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Abstract
In this paper,we consider central configurations of the planar 3n-bodyproblemconsist-
ing of nmasses at the vertices of a regular n-gon inscribed in a circle of radius r and 2n
masses at the vertices of a second (not necessarily regular) concentric 2n-gon inscribed
in a circle of radius ar which are symmetric in the sense that the set of positions of the
3n masses and the set of the corresponding masses are invariant under the action of a
finite subgroup of O(2). There are two different types of such configurations. In the
first type, called regular bicircular central configurations of the 3n-body problem, the
second 2n-gon is regular, n of the vertices of the second n-gon are aligned with the
vertices of the first regular n-gon and the masses at the vertices of this 2n-gon alternate
values. In the second type, called semiregular bicircular central configurations of the
3n-body problem, the second 2n-gon is semiregular and the masses at its vertices are
all of them equal. A semiregular 2n-gon has n pair of vertices symmetric by a reflec-
tion of an angle β with respect to the axis of symmetry of the first regular n-gon. Our
aim is to analyze the set of values of the parameter a for the regular 2n-gon and of the
parameters (a, β) for the semiregular 2n-gon providing symmetric bicircular central
configurations. In particular, for all n ≥ 2 we prove analytically the existence of sym-
metric bicircular central configurations with a (respectively (a, β)) satisfying some
particular conditions. Using either computer-assisted results or numerical results, we
also describe the complete set of values of a (respectively (a, β)) providing symmetric
bicircular central configurations for n = 2, 3, 4, 5 and we give numerical evidences
that the pattern for n > 5 is the same as the one for n = 5.
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1 Introduction

We consider the planar Newtonian N -body problem

mk q̈k = −
N∑

j=1, j �=k

G mk m j
qk − q j

|qk − q j |3 , k = 1, . . . , N ,

where qk ∈ R
2 is the position vector of the point mass mk in an inertial coordinate

system andG is the gravitational constant, which can be taken equal to one by choosing
conveniently the unit of time. A configuration of the N bodies is called central if the
acceleration vector of each body is proportional to its position vector with respect to
the center of mass with the same constant of proportionality. In other words, given
m1, . . . ,mN a configuration (q1, . . . ,qN ) with qi �= q j for all i �= j is central if
there exists a constant λ such that

N∑

j=1, j �=k

m j
qk − q j

|qk − q j |3 = λ (qk − c), k = 1, . . . , N , (1)

where c = ∑N
k=1 mk qk/

∑N
k=1 mk is the center of mass. For a classical background

on the study of central configurations, see, for instance, (Wintner et al. 1941; Hagihara
et al. 1970). In this paper, we deal with symmetric central configurations having the
masses at the vertices of two concentric polygons.

A (regular) polygon of n-vertices is usually called a (regular) n-gon. Concentric
n-gons are called nested when the vertices of all n-gons are aligned and they are called
twisted when the vertices of at least one of the n-gons is rotated by an angle of π/n
with respect to the other ones.

The simplest central configuration of the planar Newtonian N -body problem con-
sists of N equal masses at the vertices of a regular N -gon. To our knowledge, the
first author studying central configurations having the masses at the vertices of two
concentric n-gons was Hoppe (1879). In his work, Hope showed that if n equal masses
are placed at the vertices of a regular n-gon, then n other equal masses may be placed
at the vertices of a second nested/twisted regular n-gon in such a way that the result-
ing configuration is central (see, for more details, Longley 1907). Since then, several
authors have studied central configurations having the masses at the vertices of con-
centric regular n-gons. Assuming that the masses on each n-gon are equal and masses
on different n-gons could be different, Klemperer (1962) gave the relation between
the ratio of the masses and the ratio of the radii for two twisted regular n-gons central
configurations when n = 2, 3, 4. More recently, Moeckel and Simo (1995) proved
that for any n and for every ratio of the masses there are exactly two nested regular
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n-gons central configurations one with the ratios of the sizes of the n-gons less than
one and the other with the ratio of the sizes greater than one.

There are also several works studying central configurations with kn masses at
the vertices of k concentric n-gons such that all the masses on the same n-gon are
equal and masses on different n-gons could be different. These central configurations
are called a crown of k rings of n bodies or simply a (k, n)-crown in Barrabés and
Cors (2019), but since only few authors use this nomenclature, we will not use it here.
Llibre andMello (2009) proved the existence of central configurations of three twisted
regular n-gons with n = 2, 3 and of four twisted regular 2-gons. Corbera et al. (2009)
proved the existence of central configurations of p nested regular n-gons for all p ≥ 2
and n ≥ 2 (see also Hénot and Rousseau 2019). Zhao and Chen (2015) proved the
existence of central configurations of the (pn + gn)-body problem with pn masses
at the vertices of p nested regular n-gons and gn masses at the vertices of g twisted
regular n-gons. Barrabés and Cors (2019) derived the generic equations of central
configurations having kn masses at the vertices of k concentric regular n-gons. They
also prove the existence of at least a two twisted regular n-gons central configuration
for any mass ratio and for any n ≥ 1, and they give the exact number and location of
two twisted n-gons central configurations for n = 3, 4.

Up to here, it is assumed that the masses on each n-gon are equal and masses of
different n-gons could be different and that the n-gons are either nested or twisted by
an angle of π/n. Without imposing the condition that the masses on each n-gon are
equal, Zhang and Zhou (2003) proved that if the configuration with 2n masses at the
vertices of two nested/twisted n-gons is central, then the masses on each n-gon must
be equal. Assuming that the n-gons can be twisted by an angle θ ∈ [0, π/n], Yu and
Zhang (2012) proved that if a configuration having n equal masses at the vertices a
regular n-gon and n additional masses at the vertices of a second concentric n-gon
rotated by an angle of θ with respect to the first one is central, then the angle θ must
be either 0 or π/n.

The configurations considered in all the previous papers are highly symmetric.
Montaldi (2015), using variational arguments, proved that for every possible symmetry
type given by a finite subgroup of O(2) and for any symmetric choice of the masses
there is at least a central configuration. In particular, he gives an alternative proof for the
existence of nested/twisted regular n-gons central configurations when all the masses
on each n-gon are equal and masses of different n-gons could be different. He also
proved the existence of symmetric central configurations of concentric polygons that
are combinations of nested/twisted regular n-gons and semiregular 2n-gons. Notice
that in this last cast the number ofmasses on each concentric polygon is not necessarily
equal. See below for a more precise explanation of Montaldi’s work.

There are some other works studying central configurations with the masses at the
vertices of concentric polygons having different number of vertices. Yu and Zhang
(2015) proved that if a configuration with n-equal masses at the vertices of a regular
n-gon and � equal masses at the vertices of a regular �-gon with a common center is
central, then n = �. Siluszyk (2014) and Siluszyk (2017) studied central configurations
consisting of n equal masses at the vertices of a regular n-gon and 2n masses at the
vertices of a second concentric 2n-gon with a common center. In particular in Siluszyk
(2014), the author found the expressions of the masses in function of the sizes of the
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n-gons and in Siluszyk (2017), by using computer-assisted methods, she studied the
existence of central configurations of this type for n = 2. Marchesin (2019) proved
the existence of central configurations consisting of 4 equal masses at the vertices of
an square, 4 equal masses at the vertices of a second concentric square twisted by an
angle of π/4 and 8 equal masses on a third concentric polygon having the vertices at
the bisectors of the angles formed by each pair of position vectors of two consecutive
masses of the previous two squares.

From now on, a central configuration is symmetric if the set of positions and the
set of masses are invariant under the action of a finite subgroup of O(2). Inspired by
the works of Siluszyk, Montaldi and Marchesin, in this work we consider symmetric
central configurations consisting ofn equalmasses at the vertices of a regularn-gon and
2n masses (not all them necessarily equal) at the vertices of a second (not necessarily
regular) concentric 2n-gon. We call this kind of configurations symmetric bicircular
central configurations of the 3n-body problem. Notice that by Yu and Zhang (2015)
if the 2n-gon is regular, then the masses at this 2n-gon cannot be all of them equal.
In fact, when the 2n-gon is regular the symmetric bicircular central configurations of
the 3n-body problem can be thought as the limit case when a2 → a3 of the central
configurations of the 3n-body problem consisting of n masses equal to m1 at the
vertices of a regular n-gon inscribed in a circle of radius a1, n masses equal to m2 at
the vertices of a nested regular n-gon inscribed in a circle of radius a2 and n additional
masses equal to m3 (with m2 �= m3 by Yu and Zhang (2015)), at the vertices of a
regular n-gon inscribed in a circle of radius a3 twisted by an angle of π/n with respect
to the previous two. Thus, when the 2n-gon is regular the masses at the vertices of this
2n-gon alternate the values m2 and m3. Using the nomenclature in Barrabés and Cors
(2019), the symmetric bicircular central configurations of the 3n-body problem are a
(3, n)-crown.

2 Statement of the Problem and of theMain Results

According to Montaldi (2015), we have two different types of symmetric bicircular
central configurations of the 3n-body problem. Indeed, in Montaldi (2015) it is proved
that a generic symmetric planar central configuration consists of kO (with kO = 0
or kO = 1) masses at the origin, n · kN masses at the vertices of kN regular nested
n-gons, n · kT masses at the vertices of kT regular n-gons twisted by an angle of π/n,
and 2n · kS masses at the vertices of kS nested semiregular 2n-gons, all centered at the
origin. Moreover, the masses on each polygon must be equal but masses on different
polygons can be different. A semiregular 2n-gon is a symmetric polygon of 2n vertices
which is invariant by reflections with respect to all symmetry axis of the regular n-gon.

The symmetric bicircular central configurations of the 3n-body problem does not
contain any mass at the origin, so kO = 0. Moreover, since in these configurations
we have 3n-bodies, kN + kT + 2 kS = 3. Thus, we have only three possibilities:
either kN = 1, kT = 2 and kS = 0, or kN = 2, kT = 1 and kS = 0, or kN = 1,
kT = 0 and kS = 1. Since central configurations are invariant under rotations the case
kN = 2, kT = 1 and kS = 0 and the case kN = 1, kT = 2 and kS = 0 provide the
same configuration up to a rotation. So we have only two different types of symmetric
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(a) (b)

Fig. 1 Examples of bicircular configurations

bicircular central configurations of the 3n-body problem, the configurationswith kN =
1, kT = 2 and kS = 0 which are called regular bicircular central configurations of
the 3n-body problem and the configurations with kN = 1, kT = 0 and kS = 1 which
are called semiregular bicircular central configurations of the 3n-body problem.

In short, a regular bicircular central configuration of the 3n-body problem consists
of n bodies with masses equal to m1 at the vertices of a regular n-gon inscribed in
a circle of radius a1 = r and 2n bodies with alternating masses m2 and m3 with
m2 �= m3 at the vertices of a second regular 2n-gon inscribed in a circle of radius
a2 = ar with a common center having n vertices aligned with the vertices of the first
regular n-gon, see Fig. 1a. Moreover, a semiregular bicircular central configuration
of the 3n-body problem consists of n bodies with masses equal to m1 at the vertices
of a regular n-gon inscribed in a circle of radius a1 = r and 2n bodies with masses
equal to m2 at the vertices of a second concentric semiregular 2n-gon inscribed in a
circle of radius a2 = ar having n pair of vertices symmetric by a reflection of angle
β with respect to the axis of symmetry of the regular n-gon, see Fig. 1b. Without loss
of generality, we choose the unit of mass and the unit of length so that m1 = 1 and
r = 1.

Notice that the regular bicircular central configurations of the 3n-body problem
are the ones studied in Siluszyk (2014) and Siluszyk (2017), but the author in these
two works does not analyze whether the expressions of the masses are positive or
negative and in case of being positive for which values of the ratios of the radius they
are positive and consequently they provide central configurations.

In the first part of the paper (Sect. 3), we go a step further in the study of the
regular bicircular central configurations of the 3n-body problem. In particular, we
prove analytically for all n ≥ 3 the existence of central configurations for either
sufficiently small values, or sufficiently large values of the ratio of the radius of the
circles a and for n = 2 we prove the existence of central configurations for sufficiently
large values of a. Then, using computer-assisted methods we find the complete set of
values ofa forwhich there exist regular bicircular central configurations of the 3n-body
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problem for n = 2, 3, 4, 5 and we analyze these families of central configurations.
Finally, we make a numerical exploration of the families of central configurations of
the regular bicircular central configurations of the 3n-body problem for n = 6, ..., 500.
We remark that the result obtained here for n = 2 does not coincide with the one given
in Siluszyk (2017).

In the second part of the paper (Sect. 4), we study the semiregular bicircular central
configurations of the 3n-body problem. In particular, we show that the only values of β
that can provide central configurations are β ∈ (π/2n, π/n) and we prove analytically
the existence of semiregular bicircular central configurations of the 3n-body problem
for all values of β in a sufficiently small neighborhood of π/2n and of π/n for all
n ≥ 2. Then, wemake a numerical exploration of the families of semiregular bicircular
central configurations of the 3n-body problem for n = 2, . . . , 100.

Next we give a complete summary of the obtained results.

2.1 Summary of the Results Concerning Regular Bicircular Central Configurations
of the 3n-Body Problem

The analytical results that we have obtained for the regular bicircular central config-
urations of the 3n-body problem are summarized in the following theorem.

Theorem 1 For each n ≥ 2, there exist a nonemptyset D and functions m2 = m2(a)

and m3 = m3(a) that provide regular bicircular central configurations of the 3n-body
problem for all a ∈ D. In particular,

(a) If n = 2, then we can assure the existence of central configurations at least for all
a ∈ (a∗,∞), where a∗ ∈ (1,∞) is the largest zero of m3. In this configuration,
m3 → 0 and m2 → m2(a∗) when a → a∗+ and m2,m3 → ∞ when a → ∞.

(b) If n ≥ 3, then we can assure the existence of central configurations at least for
all a ∈ (0, a∗

1 ) ∪ (a∗
2 ,∞), where a∗

1 is the minimum between the first positive
zero and the pole of m2 and a∗

2 is the largest zero of m3. In these configurations,
m2,m3 → 0 when a → 0+, m3 → 0 and m2 → m2(a∗

2) when a → a∗
2
+, and

m2,m3 → ∞ when a → ∞.

The computer-assisted results thatwehave obtained for the regular bicircular central
configurations of the 3n-body problem with n = 2, 3, 4, 5 are summarized in the
following results.

