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Abstract
Dynamic mode decomposition (DMD) has become synonymous with the Koopman
operator, where continuous time dynamics are discretized and examined using Koop-
man (i.e. composition) operators.Using the newly introduced “occupation kernels,” the
present manuscript develops an approach to DMD that treats continuous time dynam-
ics directly through the Liouville operator. This manuscript outlines the technical and
theoretical differences between Koopman-based DMD for discrete time systems and
Liouville-based DMD for continuous time systems, which includes an examination
of Koopman and Liouville operators over several reproducing kernel Hilbert spaces.
While Liouville operators are modally unbounded, this manuscript introduces the con-
cept of a scaled Liouville operator, which, for many dynamical systems, is a compact
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operator over the native space of the exponential dot product kernel. Compactness
of scaled Liouville operators allows for norm convergence of Liouville-based DMD,
which is a decided advantage over Koopman-based DMD.

Keywords Dynamic mode decomposition · Densely defined operators · Liouville
operator · Reproducing kernel Hilbert spaces

Mathematics Subject Classification 47-02 · 93-08 · 46C-02

1 Introduction

DMD has emerged as an effective method of extracting fundamental governing
principles from high-dimensional time series data. The method has been employed
successfully in the field of fluid dynamics, where DMD methods have demonstrated
an ability to determine dynamic modes, also known as “Koopman modes,” which
agree with Proper Orthogonal Decomposition (POD) analyses (cf. Budišić et al. 2012;
Črnjarić-Žic et al. 2020; Kutz et al. 2016; Mezić 2005, 2013;Williams et al. 2015a, b).
However, DMD methods employing Koopman operators do not address continuous
time dynamical systems directly. Instead, current DMD methods analyze discrete
time proxies of continuous time systems (Kutz et al. 2016). The discretization pro-
cess constrains Koopman-based DMD methods to systems that are forward complete
(Bittracher et al. 2015). The objective of the present manuscript is to develop DMD
methods that avoid discretization of continuous time dynamical systems, while provid-
ing convergence results that are stronger than Koopman-based DMD and applicable
to a broader class of dynamical systems.

The connection between Koopman operators and DMD relies on the idea that a
finite dimensional nonlinear dynamical system can be expressed as a linear operator
over an infinite dimensional space. The linear representation enables treatment of the
nonlinear system via tools from the theory of linear systems and linear operators. The
idea of lifting finite dimensional nonlinear systems into infinite dimensional linear
ones has been successfully utilized in the literature to achieve various identification
and control objectives; however, a few fundamental limitations severely restrict the
class of systems for which the connection between Koopman operators and DMD can
be established via lifting to infinite dimensions. In particular, this article focuses on
the following limitations.
Existence of KoopmanOperators inContinuous Time SystemsConsider the continuous
time dynamical system given as ẋ = 1 + x2. Discretization of this system with
time step 1 yields the discrete dynamics xi+1 = F(xi ) := tan(1 + arctan(xi )). It
should be immediately apparent that F is not well defined over R. In fact, through the
consideration of xi = tan(π/2 − 1) it can be seen that F(xi ) is undefined. Since the
symbol for a Koopman operator must be defined over the entire domain, there is no
well-defined Koopman operator arising from this discretization. Note that the example
above is not anecdotal. In addition to commonly used examples in classicalworks, such
as Khalil (2002), mass-action kinetics in thermodynamics (Haddad 2019, Section 6.3),
chemical reactions (Tóth et al. 2018, Section 8.4), and species populations (Hallam
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and Levin 2012, Section 4.2) often give rise to such models. In general, unless the
solutions of the continuous time dynamics are constrained to be forward complete, (for
example, by assuming that the dynamical systems are globally Lipschitz continuous
(Coddington and Levinson 1955, Chapter 1)) the resultant Koopman operator cannot
be expected to bewell-defined. This observation is validated byBittracher et al. (2015),
but otherwise conditions on the dynamics are largely absent from the literature.
Boundedness of Koopman Operators Even in the case of globally Lipschitz models,
results regarding convergence of the DMD operator to the Koopman operator rely on
the assumption that the Koopman operator is bounded over a specified RKHS (cf.
Korda and Mezić 2018). Boundedness of composition operators, like the Koopman
operator, has been an active area of study in the operator theory community. Indeed, it
turns out there are very fewbounded composition operators overmany function spaces.
A canonical example is in the study of the Bargmann-Fock space, where only affine
symbols yield bounded composition operators and of those the compact operators
arise from F(z) = az + b where |a| < 1 (Carswell et al. 2003). A similar result
holds for the native RKHS of the exponential dot product kernel and the native RKHS
of the Gaussian radial basis function kernel (Gonzalez et al. 2021, Theorem 1). The
implication of these results is that Koopman operators arising from the discretization
of continuous time nonlinear systems cannot generally be expected to be bounded.
Practical Utility of Convergence Results In the DMD literature, convergence of the
DMD operator to the Koopman operator is typically established in the strong operator
topology (SOT). However, as noted in Korda and Mezić (2018), since SOT conver-
gence is the topology of pointwise convergence (Pedersen 2012), it is not sufficient
to justify use of the DMD operator to interpolate or extrapolate the system behavior
from a collection of samples. Furthermore, by selecting a complete set of observables
and adding them one at a time to a finite rank representation of the Koopman operator,
pointwise convergence is to be expected. This is a restatement of the more general
result that all bounded operators may be approximated by finite rank operators in SOT,
which itself is a specialization of a much broader result for topological vector spaces
(cf. Pedersen 2012, pg. 172). While Korda and Mezić (2018) also provides theoreti-
cally interesting insights into convergence of the eigenvalues and the eigenvectors of
the DMD operator to eigenvalues and eigenfunctions of the Koopman operator along
a subsequence, without the means to identify the convergent subsequences, practi-
cal utility of subsequential convergence is limited. In contrast, norm convergence is
uniform convergence for operators, and yields a bound on the error over the kernels
corresponding to the entire data set. Thus, a meaningful convergence result would
arise from the norm convergence of finite rank representations to Koopman opera-
tors. However, this result is only possible for compact Koopman operators, which are
virtually nonexistent in applications of interest.

A subset of Liouville operators, called Koopman generators, have been studied as
limits of Koopman operators in works such as Cvitanovic et al. (2005), Das and Gian-
nakis (2020), Froyland et al. (2014), Giannakis (2019), Giannakis and Das (2020) and
Giannakis et al. (2018). Since Koopman generators are limits of Koopman operators,
they also require the assumption of forward completeness on the dynamical system.
This discussion brings into question the impact of various approaches to the study of
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continuous time dynamical systems through discretization and Koopman operators,
which all rely on the compactness, boundedness, or existence of Koopman operators.

The present work sidesteps the limiting process, and as a result, the assumptions
regarding existence of Koopman operators, through the use of “occupation kernels”.
Specifically, occupation kernels remove the burden of approximation from that of
operators and places it on the estimation of occupation kernels from time-series data,
which requiresmuch less theoretical overhead. Consequently, Liouville operators may
be directly examined via occupation kernels, while avoiding limiting relations involv-
ing Koopman operators that might not be well defined for a particular discretization
of a continuous time nonlinear dynamical system. As a result, the use of Liouville
operators in a DMD routine allows for the study of dynamics that are locally rather
than globally Lipschitz.

The action of the adjoint of a Liouville operator on an occupation kernel provides
the input-output relationships that enable DMD of time series data. For the adjoint of
a Liouville operator to be well defined, the operator must be densely defined over the
underlying RKHS (Rosenfeld et al. 2019a, b). As a result, the exact class of dynamical
systems that may be studied using Liouville operators depends on the selection of the
RKHS.However, the requirement that theLiouville operatormust be densely defined is
not overly restrictive. For example, on the real valued Bargmann-Fock space, Liouville
operators are densely defined for a wide range of dynamics that are expressible as real
entire functions (which includes polynomial, exponential, sine, and cosine, etc.).

