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Abstract
In this paper, we investigate the problem of limit cycles for general Higgins–Selkov
systems with degree n + 1. In particular, we first prove the uniqueness of limit cycles
for a general Liénard system, which allows for discontinuity. Then, by changing the
Higgins–Selkov systems into Liénard systems, theorems and some techniques for
Liénard systems can be applied. After, we prove the nonexistence of limit cycles if the
bifurcation parameter is outside an open interval. Finally, we complete the analysis of
limit cycles for the Higgins–Selkov systems showing its uniqueness.

Keywords Higgins–Selkov system · Liénard system of arbitrary degree · Uniqueness
of limit cycles · Nonexistence of Limit cycles

Mathematics Subject Classification Primary 34C07 · 34C23 · 49J52

1 Introduction andMain Results

In the qualitative theory of planar polynomial differential systems, it is well known
how difficult is to study the famous Hilbert’s 16th problem, see Ilyashenko (2002), Li
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(2003) and Zhang et al. (1992). Up to now there are seldom works having solved the
problem of exact number of limit cycles for polynomial differential systems.

Themost important physiological function of carbohydrates is to provide energy for
organisms’ life activities. Glucose catabolism is the main way for organisms to obtain
energy. There are three main pathways for the oxidative decomposition of glucose in
organisms. Among them, the anaerobic oxidation of glucose is called glycolysis. We
consider the following polynomial differential system of arbitrary degree

ẋ = 1 − xyn,

ẏ = ay(−1 + xyn−1)
(1)

which was proposed first by Higgins (1964) and modified further by Selkov (1968) for
studying the biological nonlinear glycolytic oscillations, and was called the Higgins–
Selkov system. Here n is a positive integer and a is a real parameter. Artés et al.
(2018) characterized the global dynamics described in the Poincaré disc for system
(1) as n = 2 and a ∈ R\(1, 3). Moreover, there are two conjectures stated in Artés
et al. (2018) on the the number of limit cycles of systems (1) when a ∈ (1, 3). After,
Chen and Tang (2019) proved these conjectures, which complete the global phase
portraits of system (1) when n = 2.

Recently, Brechmann and Rendall (2018) researched the uniqueness of limit cycles
for system (1) and additionally proved that no limit cycles exist when a ∈ (0, 1/(n −
1)). Llibre and Mousavi (2021) classified the phase portraits of system (1) for n =
3, 4, 5, 6 in the Poincaré disc for all the values of the parameter a and determined in
function of the parameter a the regions of the phase space with biological meaning.

The aim of this paper is to give a clearer study and answer for the existence and the
exact number of limit cycles of system (1). We have the following main results.

Theorem 1 For every positive integer n ≥ 3, there exists a unique constant a∗ ∈
(1/(n − 1), (2n − 1)/(2n − 2)) such that system (1) has no periodic orbits when a ∈
(−∞, 1/(n − 1)] ∪ [a∗,+∞) and has a unique limit cycle when a ∈ (1/(n − 1), a∗),
which is stable and hyperbolic. Moreover, when the limit cycle exists, its amplitude
increases with a.

Remark that the bifurcation diagrams of the limit cycles for system (1) are similar
to those in Fig. 1 for n = 3, 5 and in Fig. 2 for n = 4, 6 of Llibre and Mousavi (2021),
respectively.

An outline of this paper is as follows: A theorem on the uniqueness of limit cycles
for general Liénard systems is presented in Sect. 2, which we need in our study of the
limit cycles of the Higgins–Selkov system. In Sect. 3, we obtain the existence and the
exact number of limit cycles of the Higgins–Selkov system and then prove our main
theorem.

2 Preliminaries

In order to study the number of limit cycles for system (1), we need the following
preliminary results. We first recall the uniqueness theorem of Zhang (1958) or in
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Zhang (1986) on the number of limit cycles of the following generalized Liénard
systems

ẋ = −φ(y) − F̂(x),

ẏ = ĝ(x).
(2)

Let

Ĝ(x) :=
∫ x

0
ĝ(s)ds.

Theorem 2 Consider the generalized Liénard system (2) for x ∈ (−∞,+∞), when
φ(y), F̂(x) and ĝ(x) satisfy the following conditions:

(i) ĝ(x) is Lipschitz in any finite interval, x ĝ(x) > 0 for all x �= 0, and Ĝ(−∞) =
Ĝ(+∞) = +∞.