Theorem 2 For n = 2, we can find functions m2 = m2(a) and m3 = m3(a) that
provide regular bicircular central configurations of the 6-body problem for all a ∈
D = (a1, a2) ∪ (a∗,∞) where a1 is the pole of m2, a2 is the first zero of m2 and a∗ is
the largest zero of m3. The approximate values of a1, a2, and a∗ are given in Table 1.
Moreover, the functions m2 and m3 satisfy the following properties (see Fig. 2):

(a) m2,m3 → ∞ with m2/m3 → 1− when a → a+
1 ;

(b) in the interval (a1, a2) the function m2 is decreasing and m3 has a unique crit-
ical point at a = a0 = 0.5670013389.. which is a minimum with m3(a0) =
4.7014182338... Moreover, m2 < m3;

(c) m2 → 0 and m3 → 5.950134407.. when a → a−
2 ;
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(d) m2 → 1.6921282709.. and m3 → 0 when a → a∗+;
(e) in the interval (a∗,∞) both functions m2 and m3 are increasing and m2 > m3;
(f) m2,m3 → ∞ with m2/m3 → 1+ when a → ∞.

Theorem 3 For n = 3, we can find functions m2 = m2(a) and m3 = m3(a) that
provide regular bicircular central configurations of the 9-body problem for all a ∈
D = (0, a∗

1 ) ∪ (a1, a2) ∪ (a∗
2 ,∞) where a∗

1 is the first zero of m2, a1 is the pole of
m2, a2 is the second zero of m2(a) and a∗

2 is the largest zero of m3. The approximate
values of a∗

1 , a1, a2, and a∗
2 are given in Table 1. Moreover, the functions m2 and m3

satisfy the following properties (see Fig. 3):

(a) m2,m3 → 0 with m2/m3 → 1− when a → 0+;
(b) in the interval (0, a∗

1 ) the function m2 has a unique critical point at a = a0 =
0.1030896914.. which is a maximum with m2(a0) = 0.0003095830... Moreover,
m3 is increasing and m2 < m3;

(c) m2 → 0 and m3 → 0.0060680996.. when a → a∗
1
−;

(d) m2,m3 → ∞ when a → a+
1 with lima→a+

1
m2/m3 = 1−;

(e) in the interval (a1, a2) the function m2 is decreasing and m3 has a unique critical
point at a = a3 = a3 = 0.6096781095.. which is a minimum with m3(a3) =
4.7014182338... Moreover, m2 < m3;

(f) m2 → 0 and m3 → 4.4805332525.. when a → a−
2 ;

(g) m2 → 1.3553872894.. and m3 → 0 when a → a∗
2 ;

(h) in the interval (a∗
2 ,∞) both functions m2 and m3 are increasing and m2 > m3;

(i) m2,m3 → ∞ with m2/m3 → 1+ when a → ∞.

Theorem 4 For n = 4, we can find functions m2 = m2(a) and m3 = m3(a) that
provide regular bicircular central configurations of the 12-body problem for all a ∈
D = (0, a∗

1 )∪ (a1, a2)∪ (a∗
2 ,∞) where a∗

1 is the first zero of m2, a1 is the second zero
of m2, a2 is the pole of m2 and a∗

2 is the largest zero fo m3. The approximate values
of a∗

1 , a1, a2, and a∗
2 are given in Table 1. Moreover, the functions m2 and m3 satisfy

the following properties (see Fig. 4):

(a) m2,m3 → 0 with m2/m3 → 1− when a → 0+;
(b) in the interval (0, a∗

1 ) the function m2 has a unique critical point at a = a0 =
0.2746698699.. which is a maximum with m2(a0) = 0.0085881109.. and the
function m3 is increasing. Moreover, m2 < m3;

(c) m2 → 0 and m3 → 0.1238514421.. when a → a∗
1
−;

(d) m2 → 0 and m3 → 2.3831374646.. when a → a+
1 ;

(e) in the interval (a1, a2) both functions m2 and m3 are increasing and m2 < m3;
(f) m2,m3 → ∞ with m2/m3 → 1− when a → a−

2 ;
(g) m2 → 1.0670996767.. and m3 → 0 when a → a∗

2
+;

(h) in the interval (a∗
2 ,∞) both functions m2 and m3 are increasing and m2 > m3;

(i) m2,m3 → ∞ with m2/m3 → 1+ when a → ∞.

Theorem 5 For n = 5, we can find functions m2 = m2(a) and m3 = m3(a) that
provide regular bicircular central configurations of the 15-body problem for all a ∈
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D = (0, a∗
1 )∪ (a∗

2 ,∞) where a∗
1 is the pole of m2 and a∗

2 is the largest zero of m3. The
approximate values of a∗

1 , a2, and a
∗
2 are given in Table 1. Moreover, the functions m2

and m3 satisfy the following properties (see Fig. 5):

(a) m2,m3 → 0 with m2/m3 → 1− when a → 0+;
(b) in the interval (0, a∗

1 ) both functions m2 and m3 are increasing and m2 < m3;
(c) m2,m3 → ∞ with m2/m3 → 1− when a → a∗

1
−;

(d) m2 → 0.8426164718.. and m3 → 0 when a → a∗
2
+;

(e) in the interval (a∗
2 ,∞) both functions m2 and m3 are increasing and m2 > m3;

(f) m2,m3 → ∞ with m2/m3 → 1+ when a → ∞.

The functions m2 = m2(a) and m3 = m3(a) in Theorems 1–5 are expressed by
the formulas in (4).

After a numerical exploration of the cases n = 6, . . . , 500, we see that the pattern
observed for n = 6, ..., 500 is the same as the one observed for n = 5. So we make
the following conjecture.

Conjecture 1 For all n ≥ 5, there exist functions m2 = m2(a) and m3 = m3(a) that
provide regular bicircular central configurations of the 3n-body problem for all a in the
set D ⊂ (0, a∗

1)∪ (a∗
2 ,∞) where a∗

1 is the pole of m2 and a∗
2 is the largest zero of m3.

Moreover, the functionsm2 andm3 are increasing in D, and they satisfy thatm2 < m3
when a ⊂ (0, a∗

1 ), m2 > m3 when a ⊂ (a∗
2 ,∞), m2,m3 → 0 with m2/m3 → 1

when a → 0+; m2,m3 → ∞ with m2/m3 → 1 when a → a∗
1
−; m3 → 0 when

a → a∗
2
+; and m2,m3 → ∞ with m2/m3 → 1 when a → ∞.

In short, when n = 2 we have proved analytically (see Theorem 1(a)) the existence
of central configurations for all a in the interval (a∗,∞) where a∗ > 1 is the largest
zero of m3. Using computer-assisted results, we prove the existence of an additional
interval (a1, a2) providing central configurations, where a1 < 1 is the pole of m2 and
a2 < 1 is a zero of m2 (see Theorem 2).

When n ≥ 3, we have proved analytically (see Theorem 1(b)) the existence of
central configurations for a ∈ (0, a∗

1 ) ∪ (a∗
2 ,∞) where 0 < a∗

1 < 1 is the minimum
between the first positive zero and the pole of m2 and a∗

2 > 1 is the largest zero
of m3. For n = 3, 4, using computer-assisted results we have proved the existence
of an additional interval (a1, a2) with a1, a2 < 1 providing central configurations.
Moreover, for n = 3 we have proved that a∗

1 is the first positive zero of m2, a1 is the
pole of m2 and a2 is the second zero of m2 (see Theorem 3). When n = 4, we have
proved that a∗

1 is the first zero of m2, a1 is the second zero of m2 and a2 is the pole of
m2 (see Theorem 4). For n = 5, we have proved using computer-assisted results that
the only set of values of a providing central configurations is (0, a∗

1 )∪(a∗
2 ,∞); that is,

the set given in Theorem 1(b) (see Theorem 5). Finally, after a numerical explorations
of the cases n = 6, . . . , 500 we conclude that for all n = 6, . . . , 500 that the only set
of values of a providing central configurations is the one given in Theorem 1(b).

We must remark that fixed a value of n there are no central configurations of the
regular bicircular 3n-body problem with a → 1. We have observed that as n increases
the value a∗

1 increases and the value of a∗
2 decreases, but we do not know whether

a∗
1 → 1− and a∗

2 → 1+ when n → ∞ or on the contrary they could tend to a value
different from one. This question remains as an open problem.
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On the other hand, as n increases, the values of m2 and m3 are getting closer.
We know from results in Yu and Zhang (2015) that m2 �= m3 because we have two
concentric regular n-gonswith different number of vertices, but it seems that if n → ∞
then m2 → m3.

2.2 Summary of the Results Concerning Semiregular Bicircular Central
Configurations of the 3n-Body Problem

The main analytic results for the semiregular bicircular central configurations of the
3n-body problem are summarized in the following theorem.

Theorem 6 There exist a function m = m(a, β) that provides semiregular bicircular
central configurations of the 3n-body problem for some values of a > 0 and β ∈
(π/2n, π/n). In particular,

(a) If n ≥ 3, then for each β in a sufficiently small neighborhood of π/n there exist
at least two central configurations, one with 0 < a < 1 and one with a > 1.
Moreover, if n = 2, then for each β in a sufficiently small neighborhood of π/n
there exists at least one central configuration with a > 1. The values of m at these
central configurations satisfy that m → 0 as β → π/n.

(b) If n ≥ 3, then for each β in a sufficiently small neighborhood of β = π/2n there
exist at least four central configurations, one with a sufficiently close to the origin,
one with 0 < a < 1 not necessarily close to the origin, one with a sufficiently
large, and one with a > 1 not necessarily large. Moreover, if n = 2, then for
each β in a sufficiently small neighborhood of β = π/2n there exists at least three
central configurations, one with a sufficiently large, one with a > 1 not necessarily
large, and one with 0 < a < 1. The values of m at the central configurations with
0 < a < 1 not close to the origin and with a > 1 not being large satisfy that
m → ∞ as β → π/2n.

The function m(a, β) is given in (16).
After a numerical study of the behavior of the families of semiregular bicircular

central configurations of the 3n-body problem for n = 2, 3, 4, we get the following
numerical results.

Result 1 When n = 2, we can find continuous functions α1(β) defined for β ∈
(π/4, π/2), andα2(β)andα3(β)defined forβ ∈ (π/4, b∗]with b∗ = 0.9195936184..
and a function m = m(a, β) such that the following statements hold for the semireg-
ular bicircular central configurations of the 6-body problem (see Fig. 9a).

(a) If β ∈ (π/4, b∗), then m = m(β, a) provides three families of central configura-
tions, one with a = α1(β), one with a = α2(β), and one with a = α3(β).

(b) If β = b∗, then m = m(β, a) provides two central configurations, one with
a = α1(b∗) and one with a = α2(b∗) = α3(b∗) (the families with a = α2(β) and
a = α3(β) coincide at this point).

(c) If β ∈ (b∗, π/2), then m = m(β, a) provides a unique family of central configu-
rations with a = α1(β).
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Moreover,m(α1(β), β) → 0whenβ → π/2−; andm(α1(β), β),m(α2(β), β),m(α3(β),

β) → ∞ when β → π/4+.

Result 2 When n = 3, we can find continuous functions α1(β) and α2(β) defined
for β ∈ (π/6, b∗], functions α1(β) and α2(β) defined for β ∈ (π/6, π/3), with
b∗ = 0.7119233940.. and a function m = m(a, β) such that the following statements
hold for the semiregular bicircular central configurations of the 9-body problem (see
Fig. 9b).

(a) If β ∈ (π/6, b∗), then m = m(β, a) provides four families of central configura-
tions, one with a = α1(β), one with a = α2(β), one with a = α3(β), and one with
a = α4(β).

(b) If β = b∗, then m = m(β, a) provides three central configurations, one with
a = α1(b∗) = α2(b∗) (the families with a = α1(β) and a = α2(β) coincide at
this point), one with α3(b∗), and one with a = α4(b∗).

(c) If β ∈ (b∗, π/3), then m = m(β, a) provides two family of central configurations,
one with a = α3(β) and one with a = α4(β).

Moreover, m(α3(β), β),m(α4(β), β) → 0 when β → π/3−; m(α1(β), β),

m(α2(β), β), breakm(α3(β), β) → ∞ and m(α4(β), β) → 0 when β → π/6+.

Result 3 When n = 4, we can find continuous functions α1(β) and α4(β) defined
for β ∈ (π/8, b∗], functions α2(β) and α3(β) defined for β ∈ (π/8, π/4), with
b∗ = 0.4665964724.. and a function m = m(a, β) such that the following statements
hold for the semiregular bicircular central configurations of the 12-body problem (see
Fig. 9c).

(a) If β ∈ (π/8, b∗), then m = m(β, a) provides four families of central configura-
tions, one with a = α1(β), one with a = α2(β), one with a = α3(β), and one with
a = α4(β).

(b) If β = b∗, then m = m(β, a) provides three central configurations, one with
a = α1(b∗) = α4(b∗) (the families with a = α1(β) and a = α4(β) coincide at
this point), one with α2(b∗) and one with a = α3(b∗).

(c) If β ∈ (b∗, π/4), then m = m(β, a) provides two family of central configurations,
one with a = α2(β) and one with a = α3(β).

Moreover, m(α3(β), β),m(α2(β), β) → 0 when β → π/4−; and m(α1(β), β),

m(α2(β), β),m(α3(β), β) → ∞ and m(α4(β), β) → 0 when β → π/8+.

We have also studied numerically the families of semiregular bicircular central
configurations of the 3n-body for n = 5, . . . , 100, and we have observed that the
behavior is the same as the one for n = 4. So we state the following conjecture.

Conjecture 2 For all n ≥ 4, we can find a value β = b∗ and functions αi (β) for
i = 1, 2, 3, 4 such that

(a) for β ∈ (π/2n, b∗) there exist exactly four different families of semiregular
bicircular central configurations, one emanating from a point (a1, π/2n) with
0 < a1 < 1 (the family with a = α1(β)), one emanating from a point (a2, π/2n)

with a2 > 1 (the family with a = α1(β)), one emanating from the point (∞, 0)
(the family with a = α3(β)), and one emanating from the point (0, π/2n) (α4(β));
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(b) for β = b∗ there exist exactly three different central configurations, the one with
a = a1(b∗) = a4(b∗), the one with a = a2(b∗) and the one with a = a3(b∗);

(c) for β ∈ (b∗, π/n) there exist exactly two different central configurations, one
tending to a point (a∗

1 , π/n) with 0 < a∗
1 < 1 when β → π/n− (the family with

a = a2(β)) and one tending to a point (a∗
2 , π/n) with a∗

2 > 1 when β → π/n−
(the family with a = a3(β)).

Moreover, the masses associated with these families of central configurations m =
m(a, β) satisfy that m(α3(β), β),m(α2(β), β) → 0 when β → π/2n−; and
m(α1(β), β),m(α2(β), β),m(α3(β), β) → ∞ and m(α3(β), β) → 0 when β →
π/n+.