Perhaps the strongest case for Liouville operators is the fact that they can be “scaled”
to generate compact operators. Section 3 of this paper introduces the idea of scaled
Liouville operators as variants of Liouville operators that are compact for a large
class of dynamical systems over the Bargmann-Fock space. Scaled Liouville operators
make slight adjustments to the data by scaling the trajectories by a single parameter
|a| < 1. Through the selection of a close to 1, scaled Liouville operators yield compact
operators that are numerically indistinguishable from the corresponding unbounded
Liouville operators over a given compact workspace. More importantly, the DMD
procedure performed on scaled Liouville operators yields a sequence of finite rank
operators that converge in norm to the scaled Liouville operators (see Theorem 2).
Practical Benefits of the Developed Method In addition to the theoretical benefits
of Liouville operators detailed above, there are several practical benefits that arise
from the use of occupation kernels and Liouville operators. Quadrature techniques,
such as Simpson’s rule, allow for the efficient estimation of occupation kernels while
mitigating signal noise (Rosenfeld et al. 2019a, b), and also provide a robust estimation
of the action of Liouville operators on occupation kernels. Furthermore, as snapshots
are being integrated into trajectories for the generation of occupation kernels, the
method presented in this manuscript can naturally incorporate irregularly sampled
data.

In DMD, a large finite dimensional representation of the linear operator is con-
structed from data (i.e., snapshots) using a collection of observables. A subsystem
of relatively small rank is then determined via a singular value decomposition (SVD)
and approximation of the linear operator by the small rank subsystem is supported
by a direct mapping between the eigenfunctions of the former and the eigenvectors
of the latter (Williams et al. 2015b). The fact that the rank of the smaller subsystem
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is typically in agreement with the number of snapshots, which can be considerably
smaller than the number of observables, makes DMD particularly useful when there
is a small number of snapshots of a high dimensional system. However, direct appli-
cation of DMD to high dimensional systems sampled at high frequencies still poses a
significant computational challenge, where many snapshots may have to be discarded
to produce a computationally tractable problem, as was done in Kutz et al. (2016,
Example 2.3). Such systems include mechanical systems with high sampling frequen-
cies (Cichella et al. 2015; Walters et al. 2018), and neurobiological systems recorded
via electroencephalography (EEG) where the typical sampling frequencies are of the
order of 500 Hz (Gruss and Keil 2019). The methods in the present manuscript replace
snapshots with integrals of trajectories of the system. The use of trajectories instead
of individual snapshots reduces the dimensionality of the problem without discarding
any data.

The developed algorithmalso obviates the need for the truncatedSVD that is utilized
throughout DMD literature. For example, in Williams et al. (2015b) the truncated
SVD is leveraged to convert from a feature space representation of the action of
the Koopman operators to an approximation of the Gram matrix and an “interaction
matrix.” This stands in opposition of the spirit of the “kernel trick,” where kernel
functions are a means to avoid any direct interface with feature space. Following
(Rosenfeld and Kamalapurkar 2021), the presented algorithm is given purely with
respect to the occupation kernels, and the resultant methods are considerably simpler
than what is seen in Williams et al. (2015b).
A Comparison with Similar Literature Liouville operators are studied in the context
of DMD procedures using limiting definitions in works such as Klus et al. (2020). The
manuscript (Klus et al. 2020), which was posted to arXiv around the same time as
the first draft of this manuscript, approaches the Koopman generator through Galerkin
methods. While the signs that the field is expanding beyond Koopman operators is
encouraging, the authors of Klus et al. (2020) still adopt the limiting definitions of the
Koopman generator in their work, which is an artifact from ergodic theory. Quantities
similar to occupation kernels have been studied in the literature previously, in the
form of occupation measures and time averaging functionals. Occupation kernels
and occupation measures both represent the same functional over different spaces.
Occupationmeasures are in the dual space of theBanach space of continuous functions,
while occupation kernels are functions in a RKHS. As such, functions in the RKHS
may be estimated through projections onto the span of occupation kernels, and this
fact is leveraged in Sect. 4 where finite rank representations of the Liouville operators
arise from the matrix representation of a projection operator. Occupation kernels are
also distinct from time average functionals, where the latter is the average of a sum of
iterated applications of the Koopman operator to an observable. As a result, in contrast
with occupation kernels, whose definition is independent of Koopman and Liouville
operators, time average functionals are only useful for the study of globally Lipschitz
dynamics.

The relevant preliminary concepts for the theoretical underpinnings of the approach
taken in the present manuscript are reviewed in Sect. 2.1. This includes definitions
and properties of RKHSs as well as densely defined operators and their adjoints.
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2 Technical Preliminaries

2.1 Reproducing Kernel Hilbert Spaces

Definition 1 A reproducing kernel Hilbert space (RKHS) over a set X is a Hilbert
space of functions from X to R such that for each x ∈ X , the evaluation functional
Exg := g(x) is bounded.

By the Riesz representation theorem, corresponding to each x ∈ X , there is a
function kx ∈ H , such that for all g ∈ H , 〈g, kx 〉H = g(x). The kernel function
corresponding to H is given as K (x, y) = 〈ky, kx 〉H . The kernel function is a positive
definite function in the sense that for any finite number of points {c1, c2, . . . , cM } ⊂ X ,
the corresponding Gram matrix [K (ci , c j )]Mi, j=1 is positive semi-definite. The Gram
matrix arises inmany contexts inmachine learning, such as in support vector machines
(cf. Hastie et al. 2005). Particular to the subject matter of this manuscript, the Gram
matrix plays a pivotal role in the construction of the kernel-based extended DMD
method of Williams et al. (2015b) and the occupation kernel approach presented
herein.

TheAronszajn-Moore theorem states that there is a unique correspondence between
RKHSs and positive definite kernel functions (Aronszajn 1950). That is the RKHS
may be constructed directly from the kernel function itself or the kernel function may
be determined by a RKHS through the Riesz representation theorem.When the RKHS
is obtained from the kernel function, it is frequently referred to as the native space of
that kernel function (Wendland 2004).

RKHSs interact with function theoretic operators, such as Koopman (composition)
operators (Jury 2007; Luery 2013; Williams et al. 2015b), multiplication operators
(Rosenfeld 2015a, b), and Toeplitz operators (Rosenfeld 2016), in many nontrivial
ways. For example, the kernel functions themselves play the role of eigenfunctions
for the adjoints of multiplication operators Szafraniec (2000), and when the function
corresponding to a Koopman operator has a fixed point at c ∈ X , the kernel function
centered at that point (i.e. K (·, c) ∈ H ) is an eigenfunction for the adjoint of the
Koopman operator (Cowen and MacCluer 1995). The kernel functions can also be
demonstrated to be in the domain of the adjoint of densely defined Koopman operators
as will be demonstrated in Sect. 2.2.

For machine learning applications kernel functions are frequently used for dimen-
sionality reduction by expressing the inner product of data cast into a high-dimensional
feature space as evaluation of the kernel function itself (Steinwart and Christmann
2008; Hastie et al. 2005). Specifically, a feature map corresponding to a RKHS is
given as the mapping x �→ Ψ (x) := (Ψ1(x), Ψ2(x), . . .)T ∈ �2(N) for x ∈ X such
that K (x, y) = 〈Ψ (y), Ψ (x)〉�2(N). That is, kernel function may be expressed as

K (x, y) =
∞∑

m=1

Ψm(x)Ψm(y).

The feature space expression for a function g ∈ H is given as g = (g1, g2, . . .)T ∈
�2(N) so that g(x) = 〈g, Ψ (x)〉�2(N) = 〈g, K (·, x)〉H . This representation of inner
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products of vectors in a feature space as evaluation of a kernel function is central to the
usage of kernel methods in data science, where the feature space is generally unknown
but may be accessed through the kernel function. The approach taken inWilliams et al.
(2015b) uses the feature space as the fundamental basis for their representation and
obtains kernel functions through a truncated SVD, whereas the present work avoids
the invocation of the feature space and the truncated SVD.