(ii) f̂ (x) = F̂ ′(x) is C0, F̂(0) = 0, f̂ (x)/ĝ(x) is nondecreasing in (−∞, 0) ∪
(0,+∞) and f̂ (x)/ĝ(x) is not a constant when |x | is small.

(iii) φ(y) is Lipschitz in any finite interval, yφ(y) > 0 for all y �= 0, φ(y) is non-
decreasing, φ(−∞) = −∞, φ(+∞) = +∞, φ(y) has right-derivative φ′+(0)
and left-derivative φ′−(0) at y = 0, φ′−(0)φ′+(0) �= 0 when f̂ (0) = 0.

Then system (2) has at most one limit cycle. Moreover the limit cycle is stable when it
exists.

In fact, we can find many differential systems of the form (2), but many of them
do not satisfy the conditions of Theorem 2. Thus we propose the following three
questions:

(a) When Ĝ(−∞) = Ĝ(+∞) �= +∞ and the other conditions of Theorem 2 hold,
does the conclusion of Theorem 2 still hold?

(b) When either f̂ (x) or ĝ(x) has a discontinuity point x0 of the second kind (i.e.,
limx→x0+ ĝ(x) or limx→x0− ĝ(x) does not exist) and the other conditions of The-
orem 2 hold, does the conclusion of Theorem 2 still hold?

(c) When ĝ(x) has a discontinuity point at x = 0 of the first kind (i.e.,
limx→0+ ĝ(x) �= limx→0− ĝ(x)) and the other conditions of Theorem 2 hold,
does the conclusion of Theorem 2 still hold?

For example, we have that G(−∞) = G(+∞) �= +∞ when ĝ(x) = x/(1+ x2)2.
Either f̂ (x) or ĝ(x) has a discontinuity point at x = −1 of the second kind when
f̂ (x) = 1/a − (n − 1)/(x + 1)n or ĝ(x) = x/(x + 1)n .
Here we will show why the condition G(−∞) = G(+∞) = +∞ is necessary

in the proof of Theorem 2 of Zhang (1986). Zhang (1986) only need to research the
following special Liénard system

u̇ = −φ(y) − F̂(x(u)),

ẏ = u,
(3)
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because system (2) can be changed into system (3) through the transformation u =√
2G(x)Sgn(x) and dt → (√

2G(x)sgn(x)/ĝ(x)
)
dt . However, the transformation is

not an 1–1 transformation in (−∞,+∞) when G(−∞) = G(+∞) �= +∞.
For these reasons, we give the following theorem without the aforementioned con-

ditions.

Theorem 3 Consider system (2) in the interval (α, β), where α and β eventually can
be −∞ and +∞, respectively. Assume that φ(y), F̂(x) and ĝ(x) satisfy the following
conditions:

(i) ĝ(x) := g0(x) + c sgn(x), x ĝ(x) > 0 for all x �= 0, where c ≥ 0 and g0(x) is
Lipschitz in any finite interval and g0(0) = 0.

(ii) f̂ (x) = F̂ ′(x) is C0(α, β), F̂(0) = 0, f̂ (0) �= 0, f̂ (x)/ĝ(x) is nondecreasing in
(α, 0) ∪ (0, β) and f̂ (x)/ĝ(x) is not a constant when |x | is small.

(iii) φ(y) is Lipschitz in any finite interval, yφ(y) > 0 for all y �= 0, φ(y) is increas-
ing, φ(−∞) = −∞, φ(+∞) = +∞, φ(y) has right-derivative φ′+(0) and

left-derivative φ′−(0) at y = 0, φ′−(0)φ′+(0) �= 0 when f̂ (0) = 0.

Then system (2) has at most one limit cycle in (α, β). Moreover the limit cycle is stable
when it exists.

Proof Since the vector field of system (2) is Lipschitz for c = 0, its solutions exist
and are unique except at x = 0. Since the vector field of system (2) is discontinuous
at the line � := {(x, y) : x = 0} for c > 0, we need to study the dynamics on � and
we will adapt the Filippov method, see di Bernardo et al. (2008) and Kuznetsov et al.
(2003). Let

δ := 〈(1, 0), (−φ(y),−c)〉〈(1, 0), (−φ(y), c)〉 = φ2(y),

where 〈·, ·〉 denotes the inner product. As defined in di Bernardo et al. (2008) and
Kuznetsov et al. (2003), the crossing set is

�c = {(x, y) ∈ � : δ > 0} = {(x, y) ∈ � : y �= 0}.