We note that the relative length of the interval of values of the parameter β providing
four different families of central configurations gets smaller as n increases. With
relative length, we mean relative length with respect to the total length of the interval
(π/2n, π/n).

3 Regular Bicircular Central Configurations of the 3n-Body Problem

3.1 The Equations

As we have seen in the introduction, the regular bicircular central configurations of
the 3n-body problem can be thought as the limit case of a (3, n)-crown (see Barrabés
and Cors 2019) where two twisted n-gons are inscribed in a circle of the same radius.

From equation (9) in Barrabés and Cors (2019), the equations for central config-
urations of any (3, n)-crown with n masses equal to m1 = 1 at the vertices of a first
n-gon inscribed in a circle of radius a1 = 1 and twisted an angle �1 = 0, n masses
equal to m2 at the vertices of a second n-gon inscribed in a circle of radius a2 and
twisted an angle �2 = 0, and n masses equal to m3 at the vertices of a third n-gon
inscribed in a circle of radius a3 and twisted an angle �3 = π/n are

C21 − Sn a2 +
(
Sn
a22

− a2 C12

)
m2 +

(
C23 − a2 C13

)
m3 = 0,

C31 − Sn a3 +
(
C32 − a3 C12

)
m2 +

(
Sn
a23

− a3 C13

)
m3 = 0,

(2)

where

Sn =
n−1∑

j=1

1

4 sin
(π j

n

) =
n−1∑

j=1

1 − cos
( 2π j

n

)
(
2 − 2 cos

( 2π j
n

))3/2 =
n−1∑

j=1

1

2
(
2 − 2 cos

( 2π j
n

))1/2 ,

Ck� = Ck�(ak, a�) =
n∑

j=1

ak − a� cos
(
�k − �� + 2π j

n

)
(
a2k + a2� − 2aka� cos

(
�k − �� + 2π j

n

))3/2 ,
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for k �= �.
Thus, the equations of the regular bicircular central configurations of the 3n-body

problem are given by (2) with a2 = a3 = a, and they can be written as the linear
system in the variables m2, m3

(
a11 a12
a21 a22

) (
m2
m3

)
=

(
b1
b2

)
, (3)

where

a11 = K1

a3
− K2, a12 = K5

a3
− K3, b1 = K1 − K4,

a21 = K5

a3
− K2, a22 = K1

a3
− K3, b2 = K1 − K6,

and

K1 = Sn,

K2 = K2(a) = C12(1, a) =
n∑

j=1

1 − a cos
( 2π j

n

)
(
1 + a2 − 2a cos

( 2π j
n

))3/2 ,

K3 = K3(a) = C13(1, a) =
n∑

j=1

1 − a cos
( 2π j

n + π
n

)
(
1 + a2 − 2a cos

( 2π j
n + π

n

))3/2 ,

K4 = K4(a) = C21(a, 1)

a
=

n∑

j=1

1 − 1/a cos
( 2π j

n

)
(
1 + a2 − 2a cos

( 2π j
n

))3/2 ,

K5 = a2C23(a, a) = a2C32(a, a)

=
n∑

j=1

1 − cos
( 2π j

n + π
n

)
(
2 − 2 cos

( 2π j
n + π

n

))3/2 =
n∑

j=1

1

2
(
2 − 2 cos

( 2π j
n + π

n

))1/2 ,

K6 = K6(a) = C31(a, 1)

a
=

n∑

j=1

1 − 1/a cos
( 2π j

n + π
n

)
(
1 + a2 − 2a cos

( 2π j
n + π

n

))3/2 .

Solving system (3), we get the solution

m2 = m2(a) = a22b1 − a12b2
a11a22 − a12a21

= a3 mN ,2

mD
,

m3 = m3(a) = a11b2 − a21b1
a11a22 − a12a21

= a3 mN ,3

mD

(4)
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where

mN ,2 = K 2
1 − K1K4(a) − K1K5 + K5K6(a) − a3K3(a)(K6(a) − K4(a)),

mN ,3 = K 2
1 − K1K5 + K4(a)K5 − K1K6(a) + a3K2(a)(K6(a) − K4(a)),

mD = (K5 − K1)Δ(a),

and

Δ(a) = −K1 − K5 + a3(K2(a) + K3(a)).

Solution (4) is defined when the denominator mD is different from zero. By
Lemma 3(c) in Appendix 1 K5 −K1 �= 0 and by Lemma 4 in Appendix 1 the function
Δ(a) has a unique zero and it belongs to the interval (0, 1). So the set where mD is
different from zero is not empty. So in what follows we will assume that mD �= 0. In
fact, this does not seem to be restrictive because, as we will see in Sect. 3.3, we have
numerical evidences that there are no solutions of (3) with mD = 0 (mD , mN ,2, and
mN ,3 are not simultaneously 0).

These expressions have been obtained in Siluszyk (2014) by using a different
approach.

Note that

m3 = m2 + a3(K6(a) − K4(a))

K5 − K1
. (5)

In short, a configuration of the regular bicircular 3n-body problem is central if m2
and m3 are given by (4) and a is so that m2,m3 > 0.

3.2 Proof of Theorem 1

The central configurations of the regular bicircular 3n-body problem are given by the
solutions of (3) with m2,m3 > 0. Let m2 = m2(a) and m3 = m3(a) be the solutions
of (3) given in (4). We need the following auxiliary result that give some properties of
m2 and m3.

Proposition 1 Let m2 = m2(a) and m3 = m3(a) be the functions defined in (4). Then,
the following statements hold for n ≥ 2.

(a) m2 → 0+ when a → 0+ for n ≥ 3 and m2 → 0− when a → 0+ for n = 2;
(b) m3 → 0+ when a → 0+;
(c) m3 → −∞ when a → 1+;
(d) m2 → ∞ and m3 → ∞ when a → ∞;
(e) m2 > m3 when a > 1 and m2 < m3 when a ∈ (0, 1).

The proof of Proposition 1 is given in Appendix 1.
From Proposition 1(a) and (b), for each n ≥ 3 there exist a sufficiently small

interval I1 = (0, a∗
1 ) such that m2,m3 > 0. Since m2 < m3 when 0 < a < 1 (see
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Proposition 1(e)) this value a∗
1 corresponds either to a zero of m2 or to a point where

the denominator mD vanishes. In Sect. 3.3 we prove, by using a computer-assisted
proof, that a∗

1 is a zero of m2 when n = 3, 4 and it is the zero of mD when n = 5.
Moreover, we give strong numerical evidences that a∗

1 is the zero of mD for n > 5.
We continue with the proof of Theorem 1. From Proposition 1(d) for each n ≥ 2,

there exists a sufficiently large value a∗
2 > 1 such that m2,m3 > 0 for all a ∈ I2 =

(a∗
2 ,∞). Using Proposition 1(c) and (d), we get that m3 has at least a zero for a > 1

and from Lemma 4 in Appendix 1 we obtain that mD has no zeros for a > 1. Since
m2 > m3 when a > 1 (see again Proposition 1), and connecting all above comments
together we can assure that a∗

2 is the largest zero of m3. In Sect. 3.3 using a computer-
assisted proof we prove, for n = 2, 3, 4, 5, that m3 has a unique zero, a∗

2 , for a > 1
and we give strong numerical evidences that this also happens for n > 5.

These arguments, together with Proposition 1, complete the proof of Theorem 1.

3.3 Particular Cases of Regular Bicircular Central Configurations of the 3n-Body
Problem

3.3.1 Case n = 2

Computing the values of Ki with i = 1, . . . , 6 for n = 2, we get

K1 = 1

4
, K3(a) = K6(a) = 2

h22
, K5 = 1√

2
,

K2(a) = 1 − a

h12
+ 1

(a + 1)2
, K4(a) = −1 − a

a h12
+ 1

a(a + 1)2
,

(6)

where h12 = ((1 − a)2)3/2 and h22 = (1 + a2)3/2. Thus, when n = 2, the solutions
m2 = m2(a) and m3 = m3(a) of system (3) with mD �= 0 are given by (4) with Ki

given by (6). Note that in order that these solutions provide central configurations both
m2 and m3 have to be positive. Next, we find the set of values of a satisfying these
conditions.

Since a > 0, the possible changes of sign of m2 and m3 are given by the zeroes of
mN ,2 and mD , and mN ,3 and mD , respectively, see (4). We start computing the zeroes
of mD .

First we transform equation mD = 0 into a polynomial equation having all the
solutions of equation mD = 0 and probably new ones in the following way. Dropping
the denominators we get the equation

g = (a + 1)2
(
4a3((a − 1)h22 − 2h12) +

(
1 + 2

√
2
)
h12h22

)

− 4a3h12h22 = 0.

In order to drop the square roots, we consider equation g = 0 as a polynomial equation
in the variables a, h12 and h22. Then, the zeroes of mD can be thought as solutions of
the polynomial system g = 0, e1 = 0 and e2 = 0 with
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e1 = h212 − ((1 − a)2)3, e2 = h222 − (1 + a2)3.

We eliminate the variable h12 by means of the resultant R1 = Res[g, e1, h12] and
the variable h22 by means of the resultant R2 = Res[R1, e2, h22]. The resulting poly-
nomial is a polynomial in the variable a with irrational coefficients (the coefficients
depend on

√
2) that has all the zeroes ofmD and probably new ones. To avoid irrational

coefficients, we introduce a new variable h32 = √
2 and a new equation e3 = h232 −2.

We eliminate the variable h32 by means of the resultant R3 = Res[R2, e3, h32] obtain-
ing in this way a polynomial with integer coefficients having all the zeroes of mD and
probably new ones. The obtained polynomial is (a−1)8P60(a) where P60(a) is given
by

(45041a28 + 471582a26 + 1263627a24 + 900044a22 + 1046137a20

+172866a18 + 233227a16 + 47784a14 + 27723a12 − 18750a10

+6329a8 − 564a6 − 693a4 − 98a2 + 49)(4096a32 − 2048a31

+32128a30 − 12064a29 + 176561a28 − 42784a27 + 495902a26

−50496a25 + 1006987a24 + 27328a23 + 759372a22 + 93472a21

+1118393a20 + 64800a19 + 259394a18 + 11904a17 + 310283a16

−31104a15 + 38184a14 − 41696a13 + 1675a12 − 15072a11

−10814a10 − 1344a9 + 3641a8 − 1344a7 − 1204a6

+224a5 − 245a4 + 224a3 − 98a2 + 49)

From now on, we will denote by Pn(a) a polynomial of degree n in the variable a.
ApplyingSturm’s theorem,weget that the polynomial equation P60(a) = 0has exactly
four real solutions with a > 0. We solve numerically the equation P60(a) = 0, and
we found the solutions a = a1 = 0.4656636054.., a = a2 = d2 = 0.5317860740..,
a = a3 = 0.5390030006.., a = a4 = 0.5824356327... By substituting these solutions
into the initial equationmD = 0, we see that only the solution a = d2 can be a solution
of the initial equation. This can be proved in a more rigorous way by using interval
arithmetic (see Tucker 2011). We have used Mathematica’s capability of operating on
interval objects to get an interval enclosure of the function mD in a sufficiently small
interval containing the possible solutions of the equation mD = 0. We start proving
that a1 ∈ a1 = [4656636054/1010, 4656636055/1010] cannot be a solution of the
initial equation. Notice that since a1 < 1 we have that ((1 − a1)2)3/2 = (1 − a1)3.
Using interval arithmetic, we get

1 + a21 ∈ [h21, h22] =
[
30421064834853172729

25·1018 , 4867370373949038521
4·1018

]
,

(1 − a1)
3 ∈ h1

=
[
1220490080420246024105505069

8·1027 , 19070157517273170971924514317
125·1027

]
.
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Moreover, we can see that

h3/221 ∈
[
13423062258

1010
, 13423062259

1010

]
, h3/222 ∈

[
13423062259

1010
, 13423062260

1010

]
,

so (1 + a21)
3/2 ∈ h2 = [13423062258/1010, 13423062260/1010], moreover

√
2 ∈

h3 = [14142135623/1010, 14142135624/1010]. By substituting into the expression
of mD the values of a, ((1 − a)2)3/2, (1 + a2)3/2 and

√
2 by a1, h1, h2 and h3,

respectively, and doing interval arithmetic again we get that mD ∈ [−0.1855803641,
−0.1855803639], so a1 does not satisfy equation mD = 0. Repeating this procedure
for the remaining solutions, we get that mD ∈ [−0.0000000001, 0.0000000004] for
a2 ∈ [5317860740/1010, 5317860741/1010], mD ∈ [0.0271889606, 0.0271889613]
for a3 ∈ [5390030006/1010, 5390030007/1010] and mD ∈ [0.2330977572,
0.2330977582] for a4 ∈ [5824356327/1010, 5824356328/1010]. This proves that
the unique solution of P60(a) = 0 providing a solution of the initial equations is the
solution a = d2.

Using the same procedure, the equation mN ,2 = 0 can be transformed into
a polynomial equation of the form (a − 1)8a4 P84(a) = 0 where the polyno-
mial P84(a) has exactly 8 real roots with a > 0. Among these solutions, only
a = a12 = 0.6161447847.. and a = a22 = 2.8235222602.. are solutions of the
initial equation mN ,2 = 0. Doing it again, we get that mN ,3 = 0 can be trans-
formed into a polynomial equation of the form (a − 1)16a4 P92(a) = 0 where the
polynomial P92(a) has exactly 8 real roots with a > 0. Among these solutions only
a = b12 = 0.5161941182.. and a = b22 = 3.5282322274.. are solutions of the initial
equation mN ,3 = 0.

Note that mN ,2, mN ,3 and mD are not simultaneously zero. This means that when
n = 2 there could not be solutions of system (3) with mD = 0.

Finally, we analyze the signs of m2 and m3. By substituting a = 4/10, (1 −
(6/10)2)3/2 ∈ [12493582352/1010, 12493582353/1010] and √

2 ∈ [14142135623/
1010, 14142135624/1010] into m2 and m3 and doing interval arithmetic again,
we get that m2 ∈ [−0.3673154049,−0.3673154050] and m3 ∈ [0.6505307765,
0.6505307766], so m2 is negative and m3 is positive in (0, b12). Doing the same
for a = 6/10, a = 2, a = 3 and a = 4, we conclude that m2 > 0 for
a ∈ (d2, a12) ∪ (a22,∞) and m3 > 0 for a ∈ (0, b12) ∪ (d2, 1) ∪ (b22,∞). So
the region where the masses m2 and m3 given in (4) provide central configurations is
a ∈ (d2, a12) ∪ (b22,∞), see Fig. 2 for the plots of m2 and m3.