Themost frequently employed RKHS inmachine learning applications is the native
space of the Gaussian radial basis function kernel. The Gaussian radial basis function

kernel is given as K (x, y) = exp
(
− 1

μ
‖x − y‖22

)
, and it is a positive definite function

over Rn for all n.
Another important kernel is the exponential dot product kernel, K (x, y) =

exp
(
1
μ
xT y

)
,which is also a positive definite functionoverRn .What is significant con-

cerning the exponential dot product kernel is that its native space is theBargmann-Fock
space, where bounded Koopman operators have been completely classified. Another
significant feature, which will be leveraged in this manuscript, is that polynomials are
dense inside the Bargmann-Fock space with respect to the Hilbert space norm.

2.2 Adjoints of Densely Defined Liouville Operators

In the study of operators, the theory concerning bounded operators is themost complete
(cf. Pedersen 2012; Folland 2013). A bounded operator over a Hilbert space is a linear
operator W : H → H such that ‖Wg‖H ≤ C‖g‖H for some C > 0. The smallest
C that satisfies ‖Wg‖H ≤ C ‖g‖H for all g ∈ H is the norm of W and written as
‖W‖. A classical theorem in operator theory states that the collection of bounded
operators is precisely the collection of continuous operators over a Hilbert space (or
more generally a Banach space) (Folland 2013, Chapter 5).

Unbounded operators over a Hilbert space are linear operators given as W :
D(W ) → H , where D(W ) is the domain contained within H on which the oper-
ator W is defined (Pedersen 2012, Chapter 5). When the domain of W is dense in H ,
W is said to be a densely defined operator over H . While unbounded operators are by
definition discontinuous, closed operators over a Hilbert space satisfy weaker limiting
relations. That is, an operator is closed if, whenever {gm}∞m=1 ∈ D(W ), both {gm}∞m=1
and {Wgm}∞m=1 are convergent sequences, gm → g ∈ H , and Wgm → h ∈ H , we
have that g ∈ D(W ) and Wg = h (Pedersen 2012, Chapter 5). The Closed Graph
Theorem states that ifW is a closed operator such thatD(W ) = H , thenW is bounded.

Lemma 1 Given a RKHS, H, consisting of continuously differentiable functions, a
Liouville Operator with symbol f , A f : D(A f ) → H, is defined as A f g := ∇g · f
where g resides in the canonical domain

D(A f ) := {g ∈ H : ∇g · f ∈ H}.

With this domain, A f is closed over RKHSs that are composed of continuously differ-
entiable functions.
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Proof Liouville operators were demonstrated to be closed in Rosenfeld et al. (2019a).
�

The closedness of Koopman operators is well known in the study of RKHS, where
they are more commonly known as composition operators (cf. Jury 2007; Luery
2013). Beyond the limit relations provided by closed operators, the closedness of an
unbounded operator plays a significant role in the study of the adjoints of unbounded
operators (Pedersen 2012, Chapter 5).

Definition 2 For a densely defined operator W , let

D(W ∗) := {h ∈ H : g �→ 〈Wg, h〉H is bounded on D(W )}.

SinceD(W ) is dense in H , the functional g �→ 〈Wg, h〉H uniquely extends to H , and
as such, for each h ∈ D(W ∗) the Riesz representation theorem guarantees a function
W ∗h ∈ H such that 〈Wg, h〉H = 〈g,W ∗h〉H , for all g ∈ D(W ). The adjoint of the
operator W is thus given as W ∗ : D(W ∗) → H via the assignment h �→ W ∗h.

Since the adjoint of a closed operator over a Hilbert space is densely defined (Ped-
ersen 2012, Proposition 5.1.7), the adjoints of Liouville operators with domains given
as in Lemma 1 are densely defined. Specific members of the domain of the respective
adjoints may be identified, and these functions will be utilized in the characteriza-
tion of the DMD methods in the subsequent sections. To characterize the interaction
between the trajectories of a dynamical system and the Liouville operator, the notion
of occupation kernels must be introduced (cf. Rosenfeld et al. 2019a).

Definition 3 Let X be a metric space, γ : [0, T ] → X be an essentially bounded
measurable trajectory, and let H be aRKHSover X consisting of continuous functions.
Then the functional g �→ ∫ T

0 g(γ (t))dt is bounded, and the Riesz representation
theorem guarantees a function Γγ ∈ H such that

〈g, Γγ 〉H =
∫ T

0
g(γ (t))dt

for all g ∈ H . The function Γγ is the occupation kernel corresponding to γ in H .

Lemma 2 If f : R
n → R

n is the dynamics for a dynamical system, and if γ :
[0, T ] → R

n is a trajectory satisfying γ̇ = f (γ (t)) in the Carethèodory sense, then
Γγ ∈ D(A∗

f ) and A∗
f Γγ = K (·, γ (T )) − K (·, γ (0)).

Proof This lemma was established in Rosenfeld et al. (2019a). �
For Liouville operators, several examples can be demonstrated where particular

symbols produce densely defined operators over the Bargmann-Fock space. In par-
ticular, since polynomials are dense in the Bargmann-Fock space, for polynomial
dynamics, f , the function A f g = ∇g · f is a polynomial whenever g is a polyno-
mial. Hence, polynomial dynamical systems correspond to densely defined Liouville
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operators over the Bargmann-Fock space, and it should be noted that this is not a com-
plete characterization of the densely defined Liouville operators over this space. For
other RKHSs, different classes of dynamics correspond to densely defined operators,
requiring independent evaluation for each RKHS.

3 A Compact Variation of the Liouville Operator

One of the drawbacks of employing either the Koopman operator or the Liouville
operator for DMD is that the finite rank matrices produced by the method are strictly
heuristic representations of the modally unbounded operators. An important question
to address is whether a DMD procedure may be produced using a compact operator
other than those densely defined operators discussed so far. This section presents a
class of compact operators for use in DMD applied to continuous time systems. The
compactness and boundedness of the operators will depend on the selection of the
RKHS and the dynamics of the system. The Bargmann-Fock space will be utilized in
this section, and the compactness assumption will be demonstrated to hold for a large
class of dynamics.

Definition 4 Let H be a RKHS over Rn , a ∈ R with |a| < 1, and let the scaled
Liouville operator with symbol f : Rn → R

n ,

A f ,a : D(A f ,a) → H ,

be given as A f ,ag(x) = a∇g(ax) f (x) for all x ∈ R
n and

g ∈ D(A f ,a) = {h ∈ H : a∇h(ax) f (x) ∈ H}.

From the definition of scaled Liouville operators, if γ : [0, T ] → R
n is a trajectory

satisfying γ̇ = f (γ ), then

∫ T

0
A f ,ag(γ (t))dt =

∫ T

0
a∇g(aγ (t)) f (γ (t))dt = 〈A f ,ag, Γγ 〉H .

The following proposition then follows from arguments similar to the proof of
Lemma 2.

Proposition 1 For γ : [0, T ] → R
n, such that γ̇ = f (γ ), Γγ ∈ D(A∗

f ,a) and

A∗
f ,aΓγ = K (·, aγ (T )) − K (·, aγ (0)).

Theorem 1 and Corollary 1 demonstrate that for the Bargmann-Fock space, a large
class of dynamics correspond to compact scaled Liouville operators.

Theorem 1 Let F2(Rn) be the Bargmann-Fock space of real valued functions, which
is the native space for the exponential dot product kernel, K (x, y) = exp(xT y), a ∈ R

with |a| < 1, and let A f ,a be the scaled Liouville operator with symbol f : Rn → R
n.
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There exists a collection of coefficients, {Cα}α , indexed by the multi-index α, such that
if f is representable by a multi-variate power series, f (x) = ∑

α fαxα , satisfying

∑

α

| fα|Cα < ∞,

then A f ,a is bounded and compact over F2(Rn).

Proof The proof has been relegated to the appendix to ease exposition. �
Corollary 1 If f is a multi-variate polynomial, then A f ,a is bounded and compact
over F2(Rn) for all |a| < 1.