The sliding set �s is the complement to �c, which is given by

�s = {(x, y) ∈ � : δ ≤ 0} = {(x, y) ∈ � : y = 0}.

Therefore except at the origin, all orbits crossing any point are unique. In other words,
all periodic orbits are crossing.

Assume that γ is a periodic orbit of system (2). Then we have that γ is hyperbolic
if

∮
γ
div(−φ(y) − F̂(x), ĝ(x))dt �= 0, see, for instance, Theorem 1.23 of Dumortier

et al. (2006). Moreover, γ is stable (resp. unstable) if

∮
γ

div(−φ(y) − F̂(x), ĝ(x))dt < 0 (resp. > 0).
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In order to prove the uniqueness of limit cycles of system (2), assume that system
(2) has at least two limit cycles, where γ1, γ2 are the innermost limit cycles and γ1 lies
in the bounded region surrounded by γ2.

Actually we must have f̂ (0) < 0. Otherwise, if f̂ (0) > 0 we can obtain f̂ (x) > 0
since f̂ (x)/ĝ(x) is nondecreasing and x ĝ(x) > 0. For x > 0 near the origin, we can
get f̂ (x) > 0 by the continuity of f̂ (x) at x = 0 and then f̂ (x)/ĝ(x) > 0, implying
f̂ (x)/ĝ(x) > 0 for all x > 0 by the monotonicity of this function. Thus, we have
f̂ (x) > 0 for all x > 0. Similarly for all x < 0 we can also get f̂ (x) > 0. Then, by
Green formula we have

0 =
∮

γi

(−φ(y) − F̂(x))dy + ĝ(x)dx = −
∮
Di

f̂ (x)dxdy,

which contradicts the fact that f̂ (x) > 0, where Di is the bounded region surrounded
by γi for i = 1, 2. Here, note that the Dulac criterion cannot be applied because the
vector field of system (2) is not C1. Thus, we get f̂ (0) < 0 if a periodic orbit exists.

Moreover, we claim that the equation f̂ (x) = 0 has at most one positive root and
one negative root, where a connect set of roots is viewed as one root. Otherwise,
assume that f̂ (x) has two positive zeros x1 and x2 such that 0 < x1 < x2. Then,
there exists a real x0 ∈ (x1, x2) satisfying f̂ (x0)/ĝ(x0) > 0 = f̂ (x2)/ĝ(x2), which
contradicts the nondecreasing of f̂ (x)/ĝ(x). Thus, the claim is proved.

Applying Green formula again, we have that system (2) has no periodic orbits when
f̂ (x) ≤ 0 for all x ∈ (α, β). Therefore, if system (2) exhibits periodic orbits, there
is an x3 ∈ (α, β) such that f̂ (x3) > 0. In the following, we divide the proof of the
uniqueness of limit cycles of system (2) in three cases.
Case (I) First, we consider the case x3 > 0 if f̂ (x3) > 0. Then, there is a unique
value x4 ∈ (0, β) such that F̂(x4) = 0. Moreover, if there exist two different points
x41, x42 ∈ (0, β) such that F̂(x41) = 0 and F̂(x42) = 0, we can get an x̃4 ∈ (x41, x42)
satisfying f̂ (x̃4) = 0, which contradicts the nondecreasing of f̂ (x)/ĝ(x) for x > 0.

We claim that any periodic orbit must surround the point (x4, 0). So no periodic
orbits exist if x4 does not exist. Let

E(x, y) =
∫ y

0
φ(s)ds +

∫ x

0
ĝ(s)ds (4)

which implies that

dE(x, y)

dt
= −ĝ(x)F̂(x).