Examining the properties of the functions m2 and m3, we get that in the interval
(d2, a12) the functions m2,m3 → ∞ when a → d+

2 . Since m2 and m3 satisfy the
relation (5) and (K6(a) − K4(a))/(K5 − K1) is a finite number for all a �= 1, we can
easily see that lima→d+

2
m2/m3 = 1. By computing the derivatives of the functionsm2

and m3 and analyzing its zeros as we have done with the zeroes of m2 and m3, we see
that the function m2 is decreasing for a ∈ (0, d2) ∪ (d2, 1) ∪ (1, 1.5015204804..) and
increasing for a ∈ (1.5015204804..,∞); and the function m3 is increasing for a ∈
(0, 0.4812067311..)∪ (ac2, 1)∪ (1,+∞) with ac2 = 0.5670013389.. and decreasing
for a ∈ (0.4812067311.., d2) ∪ (d2, ac2) (see Fig. 2). Moreover, m2 → 0 when
a → a−

12, m3(ac2) = 4.7014182338.., m3 → 5.950134407.. when a → a−
12, m2 →
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(a) (b)

Fig. 2 Plot of the masses m2 (continuous line) and m3 (dashed line) for n = 2

1.6921282709.. andm3 → 0 when a → b+
22. Finally, we get thatm2,m3 → ∞ when

a → ∞ with lima→∞ m2/m3 = 1 (see Fig. 2 again).

3.3.2 Case n = 3

When n = 3, the values of Ki for i = 1, . . . , 6 are

K1 = 1√
3
, K5 = 5

4
,

K2(a) = 1 − a

h13
+ 2 + a

h33
, K3(a) = 1

(1 + a)2
+ 2 − a

h23
,

K4(a) = −1 − a

a h13
+ 1 + 2a

a h33
, K6(a) = 1

a (1 + a)2
− 1 − 2a

a h23
,

(7)

where h13 = ((1 − a)2)3/2, h23 = (1 − a + a2)3/2, and h33 = (1 + a + a2)3/2.
Thus, when n = 3, the solutions m2 = m2(a) and m3 = m3(a) of system (3) with
mD �= 0 are given by (4) with Ki given by (7). Next we find the values of a for which
m2 = m2(a) > 0 and m3 = m3(a) > 0.

First, we find all the real solutions of equations mD = 0, mN ,2 = 0 and mN ,3 = 0
with a > 0. Following step by step, the procedure explained in Sect. 3.3.1 by intro-
ducing the new variable h43 = √

3 we transform equations mD = 0, mN ,2 = 0 and
mN ,3 = 0 into polynomial equations with integer coefficients having the same solu-
tions as the initial equations and probably new ones. Then, we solve numerically the
obtained polynomial equations and we check which of their solutions with a > 0 pro-
vide solutions of the corresponding initial equations. The results that we have obtained
are summarized in Table 2. Note thatmN ,2,mN ,3 andmD are not simultaneously zero.
This means that when n = 3 there could not be solutions of system (3) with mD = 0.

Proceeding again as in Sect. 3.3.1, we analyze the signs of m2 and m3 and we get
that m2 > 0 for a ∈ (0, a13) ∪ (d3, a23) ∪ (a33,∞) and m3 > 0 for a ∈ (0, b13) ∪
(d3, 1) ∪ (b23,∞). In short, the masses m2 and m3 given in (4) can provide central
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Table 2 Real positive solutions of mD = 0, mN ,2 = 0, and mN ,3 = 0 for n = 3

Equation Polynomial equation 
 Solutions

mD = 0 6561(−1 + a)16P170(a) = 0 12 a = d3 = 0.5823156170..

mN ,2 = 0 (−1 + a)16a4P252(a) = 0 27 a = a13 = 0.1375329706..

a = a23 = 0.6346038252..

a = a33 = 1.9309056653..

mN ,3 = 0 (−1 + a)32a4P252(a) = 0 18 a = b13 = 0.5726308779..

a = b23 = 2.6361642533..

Here, 
 means the number of real roots of the polynomial equation Pn(a) = 0 for a > 0

(a) (b) (c)

Fig. 3 Plot of the masses m2 (continuous line) and m3 (dashed line) for n = 3

configurations when a ∈ (0, a13)∪ (d3, a23)∪ (b23,∞), see Fig. 3 for the plots of m2
and m3.

Examining the properties of the functions m2 and m3, we get that in the interval
(0, a13) the functions m2,m3 → 0 when a → 0+, moreover lima→0+ m2/m3 = 1;
the function m2 is increasing for a ∈ (0, ac13), decreasing for a ∈ (ac13, a13), it has
a maximum at a = ac13 = 0.1030896914.. with m2(ac13) = 0.0003095830.., and
m2 → 0 when a → a−

13; and the function m3 is increasing in a ∈ (0, a13) and m3 →
0.0060680996.. when a → a−

13 (see Fig. 3a). In the interval (d3, a23), the functions
m2,m3 → ∞when a → d+

3 with lima→d+
3
m2/m3 = 1; the functionm2 is decreasing

and m2 → 0 when a → a−
23; the function m3 is decreasing for a ∈ (d3, ac2 3), is

increasing for a ∈ (ac2 3, a23), it has a minimum at a = ac2 3 = 0.6096781095..
with m3(ac2 3) = 4.7014182338.., and m3 → 4.4805332525.. when a → a−

23 (see
Fig. 3b). In the interval (b23,∞), both functions m2 and m3 are increasing, m2 →
1.3553872894.. and m3 → 0 when a → b+

23 and m2,m3 → ∞ when a → ∞ with
lima→∞ m2/m3 = 1 (see Fig. 3c).
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Table 3 Real positive solutions of mD = 0, mN ,2 = 0, and mN ,3 = 0 for n = 4

Equation Polynomial equation 
 Solutions

mD = 0 (−1 + a)64P880(a) 50 a = d4 = 0.6118834277..

mN ,2 = 0 (−1 + a)64a16P1264(a) 107 a = a14 = 0.3563101506..

a = a24 = 0.6103522047..

a = a34 = 1.4630863479..

mN ,3 = 0 (−1 + a)128a16P1328(a) 76 a = b14 = 0.6121322975..

a = b24 = 2.2685443458..

Here, 
 means the number of real roots of the polynomial equation Pn(a) = 0 for a > 0

3.3.3 Case n = 4

When n = 4, the values of Ki for i = 1, . . . , 6 are

K1 = 1

4
+ 1√

2
, K5 =

√
2 + √

2,

K2(a) = 1 − a

h14
+ 1

(1 + a)2
+ 2

h24
, K3(a) = 2 − √

2a

h34
+ 2 + √

2a

h44
,

K4(a) = −1 − a

a h14
+ 1

a(1 + a)2
+ 2

h24
, K6(a) = −√

2 + 2a

ah34
+

√
2 + 2a

ah44
,

(8)

where h14 = ((1 − a)2)3/2, h24 = (
a2 + 1

)3/2
, h34 =

(
a2 − √

2a + 1
)3/2

and

h44 =
(
a2 + √

2a + 1
)3/2

. Thus, when n = 4, the solutions m2 = m2(a) and

m3 = m3(a) of system (3) with mD �= 0 are given by (4) with Ki given by (8). Next
we find the values of a for which m2 = m2(a) > 0 and m3 = m3(a) > 0.

First, proceeding as in Sects. 3.3.1 and 3.3.2 by introducing the new variables

h54 = √
2 and h64 =

√
2 + √

2, we transform equations mD = 0, mN ,2 = 0 and
mN ,3 = 0 into polynomial equations with integer coefficients. We find all the real
solutions with a > 0 of these equations, and the results that we have obtained are
summarized in Table 3. Note that mN ,2, mN ,3 and mD are not simultaneously zero.
This means that when n = 4 there could not be solutions of system (3) with mD = 0.

Next we analyze the signs of m2 and m3 and we see the region where the masses
m2 andm3 given in (4) can provide central configurations is a ∈ (0, a14)∪ (a24, d4)∪
(b24,∞). See Fig. 4 for the plots of m2 and m3.

Finally, we examine the properties of the functions m2 and m3 we get that in
the interval (0, a14) both functions m2,m3 → 0 when a → 0+ and moreover
lima→0+ m2/m3 = 1; the function m2 is increasing for a ∈ (0, ac4) and decreas-
ing for a ∈ (ac4, a14), it has a maximum at a = ac4 = 0.2746698699.. with
m2(ac4) = 0.0085881109.., and m2 → 0 when a → a−

14; and the function m3
is increasing in a ∈ (0, a14) and m3 → 0.1238514421.. when a → a−

14 (see
Fig. 4a). In the interval (a24, d4) (see Fig. 4b), both functions m2 and m3 are increas-
ing, m2,m3 → ∞ when a → d−

4 with lima→d−
4
m2/m3 = 1, and m2 → 0 and
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(a) (b) (c) (d)

Fig. 4 Plot of the masses m2 (continuous line) and m3 (dashed line) for n = 4

m3 → 2.3831374646.. when a → a+
24. Finally, in the interval (b24,∞) both func-

tions m2 and m3 are increasing (see Fig. 4d), m2 → 1.0670996767.. and m3 → 0
when a → b+

24 and m2,m3 → ∞ when a → ∞ with lima→∞ m2/m3 = 1.

3.3.4 Case n = 5

When n = 5, the values of Ki for i = 1, . . . , 6 are

K1 =
√

1 + 2√
5
, K5 = 1

4
+ √

5,

K2(a) = 1 − a

h15
+

√
2(4 + ηa)

h45
+

√
2(4 + ξa)

h55
,

K3(a) = 1

(1 + a)2
+

√
2(4 − ξa)

h25
+

√
2(4 − ηa)

h35
,

K4(a) = −1 − a

ah15
+

√
2(η + 4a)

ah45
+

√
2(ξ + 4a)

ah55
,

K6(a) = 1

a(1 + a)2
+

√
2(4a − ξ)

ah25
+

√
2(4a − η)

ah35
,

(9)

where h15 = ((1 − a)2)3/2, h25 = (
2a2 − aξ + 2

)3/2
, h35 = (

2a2 − aη + 2
)3/2

,

h45 = (
2a2 + aη + 2

)3/2
, h55 = (

2a2 + aξ + 2
)3/2

, ξ = 1 + √
5, and η = 1 − √

5.
So when n = 5, the solutions m2 = m2(a) and m3 = m3(a) of system (3) with
mD �= 0 are given by (4) with Ki for i = 1, . . . , 6 given by (9).

We proceed in a similar way than in the cases n = 2, 3, 4 to find all the real
solutions of equations mD = 0, mN ,2 = 0 and mN ,3 = 0 with a > 0, but in this case
to shorten the computations we consider separately the cases a > 1 and 0 < a < 1 and
we eliminate the square root corresponding to h15 directly by simplification instead
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Table 4 Real positive solutions of mD = 0, mN ,2 = 0, and mN ,3 = 0 for n = 5

Case 0 < a < 1
Equation Polynomial equation 
1 Solutions

mD = 0 κ (−1 + a)64 P1084(a) 50 a = d5 = 0.6313195684..

mN ,2 = 0 κ (−1 + a)64 a4 P1596(a) 131 -

mN ,3 = 0 κ (−1 + a)128 a4 P1596(a) 85 a = b15 = 0.6425878402..

Case a > 1
Equation Polynomial equation 
2 Solutions

mD = 0 κ (−1 + a)64 P1072(a) 59 -

mN ,2 = 0 κ (−1 + a)64 a4 P1596(a) 108 a = a15 = 1.2290630401..

mN ,3 = 0 κ (−1 + a)128 a4 P1596(a) 97 a = b25 = 2.0628290636..

Here 
1 (respectively 
2) means the number of real roots of the polynomial equation Pn(a) = 0 for
0 < a < 1 (respectively a > 1), and κ is a constant

(a) (b)

Fig. 5 Plot of the masses m2 (continuous line) and m3 (dashed line) for n = 5

of eliminating it by means of a resultant with respect h15. To transform equations
mD = 0,mN ,2 = 0 andmN ,3 = 0 into polynomial equations with integer coefficients,
we introduce the new variables h65 = √

2, h75 = √
5 and h85 = √

1 + 2/h75. The
results that we have obtained are summarized in Table 4. Note that mN ,2, mN ,3 and
mD are not simultaneously zero. This means that when n = 5 there could not be
solutions of system (3) with mD = 0.

Analyzing the signs of m2 and m3, we see that the region where the masses m2 and
m3 given in (4) can provide central configurations is a ∈ (0, d5)∪ (b25,∞), see Fig. 5
for the plots of m2 and m3.

Examining the properties of the functions m2 and m3 we get that in the interval
(0, d5), m2 and m3 are increasing (see Fig. 5a), m2,m3 → 0 when a → 0+ with
lima→0+ m2/m3 = 1, and m2,m3 → ∞ when a → d−

5 with lima→d−
5
m2/m3 = 1.

In the interval (b25,∞),m2 andm3 are increasing (seeFig. 5b),m2 → 0.8426164718..
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(a) (b)

(c)

Fig. 6 Plot of the masses m2 (continuous line) and m3 (dashed lien) when n = 6 in a, n = 10 in b and
n = 20 in c

(a) (b)

Fig. 7 Plot of dn (the zero of mD) in a and plot of bn (the zero of mN ,3 with a > 1) in b

andm3 → 0whena → b+
25, andm2,m3 → ∞whena → ∞with lima→∞ m2/m3 =

1.

3.3.5 Numerical Study for n > 5

We have analyzed the behavior of m2 and m3 as a function of a for n =
6, 7, . . . , 500, and we have seen that it is essentially the same as the one for n = 5
(see Fig. 6 for n = 6, 10, 20). More precisely, for all n = 5, . . . , 500, the denomi-
nator mD has a unique zero dn < 1 (the existenc of such zero is proved analytically
in Lemma 4(d) in Appendix 1). We have computed numerically the value of dn for
n = 6, . . . , 500 and we have plotted it in Fig. 7a. Note that dn < dn+1 < 1 for all
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Fig. 8 Plot of m2(bn)

n = 6, . . . , 499. We observe that for all n = 6, . . . , 500 the functions m2 and m3 are
increasing in the interval (0, dn). Moreover,m2 < m3 in this interval (this has already
been proved analytically in Proposition 1(e)), m2,m3 → 0+ when a → 0+ (this has
already been proved analytically in Proposition 1(a) and (b)) and m2,m3 → ∞ when
a → d−

n . So 0 < m2 < m3 for all a ∈ (0, dn) and therefore the interval (0, dn)
provides central configurations. We also observe that for all n = 6, . . . , 500 the func-
tion m2 is negative in the interval (dn, 1); thus, this interval does not provide central
configurations. Finally, we observe that for all n = 6, . . . , 500, m3 → −∞ when
a → 1+ and m3 → ∞ when a → ∞ (this has already been proved analytically in
Proposition 1(c) and (d))). Moreover, we observe that m3 is increasing in the interval
(1,∞) for all n = 6, . . . , 500, and therefore, m3 has a unique zero bn with a > 1
(from Proposition 1(c) and (d) again we can prove analytically the existence of at least
one zero of m3 with a > 1, numerically we see that this zero is unique). We have
computed numerically the value of bn for n = 6, . . . , 500 and we have plotted it in
Fig. 7b. We see that bn > bn+1 > 1 for all n = 6, . . . , 499. Since m2 > m3 when
a > 1 (this is proved analytically in Proposition 1(e)), the interval (bn,∞) provides
central configurations.