The compactness of scaled Liouville operators (over the Bargmann-Fock space) is
critical for norm convergence of DMD methods. For bounded Koopman operators,
results such as Korda and Mezić (2018) obtain convergence in the strong operator
topology (SOT) of the DMD operator to the Koopman operator. SOT convergence is
only pointwise convergence over a Hilbert space, and does not provide any general-
ization guarantees in the learning sense. Norm convergence on the other hand gives a
uniform bound on the error estimates for all functions in theHilbert space. Specifically,
in this paper, the data-driven finite rank representation of the scaled Liouville operator,
given in Sect. 4, is shown to converge, in norm, to the scaled Liouville operator.

While scaled Liouville operators are not identical to the Liouville operator, the
selection of the parameter a close to 1 can be used to limit the difference between their
finite rank representations to be within machine precision. Hence, the decomposition
of scaled Liouville operators is computationally indistinguishable from that of the
Liouville operator for a sufficiently close to 1.

4 Occupation Kernel Dynamic Mode Decomposition

4.1 Finite Rank Representation of the Liouville Operator

With the relevant theoretical background presented, this section develops the Occu-
pation Kernel-based DMD method for continuous time systems. Let K be the kernel
function for a RKHS, H , over Rn consisting of continuously differentiable func-
tions. Let ẋ = f (x) be a dynamical system corresponding to a densely defined
Liouville operator, A f , over H . Suppose that {γi : [0, Ti ] → X}Mi=1 is a collec-
tion of trajectories satisfying γ̇i = f (γi ). There is a corresponding collection of
occupation kernels, α := {Γγi }Mi=1 ⊂ H , given as Γγi (x) := ∫ Ti

0 K (x, γi (t))dt .
For each γi the action of A∗

f on the corresponding occupation kernel is given by
A∗

f Γγi = K (·, γi (Ti )) − K (·, γi (0)).
Thus, when α is selected as an ordered basis for a vector space, the action of A∗

f
is known on span(α). The objective of the DMD procedure is to express a matrix
representation of the operator A∗

f on the finite dimensional vector space spanned by
α followed by projection onto span(α).
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Let w1, · · · , wM be the coefficients for the projection of a function g ∈ H onto
span(α) ⊂ H , written as Pαg = ∑M

i=1 wiΓγi . Using the fact that

〈g, Γγ j 〉H = 〈Pαg, Γγ j 〉H = (〈Γγ1 , Γγ j 〉H · · · 〈ΓγM , Γγ j 〉H
)
⎛

⎜⎝
w1
...

wM

⎞

⎟⎠ ,

for all j = 1, · · · , M , the coefficients w1, · · · , wM may be obtained through the
solution of the following linear system:

⎛

⎜⎝
〈Γγ1 , Γγ1〉H · · · 〈ΓγM , Γγ1〉H

...
. . .

...

〈Γγ1 , ΓγM 〉H · · · 〈ΓγM , ΓγM 〉H

⎞

⎟⎠

⎛

⎜⎝
w1
...

wM

⎞

⎟⎠ =
⎛

⎜⎝
〈g, Γγ1〉H

...

〈g, ΓγM 〉H

⎞

⎟⎠ , (1)

where each of the inner products may be expressed as either single or double integrals
as

〈Γγ j , Γγi 〉H =
∫ Ti

0

∫ Tj

0
K (γi (τ ), γ j (t))dtdτ , and 〈g, Γγi 〉H =

∫ Ti

0
g(γi (t))dt .

(2)

Furthermore, if h = ∑M
i=1 viΓγi ∈ span(α) for some coefficients {vi }Mi=1 ⊂ R, then

A∗
f h ∈ H , and it follows that

〈A∗
f h, Γγ j 〉 =

〈
M∑

i=1

vi A
∗
f Γγi , Γγ j

〉

H

=
(〈
A∗

f Γγ1 , Γγ j

〉

H
, · · · ,

〈
A∗

f ΓγM , Γγ j

〉

H

)
⎛

⎜⎝
v1
...

vM

⎞

⎟⎠ , (3)

for all j = 1, · · · , M . Using (1) and (3), the coefficients {wi }Mi=1 in the projection of
A∗

f h onto span(α) can be expressed as

⎛

⎜⎝
w1
...

wM

⎞

⎟⎠ =
⎛

⎜⎝
〈Γγ1 , Γγ1〉H · · · 〈ΓγM , Γγ1〉H

...
. . .

...

〈Γγ1 , ΓγM 〉H · · · 〈ΓγM , ΓγM 〉H

⎞

⎟⎠

−1

×
⎛

⎜⎝

〈A∗
f Γγ1 , Γγ1〉H · · · 〈A∗

f ΓγM , Γγ1〉H
...

. . .
...

〈A∗
f Γγ1 , ΓγM 〉H · · · 〈A∗

f ΓγM , ΓγM 〉H

⎞

⎟⎠

⎛

⎜⎝
v1
...

vM

⎞

⎟⎠ .
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Lemma 2 then yields the finite rank representation for PαA∗
f , restricted to the occu-

pation kernel basis, span(α), as

[PαA
∗
f ]αα = G−1I, (4)

where

G :=
⎛

⎜⎝
〈Γγ1 , Γγ1〉H · · · 〈Γγ1, ΓγM 〉H

...
. . .

...

〈ΓγM , Γγ1〉H · · · 〈ΓγM , ΓγM 〉H

⎞

⎟⎠ (5)

is the Gram matrix of occupation kernels and

I :=
⎛

⎜⎝

〈K (·, γ1(T1)) − K (·, γ1(0)), Γγ1 〉H · · · 〈K (·, γM (TM )) − K (·, γM (0)), Γγ1 〉H
.
.
.

. . .
.
.
.

〈K (·, γ1(T1)) − K (·, γ1(0)), ΓγM 〉H · · · 〈K (·, γM (TM )) − K (·, γM (0)), ΓγM 〉H

⎞

⎟⎠ . (6)

is the interaction matrix.
DMD requires a finite-rank representation of PαA f , instead of PαA∗

f . Similar to
the development above, Lemma 2 can be used to generate a finite rank representation
of PαA f under the following additional assumption.

Assumption 1 The occupation kernels are in the domain of the Liouville operator, i.e.,
α ⊂ D(A f ).

Given h = ∑M
i=1 viΓγi ∈ span(α) for some coefficients {vi }Mi=1 ⊂ R, Assumption 1

implies that A f h ∈ H and

〈
A f h, Γγ j

〉
H

=
M∑

i=1

vi
〈
A f Γγi , Γγ j

〉
H

=
M∑

i=1

vi

〈
Γγi , A

∗
f Γγ j

〉

H

=
(〈

Γγ1 , A
∗
f Γγ j

〉

H
, . . . ,

〈
ΓγM , A∗

f Γγ j

〉

H

)
⎛

⎜⎝
v1
...

vM

⎞

⎟⎠ . (7)

Lemma 2 then yields a finite rank representation of PαA f , restricted to span(α) as

[PαA f ]αα = G−1IT . (8)

4.2 Dynamic Mode Decomposition

Suppose that λi is the eigenvalue for the eigenvector vi := (vi1, vi2, . . . , viM )T ,
i = 1, . . . , M , of [PαA f ]αα . The eigenvector vi can be used to construct a normalized
eigenfunction of PαA f restricted to span(α), given as ϕi = 1

Ni

∑M
j=1 vi jΓγ j , where
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Ni :=
√

v
†
i Gvi , and (·)† denotes the conjugate transpose. Let V be the matrix of coef-

ficients of the normalized eigenfunctions, arranged so that each column corresponds
to an eigenfunction.