It is to note that ĝ(x)F̂(x) < 0 for all x ∈ (α, x4). Assume that system (2) exhibits a
periodic orbit γ , which lies in the strip x ∈ (α, x4). Then, we can find that

0 =
∮

γ

dE =
∮

γ

−ĝ(x)F̂(x)dt > 0.
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Fig. 1 Limit cycles of system (2) in the Case (I)

Thus, the claim is proved.
Now we will prove that

∮
γ1

f̂ (x)dt <

∮
γ2

f̂ (x)dt . (5)

Consider the two limit cyclesγ1 = ̂A1B1C1D1H1 I1A1 andγ2 = ̂A2B2C2D2H2 I2A2
of Fig. 1. Notice that the limit cycle γi intersects the graphic of the function
y = φ−1(−F̂(x)) at the points Ci and Ii for i = 1, 2, respectively. Since

∮
γ1

ĝ(x)dt =
∮

γ1

dy = 0 =
∮

γ2

dy =
∮

γ2

ĝ(x)dt,

we only need to prove

∮
γ1

f1(x)dt <

∮
γ2

f1(x)dt, (6)

which is equivalent to (5), where

f1(x) := f̂ (x) + bĝ(x) (7)
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for any constant b ∈ R. It is clear that f1(x)/ĝ(x) is still nondecreasing if f (x)/ĝ(x)

is nondecreasing. Fixing

b = − f̂ (xI1)/ĝ(xI1) < 0,

we have f1(xI1) = 0. Moreover, we have f1(x)/ĝ(x) ≥ 0 for xI1 < x < 0 and
f1(x)/ĝ(x) ≤ 0 for x < xI1 , because f1(xI1)/ĝ(xI1) = 0 and f1(x)/ĝ(x) is non-
decreasing. Thus, f1(x) ≤ 0 if xI1 < x < 0, and f1(x) ≥ 0 if x < xI1 , because
ĝ(x) < 0 for x < 0.

Denote by P = (xP , yP ) for an arbitrary point P . We can find a point J1(xJ1 , yJ1)

in the curve y = φ−1(−F̂(x)) such that f1(xJ1) = 0 and xJ1 ∈ (0, xC1). Otherwise,
f1(x) < 0 for all x ∈ (0, xC1), and if the point J1 does not exist, then f1(x) ≤ 0 for
all x ∈ (xI1 , xC1). Thus, we obtain

∮
γ1

f1(x)dt < 0. (8)

However, the origin is a source and the periodic orbit γ1 is internally stable because
f1(x) < 0 for small x , implying

∮
γ1

f1(x)dt ≥ 0. It induces a contradiction with
inequality (8). Thus, the point J1 exists. Moreover, we have f1(x) ≥ 0 for x > xJ1 ,
and f1(x) ≤ 0 for all 0 < x < xJ1 , because ĝ(x) > 0 for x > 0 and f1(x)/ĝ(x) is
nondecreasing.

Assume that the line x = xJ1 intersects with the graphic of the function y =
φ−1(−F̂(x)) at the points Bi and Di for i = 1, 2, respectively. Notice that

xB1 = xB2 = xD1 = xD2 = xJ1 .

Let y = y1(x) and y = y2(x) be the orbit segments Â1B1 and Â2B2, respectively.
Since y1 < y2 and the function φ(x) is increasing, we have φ(y1) < φ(y2). Then, we
have

∫
̂B1 A1

f1(x)dt −
∫

̂B2 A2

f1(x)dt =
∫ xB1

0

f1(x)

φ(y1) + F̂(x)
dx −

∫ xB2

0

f1(x)

φ(y2) + F̂(x)
dx

=
∫ xB1

0

f1(x)(φ(y2) − φ(y1))

(φ(y1) + F̂(x))(φ(y2) + F̂(x))
< 0.

(9)

It is similar to prove that

∫
̂H1D1

f1(x)dt −
∫

̂H2D2

f1(x)dt < 0,∫
̂A1 I1

f1(x)dt −
∫

̂A2P2
f1(x)dt < 0,∫

̂I1H1

f1(x)dt −
∫

̂Q2H2

f1(x)dt < 0,

(10)

where P2, Q2 ∈ γ2 and xP2 = xQ2 = xI1 .
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Let x = x1(y) and x = x2(y) be the orbit segments D̂1C1B1 and D̂2C2B2, respec-
tively. Then, we have

∫
̂D1C1B1

f1(x)dt −
∫

̂D2C2B2

f1(x)dt <

∫
̂D1C1B1

f̂ (x)dt −
∫

̂M2N2

f̂ (x)dt

=
∫ yN2

yM2

(
f̂ (x1)

ĝ(x1)
− f̂ (x2)

ĝ(x2)

)
dy < 0,

(11)

where M2, N2 ∈ γ2, yM2 = yD1 and yN2 = yB1 . Since f1(x) ≥ 0 for all x < xI1 , we
have

∫
̂P2 I2Q2

f1(x)dt > 0. (12)

Therefore, (6) holds from (9)–(12). Notice that the origin is a source and the periodic
orbitγ1 is internally stable. Thus,

∮
γ1

f̂ (x)dt ≥ 0. It follows from (5) that
∮
γ2

f̂ (x)dt >

0. Consequently, γ2 is stable and hyperbolic. By the Poincaré–Bendixson theorem
[see for instance Corollary 1.30 of Dumortier et al. (2006)], it is impossible for the
existence of two consecutive stable limit cycles. Therefore, system (2) has at most two
limit cycles. Moreover, γ1 is semi-stable and γ2 is stable if they exist.