In short, the set of values of a where the solutions m2 and m3 given by (4) are
positive is a ∈ (0, dn) ∪ (bn,∞), where dn is the zero of mD and bn is the zero of the
numerator mN ,3 with a > 1. In the region (0, dn), both masses go from zero (when a
tends to 0) to infinity (when a tends to dn), whereas in the region (bn,∞) the massm3
goes from 0 (when a = bn) to infinity (when a → ∞) and the mass m2 goes from the
positive value m2(bn) to infinity (when a → ∞). We have computed numerically the
value m2(bn), and we have plotted it in Fig. 8. We observe that the value of m2(bn)
tends rapidly to 0 as n increases. For instance, when n = 5,m2(bn) = 0.8426164718..;
when n = 20, m2(bn) = 0.0236101462..; when n = 40, m2(bn) = 0.0000894392..;
when n = 100,m2(bn) = 1.1846352161..×10−11. All numerical computations have
been done with a minimum of 100 digit precision and we have ensured that all the
digits given here are exact.

We observe that as n increases the difference betweenm2 andm3 decreases rapidly,
see again Fig. 6. Thus, as n increases, the masses m2 and m3 in a regular bicircular
central configuration of the 3n-body problem tend to be equal.
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4 Semiregular Bicircular Central Configurations of the 3n-Body
Problem

4.1 The Equations

Now we consider semiregular bicircular central configurations of the 3n-body prob-
lem, which consists of n bodies with masses m1 = · · · = mn = 1 at the vertices
of a regular n-gon inscribed in a circle of radius 1 and 2n bodies with masses equal
mn+1 = · · · = m3n = m at the vertices of a semiregular 2n-gon inscribed in a circle
of radius a. By using complex coordinates, the positions of the vertices of the initial
n-gon can be written as q j = eiβ j with β j = 2π j/n for j = 1, . . . , n and the ver-
tices of the semiregular 2n-gon situated on the circle of radius a can be written as
q j+n = aei(β j−β) and q j+2n = aei(β j+β) with β ∈ (0, π/n) and j = 1, . . . , n, see
Fig. 1b.

It is easy to check that the center of mass of the system is at the origin. Under these
hypothesis, the first n equations of (1) become

n∑

j=1, j �=k

qk − q j

|qk − q j |3 + m
n∑

j=1

qk − q j+n

|qk − q j+n|3 + m
n∑

j=1

qk − q j+2n

|qk − q j+2n|3 = λqk, (10)

for k = 1, . . . , n, the following n equations become

n∑

j=1

qk+n − q j

|qk+n − q j |3 + m
n∑

j=1, j �=k

qk+n − q j+n

|qk+n − q j+n|3

+ m
n∑

j=1

qk+n − q j+2n

|qk+n − q j+2n|3 = λqk+n,

(11)

for k = 1, . . . , n, and the last n equations of (1) are

n∑

j=1

qk+2n − q j

|qk+2n − q j |3 + m
n∑

j=1

qk+2n − q j+n

|qk+2n − q j+n|3

+ m
n∑

j=1, j �=k

qk+2n − q j+2n

|qk+2n − q j+2n|3 = λqk+2n,

(12)

for k = 1, . . . , n.
Proceeding in a similarway than inCorbera et al. (2009),we divide the k-th equation

of (10) by qk , k-th equation of (11) by qk+n and the k-th equation of (12) by qk+2n
and we get system

n∑

j=1, j �=k

1 − ei(β j−βk )

|eiβk − eiβ j |3 + m
n∑

j=1

1 − a ei(β j−βk−β)

|eiβk − a ei(β j−β)|3
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+m
n∑

j=1

1 − a ei(β j−βk+β)

|eiβk − a ei(β j+β)|3 = λ,

n∑

j=1

1 − 1/a ei(β j−βk+β)

|a ei(βk−β) − eiβ j |3 + m

a3

n∑

j=1, j �=k

1 − ei(β j−βk )

|ei(βk−β) − ei(β j−β)|3

+ m

a3

n∑

j=1

1 − ei(β j−βk+2β)

|ei(βk−β) − ei(β j+β)|3 = λ,

n∑

j=1

1 − 1/a ei(β j−βk−β)

|a ei(βk+β) − eiβ j |3 + m

a3

n∑

j=1

1 − ei(β j−βk−2β)

|ei(βk+β) − ei(β j−β)|3

+ m

a3

n∑

j=1, j �=k

1 − ei(β j−βk )

|ei(βk+β) − ei(β j+β)|3 = λ, (13)

for k = 1, . . . , n. Here

∣∣∣eiβk − eiβ j

∣∣∣ =
∣∣∣ei(βk±β) − ei(β j±β)

∣∣∣ = (
2 − 2 cos(β j − βk)

)1/2
,

∣∣∣eiβk − a ei(β j±β)
∣∣∣ =

(
1 + a2 − 2a cos(β j − βk ± β)

)1/2
,

∣∣∣a ei(βk±β) − eiβ j

∣∣∣ =
(
1 + a2 − 2a cos(β j − βk ∓ β)

)1/2
,

∣∣∣ei(βk∓β) − ei(β j±β)
∣∣∣ = (

2 − 2 cos(β j − βk ± 2β)
)1/2

.

Since for all k = 1, . . . , n, the set {β j −βk +ϕ} j=1,...,n modulus 2π is equal to the
set {2π j/n + ϕ} j=1,...,n for all ϕ ∈ R, the equations of system (13) are independent
of k. So it is not restrictive to take k = n. After straightforward computations, we can
see that system (13) is equivalent to the system

K1 + m
(
L2 + N2i

) + m
(
L3 + N3i) = λ,

L4 + N4i + m

a3
K1 + m

a3
(
L5 + N5i

) = λ,

L6 + N6i + m

a3
(
L7 + N7i

) + m

a3
K1 = λ,

(14)

where K1 is defined as in Sect. 3 (see (3)) and

L2 = L2(a, β) =
n∑

j=1

1 − a cos
( 2π j

n − β
)

(
1 + a2 − 2a cos

( 2π j
n − β

))3/2 ,

N2 = N2(a, β) =
n∑

j=1

−a sin
( 2π j

n − β
)

(
1 + a2 − 2a cos

( 2π j
n − β

))3/2 ,
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L4 = L4(a, β) =
n∑

j=1

1 − 1/a cos
( 2π j

n + β
)

(
1 + a2 − 2a cos

( 2π j
n + β

))3/2 ,

N4 = N4(a, β) =
n∑

j=1

−1/a sin
( 2π j

n + β
)

(
1 + a2 − 2a cos

( 2π j
n + β

))3/2 ,

L5 = L5(β) =
n∑

j=1

1 − cos
( 2π j

n + 2β
)

(
2 − 2 cos

( 2π j
n + 2β

))3/2 ,

N5 = N5(β) =
n∑

j=1

− sin
( 2π j

n + 2β
)

(
2 − 2 cos

( 2π j
n + 2β

))3/2 ,

L3 = L3(a, β) = L2(a,−β), N3 = N3(a, β) = N2(a,−β),

L6 = L6(a, β) = L4(a,−β), N6 = N6(a, β) = N4(a,−β),

L7 = L7(β) = L5(−β), N7 = N7(β) = N5(−β).

Note that

n−1∑

j=1

− sin
( 2π j

n

)
(
2 − 2 cos

( 2π j
n

))3/2 = 0.

Since for all ϕ ∈ R

cos
( 2π j

n − ϕ
) = cos

( 2π (n− j)
n + ϕ

)
, sin

( 2π j
n − ϕ

) = − sin
( 2π (n− j)

n + ϕ
)
,

we see that

L2(a, β) = L3(a, β), N2(a, β) = −N3(a, β), L4(a, β) = L6,

N4(a, β) = −N6(a, β), L5(β) = L7(β), N5(β) = −N7(β).

So system (14) is equivalent to system

K1 + 2mL2(a, β) = λ,

L4(a, β) + m
a3

(K1 + L5(β)) = λ, (15)

N4(a, β) + m
a3
N5(β) = 0.

Solving the third identity in (15), we get

m = −a3
N4(a, β)

N5(β)
(16)

and from the first and second identities in (15), we obtain

m = a3
(K1 − L4(a, β))

K1 − 2a3L2(a, β) + L5(β)
. (17)
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Therefore, from (16) and (17) we have

F(a, β) := N5(β)(K1 − L4(a, β)) + N4(a, β)(K1 − 2a3L2(a, β) + L5(β)) = 0.

In short, a semiregular bicircular configuration of the 3n-body problem is central if
m = m(a, β) is given by (16) and a, β are such that F(a, β) = 0 and m(a, β) > 0.

4.2 Admissible Values ofˇ

The following proposition provides the range of values of β that can provide semireg-
ular bicircular central configurations of the 3n-body problem.

Proposition 2 A necessary condition to have a semiregular bicircular central config-
uration of the 3n-body problem is that β ∈ (π/2n, π/n).

Proof Wewill see thatm = −a3N4(a, β)/N5(β) > 0 if and only if β ∈ (π/2n, π/n).
We recall that

N4(a, β) = 1

a2
d

dβ

n∑

j=1

1
(
1 + a2 − 2a cos

( 2π j
n + β

))1/2

and that

N5(β) = 1

2
lim
a→1

d

dβ

n∑

j=1

1
(
1 + a2 − 2a cos

( 2π j
n + 2β

))1/2 .

Consider first the case inwhicha ∈ [0, 1). In this case, usingProposition 6 inAppendix
1 with α = 1/2 and u = β and taking derivatives with respect to β we get

N4(a, β) = n

a2π

∫ 1

0

d

dβ

(
t−1/2

(1 − t)1/2
1

(1 − a2t)1/2
1 − (at)2n

B1

)
dt

= n sin(nβ)

a2π

∫ 1

0

−2n(at)n(1 − (at)2n)

t1/2(1 − t)1/2(1 − a2t)1/2B2
1

dt,

with B1 = 1 + (at)2n − 2(at)n cos(nβ), which is negative for β ∈ (0, π/n) because
the integrand in the integral is negative. Moreover, using Proposition 6 again with
α = 1/2 and u = 2β and taking derivatives with respect to β, we get

N5(β) = 1

2
lim

a→1−
n

π

∫ 1

0

d

dβ

(
t−1/2

(1 − t)1/2
1

(1 − a2t)1/2
1 − (at)2n

B2

)
dt

= n sin(2nβ)

π
lim

a→1−

∫ 1

0

−2n(at)n(1 − (at)2n)

t1/2(1 − t)1/2(1 − a2t)1/2B2
2

dt,
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with B2 = 1 + (at)2n − 2(at)n cos(2nβ), which is negative if β ∈ (0, π/2n) and
positive if β ∈ (π/2n, π/n) because again the integrand is negative.

Consider now the case a > 1. In this case using Proposition 7 in Appendix 1 with
α = 1/2 and u = β and taking derivatives with respect to β, we get that

N4(a, β) = n

a2π

∫ 1

0

d

dβ

(
a2n − t2n

t1/2(1 − t)1/2(a2 − t)1/2B3

)
dt

= n sin(nβ)

a2π

∫ 1

0

−2n(at)n(a2n − t2n)

t1/2(1 − t)1/2(a2 − t)1/2B2
3

dt,

with B3 = a2n + t2n − 2antn cos(nβ), which is negative for β ∈ (0, π/n). Moreover,
using Proposition 7 again with α = 1/2 and u = 2β and taking derivatives with
respect to β, we get that

N5(β) = 1

2
lim

a→1+
n

π

∫ 1

0

d

dβ

(
a2n − t2n

t1/2(1 − t)1/2(a2 − t)1/2B4

)
dt

= n sin(2nβ)

π
lim

a→1+

∫ 1

0

−2n(at)n(a2n − t2n)

t1/2(1 − t)1/2(1 − a2t)1/2B2
4

dt,

with B4 = a2n + t2n − 2antn cos(2nβ), which is negative if β ∈ (0, π/2n) because
the integrand is negative and positive if β ∈ (π/2n, π/n), again because the integrand
is negative. Therefore, N4(a, β) is negative for β ∈ (0, π/n) and N5(β) is negative
for β ∈ (0, π/2n) and positive for β ∈ (π/2n, π/n).

In short, m = −a3N4(a, β)/N5(β) is positive if and only if β ∈ (π/2n, π/n) and
the proposition is proved. ��

4.3 Proof of Theorem 6(a)

We study the existence of central configurations of the semiregular bicircular 3n-body
problem around β = π/n. For proving Theorem 6(a), we need the following auxiliary
proposition concerning the sign of the function F(a, β) as β → π/n.

Proposition 3 The following holds for F̄(a) = limβ→π/n F(a, β).

(a) F̄(a) > 0 when a → ∞;
(b) F̄(a) < 0 when a → 1;
(c) F̄(a) > 0 when a → 0 and n ≥ 3 and F̄(a) < 0 when a → 0 and n = 2.

We note that in Proposition 3 we have that F̄(a) could be ±∞.
Proposition 3 is proved in Appendix 2.

Proof of Theorem6(a) It follows from Proposition 2 that all solutions of F(a, β) = 0
for β ∈ (π/2n, π/n) satisfy m > 0; therefore, all solutions of F(a, β) = 0 provide
central configurations of the semiregular bicircular 3n-body problem. Notice that the
function F is continuous for a ∈ (0,∞) and β ∈ (π/2n, π/n); therefore, the points
where the sign of F changes provide always solutions of F(a, β) = 0.

123



88 Page 30 of 52 Journal of Nonlinear Science (2021) 31 :88

In view of Proposition 3,we have thatwhen n ≥ 3, fixed a value ofβ in a sufficiently
small neighborhood of π/n, the function F has at least one change of sign with a > 1
and one change of sign with 0 < a < 1. So for each β in a sufficiently small
neighborhood of π/n there are at least two values of a for which F(a, β) = 0, one
with a > 1 and one with 0 < a < 1. When n = 2 the function F has at least one
change of sign with a > 1. So for each β in a sufficiently small neighborhood of π/n,
there is at least one value of a with a > 1 for which F(a, β) = 0.