The DMD procedure begins by expressing the identity function, also known as the
full state observable, gid(x) := x ∈ R

n as a linear combination of the eigenfunctions
of A f , i.e., gid(x) = limM→∞

∑M
i=1 ξi,Mϕi (x). For a fixed M , the identity function

can be approximated using the Liouville modes ξi ∈ R
n as gid(x) ≈ ∑M

i=1 ξiϕi (x).
The j-th row of the matrix ξ = (ξ1 · · · ξM ) is obtained as

(
(ξ1) j · · · (ξM ) j

) =

⎛

⎜⎜⎝

⎛

⎜⎝
〈ϕ1, ϕ1〉H · · · 〈ϕ1, ϕM 〉H

...
. . .

...

〈ϕM , ϕ1〉H · · · 〈ϕM , ϕM 〉H

⎞

⎟⎠

−1⎛

⎜⎝
〈(x) j , ϕ1〉H

...

〈(x) j , ϕM 〉H

⎞

⎟⎠

⎞

⎟⎟⎠

T

,

where (x) j is viewed as the functional mapping x ∈ R
n to its j-th coordinate. By

examining the inner products
〈
gid , Γγi

〉
H , for i = 1, . . . , M , the matrix ξ may be

expressed as

ξ =
(∫ T1

0 γ1(t)dt · · · ∫ TM
0 γM (t)dt

) (
V TG

)−1
(9)

Given a trajectory x(·) satisfying ẋ = f (x), each eigenfunction of A f satisfies
ϕ̇i (x(t)) = λiϕi (x(t)) and hence, ϕi (x(t)) = ϕi (x(0))eλi t , and the following data
driven model is obtained:

x(t) ≈
M∑

i=1

ξiϕi (x(0))e
λi t , (10)

where

ϕi (x(0)) = 1

Ni

M∑

j=1

vi jΓγ j (x(0)) = 1

Ni

M∑

j=1

vi j

∫ Tj

0
K
(
x(0), γ j (t)

)
dt . (11)

The resultant DMD procedure is summarized in Algorithm 1.

4.3 Modifications for the Scaled Liouville Operator DMDMethod

Since Liouville operators are not generally compact, convergence, as M → ∞, of the
finite rank representation PαA f to the Liouville operator A f cannot be guaranteed.
Convergence of thefinite rank representation canbe established in the case of the scaled
Liouville operators and the approximations obtained via DMD, under Assumption 1,
are provably cogent. We call the approach taken here Scaled Liouville DMD (SL-
DMD).

By Theorem 2, for an infinite collection of trajectories {γi }∞i=1 with a dense col-
lection of corresponding occupation kernels, {Γγi }∞i=1 ⊂ H , the resultant sequence of
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Algorithm 1 Pseudocode for the dynamic mode decomposition routine of Section 4.
Once the Liouville modes, the normalized eigenvectors, and the eigenvalues are
returned, (10) and (11) can be used along with a numerical integration routine to
reconstruct trajectories of the system starting from any given initial condition x(0).
The choice of numerical integration routine can have a significant impact on the overall
results, and it is advised that a high accuracy method is leveraged in practice.

Require: Sampled trajectories {γ j : [0, Tj ] → R
n}Mj=1

Require: Kernel function K : Rn × R
n → R of an RKHS

Require: A numerical integration routine
1: Compute the Gram matrix G in (5) using (2) and a numerical integration routine
2: Compute the interaction matrix I in (6) using (2) and a numerical integration routine
3: Compute eigenvalues, λi , and eigenvectors, vi , of G

−1IT

4: Use (9) and a numerical integration routine to compute the matrix ξ of Liouville modes
5: return Liouville modes, ξi , normalized eigenvectors, vi

Ni
, and eigenvalues λi for i = 1, · · · , M

finite rank operators PαM A f ,a PαM converges to A f ,a , where αM := {Γγ1 , . . . , ΓγM }.
Consequently, the spectrum of [PαM A f ,a]αM

αM , the finite rank representation of
PαM A f ,a , restricted to span(α), converges to that of A f ,a .1

Furthermore, when a is sufficiently close to 1 and the observed trajectories con-
tained in a compact set are perturbed to within machine precision, the finite rank
representations of A f ,a and A f are computationally indistinguishable.

DMD using scaled Liouville operators is similar to the unscaled case. In particular,
recall that for |a| < 1 and f as above, A∗

f ,aΓγi = K (·, aγi (Ti )) − K (·, aγi (0)).
Hence, a finite rank representation of A f ,a , obtained from restricting and projecting
to span(α), is given as

[PαA f ,a]αα = G−1IT
a ,

where

Ia :=
⎛

⎜⎝

〈K (·, aγ1(T1)) − K (·, aγ1(0)), Γγ1 〉H · · · 〈K (·, aγM (TM )) − K (·, aγM (0)), Γγ1 〉H
.
.
.

. . .
.
.
.

〈K (·, aγ1(T1)) − K (·, aγ1(0)), ΓγM 〉H · · · 〈K (·, aγM (TM )) − K (·, aγM (0)), ΓγM 〉H

⎞

⎟⎠ .

The approximate normalized eigenfunctions, {ϕi,a}Mi=1, for A f ,a may then be obtained
in an identical fashion as for the Liouville operator.

Thus, the expression of the full state observable, gid , in terms of the eigenfunctions
yields gid(x) ≈ ∑M

i=1 ξi,aϕi,a(x) with (scaled) Liouville modes ξi,a .
As the eigenfunctions satisfy

ϕ̇i,a(ax(t)) = a∇ϕi (ax(t)) f (x(t)) = A f ,aϕi,a(x(t)) = λi,aϕi,a(x(t)),

1 It should be noted that the operator PαM A f ,a PαM is simply PαM A f ,a when restricted to span(αM ) as
PαM g = g for all g ∈ span(αM ).
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it can be seen that ϕi,a(x(t)) �= etλi,aϕi,a(x(0)). When a is close to 1, it can be
demonstrated that ϕi,a(x(t)) is very nearly equal to etλi,aϕi,a(x(0)), and the error can
be controlled when x(t) remains in a compact domain or workspace.

Proposition 2 Let H be a RKHS of twice continuously differentiable functions over
R
n, f be Lipschitz continuous, and suppose that ϕi,a is an eigenfunction of A f ,a with

eigenvalue λi,a. Let D be a compact subset ofRn that contains x(t) for all 0 < t < T .
In this setting, if λi,a → λi,1 and ϕi,a(x(0)) → ϕi,1(x(0)) as a → 1−, then

sup
0≤t≤T

‖ϕi,a(x(t)) − eλi,a tϕi,a(x(0))‖2 → 0.

Proof The proof has been relegated to the appendix to ease exposition. �
Thus, under the hypothesis of Proposition 2, for a sufficiently close to 1, a data-

driven model for a trajectory x satisfying ẋ = f (x) is established as

x(t) ≈
M∑

i=1

ξi,aϕi,a(x(0))e
λi,a t . (12)

The principle advantage of using scaled Liouville operators is that these operators
are compact over the Bargmann-Fock space for a large collection of nonlinear dynam-
ics.Moreover, the sequence finite rank operators obtained through theDMDprocedure
achieves norm convergence when the sequence of recorded trajectories corresponds
to a collection of occupation kernels that are dense in the Hilbert space.

Theorem 2 Let |a| < 1. Suppose that {γi : [0, Ti ] → R
n}∞i=1 is a sequence of tra-

jectories satisfying γ̇ = f (γ ) for a dynamical system f corresponding to a compact
scaled Liouville operator, A f ,a. If the collection of functions, {Γγi }∞i=1 is dense in the
Bargmann-Fock space, then the sequence of operators {PαM A f ,a PαM }∞M=1 converges
to A f ,a in the norm topology, where αM = {Γγ1 , . . . , ΓγM }.
Proof The proof has been relegated to the appendix to ease exposition. �

5 Numerical Experiments

This section includes two collections of numerical experiments solved using the meth-
ods of the paper. The first surround the problem of flow across a cylinder, which has
become a classic example for DMD. This provides a benchmark for comparison of
the present method with kernel-based extended DMD. There it will be demonstrated
that scaled Liouville modes and Liouville modes are very similar.