In order to induce a contradiction for the case that γ1 is semi-stable, we construct
an auxiliary vector field (−φ(y) − F̃(x), ĝ(x)), where F̃(x) = F̂(x) + εR(x) and

R(x) :=
{
0, if x ≤ x4,
F̂(x), if x > x4,

for small |ε|. We can check that the vector field (−φ(y) − F̃(x), ĝ(x)) is rotated
with respect to the parameter ε; see Zhang et al. (1992, Chapter 4.3) or Perko (1975).
Consider the following system

ẋ = −φ(y) − F̃(x),

ẏ = ĝ(x).
(13)

System (13) is exactly system (2) if ε = 0. Moreover, we can check that system (13)
still satisfies all assumptions of Theorem 3. In other words, system (13) has at most
two limit cycles. Further, we can find that γ1 will split into at least two limit cycles for
ε < 0 by Zhang et al. (1992, Theorem 3.4 of Chapter 4). Then, system (13) can have
three limit cycles, a contradiction with the previous result. Therefore, we have proven
that system (2) has at most one periodic orbit in the case x3 > 0 if f̂ (x3) > 0.

Case (II) Second, we consider the case that there must be x3 < 0 if f̂ (x3) > 0.
Since the proof is similar to the Case (I), we omit it.

Case (III) We consider the case that x3 can be negative or positive if f̂ (x3) > 0.
We claim that the equation F̂(x) = 0 has either one nonzero root or two nonzero roots.
Notice that the equation F̂(x) = 0 cannot have two positive roots or two negative roots.
Otherwise if there exist two different points x41, x42 ∈ (0, β) or ∈ (α, 0) such that
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Fig. 2 Limit cycles of system (2) in the Case (III)

F̂(x41) = 0 and F̂(x42) = 0, we can get a point x̃4 ∈ (x41, x42) satisfying f̂ (x̃4) = 0,
which contradicts the nondecreasing of the function f̂ (x)/ĝ(x). On the other hand,
if the equation F̂(x) = 0 has not nonzero roots, we get dE/dt ≥ 0 for x ∈ (α, β)

from (4), implying that no periodic orbits exist. If the equation F̂(x) = 0 has a unique
nonzero root, we consider that the nonzero root is x+ ∈ (0, β) for simplicity. If system
(2) has a periodic orbit, it must surround (x+, 0). Otherwise, this is a contradictionwith
the fact that dE/dt ≥ 0. When equation F̂(x) = 0 has one positive root x+ ∈ (0, β)

and a negative root x− ∈ (α, 0), if system (2) has a periodic orbit, it must surround at
least one of the points (x+, 0) and (x−, 0). Otherwise again we have a contradiction
with the fact that dE/dt ≥ 0. Without loss of generality, we can assume that any limit
cycle surrounds (x+, 0).

Assume that system (2) has three limit cycles γ1, γ2, γ3 as the ones shown in Fig. 2,
where γ1 is the innermost one, γ3 surrounds γ1 and γ2, the points Ai , Bi , Ci , Di , Hi ,
Ii Ji , Ki ∈ γi , the periodic orbit γi intersects the graphic of the function y =
φ−1(−F̂(x)) at the points Ci and Ji for i = 1, 2, 3, respectively. Notice that

xBi = xDi , xAi = xHi = 0, xK2 = xK3 = xI2 = xI3 = xJ4 ,

f (xBi ) = 0, f (xJ4) = 0, α < xJ3 < xJ2 < xJ4 < xJ1 < 0,

for i = 1, 2, 3.
In a similar way to the proof of Case (I), we shall obtain that system (2) has at most

one periodic orbit in the strip x ∈ (xJ4 , β). Moreover, the periodic orbit is stable if it
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exists. Now we shall prove that