On the other hand, from the proofs of Lemma 5 and Proposition 3 (see Appendix
2), we have that limβ→π/n N4(a, β) = 0 and limβ→π/n N5(β) = ∞, respectively.
Therefore, from (16), m → 0 when β → π/n.

��

4.4 Proof of Theorem 6(b)

Nowwe study the existence of central configurations of the semiregular bicircular 3n-
body problem around β = π/2n. For proving Theorem 6(b), we need the following
two auxiliary propositions concerning the study of the sign of the function F(a, β).

Proposition 4 The following holds for F̄(a) = limβ→π/2n F(a, β).

(a) F̄(a) < 0 when a → 0;
(b) F̄(a) < 0 when a → ∞;
(c) F̄(a) > 0 when a → 1.

Proposition 5 The following statements hold for F̄(β) = lima→0 F(a, β) and
F̃(β) = lima→∞ F(a, β).

(a) For all β ∈ (π/2n, π/n), we have F̄(β) > 0 for n ≥ 3 and F̄(β) < 0 for n = 2.
(b) For all β ∈ (π/2n, π/n) and n ≥ 2, we have F̃(β) > 0.

We note that in Proposition 5, both F̄(β) and F̃(β) could be ±∞.
The proof of Propositions 4 and 5 can be found in Appendix 3.

Proof of Theorem 6(b) As in Theorem 6(a) recall that all solutions of F(a, β) = 0 with
β ∈ (π/2n, π/n) satisfy m > 0, and therefore, they provide central configurations of
the semiregular bicircular 3n-body problem. Moreover, the points where the sign of
F changes provide solutions of F(a, β) = 0.

In view of Proposition 4, we have that in a sufficiently small neighborhood of
β = π/2n the function F has at least one change of sign with a > 1 and one
change of sign with 0 < a < 1. Therefore, fixed a value of β in a sufficiently small
neighborhood of β = π/2n, there exist at least two zeros of F , one with a < 1 and
one with 0 < a < 1.

In view of Propositions 4 and 5, we have that when n ≥ 3

lim
a→0

lim
β→π/2n

F(a, β) < 0, lim
β→π/2n

lim
a→0

F(a, β) > 0.

Therefore, fixed a value of β in a sufficiently small neighborhood of π/2n, there exists
at least one zero of F with a sufficiently close to the origin.
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Again, in view of Propositions 4 and 5 we have that for all n ≥ 2

lim
a→∞ lim

β→π/2n
F(a, β) < 0, lim

β→π/2n
lim
a→∞ F(a, β) > 0

Therefore, fixed a value of β in a sufficiently small neighborhood of π/2n, there exists
at least one zero of F with a sufficiently large.

In short, fixed a value of β in a sufficiently small neighborhood of π/2n there exist
at least four zeroes of F when n ≥ 3, one near a = 0, one with 0 < a < 1 not
necessarily small, one with a sufficiently large, and one with a > 1 not necessarily
large.

When n = 2, there exist at least three solutions of F one with a sufficiently large,
one with a > 1 not necessarily large, and one with 0 < a < 1.

On the other hand, in the proof of Lemma 6 (see Appendix 3) we have seen that
limβ→π/2n N5(β) = 0.Moreover from (4.2), we have that a /∈ {0;∞} then limβ→π/2n
N4(a, β) �= 0. Therefore, from (16) we can guarantee that m → ∞ at the central
configurations coming from the zeroes of F with 0 < a < 1 not small and a > 1 not
large.

This completes the proof of Theorem 6(b). ��

5 Particular Cases of Semiregular Bicircular Central Configurations of
the 3n-Body Problem

When n = 2 from Theorem 6(b), we have at least three families (depending on
β) of central configurations in a neighborhood of β = π/4, one emanating from a
point (a1, π/4), one emanating from (a2, π/4) with a2 > 1, and one emanating from
(∞, π/4). From Theorem 6(a), we have at least one family of central configurations
in a neighborhood of β = π/2 that emanates from a point (a∗

2 , π/2) with a∗
2 > 1.

They are given by the families of zeroes of F for n = 2.
We have studied numerically these families of zeroes, and we have obtained the

following (see Fig. 9a) the family of central configurations emanating from the point
(a1, π/4) = (0.6240605991.., π/4) joins the family emanating from (a∗

2 , π/2) =
(
√
3, π/2) and the family emanating from (a2, π/4) = (1.4339374069.., π/4) joins

the family emanating from (∞, π/4). Moreover, these are the only families of central
configurations. In particular, if β ∈ (π/4, b∗)with b∗ = 0.9195936184.. the semireg-
ular bicircular 6-body problem has three different central configurations, if b = b∗ it
has two central configurations and if β > b∗ it has only one central configuration.

When n ≥ 3 from Theorem 6(a), we have at least four families of central con-
figurations of the semiregular bicircular 3n-body problem in a neighborhood of
β = π/2n, one emanating from (0, 2π/n), one emanating from a point (a1, π/2n)

with a1 ∈ (0, 1), one emanating from a point (a2, π/2n) with a2 > 1 and one ema-
nating from (∞, π/2n). Moreover, from Theorem 6(b) we have at least two families
of central configurations in a neighborhood of β = π/n, one emanating from a point
(a∗

1 , π/n) with a∗
1 ∈ (0, 1) and one emanating from a point (a∗

2 , π/n) with a∗
2 > 1.

As above, they are given by the families of zeroes of F .
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(a) (b)

(c) (d)

(e)

Fig. 9 Solutions of F(a, β) = 0
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(a) (b)

(c) (d)

Fig. 10 Values of m at the families of semiregular bicircular central configurations of the 3n-body problem

We have studied numerically these families of zeroes for n = 3, 4, 5, 6, and we
have obtained the following (see again Fig. 9).

When n = 3, the family of central configurations emanating from the point (0, π/6)
joins the family emanating from (a∗

1 , π/3) = (0.4138879324.., π/3), the family ema-
nating from (a1, π/6) = (0.6280478552.., π/6) joins the family emanating from
(a2, π/6) = (1.1308109202.., π/6) and the family emanating from (∞, π/6) joins
the family emanating from (a∗

2 , π/3) = (1.6197896088.., π/3). Moreover, these are
the only families of central configurations when n = 3. In particular, if β ∈ (π/6, b∗)
with b∗ = 0.7119233840.. the semiregular bicircular 9-body problem has four differ-
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ent central configurations, if b = b∗ it has three central configurations and if β > b∗
it has two central configurations.

When n = 4, the family of central configurations emanating from (0, π/8)
joins the family emanating from (a1, π/8) = (0.6351161391.., π/8), the family
emanating from (a2, π/8) = (1.0636734282.., π/8) joins the family emanating
from (a∗

1 , π/4) = (0.697380509.., π/4) and the family emanating from (∞, π/8)
joins the family emanating from (a∗

2 , π/4) = (1.6024084862.., π/4). Moreover,
these are the only families of central configurations when n = 4. In particular,
if β ∈ (π/2n, b∗) with b∗ = 0.4665964724.. the semiregular bicircular 12-body
problem has four different central configurations, if b = b∗ it has three central con-
figurations and if β > b∗ it has two central configurations. The same behavior occurs
for n = 5, . . . , 100 (see Fig. 9 for n = 5, 6), so we conjecture that this happens for
all n > 6. We note that when n = 5, a1 = 0.6434495204.., a2 = 1.0379259369..,
a∗
1 = 0.822828699.., a∗

2 = 1.5979217289.. and b∗ = 0.3406546931..; and when
n = 6, a1 = 0.6515248377.., a2 = 1.0252694202.., a∗

1 = 0.8843211381..,
a∗
2 = 1.5922353553.. and b∗ = 0.2733239284...
Finally, we have computed the values of the masses for the families of central

configurations with n = 2, 3, 4, and we have plotted them in Fig. 10.
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Appendix 1: Proof of Proposition 1

Westate and prove some auxiliary results thatwill be used in the proof of Proposition 1.
We need the following two propositions taken from Bang and Elmabsout (2003).

Proposition 6 (Bang and Elmabsout 2003, Proposition 7) For 0 ≤ a < 1, α ∈ (0, 1)
and u ∈ [0, 2π), we have

n∑

j=1

1
(
1 + a2 − 2a cos

( 2π j
n + u

))α

= n sin(πα)

π

∫ 1

0

tα−1

(1 − t)α
1

(1 − a2t)α
1 − (at)2n

1 + (at)2n − 2(at)n cos(nu)
dt .
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Proposition 7 (Bang and Elmabsout 2003, Proposition 8) For a > 1, α ∈ (0, 1) and
u ∈ [0, 2π), we have

n∑

j=1

1
(
1 + a2 − 2a cos

( 2π j
n + u

))α

= n sin(πα)

π

∫ 1

0

tα−1

(1 − t)α
1

(a2 − t)α
a2n − t2n

a2n + t2n − 2(at)n cos(nu)
dt .

We need the following auxiliary result.

Lemma 1 Let u ∈ R and let γ = 2π j/n + u.

(a) The following identities hold for all � ∈ N

n∑

j=1

cos

(
2�π j

n
+ u

)
= 0,

n∑

j=1

sin

(
2�π j

n
+ u

)
= 0, (18)

when n ≥ 2 and n �= �.
(b) For n ≥ 3, we have

n∑

j=1

cos2 γ = n

2
, (19)

and for n = 2 we have

2∑

j=1

cos2
(
π j + u

) = 2 cos2 u. (20)

(c) For all n ≥ 1, we get

n∑

j=1

a − cos γ
(
1 + a2 − 2a cos γ

)3/2 = − d

da

n∑

j=1

1
(
1 + a2 − 2a cos γ

)1/2 .

(d) Let

L(a, u) =
n∑

j=1

1 − 1/a cos γ
(
1 + a2 − 2a cos γ

)3/2 .

We have L(a, u) = −n/2+O(a) when n ≥ 3 and L(a, u) = 2−6 cos2 u+O(a)

when n = 2.
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Proof Using the sum of the first n terms of a geometric series, we get

n∑

j=1

ei(2�π j/n+u) = 0,

for all � ∈ Zwith � �= n (here i = √−1). This proves statement (a). From the formula
of the cosinus of twice an angle an applying statement (a) with � = 2 and 2u instead
of u, we get

n∑

j=1

cos2
(
2π j

n
+ u

)
= 1

2

n∑

j=1

(
cos

(
2
(2π j

n
+ u

))
+ 1

)
= n

2
.

This proves statement (b) for n > 2. Statement (b) for n = 2 and statement (c) follows
from direct computations.

Expanding the function L in Laurent series around a = 0, we have

L(a, u) = −1

a

n∑

j=1

cos
(2π j

n
+ u

) +
n∑

j=1

1 − 3
n∑

j=1

cos2
(2π j

n
+ u

) + O(a).

Then, when n ≥ 3 in view of (18) with � = 1 together with (19) we obtain

L(a, u) = n − 3n

2
+ O(a) = −n

2
+ O(a)

and when n = 2 in view of (18) with � = 1 and (20) we obtain

L(a, u) = 2 − 6 cos2 u + O(a).

This completes the proof of statement (d).
��

We need the following technical lemma.

Lemma 2 We have f (v) = (1 + v)(1 − v2n) − 4nvn(1 − v) > 0 for n ≥ 2 and
v ∈ (0, 1).

Proof Note that

f (v) =(1 + v)(1 − vn)(1 + vn) − 4nvn(1 − v)

=(1 − v)
(
(1 + v)(1 + v + v2 + . . . + vn−1)(1 + vn) − 4nvn

)

:=(1 − v)g(v)
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where

g(v) = (1 + v)(1 + v + v2 + . . . + vn−1)(1 + vn) − 4nvn

= 1 + 2v + 2v2 + 2v3 + . . . + 2vn−1 + 2vn + 2vn + 2vn+1 + . . .

+ 2v2n−1 + v2n − 4nvn

= 1 + 2v + . . . + 2vn−1 + (2 − 4n)vn + 2vn+1 + . . . + 2v2n−1 + v2n .

(21)

We see that

g(1) = 0 and g′(1) = 0.

Indeed,

g(1) = 1 + 2(n − 1) + 2 − 4n + 2(n − 1) + 1 = 0,

and since

g′(v) = 2 + 4v + 6v2 + . . . + 2(n − 1)vn−2 + (2 − 4n)nvn−1

+ 2(n + 1)vn + . . . + 2(2n − 1)v2n−2 + 2nv2n−1,

then

g′(1) = 2(1 + 2 + 3 + . . . + (n − 1)) + n(2 − 4n)

+ 2(n + 1 + n + 2 + . . . + 2n − 1) + 2n

= 2
( 2n−1∑

j=1

j − n + (1 − 2n)n + n
)

= 2
( 2n−1∑

j=1

j + n(1 − 2n)
)

= 0.

Therefore,

g(v) = (1 − v)2h(v), h(v) =
2n−2∑

j=0

c jv
j

for some coefficients c j .
We will show by induction that

c j =
{

( j + 1)2 for j = 0, . . . , n − 1,

(2n − j − 1)2 for j = n, . . . , 2n − 2.

In view of (21), we have that the coefficients c j satisfy c0 = 1, c1 = 2+ 2c0 = 4,

ck + ck−2 − 2ck−1 = 2 for k = 2, . . . , n − 1, n + 1, . . . , 2n − 2 ,

cn + cn−2 − 2cn−1 = 2 − 4n,
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c2n−3 − 2c2n−2 = 2 and c2n−2 = 1 (and so c2n−3 = 4).
We prove by induction the cases for j = 0, . . . , n − 1. It is clear for j = 0, 1 and

we will prove it for some 2 ≤ j < n − 1. Note that by the induction hypotheses

c j+1 = −c j−1 + 2c j + 2 = − j2 + 2 j2 + 4 j + 2 + 2 = j2 + 4 j + 4 = ( j + 2)2

and so the induction is satisfied for j = 0, . . . , n − 1. For j = n, we have

cn = 2 − 4n − (n − 1)2 + 2n2 = 2 − 4n − n2 + 2n − 1 + 2n2 = n2 − 2n + 1 = (n − 1)2,

and for j = n + 1 we have

cn+1 = −cn−1 + 2cn + 2 = −(n − 1 + 1)2 + 2(n − 1)2 + 2 = (2n − (n + 1) − 1)2.