The second experiment performs a decomposition using electroencephalography
(EEG) data, which has been sampled at 250 Hz over a period of 8 seconds. The high
sampling frequency gives a large number of snapshots, which then leads to a high-
dimensional learning problem when using the snapshots alone. The purpose of this
experiment is to demonstrate how the Liouville operator based DMD can incorporate
the large number of snapshots to generate Liouville modes without discarding data.
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5.1 Flow Across a Cylinder

This experiment utilizes the data set fromKutz et al. (2016), which includes snapshots
of flow velocity and flow vorticity generated from a computational fluid dynamics sim-
ulation. The data correspond to the wake behind a circular cylinder, and the Reynolds
number for this flow is 100. The simulationwas generatedwith time steps ofΔt = 0.02
second and ultimately sampled every 10Δt seconds yielding 151 snapshots. Each snap-
shot of the system is a vector of dimension 89, 351. More details may be found in Kutz
et al. (2016, Chapter 2).

Figure 1 presents the Liouville modes obtained from the cylinder vorticity data set
where the collection 151 snapshots was subdivided into 147 trajectories, each of length
5. This figure should be compared with Fig. 2, which presents the scaled Liouville
modes, with parameter a = 0.99, corresponding to the same data set. The modes were
generated using theGaussian kernel withμ = 500. Figure 3 compares snapshots of the
true vorticity against vorticity reconstructed using the unscaled and scaled Liouville
DMD models in (10) and (12), respectively.

5.2 SsVEP Dataset

This experiment uses data from Gruss and Keil (2019). The data for this experiment
was taken from an electroencephalography (EEG) recording of the visual cortex of
one human participant during the active viewing of flickering images (Gruss and Keil
2019). Bymodulating luminance or contrast of an image at a constant rate (e.g. 12Hz),
image flickering reliably evokes the steady state visually evoked potential (SsVEP) in
early visual cortex (Regan 1989; Petro et al. 2017), reflecting entrainment of neuronal
oscillations at the same driving frequency. SsVEP in the current data was evoked by
pattern-reversal Gabor patch flickering at 12Hz (i.e. contrast-modulated) for a trial
length of 7 seconds, with greatest signal strength originating from the occipital pole
(Oz) of a 129-electrode cap. Data was sampled at 500Hz, band-pass filtered online
from 0.5 - 48Hz, offline from 3 - 40Hz, with 53 trials retained for this individual
after artifact rejection. Of these trials, the first 40 trials were used in the continuous
time DMD method and each trial was subdivided into 50 trajectories. SsVEP data
have the advantage of having an exceedingly high signal-to-noise ratio and high phase
coherence due to the oscillatory nature of the signal, ideally suited for signal detection
algorithms (such as brain-computer interfaces (Bakardjian et al. 2010; Bin et al. 2009;
Middendorf et al. 2000)).

In this setting each independent trial can be used as a trajectory for a single occu-
pation kernel. This differs from the implementation of Koopman-based DMD, where
most often each snapshot corresponds to a single trajectory. The continuous timeDMD
method was performed using the Gaussian kernel function with μ = 50.

Figure 4 presents the obtained eigenvalues, and Fig. 5 gives log scaled spectrum
obtained from the eigenvectors. It can be seen that the spectrum has strong peaks
near the 12 Hz range, which suggests that the continuous time DMD procedure using
occupation kernels can extract frequency information without using shifted copies of
the trajectories as in Kutz et al. (2016).
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Fig. 1 This figure presents the real and imaginary parts of a selection of ten Liouville modes determined
by the continuous time DMD method given in the present manuscript corresponding to the vorticity of a
flow across a cylinder (data available in Kutz et al. 2016)
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Fig. 2 This figure presents the real and imaginary parts of a selection of five scaledLiouvilleDMDmodes for
the cylinder wake vorticity data in Kutz et al. (2016). The difference between these modes and the modes in
Fig. 1 was anticipated for several reasons; the selection of a = 0.99 is expected to result in slightly different
modes, and there is no consistent method of ordering the Liouville modes as the significance of each mode
depends not only on its magnitude, but also the associated eigenvector and initial value
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Fig. 3 Snapshots of the true flow compared with reconstruction via the Liouville DMD model in (10) and
the scaled Liouville DMD model in (12) with a = 0.99
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Fig. 4 Eigenvalues corresponding to the SsVEP dataset from Gruss and Keil (2019). This plot is on the
complex plane, where the vertical axis indicates the imaginary part of the eigenvalue, and the horizontal
axis indicates the real part
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Fig. 5 Rescaled spectrum obtained from the SsVEP dataset. This doesn’t quite correspond to the spectrum
that would be computed through the Fourier transform. However, note the significant peak around 12 Hz,
which corresponds to the SsVEP

For this example, the resultant dimensionality of Koopman-based DMDmakes the
analysis of this data set intractable without discarding a significant number of samples.
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6 Discussion

6.1 Unboundedness of Liouville and Koopman Operators

Traditional DMD approaches aim to estimate a continuous nonlinear dynamical sys-
tem by first selecting a fixed time-step and then investigate the induced discretized
dynamics through the Koopman operator. The algorithm developed in this manuscript
estimates the continuous nonlinear dynamics directly by employing occupation ker-
nels, which represent trajectories via an integration functional that interfaces with
the Liouville operator. That is, the principle advantage realized through DMD using
Liouville operators and occupation kernels over that of kernel-based DMD and the
Koopman operator is that the resulting finite-rank representation corresponds to a con-
tinuous time system rather than a discrete time proxy. This is significant, since not all
continuous time systems can be discretized for use with the Koopman operator frame-
work. Moreover, through employment of scaled Liouville operators, many dynamical
systems yield a compact operator over the Bargmann-Fock space, which allows for
norm convergence of DMD procedures.

Liouville operators are unbounded in most cases due to the inclusion of the gradient
in their definition. Koopman operators are also unbounded in all but a few cases. In
the specific instance where the selected kernel function is the exponential dot product
kernel, Koopman operators are only bounded if the dynamics are affine (cf. Carswell
et al. 2003). In contrast, large classes of both Liouville and Koopman operators are
densely defined and closed operators over RKHSs. Thus, connections between DMD
and Koopman/Liouville operators need to generally rely on the theory of unbounded
operators.

6.2 Finite Rank Representations

Since Liouville operators are generally unbounded, convergence of the finite rank rep-
resentation (in the norm topology) of the method in Sect. 4 cannot be established for
most selections of f . Moreover, the selection of observables on which the operator
is applied must come from the functions that reside in the domain of the Liouville
operator, D(A f ). As bounded Koopman operators are rare as well, the need for care
in the selection of observables is shared by both operators. In the design of the algo-
rithm of this manuscript, an additional assumption was made where the domain of the
Liouville operator was required to contain the occupation kernels corresponding to the
observed trajectories. It should be noted that even if the occupation kernels are not in
the domain of the Liouville operator, they are always in the domain of the adjoint of
the Liouville operator, as long as the Liouville operator is closed and densely defined.
As a result, an alternative DMD algorithm may be designed using the action of the
adjoint on the occupation kernels. Interestingly, as evidenced by (4) and (8), the only
adjustment to the algorithm in this setting is transposition of the matrix I.
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6.3 Approximating the Full State Observable

The decomposition of the full state observable relies strongly on selection of the
RKHS. In the case of the Bargmann-Fock space, x �→ (x)i is a function in the space
for each i = 1, . . . , n. However, this is not the case for the native space of the Gaussian
radial basis function kernel, which does not contain any polynomials. In both cases,
the spaces are universal, which means that any continuous function may be arbitrarily
well estimated by a function in the space with respect to the supremum norm over a
compact subset. Thus, it is not expected that a good approximation of the full state
observable will hold over all ofRn , but a sufficiently small estimation error is possible
over a compact workspace.

6.4 Scaled Liouville Operators

One advantage of the Liouville approach to DMD is that the Liouville operators
may be readily modified to generate a compact operator through the so-called scaled
Liouville operator. A large class of dynamics correspond to compact scaled Liouville
operators, while Koopman operators cannot bemodified in a similar fashion. Allowing
this compact modification indicates that on an operator theoretic level, the study of
nonlinear dynamical systems through Liouville operators allows for more flexibility.