∮
γ1

f̂ (x)dt <

∮
γ2

f̂ (x)dt <

∮
γ3

f̂ (x)dt . (14)

Notice that the function y = φ(x) has the same properties as in Case (I) when x > 0,
as it is shown in Figs. 1 and 2. Thus, we can obtain that

∫
̂H1C1 A1

f̂ (x)dt <
∫

̂H2C2 A2
f̂ (x)dt,∫

̂H2C2 A2
f̂ (x)dt <

∫
̂H3C3 A3

f̂ (x)dt .
(15)

To prove the first inequality of (14), it suffices to prove inequality (6). Using the
auxiliary function f1(x) in (7) for the Case (I) again, we can prove that

∫
̂A1 J1H1

f1(x)dt <

∫
̂A2 J2H2

f1(x)dt . (16)

From (15) and (16), we get

∮
γ1

f̂ (x)dt <

∮
γ2

f̂ (x)dt . (17)

Moreover, we can calculate that

∫
̂A2K2

f̂ (x)dt −
∫

̂A3K3

f̂ (x)dt < 0,

∫
̂K2 J2 I2

f̂ (x)dt −
∫

̂K3 J3 I3
f̂ (x)dt < 0, (18)

∫
̂I2H2

f̂ (x)dt −
∫

̂I3H3

f̂ (x)dt < 0

doing a similar calculation as in Case (I) for x > 0. Thus, from (15) and (18), we get
the second inequality of (14), i.e.,

∮
γ2

f̂ (x)dt <

∮
γ3

f̂ (x)dt . (19)

It follows from (17) and (19) that (14) holds. Since the origin is a source, we have

∮
γ1

f̂ (x)dt ≥ 0, implying
∮

γ2

f̂ (x)dt > 0 and
∮

γ3

f̂ (x)dt > 0,

from inequality (14). However, it is impossible to have two consecutive stable limit
cycles. Therefore, system (2) cannot have three periodic limit cycles and there are at
most two limit cycles.
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We divide the rest of the proof in two subcases. First, we consider the subcase
that γ1 only surrounds one of the points (x+, 0) and (x−, 0). In Case (I), we have
proved that for this kind of periodic orbits, as γ1, at most one can exist, and it is stable.
Thus, its consecutive periodic orbit γ2 is internally unstable and then

∮
γ2

f̂ (x)dt ≤ 0.
Moreover inequality (17) holds and γ2 is stable, indicating a contradiction. Therefore,
the periodic orbit γ2 does not exist and system (2) has exact one periodic orbit γ1 if
such periodic orbit exists.

Now we consider the subcase that system (2) has no such kind of periodic orbits
like γ1. We assume that system (2) has two periodic orbits γ2 and γ3, which surround
both points (x+, 0) and (x−, 0). Since the origin is a source, we have

∮
γ2

f̂ (x)dt ≥ 0, implying
∮

γ3

f̂ (x)dt > 0,

by inequality (19). Therefore, γ2 is semi-stable and γ3 is stable. Using the auxiliary
vector field (13) again, we can get that system (13) still satisfies all conditions of this
theorem and has at most two limit cycles. However, by the rotated properties of system
(13), the semi-stable γ2 will split into at least two limit cycles for ε �= 0 by Zhang et
al. (1992, Theorem 3.4 of Chapter 4). Then, system (13) can have three limit cycles,
a contradiction. Thus, we have proven that system (2) has at most one periodic orbit
in the case (III) and the proof is completed. ��

Remark 4 The conditionsφ(−∞) = −∞,φ(+∞) = +∞ are needed only if (α, β) is
unbounded. If (α, β) is a bounded interval, these conditions can be deleted in Theorem
3.

Notice that the vector field is Lipschitz if c = 0 in Theorem 3. Thus, the results of
Theorem 3 also hold when system (2) is Lipschitz or further smooth.

The modified Liénard system (21) of the Higgins–Selkov (1) is Lipschitz except at
the line x = 1, which is a discontinuity point of the second kind for the functions in
the system. So we need to apply Theorem 3 for showing the uniqueness of the limit
cycles.

3 Proof of Theorem 1

Notice that system (1) cannot have periodic orbits when a ≤ 0, because the unique
equilibrium (1, 1) is a saddle as a < 0 or ẏ ≡ 0 as a = 0. Thus, in the following we
only consider the case a > 0. Moreover, the periodic orbits of system (1) must lie in
the region

{(x, y) ∈ R
2 | x > 0, y > 0},

since the x-axis is invariant and ẋ |x=0 = 1.