For j = n, . . . , 2n − 2, the induction hypotheses yield c j = (2n − j − 1)2. Note that
it is clear for j = n and j = n + 1 and we will show it for n + 1 < j ≤ 2n − 2. In
particular, the cases j = 2n − 3 and j = 2n − 2 are also trivially satisfied. So, we
only need to show it for n + 1 < j < 2n − 3. By the induction hypotheses for any
n + 1 < j < 2n − 3, we have

c j = 2 − c j−2 + 2c j−1 = 2 − (2n − ( j − 2) − 1)2 + 2(2n − ( j − 1) − 1)2

= 2 − (2n − j + 1)2 + 2(2n − j)2 = (2n − j − 1)2

and the induction hypotheses holds. In short, the lemma is proved. ��
The next result concerns properties of the functions Ki (a) introduced in Sect. 3.

Lemma 3 The following statements hold for all n ≥ 2:

(a) K6(a) > K4(a) for a ∈ (0, 1);
(b) K6(a) < K4(a) for a > 1;
(c) K5 > K1 > 0.
(d) a3K4(a) = K2(1/a) and a3K6(a) = K3(1/a).

Proof Note that

aK6(a) =
n∑

j=1

a − cos
( 2π j

n + π
n

)
(
1 + a2 − 2a cos

( 2π j
n + π

n

))3/2 ,

aK4(a) =
n∑

j=1

a − cos
( 2π j

n

)
(
1 + a2 − 2a cos

( 2π j
n

))3/2 .

When a ∈ (0, 1), using Lemma 1(c) and Proposition 6 with α = 1/2 and u = 0, we
get

aK4(a) = − n

π

∫ 1

0

d

da

(
t−1/2

(1 − t)1/2
1

(1 − a2t)1/2
1 − (at)2n

1 + (at)2n − 2(at)n

)
dt .
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and using Lemma 1(c) and Proposition 6 with α = 1/2 and u = π/n, we get

aK6(a) = − n

π

∫ 1

0

d

da

(
t−1/2

(1 − t)1/2
1

(1 − a2t)1/2
1 − (at)2n

1 + (at)2n + 2(at)n

)
dt .

Hence, for a ∈ (0, 1),

K6(a) − K4(a) = − n

πa

∫ 1

0

d

da

(
t−1/2

(1 − t)1/2
1

(1 − a2t)1/2
4(at)n

((at)2n − 1)

)
dt

= − n

πa

∫ 1

0

4(ta)n(ta2(−1 + (ta)2n) + n(ta2 − 1)(1 + (ta)2n))

a(1 − t)1/2t1/2(1 − a2t)3/2((ta)2n − 1)2
dt > 0,

because the integrand is negative for a ∈ (0, 1). Therefore, K6(a) > K4(a) for
0 < a < 1 and so statement (a) is proved.

For a > 1 using Lemma 1(c) and Proposition 7 with α = 1/2 and u = 0, we get

aK4(a) = − n

π

∫ 1

0

d

da

(
t−1/2

(1 − t)1/2
1

(a2 − t)1/2
a2n − t2n

a2n + t2n − 2antn

)
dt .

and using Lemma 1(c) and Proposition 7 with α = 1/2 and u = π/n and taking
derivatives with respect to a, we get

aK6(a) = − n

π

∫ 1

0

d

da

(
t−1/2

(1 − t)1/2
1

(a2 − t)1/2
a2n − t2n

a2n + t2n + 2antn

)
dt .

Hence, for a > 1,

K6(a) − K4(a) = − n

πa

∫ 1

0

d

da

(
t−1/2

(1 − t)1/2
1

(a2 − t)1/2
4(at)n

t2n − a2n

)
dt

= − n

πa

∫ 1

0

4(ta)n(a2(a2n − t2n) + n(a2 − t)(a2n + t2n))

a(1 − t)1/2t1/2(a2 − t)3/2(t2n − a2n)2
dt < 0,

because the integrand is positive for a > 1. Therefore, K6(a) < K4(a) for a > 1 and
statement (b) is proved.
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To prove statement (c), we proceed as follows. Note that

K5 = lim
a→1

1

2

n∑

j=1

1
(
1 + a2 − 2a cos

( 2π j
n + π

n

))1/2 := lim
a→1

1

2
A0,

K1 = lim
a→1

1

2

n−1∑

j=1

1
(
1 + a2 − 2a cos

( 2π j
n

))1/2

= lim
a→1

1

2

⎛

⎝
n∑

j=1

1
(
1 + a2 − 2a cos

( 2π j
n

))1/2 −
1∑

j=1

1

(1 + a2 − 2a cos(2π j))1/2

⎞

⎠

:= lim
a→1

1

2
(A1 − A2),

Thus,

K5 − K1 = lim
a→1

1

2
(A0 − A1 + A2) (22)

where A0, A1, A2 are the summations defined above. Applying Proposition 6, we have
that A0 − A1 + A2 when a ∈ (0, 1) is given by

A = n

π

∫ 1

0

1 − (ta)n

(1 − t)1/2t1/2(1 − a2t)1/2(1 + (ta)n)
dt

− n

π

∫ 1

0

1 + (ta)n

(1 − t)1/2t1/2(1 − a2t)1/2(1 − (ta)n)
dt

+ 1

π

∫ 1

0

1 + ta

(1 − t)1/2t1/2(1 − a2t)1/2(1 − ta)
dt

= n

π

∫ 1

0

(
4(ta)n

−1 + (ta)2n
+ 1 + ta

n(1 − ta)

)
1

(1 − t)1/2t1/2(1 − a2t)1/2
dt .

On the other hand, applying Proposition 7 we have that A0 − A1 + A2 when a > 1 is
given by

A = n

π

∫ 1

0

(
− 4(ta)n

a2n − t2n
+ a + t

n(a − t)

)
1

(1 − t)1/2t1/2(a2 − t)1/2
dt .

After doing the substitution a → 1/a, the expression A can be written as a A. Thus,

lim
a→1− A = lim

a→1+ A = lim
a→1

A0 − A1 + A2. (23)

Now we show that A > 0. Note that taking v = ta, we get

4(ta)n

−1 + (ta)2n
+ 1 + ta

n(1 − ta)
= 4vn

−1 + v2n
+ 1

n

1 + v

1 − v
.
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Using Lemma 2, we get that

4vn

−1 + v2n
+ 1

n

1 + v

1 − v
= (1 + v)(1 − v2n) − 4nvn(1 − v)

n(1 − v)(1 − v2n)
> 0,

for v < 1. So A > 0 and taking the limit when a → 1− together with (23) and (22)
we get lima→1− A = lima→1+ A = 2(K5 − K1) > 0 for all n ≥ 2. Moreover, K1 is
positive by definition. So, we have proved statement (c).

Statement (d) follows from direct computations. ��
In the following lemma, we provide properties of the function Δ(a) = −K1 −

K5 + a3(K2(a) + K3(a)) that appears in the denominator mD in (4).

Lemma 4 For all n ≥ 2, the following statements hold.

(a) Δ(a) is increasing for all a ∈ (0, 1);
(b) Δ(0) < 0, Δ(a) → ∞ when a → 1− and Δ(a) → −∞ when a → 1+;
(c) Δ(a) < 0 for all a > 1;
(d) Δ(a) has a unique zero and it belongs to the interval (0, 1).

Proof We first note that setting b = 1/a we have

a3K2(a) = 1

b

n∑

j=1

b − cos
( 2π j

n

)
(
1 + b2 − 2b cos

( 2π j
n

))3/2 := 1

b
K̄2(b),

a3K3(a) = 1

b

n∑

j=1

b − cos
( 2π j

n + π
n

)
(
1 + b2 − 2b cos

( 2π j
n + π

n

))3/2 := 1

b
K̄3(b).

(24)

Let Δ(b) = (1/bK̄2(b) + 1/bK̄3(b)). We want to show that for a ∈ (0, 1)

Δ′(a) = dΔ(b)

db

∣∣∣∣∣
b=1/a

· db
da

= (Δ(b))′
∣∣
b=1/a ·

(
− 1

a2

)
> 0.

So, it is sufficient to show that Δ(b)′ < 0 for b > 1.
Let

T =
n∑

j=1

1
(
1 + b2 − 2b cos

( 2π j
n

))1/2 +
n∑

j=1

1
(
1 + b2 − 2b cos

( 2π j
n + π

n

))1/2 .

Using Lemma 1(c), we get that

K̄2(b) + K̄3(b) = −dT /db (25)

and so (Δ̄(b))′ = 1
b2
T1 − 1

b T2 where

T1 = dT

db
, T2 = d2T

db2
.
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Since from Proposition 7, we have

T1 = −2n

π

∫ 1

0

d

db

(
1

t1/2(1 − t)1/2(b2 − t)1/2
t2n + b2n

t2n − b2n

)
dt

= n

π

∫ 1

0

1

t1/2(1 − t)1/2

(
2b(t2n + b2n)

(b2 − t)3/2(t2n − b2n)
− 8nt2nb2n−1

(b2 − t)1/2(t2n − b2n)2

)
dt,

taking another derivative with respect to b we get

T2 = n

π

∫ 1

0

1

t1/2(1 − t)1/2

(−8nt2nb2n−2((2n − 1)t2n + (2n + 1)b2n)

(b2 − t)1/2(t2n − b2n)3

+2
(
8nb2n

(
b2 − t

)
t2n + (

2b2 + t
) (
b4n − t4n

))
(
b2 − t

)5/2 (
t2n − b2n

)2

)
dt .

Since T1 < 0 (the integrand is negative) and T2 > 0 (the integrand is positive), we
readily obtain that (Δ̄(b))′ < 0 and so Δ′(a) > 0 for a ∈ (0, 1). In short, statement
(a) is proved.

It is clear that Δ(0) = −K1 − K5 < 0, see Lemma 3(c). Moreover,

lim
a→1

K2(a) =
n−1∑

j=1

1 − cos
( 2π j

n

)
(
2 − 2 cos

( 2π j
n

))3/2 + lim
a→1

1 − a
(
1 + a2 − 2a

)3/2 ,

so

lim
a→1− K2(a) = ∞ and lim

a→1+ K2(a) = −∞. (26)

Furthermore, lima→1 K3(a) = K5 which is different from zero and from infinity.
Hence, using (26) we get

lim
a→1− Δ(a) = ∞ and lim

a→1+ Δ(a) = −∞.

This completes the proof of statement (b).
Now we show that Δ(a) < 0 for a > 1. To do so, we will show that a3K2(a) +

a3K3(a) < 0. Note that this is sufficient because −K1 − K5 < 0. Clearly in view
of (24) and (25), we have a3K2(a) + a3K3(a) = 1

b (K̄2(b) + K̄3(b)) = − 1
b
dT
db with

b < 1. So, applying Proposition 6 we get

−1

b

dT

db
= − 2n

πb

∫ 1

0

d

db

(
1

t1/2(1 − t)1/2(1 − b2t)1/2
1 + (bt)2n

1 − (bt)2n

)
dt

= − 2n

πb

∫ 1

0

(
4n(tb)2n

b t1/2(1 − t)1/2(1 − b2t)1/2(1 − (bt)2n)2

+ bt(1 + (bt)2n)

t1/2(1 − t)1/2(1 − b2t)3/2(1 − (bt)2n)

)
dt
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and since the integrand is positive we readily have that a3K2(a) + a3K3(a) < 0 for
a > 1 and so Δ(a) < 0 for a > 1. In short, statement (c) is proved.

The proof of statement (d) is a direct consequence of the statements (a)–(c) together
with the Bolzano–Cauchy theorem. ��
Proof of Proposition 1 We expand m2 = a3mN ,2/mD in Laurent series around a = 0,
see (4). The expansion of mD around a = 0 is given by

mD = (K5 − K1)(−K1 − K5 + O(a3)).

Using Lemma 1(d) with u = 0 (respectively u = π/n) to expand K4 (respectively
K6) in Laurent series around a = 0, we get

K4(a) = −n

2
+ O(a) and K6(a) = −n

2
+ O(a) (27)

when n ≥ 3 and

K4(a) = −4 + O(a) and K6(a) = 2 + O(a) (28)

when n = 2. Therefore, when n ≥ 3 we have

m2 = a3
K 2
1 + n

2 K1 − K1K5 − n
2K5

(K5 − K1)(−K1 − K5)
+ O(a4) = a3

K1 + n
2

K5 + K1
+ O(a4)

and since K1, K5 > 0, we obtain lima→0+ m2 = 0+.
When n = 2, we compute directly the quantities K1 and K5 andwe have K1 = 1/4,

K5 = 1/
√
2. So expanding m3 in Laurent series around a = 0, we get

m2 = −a3
(17
7

+ 2
√
2
)

+ O(a4).

Hence, lima→0+ m2 = 0−. This completes the proof of statement (a).
For statement (b), we note that by (5)

m3 = m2 + a3(K6(a) − K4(a))

K5 − K1
.

Using the Laurent series of K4 and K6 around a = 0 given in (27), we get

a3(K6 − K4(a))

K5 − K1
= O(a4)

when n ≥ 3 and so

m3 = a3
K1 + n

2

K5 + K1
+ O(a4),
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which yields lima→0+ m3 = 0+ when n ≥ 3.
On the other hand, for n = 2, using the Laurent series of K4 and K6 around a = 0

given in (28) and the values of K1 and K5 for n = 2 computed above, we get

a3(K6 − K4(a))

K5 − K1
= a3

K5 − K1
(6 + O(a))

which yields

m3 = a3

7
(7 + 34

√
2) + O(a4),

and so lima→0+ m3 = 0+. This completes the proof of statement (b).
We expand m3 = a3mN ,3/mD in Laurent series around a = 1 (with a > 1), see

(4). Note that

K2(a) = K1 − 1

(a − 1)2
+ O(a − 1), K3(a) = K5 + O(a − 1),

K4(a) = K1 + 1

(a − 1)2
− 1

a − 1
+ 1 + O(a − 1), K6 = K5 + O(a − 1),

and a3 = 1 + O(a − 1). Hence,

mN ,3 = 1

(a − 1)4
+ O((a − 1)−3) and mD = − (K5 − K1)

(a − 1)2
+ O((a − 1)−1).

Therefore,

m3 = − 1

(a − 1)2(K5 − K1)
+ O((a − 1)−1).

Since in view of Lemma 3(c) we have K5 > K1 > 0, then lima→1+ m3 = −∞, which
completes the proof of statement (c).

For statement (d), note that taking b = 1/a and usingLemma3(d)we have K2(a) =
K2(1/b) = b3K4(b), K3(a) = K3(1/b) = b3K6(b), K4(a) = K2(1/a)/a3 =
b3K2(b) and K6(a) = K3(1/a)/a3 = b3K3(b). Thus, using Lemma 1(d) for n ≥ 3
we have

K4(b) = −n

2
+ O(b), K6(b) = −n

2
+ O(b).