The experiments presented in Sect. 5 demonstrate that the Liouvillemodes obtained
with the continuous time DMD procedure using Liouville operators and occupa-
tion kernels are similar in form to the Koopman modes obtained using kernel-based
extendedDMD (Williams et al. 2015b).Moreover, occupation kernels allow for trajec-
tories to be utilized as a fundamental unit of data, which can reduce the dimensionality
of the learning problem while retaining some fidelity that would be otherwise lost
through discarding data.

6.5 TimeVarying Systems

The present framework can be adapted to handle time varying systems of the form
ẋ = f (t, x) with little adjustment. In particular, an analysis of this system may be
achieved through state augmentation where time is included as a state variable as z =
[t, xT ]T , which leads to an adjusted dynamical system given as ż = [1, f (t, x)T ]T .
Hence, the analysis of time varying dynamics are included in the present approach.

6.6 Strong Operator Topology Convergence Versus Norm Convergence

One of the major contributions of this manuscript is the definition of the scaled Liou-
ville operators, which for certain selections of a, these operators are compact over the
exponential dot product kernel’s space. This compactness enables the norm conver-
gence of DMD routines, where the finite rank operators made for DMD are essentially
operator level interpolants.
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Presently, the best convergence results for DMD methods are SOT convergence
results (Korda and Mezić 2018). SOT convergence yields pointwise convergence of
operators in that a sequence of bounded operators, Tm , converges to T in SOT if and
only if Tmg → Tg for all g ∈ H . Thismode of convergence is limited, and not entirely
appropriate for spectral methods like DMD, where the only guarantees provided are
that the spectrum of the limiting operator may be obtained as a subsequence of the
members of the spectrum of the sequence of operators under consideration. Thus,
as observed by the authors of Korda and Mezić (2018), infinitely many operators
Tm , from the sequence of operators converging in SOT to T , may not be part of the
subsequence for convergence, and as a result, may have dramatically different spectra
from T . Moreover, the convergence result for Koopman-based DMD is a special case
of a more general theorem, which implies that finite rank operators are dense in the
collection of bounded operators with respect to the SOT (Pedersen 2012).

In contrast, norm convergence of operators is much stronger, where if two operators
are close in norm, then their spectra are also close. Hence, convergence in norm of
a sequence of bounded operators, Tm , to an operator, T guarantees the convergence
of the spectra. Since DMD is a method where finite rank operators are designed to
represent an unknown operator, the only operators amenable for norm convergence
are compact operators. Compactness of the scaled Liouville operators thus allows
for norm convergence of the finite rank approximations, generated for DMD, to the
respective scaled Liouville operators. As a result, convergence of the estimated spectra
to the spectra of the scaled Liouville operators is also established. More information
concerning spectral theory and operator theory in general can be found in Pedersen
(2012).

Scaled Liouville operators are compact over the native space of the exponential dot
product kernel for awide rangeof dynamical systems, including all polynomial dynam-
ical systems. In contrast, every Koopman operator corresponding to a discretization
of the trivial dynamics ẋ = 0 is the identity operator (for any selection of underlying
function space), which is not compact when the underlying function space is an infinite
dimensional Hilbert space.

7 Conclusions

In this paper, the notion of occupation kernels is leveraged to enable spectral analysis of
the Liouville operator via DMD. A family of scaled Liouville operators is introduced
and shown to be compact, which allows for norm convergence of the DMD proce-
dure. Two examples are presented, one from fluid dynamics and another from EEG,
which demonstrate reconstruction of trajectories, approximation of the spectrum, and
a comparison of Liouville and scaled Liouville DMD.

The method presented here provides a new approach to DMD and builds the oper-
ator theoretic foundations for spectral decomposition of continuous time dynamical
systems. By targeting the DMD procedure towards Liouville operators, which include
Koopman generators as a proper subset, continuous time dynamical system are mod-
eled directly, without discretization. Moreover, by obviating the limiting process used
in the definition of Koopman generators, in favor of direct formulation via Liouville
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operators, the requirement of forward completeness is relaxed and the resulting meth-
ods are applicable to a much broader class of dynamical systems.
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A Proofs of Theorem 1 and Proposition 2

Theorem 1 restated: Let F2(Rn) be the Bargmann-Fock space of real valued func-
tions, which is the native space for the exponential dot product kernel, K (x, y) =
exp(xT y), a ∈ R with |a| < 1, and let A f ,a be the scaled Liouville operator with
symbol f : Rn → R

n . There exists a collection of coefficients, {Cα}α , indexed by
the multi-index α, such that if f is representable by a multi-variate power series,
f (x) = ∑

α fαxα , satisfying

∑

α

| fα|Cα < ∞,

then A f ,a is bounded and compact over F2(Rn).

Proof The proof for the case n = 1 is presented to simplify the exposition. The case
for n > 1 follows with some additional bookkeeping of the multi-index.

If Ax,a is compact for all |a| < 1, then Axm ,a = Am
x, m√a

is compact since

products of compact operators are compact. If f (x) = ∑∞
m=0 fmxm is such that∑∞

m=0 | fm |‖Axm ,a‖ < ∞, then A f ,a = limm→∞
∑M

m=0 fm Axm ,a, with respect the
operator norm via the triangle inequality, and A f ,a is compact since it is the limit of
compact operators. Thus, it is sufficient to demonstrate that Ax,a is compact to prove
the theorem.

Let g ∈ F2(R), then g(x) = ∑∞
m=0 gm

xm√
m! with norm ‖g‖2

F2(R)
= ∑∞

m=0 |gm |2 <

∞. Applying the scaled Liouville operator, Ax,a , yields

Ax,ag(x) = axg′(ax) =
∞∑

m=0

gma
mm

xm√
m! .

Hence, ‖Ax,ag‖2F (R)
= |a|2mm2|gm |2 < ∞ as for large enough m, |a|2mm2 < 1.

Hence, Ax,a is everywhere defined and by the closed graph theorem Ax,a is bounded.
As |a|mm2 → 0, there is an M such that for all m > M , |a|mm2 < 1. Let PM be

the projection onto span{1, x, x2, . . . , xM }. Now consider

‖(Ax,a − Ax,a PM )g‖2 =
∞∑

m=M+1

|gm |2|a|2mm2
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≤
∞∑

m=M+1

|gm |2|a|m

≤ |a|M
∞∑

m=M+1

|gm |2|a|m−M

≤ |a|M
∞∑

m=M+1

|gm |2 ≤ |a|M‖g‖2F2(R)
.

Hence, the operator norm of (Ax,a−Ax,a PM ) is bounded by |a|M/2, and as |a| < 1,
Ax,a Pm → Ax,a in the operator norm. Pm is finite rank and therefore compact. It
follows that Ax,a Pm is compact, since compact operators form an ideal in the ring of
bounded operators. Thus, Ax,a is compact as it is the limit of compact operators. �
Proposition 2 restated: Let H be a RKHS of twice continuously differentiable func-
tions over Rn , f be Lipschitz continuous, and suppose that ϕi,a is an eigenfunction of
A f ,a with eigenvalue λi,a . Let D be a compact subset of Rn that contains x(t) for all
0 < t < T . In this setting, if λi,a → λi,1 and ϕi,a(x(0)) → ϕi,1(x(0)) as a → 1−,
then

sup
0≤t≤T

‖ϕi,a(x(t)) − eλi,a tϕi,a(x(0))‖2 → 0.

Proof Suppose that x(t) remains in a compact set D ⊂ R
n . Since φm,a ∈ H and H

consists of twice continuously differentiable functions, there exists M1, M2, F > 0
such that

sup
x∈D

‖ f (x)‖ < F sup
x∈D

, ‖∇φm,a(x)‖ < M1,a, and sup
x∈D

‖∇2φm,a(x)‖ < M2,a .