123



85 Page 12 of 25 Journal of Nonlinear Science (2021) 31 :85

In order to simplify the computations and the analysis we do the following change
of coordinates

(x, y, t) →
(

y1 − x1
a

, x1,
t1
a

)
,

changing system (1) into

ẋ1 = −x1 + xn
1 y1
a

− xn+1
1

a
,

ẏ1 = 1 − x1.
(20)

Obviously the periodic orbit of system (20) only exists in the region x1 > 0, because
ẏ1 = 1 > 0 and ẋ1 = 0 on the line x1 = 0. Moreover, system (20) can be changed
into the following Liénard system

ẋ = y − F(x),

ẏ = −g(x),
(21)

where

F(x) := 1

(x + 1)n−1 + x

a
− 1 and g(x) := x

a(x + 1)n
,

doing the transformation (x1, y1, t1) → (x + 1, ay + (a + 1), t/(x + 1)n). Here we
only need to consider x > −1 for the problem of limit cycles of system (21), because
system (21) is equivalent to system (1) as a > 0 and x > −1. Note that x = −1 is a
discontinuous line for system (21).

From Brechmann and Rendall (2018) system (21) has no periodic orbits when
a ∈ (0, 1/(n − 1)). In the following, we prove that system (21) may have periodic
orbits only if a > 1/(n − 1). Here we cannot use the methods of Chen and Tang
(2019), because it is difficult to decide when the equations

g(z1)

f (z1)
= g(z2)

f (z2)
and F(z1) = F(z2),

have solutions or not for an arbitrary integer n. We need to use a new method and
technique.

Proposition 5 For a > 0, the amplitude of the stable or unstable limit cycle of system
(21) surrounding the origin varies monotonically with respect to the parameter a.

Proof Notice that we can change system (21) into the following equivalent form

ẋ = y − F̌(x),

ẏ = −ag(x)
(22)
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by the transformation of coordinates (x, y, t) →
(

x, y/
√

a,
√

at
)
, where

F(x) := √
a
( 1

(x + 1)n−1 − 1
)

+ x√
a

.

From the calculation in Llibre and Mousavi (2021), we have the value of the fol-
lowing determinant

∣∣∣∣∣∣∣∣

y −
(√

a1
( 1

(x + 1)n−1 − 1
)

+ x√
a1

)
− x

(x + 1)n

y −
(√

a2
( 1

(x + 1)n−1 − 1
)

+ x√
a2

)
− x

(x + 1)n

∣∣∣∣∣∣∣∣

= (
√

a1 − √
a2)

⎛
⎝ x

(
1 − (x + 1)n−1

)

(x + 1)2n−1 − 1√
a1a2

x2

(x + 1)n

⎞
⎠ ≤ 0

for a2 < a1, a2, a1 ∈ (0,+∞) and x > −1.
Thus, the vector field of system (22) is a generalized rotated vector field [see Zhang

et al. (1992, Chapter 4.3) or Perko (1975)] with respect to the parameter a if x > −1.
Moreover, fromZhanget al. (1992,Theorem3.5,Chapter 4), the amplitudeof the stable
or unstable limit cycle of system (22) surrounding the origin variesmonotonically with
respect to the positive parameter a. ��

Proposition 6 System (21) has no periodic orbits when a ∈ (−∞, 1/(n − 1)].

Proof By Artés et al. (2018) and Chen and Tang (2019), system (21) has no periodic
orbits for a ≤ 1 when n = 2. In the rest of this proof, we only consider n ≥ 3. We
only need to consider system (21) and its limit cycles in the region x > −1. Assume
that

F(x1) = F(x2), G(x1) = G(x2) (23)

for n ≥ 3 and −1 < x1 < 0 < x2, where

G(x) :=
∫ x

0
g(s)ds = 1

a(n − 1)(n − 2)
− nx − x + 1

a(x + 1)n−1(n − 1)(n − 2)
.

