 1799w8

+ 2240w6 + 1267w4 + 350w2 + 35)(w2 − 1)4a28 − w4(35w16 + 350w14

+ 1267w12 + 2240w10 + 1799w8 + 390w6 − 3w4 + 60w2 + 6)(w4 − 1)2

a211 − 3w4(w4 + 8w2 + 1)(w2 + 1)4(w2 − 1)6.

We notice that as a8a11 �= 0 and w2 �= 1, we can change ε3 by u3 isolating from
u3 = U3. Clearly, when M3 is nonzero, we have rank 3 and no more limit cycles, up
to first-order exist, because the next Lk vanish if L3 does.

The proof ends checking that there exist values η = (â8, â11, ŵ) ∈ C
3 such that

M3(η) = M4(η) = M5(η) = 0, M6(η) �= 0, N (η) �= 0, and the determinant of the
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Jacobian matrix,J , of (M3, M4, M5) does not vanish at η. Hence, for each transversal
solution η, there exists a small neighborhood such that the implicit function theorem
allows us to write, for ε4 = ε5 = ε6 = 0,

Lk = v̂ku3 +
∞∑

i=2

L̃k,i (v̂3, v̂4, v̂5)u
i
3, for k = 3, 4, 5,

and

L6 = ṽ6u3 +
∞∑

i=2

L̃6,i (v̂3, v̂4, v̂5)u
i
3,

with ṽ6 ∈ C\{0} and L̃k,i analytic functions. The next step needs again the implicit
function theorem, dividing each equation by u3, to write Lk = vku3 for k = 3, 4, 5.
Finally, for u3 small enough, we have a (complex) weak focus of order 6 that unfolds
6 (complex) limit cycles of small amplitude. We must use the trace parameter together
with u1, u2 to have the complete versal unfolding.

We will finish now showing how the transversal intersection together with the
nonzero conditions holds. From the schemeused in the proof of Proposition 17,we start
computing the crossing resultants R4 = res(M3, M4, a8) and R5 = res(M3, M5, a8)
and after removing the common factors, we get that one of the factors of R45 =
res(R̂4, R̂5, a11) is the polynomial

p(w) = 2358125w36 + 21253750w34 + 74700325w32 + 418209680w30

+ 2696915172w28 + 11471299432w26 + 32469933620w24

+ 65296240368w22 + 97631971158w20 + 111336439620w18

+ 97631971158w16 + 65296240368w14 + 32469933620w12

+ 11471299432w10 + 2696915172w8 + 418209680w6

+ 74700325w4 + 21253750w2 + 2358125,

which has degree 18 inw2 and has no real roots. Straightforward computations provide
that the solutions of

{M3(a8, a11, w) = M4(a8, a11, w) = M5(a8, a11, w) = p(w) = 0}
can be written as η = (â8, â11, ŵ) = (γ /393216, β/393216, α) with p(α) = 0 and

γ 2 = (−2109840270437897288946799375α34 − 17713873005809414028007091875α32

− 55845814488941782868405995600α30 − 339226787759422100359736546240α28

− 2202132815857798644636420812396α26 − 8895632031878776983832830622252α24

− 23501844430016397280367284455712α22 − 43681378432973931255571646316816α20

− 59799471686092166179474533669890α18 − 61675400652851000448826407685450α16

− 47993652204362508680940846437904α14 − 27604081780746071222684026969568α12
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− 11207519567177779180170267397628α10 − 2966440603081008995602043288284α8

− 468074157329937609377913199360α6 − 66069795390963180008678824400α4

− 24129993592921092989446394375α2 − 3181668269212383369855156875)/9396192821225170,

β2 = (40248036412021566334043770625α34 + 348148658927405932769817170625α32

+ 1139390577520977495682159181200α30 + 6652155763250716876027785442080α28

+ 43419594803251066283846291084532α26 + 178700034808562373265475821347460α24

+ 480531845343567179492990058264000α22 + 906984466960916743690778969263248α20

+ 1258033583163550539675725186999550α18 + 1313015179221532924371751690040910α16

+ 1033425110388324368012929243720848α14 + 601374377745001674638591851302720α12

+ 247291049686230857389940010207140α10 + 66539552467687537839070855101012α8

+ 10700521536131995853057121609120α6 + 1483387556836472011860839676560α4

+ 538998995971563271556998588905α2 + 69737060750810475560536625305)/32886674874288095.

Using the above relations, we can check that, for each α, simple root of the polynomial
p, we have thatM3(η), M4(η), andM5(η) vanish andM6(η) = p1(α), N (η) = p2(α),

and J (η) = αβγ p3(α) do not, because the polynomials pi (α), for i = 1, 2, 3, which
are of degree 17 in α2 and with rational coefficients, have nonzero resultants with the
polynomial p.

	


We remark that, in the above proof, the coefficients of M3 with respect to (a8, a11)
are negative for all w ∈ R, so the described bifurcation mechanism does not provide
more than the three limit cycles in Proposition 18.
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