Moreover, expanding in power series around b = 0, we get

K2(b) = n + O(b), K3(b) = n + O(b).
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Hence for n ≥ 3

K2(b) = −n

2
b3 + O(b4), K3(b) = −n

2
b3 + O(b4),

K4(b) = nb3 + O(b4), K6(b) = nb3 + O(b4),
(29)

Proceeding in the same way for n = 2, we get

K2(b) = −4b3 + O(b4), K3(b) = 2b3 + O(b4),

K4(b) = 2b3 + O(b4), K6(b) = 2b3 + O(b4).
(30)

Using (29) and (30), the numerators of m2 and m3 (see (4)) can be written as

1

b3
(K 2

1 − K1K5) + O(1),

and the denominators of m2 and m3 (see again (4)) can be written as

(K5 − K1)(−K1 − K5 − n) + O(b)

for all n ≥ 2. Thus, the Laurent expansion ofm2 andm3 around b = 0 becomes (after
simplifying K5 − K1)

1

b3
K1

K1 + K5 + n
+ O(b−2).

Then taking into account that in view of Lemma 3(c) we have K5 > K1 > 0, we
conclude that

lim
a→∞m2 = lim

b→0+ m2 = ∞, lim
a→∞m3 = lim

b→0+ m3 = ∞.

This proves statement (d).
From Lemma 3(a), we get K6 − K4(a) > 0 for a ∈ (0, 1). From Lemma 3(b), we

get K6 − K4(a) < 0 for a > 1, and from Lemma 3(c), we get K5 − K1 > 0. Thus
from (5) we get m2 < m3 when a ∈ (0, 1) and m2 > m3 when a > 1, which proves
statement (e). ��

Appendix 2: Proof of Proposition 3

We need the following auxiliary lemma.

Lemma 5 Let

E(a) :=
[n/2]−1∑

j=0

−2(1 + a2) cos
( 2π j

n + π
n

) + 5a − a cos
( 4π j

n + 2π
n

)

a
(
1 + a2 − 2a cos

( 2π j
n + π

n

))5/2 .

123



88 Page 46 of 52 Journal of Nonlinear Science (2021) 31 :88

Then

lim
β→π/n

N4(a, β)(K1 − 2a3L2(a, β) + L5(β)) = 1

4
E(a)

if n is even and

lim
β→π/n

N4(a, β)(K1 − 2a3L2(a, β) + L5(β)) = 1

4

(
E(a) + 1

a(1 + a)3

)

if n is odd.

Proof First note that

lim
β→π/n

N4(a, β)(K1 − 2a3L2(a, β)) = 0

because

lim
β→π/n

N4(a, β) =
n∑

j=1

−1/a sin
( 2π j

n + π
n

)
(
1 + a2 − 2a cos

( 2π j
n + π

n

))3/2 = 0

and

lim
β→π/n

L2(a, β) =
n∑

j=1

1 − a cos
( 2π j

n − π
n

)
(
1 + a2 − 2a cos

( 2π j
n − π

n

))3/2

is finite for all a > 0. On the other hand,

L5(β) =
⎛

⎜⎝
n−2∑

j=0

1 − cos
( 2π j

n + 2β
)

(
2 − 2 cos

( 2π j
n + 2β

))3/2

⎞

⎟⎠ + 1 − cos
( 2π (n−1)

n + 2β
)

(
2 − 2 cos

( 2π (n−1)
n + 2β

))3/2

:= L5,1(β) + L5,2(β).

Clearly limβ→π/n N4(a, β)L5,1(β) = 0. Therefore, we need to study
limβ→π/n N4(a, β)L5,2(β). Note that expanding L5,2 around β = π/n we have

L5,2(β) = 1 − cos
( 2π(n−1)

n + 2β
)

(
2 − 2 cos

( 2π(n−1)
n + 2β

))3/2 = 1

4
(
β − π

n

) + 1

24

(
β − π

n

) + O
((

β − π

n

)2)
.
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On the other hand, we can rewrite N4(a, β) as

N̄4(a, β) =
[n/2]−1∑

j=0

⎛

⎜⎝
−1/a sin

( 2π j
n + β

)
(
1 + a2 − 2a cos

( 2π j
n + β

))3/2

− 1/a sin
( 2π (− j−1)

n + β
)

(
1 + a2 − 2a cos

( 2π (− j−1)
n + β

))3/2

⎞

⎟⎠

if n is even and as N̄4(a, β) + N̄∗
4 (a, β) with

N̄∗
4 (a, β) = −1/a sin

( 2π [n/2]
n + β

)
(
1 + a2 − 2a cos

( 2π [n/2]
n + β

))3/2

if n is odd. Expanding N̄4 around β = π/n, we get

N̄4(a, β) = E(a)(β − π/n) + O((β − π/n)2),

and expanding N̄∗
4 also around β = π/n we get

N̄∗
4 (a, β) = 1

a(1 + a)3
(β − π/n) + O((β − π/n)3).

Thus, expanding N4(a, β)L5,2(β) around β = π/n we obtain

N4(a, β)L5,2(β) = 1

4
E(a) + O((β − π/n))

if n is even and

N4(a, β)L5,2(β) = 1

4

(
E(a) + 1

a(1 + a)3

)
+ O((β − π/n))

if n is odd. Taking the limit as β → π/n we obtain the result that we wanted to prove.
��

Proof of Proposition 3 Note that

lim
β→π/n

N5(β) =
n∑

j=1, j �=n−1

− sin
( 2π ( j+1)

n

)
(
2 − 2 cos

( 2π ( j+1)
n

))3/2

+ lim
β→π/n

− sin
( 2π (n−1)

n + 2β
)

(
2 − 2 cos

( 2π (n−1)
n + 2β

))3/2 = ∞.
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In view of Lemma 5, it is clear that the sign of F(a, β) as β → π/n is determined by
the sign of the difference G given by

G = lim
β→π/n

(K1 − L4(a, β)) = K1 − L̄4(a),

where

L̄4(a) = lim
β→π/n

L4(a, β) =
n∑

j=1

1 − 1/a cos
( 2π j

n + π
n

)
(
1 + a2 − 2a cos

( 2π j
n + π

n

))3/2 .

When a → ∞, we have

lim
a→∞G = K1 − lim

a→∞ L̄4(a) = K1 > 0.

This proves statement (a) of the proposition.
Furthermore, when a → 1, using Lemma 3(c), we obtain

lim
a→1

G = K1 −
n∑

j=1

1 − cos
( 2π j

n + π
n

)
(
2 − 2 cos

( 2π j
n + π

n

))3/2 = K1 − K5 < 0.

So, statement (b) is proved.
Using Lemma 1(d) with u = π/n, the expansion of L̄4 around a = 0 is given by

L̄4(a) = −n/2 + O(a), when n ≥ 3 and L̄4(a) = 2 + O(a), when n = 2. Hence,
when n ≥ 3 the expansion of G around a = 0 is G = K1 + n/2 + O(a) and so
lima→0 G > 0. For n = 2, computing the value of K1, the expansion of G around
a = 0 is G = 1/4 − 2 + O(a) and so lima→0 G = −7/4 < 0. This yields statement
(c) of the proposition. ��

Appendix 3: Proof of Propositions 4 and 5

We need the following auxiliary lemma.

Lemma 6 We have

lim
β→π/2n

N5(β)(K1 − L4(a, β)) = 0.

Proof First note that

lim
β→π/2n

L4(a, β) =
n∑

j=1

1 − 1/a cos
( 2π j

n + π
2n

)
(
1 + a2 − 2a cos

( 2π j
n + π

2n

))3/2 ,
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which is finite for all a > 0. Moreover, it is easy to see that

lim
β→π/2n

N5(β) =
n∑

j=1

− sin
( 2π j

n + π
n

)
(
2 − 2 cos

( 2π j
n + π

n

))3/2 = 0

and so limβ→π/2n N5(β)(K1 − L4(a, β)) = 0, as we wanted to prove. ��

Proof of Proposition 4 In view of Lemma 6 the sign of F(a, β) around β =
π/2n is determined by the sign of N4(a, β)(K1 − 2a3L2(a, β) + L5(β)) unless
limβ→π/2n N4(a, β)(K1 − 2a3L2(a, β) + L5(β)) = 0. From the analysis of the
sign of N4(a, β)(K1 − 2a3L2(a, β) + L5(β)) around β → π/2n we will see that
limβ→π/2n N4(a, β)(K1 − 2a3L2(a, β) + L5(β)) �= 0.

In view of Proposition 2, we have that N4(a, β) < 0 for α ∈ (0, π/n) and so
N4(a, β) < 0. So, we need to study the sign of K1 − 2a3L2(a, β) + L5(β) as β →
π/2n.

Hence,

lim
β→π/2n

K1 − 2a3L2(a, β) + L5(β) = K1 − 2a3 L̄2(a) + K5 := H ,

where

L̄2(a) = lim
β→π/2n

L2(a, β) =
n∑

j=1

1 − a cos
( 2π j

n − π
2n

)
(
1 + a2 − 2a cos

( 2π j
n − π

2n

))3/2 .

When a → 0, we have that L̄2(a) → n. So lima→0 H = K1 + K5 > 0 in view of
Lemma 3(c). This proves statement (a) of the proposition.

To study the behavior when a → ∞, we first observe that making the change
b = 1/awegeta3 L̄2(a) = L(b, π/2n)where L is the functiondefined inLemma1(d).
Thus, applying Lemma 1(d) with u = π/2n and using Lemma 3(c) we have

lim
a→∞ H = K1 + n + K5 > 0,

when n ≥ 3 and

lim
a→∞ H = K1 − 2

(
2 − 6 cos2

(
π
4

)) + K5 = K1 + 2 + K5 > 0,

when n = 2. This proves statement (b).

123



88 Page 50 of 52 Journal of Nonlinear Science (2021) 31 :88

Finally, to prove statement (c) we need to study the sing of H when a → 1. Note
that

lim
a→1

H = 1

2

n−1∑

j=1

1
(
2 − 2 cos

( 2π j
n

))1/2 −
n∑

j=1

1
(
2 − 2 cos

( 2π j
n − π

2n

))1/2

+ 1

2

n∑

j=1

1
(
2 − 2 cos

( 2π j
n + π

n

))1/2 .

In order to study the sign of lima→1 H , we rewrite lima→1 H as lima→1 H1 where

H1 = 1

2

n∑

j=1

1
(
1 + a2 − 2a cos

( 2π j
n

))1/2 − 1

2

1∑

j=1

1

(1 + a2 − 2a cos(2π j))1/2

−
n∑

j=1

1
(
1 + a2 − 2a cos

( 2π j
n − π

2n

))1/2 + 1

2

n∑

j=1

1
(
1 + a2 − 2a cos

( 2π j
n + π

n

))1/2 .

Now applying Proposition 6 with α = 1/2 and u = 0; n = 1, α = 1/2 and u = 0;
α = 1/2 and u = −π/2n; and α = 1/2 and u = π/n, respectively, we get

H1 = 1

π

∫ 1

0

1

t1/2(1 − t)1/2(1 − a2t)1/2

(
4(at)2nn

1 − (at)4n
− 1 + at

2(1 − at)

)
dt

Setting v = at and N = 2n and using Lemma 2, we get

4(at)2nn

1 − (at)4n
− 1 + at

2(1 − at)
= 4vN N

2

1 − v2N
− 1 + v

2(1 − v)

= 4vN N (1 − v) − (1 + v)(1 − v2N )

(1 − v2N )2(1 − v)
< 0.

Therefore lima→1− H1 < 0.
Applying Proposition 7 to H1 with α = 1/2 and u = 0; n = 1, α = 1/2 and u = 0;

α = 1/2 and u = −π/2n; and α = 1/2 and u = π/n, respectively, we get

H̄1 = 1

π

∫ 1

0

1

t1/2(1 − t)1/2(a2 − t)1/2

(
4(at)2nn

a4n − t4n
− a + t

2(a − t)

)
dt .

After doing the substitution a → 1/a, we get that H̄1 can be written as a H1. Thus,
lima→1+ H1 < 0. In short, we have that H < 0 when a → 1 and statement (c) is
proved. ��
Proof of Proposition 5 We start proving statement (a) for n = 2. Computing directly
the quantities K1, L2(a, β), L4(a, β), N4(a, β), L5(β), and N5(β) for a fixed β and
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expanding F around a = 0 we get

F(a, β) = − 1

16
tan β secβ

(
18 cos β + 6 cos(3β) + 17 cot3 β + 7

)
+ O(a2).

So F̄(β) < 0 for all β ∈ (π/2n, π/n) and n = 2.
Now we will show that for any β ∈ (π/2n, π/n) and n ≥ 3 we have F̄(β) > 0.

We fix β and we expand F around a = 0. First, expanding N4 around a = 0, we get

N4(a, β) = −1

a

n∑

j=1

sin
(2π j

n
+ β

) − 3

2

n∑

j=1

sin
(4π j

n
+ 2β

) + O(a)

and in view of (18) we have N4(a, β) = O(a). So expanding N4(a, β)(K1 −
2a3L2(a, β) + L5(β)) around a = 0 we obtain

N4(a, β)(K1 − 2a3L2(a, β) + L5(β)) = O(a).

On the other hand, using Lemma 1(d) with u = β and n ≥ 3, the expansion of L4
around a = 0 is given by L4(a, β) = −n/2+ O(a). Therefore, around a = 0 we get

F(a, β) = (K1 + n

2
)N5(β) + O(a). (31)

The sign of N5(β) for any β ∈ (0, π/n)was studied in Proposition 2, and we obtained
that N5(β) is negative if β ∈ (0, π/2n) and positive if β ∈ (π/2n, π/n). Therefore,
from (31) we have that for any β ∈ (π/2n, π/n) and n ≥ 3, F̄(β) > 0 which
completes the proof of statement (a).

Now we consider the case in which a → ∞. Fixed β ∈ (π/2n, π/n) we have that
N5(β) is positive. Moreover,

lim
a→∞ L4(a, β) = lim

a→∞ N4(a, β) = 0.

Making the change b = 1/a we get a3L2(a, β) = L(b, β), where L is the func-
tion defined in Lemma 1(d). Thus, applying Lemma 1(d) with u = β, we get that
lima→∞ a3L2(a, β) = limb→0 −n/2+O(b)when n ≥ 3 and lima→∞ a3L2(a, β) =
limb→0 2 − 6 cos2(β) + O(b) when n = 2. So,

lim
a→∞(K1 − 2a3L2(a, β) + L5(β))N4(a, β) = 0,

lim
a→∞ N5(β)(K1 − L4(a, β)) = N5(β)K1 > 0,

for all n ≥ 2. In short, for any β ∈ (π/2n, π) and n ≥ 2, F̃(β) > 0. This concludes
the proof of the proposition. ��
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