First, it is necessary to demonstrate that M1,a and M2,a may be bounded independent
of a. For each i, j = 1, . . . , n and y ∈ R

n , the functionals g �→ ∂
∂xi

g(y) and g �→
∂2

∂xi ∂x j
g(y) are bounded (cf. Steinwart and Christmann 2008). Setting, ky = K (·, y),

it can be seen that the functions ∂
∂xi

ky and ∂2

∂xi ∂x j
ky are the unique functions that

represent these functionals through the inner product of the RKHS (cf. Steinwart and
Christmann 2008). As φm,a is a normal vector, ‖φm,a‖H = 1, and by Cauchy-Schwarz

‖∇φm,a(y)‖2 =
√√√√

n∑

i=1

(
∂

∂xi
φm,a(y)

)2

=
√√√√

n∑

i=1

(〈
φm,a,

∂

∂xi
ky

〉

H

)2
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≤
√√√√

n∑

i=1

∥∥φm,a
∥∥2
H

∥∥∥∥
∂

∂xi
ky

∥∥∥∥
2

H

=
√√√√

n∑

i=1

∥∥∥∥
∂

∂xi
ky

∥∥∥∥
2

H
. (13)

(13) is bounded over D as x �→ ∂
∂xi

ky(x) is continuous. Thus, M1,a is bounded
independent of a. A similar argument may be carried out for M2,a . Let M1 and M2 be
the respective bounding constants.

Note that

∂

∂t
φm,a(ax(t)) = a∇φm,a(ax(t)) f (x(t)) = A f ,aφm,a(x(t)) = μm,aφm,a(x(t)).

Then by the mean value inequality, Cauchy-Schwarz, and the bounds given above,

∣∣∣∣
∂

∂t
φm,a(ax(t)) − ∂

∂t
φm,a(x(t))

∣∣∣∣

= ∣∣a∇φm,a(ax(t)) f (x(t)) − ∇φm,a(x(t)) f (x(t))
∣∣

≤ F
∥∥a∇φm,a(ax(t)) − a∇φm,a(x(t)) + a∇φm,a(x(t)) − ∇φm,a(x(t))

∥∥
2

≤ |a|F ∥∥∇φm,a(ax(t)) − ∇φm,a(x(t))
∥∥
2 + F |a − 1|M1‖x(t)‖2

≤ |a||a − 1|M2F‖x(t)‖2 + |a − 1|M1F‖x(t)‖2 = O(|a − 1|).

Setting εa(t) := ∂
∂t φm,a(ax(t))− ∂

∂t φm,a(x(t)), it follows that sup0≤t≤T ‖εa(t)‖2 =
O(|a − 1|). Hence,

μm,aφm,a(x(t)) = ∂

∂t
φm,a(ax(t))

= ∂

∂t
φm,a(x(t)) + ε(t),

and

φm,a(x(t)) = eμm,a tφm,a(x(0)) − eμm,a t
∫ t

0
e−μm,aτ ε(τ )dτ.

As the time interval is fixed to [0, T ], eμm,a t
∫ t
0 e

−μm,aτ ε(τ )dτ = O(|a − 1|), since
μm,a is bounded with respect to a. �
Theorem 2 restated:Let |a| < 1.Suppose that {γi : [0, Ti ] → R

n}∞i=1 is a sequenceof
trajectories satisfying γ̇ = f (γ ) for a dynamical system f corresponding to a compact
scaled Liouville operator, A f ,a . If the collection of functions, {Γγi }∞i=1 is dense in the
Bargmann-Fock space, then the sequence of operators {PαM A f ,a PαM }∞M=1 converges
to A f ,a in the norm topology, where αM = {Γγ1 , . . . , ΓγM }.
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Proof The following proof is more general than what is indicated in the theorem
statement of Theorem 2. In fact, for any compact operator, T , and any set {gi }∞i=1 such
that span({gi }∞i=1) = H , the sequence of operators PαM T PαM → T in norm, where
PαM is the projection onto span({gi }Mi=1). Henceforth, it will be assumed that {gi }∞i=1
is an orthonormal basis for H , since given any complete basis in H , an orthonormal
basis may be obtained via the Gram-Schmidt process.

First note that every compact operator has a representation asT = ∑∞
i=1 λi 〈·, vi 〉Hui ,

where {vi } and {ui } are orthonormal collections of vectors (functions) in H , and
{λi }∞i=1 ⊂ C are the singular values of T . If TM := ∑M

i=1 λi 〈·, vi 〉Hui then TM → T
as M → ∞ in the operator norm.

Suppose that ε > 0. Select M such that ‖T − TM‖ < ε, and select N such that for
all n > N ,

‖ui − Pnui‖H <
ε

∑M
i=1 |λi |2

and ‖vi − Pnvi‖H <
ε

√
M
(∑M

i=1 |λi |2
)1/2

for all i = 1, . . . , M . Let g ∈ H be arbitrary.
Now consider,

‖Tg − PnT Png‖H = ‖Tg − TMg + TMg − PnT Pn f ‖H
≤ ‖T − TM‖‖g‖H + ‖TMg − PnT Png‖H ≤ ε‖g‖H + ‖TMg − PnT Png‖H .

The second term after the inequality may be expanded as

‖TMg − PnT Png‖H ≤ ‖TMg − PnTMg‖H + ‖PnTMg − PnT Png‖H
‖TMg − PnTMg‖H + ‖TMg − T Png‖H

≤ ‖TMg − PnTMg‖H + ‖TMg − TM Png‖H + ‖TM Png − T Png‖H
≤ ‖TMg − PnTMg‖H + ‖TMg − TM Png‖H + ε‖g‖H .

Now the objective is to demonstrate that both ‖TMg − PnTMg‖H and ‖TMg −
TM Png‖H are proportional to ε‖g‖H . Note that

‖TMg − PnTMg‖H =
∥∥∥∥∥

M∑

i=1

λi 〈g, vi 〉H (ui − Pnui )

∥∥∥∥∥
H

≤
M∑

i=1

|λi ||〈g, vi 〉H |‖ui − Pnui‖H

≤
√√√√

M∑

i=1

|〈g, vi 〉H |2
(

M∑

i=1

|λi |2‖ui − Pnui‖2H
)1/2

≤ ‖g‖H
(

M∑

i=1

|λi |2‖ui − Pnui‖2H
)1/2

≤ ε‖g‖H ,
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and

‖TM (g − Png)‖H =
∥∥∥∥∥

M∑

i=1

λi 〈g − Png, vi 〉Hui
∥∥∥∥∥

≤
∥∥∥∥∥∥

M∑

i=1

λi

〈 ∞∑

j=n+1

〈g, g j 〉Hg j , vi

〉

H

ui

∥∥∥∥∥∥

≤
∞∑

j=n+1

|〈g, g j 〉H |
(

M∑

i=1

|λi ||〈g j , vi 〉H |
)

≤
⎛

⎝
∞∑

j=n+1

|〈g, gi 〉H |2
⎞

⎠
1/2⎛

⎝
∞∑

j=n+1

(
M∑

i=1

|λi ||〈gi , vi 〉H |
)2⎞

⎠
1/2

≤ ‖g‖H
⎛

⎝
∞∑

j=n+1

(
M∑

i=1

|λi |2
)(

M∑

i=1

|〈g j , vi 〉H |2
)⎞

⎠
1/2

≤ ‖g‖H
(

M∑

i=1

|λi |2
)1/2⎛

⎝
M∑

i=1

∞∑

j=n+1

|〈g, vi 〉H |2
⎞

⎠
1/2

= ‖g‖H
(

M∑

i=1

|λi |2
)1/2 ( M∑

i=1

‖vi − Pnvi‖2
)1/2

≤ ε‖g‖H .

Thus, for every ε > 0, there is an N such that for all n > N , ‖Tg − PnT Png‖H ≤
4ε‖g‖H . Hence, it follows that ‖T − PnT Pn‖ ≤ 4ε. Thus, as n → ∞, PnT Pn → T
in the operator norm. �
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