It follows from (23) that

1

(x1 + 1)n−1 + x1
a

− 1 = 1

(x2 + 1)n−1 + x2
a

− 1,
1

(2 − n)

1

(x1 + 1)n−2 + 1

(n − 1)
(24)

1

(x1 + 1)n−1 = 1

(2 − n)

1

(x2 + 1)n−2 + 1

(n − 1)

1

(x2 + 1)n−1 . (25)
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From (24), we have

1

(x1 + 1)n−1 − 1

(x2 + 1)n−1 = − x1 − x2
a

(26)

⇔ 1

(x1 + 1)n−2 = − (x1 + 1)(x1 − x2)

a
+ x1 + 1

(x2 + 1)n−1 . (27)

Furthermore, it follows from (25) and (26) that

1

(2 − n)

(
1

(x1 + 1)n−2 − 1

(x2 + 1)n−2

)
= 1

(n − 1)

(
1

(x2 + 1)n−1 − 1

(x1 + 1)n−1

)

= x1 − x2
a(n − 1)

. (28)

Moreover, we calculate from (27) and (28) that

1

(2 − n)

(
− (x1 + 1)(x1 − x2)

a
+ x1 + 1

(x2 + 1)n−1 − 1

(x2 + 1)n−2

)
= x1 − x2

a(n − 1)
,

1

(2 − n)

(
− (x1 + 1)(x1 − x2)

a
+ 1

(x2 + 1)n−1 (x1 − x2)

)
= x1 − x2

a(n − 1)
,

1

(2 − n)

(
− (x1 + 1)

a
+ 1

(x2 + 1)n−1

)
= 1

a(n − 1)
,

x1 = a

(x2 + 1)n−1 − 1

n − 1
.

(29)

Substituting (29) into (24), we have

1( a

(x2 + 1)n−1 + n − 2

n − 1

)n−1 − 1

a(n − 1)
− x2

a
= 0. (30)

Let

H(x, a) := 1( a

(x + 1)n−1 + n − 2

n − 1

)n−1 − x

a
− 1

a(n − 1)
. (31)

Then, we have that

dH

dx
(x, a) = a(n − 1)2

Hn
1 (x, a)

− 1

a
, (32)

where

H1(x, a) =
( a

(x + 1)n−1 + n − 2

n − 1

)
(x + 1).
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Now we consider the case a = 1/(n − 1). From (31) and (32), we get

H(x, 1/(n − 1)) = 1( 1

(n − 1)(x + 1)n−1 + n − 2

n − 1

)n−1 − (n − 1)x − 1

and

dH

dx
(x, 1/(n − 1)) = n − 1

Hn
1 (x, 1/(n − 1))

− (n − 1),

where

H1(x, 1/(n − 1)) =
( 1

(n − 1)(x + 1)n−1 + n − 2

n − 1

)
(x + 1).

Then, we claim that

dH

dx
(x, 1/(n − 1)) < 0.

Actually, we have

dH1

dx
(x, 1/(n − 1)) =

( 1

(n − 1)(x + 1)n−2 + n − 2

n − 1
(x + 1)

)′

= n − 2

n − 1

( −1

(x + 1)n−1 + 1
)

> 0,

for n ≥ 3 and x ≥ 0, implying min{H1(x, 1/(n − 1))}x≥0 = H1(0, 1/(n − 1)) = 1.
Thus, we get H ′(x, 1/(n − 1)) ≤ 0 and then

max{H(x, 1/(n − 1))}x≥0 = H(0, 1/(n − 1)) = 0.

In other words, Eq. (30) has no solutions for x2 > 0, and then, Eq. (23) have no
solutions {x1, x2} such that −1 < x1 < 0 < x2 if n ≥ 3 and a = 1/(n − 1). Thus,
from continuity we have F(x1) > F(x2), or F(x1) < F(x2) if G(x1) = G(x2).
Moreover, we have that F(0) = 0 and xg(x) > 0. Therefore, by Proposition 2.1 of
Chen and Chen (2015), system (21) has no periodic orbits for a = 1/(n − 1).

Now consider the case a < 1/(n − 1). When a ≤ 0, either the unique equilibrium
(1, 1) of system (1) is a saddle or the system has an invariant line through equilibrium
(1, 1), which implies nonexistence of periodic orbits. The vector field of equivalent
system (22) of system (21) is a generalized rotated vector field with respect to a for
x > −1 and a > 0 by the proof of Proposition 5.Moreover, the amplitude of the stable
or unstable limit cycle surrounding the origin of (21) variesmonotonicallywith respect
to a. Assume that system (21) exhibits limit cycles for a = a0 ∈ (0, 1/(n −1)), where
γ is the innermost limit cycle. Since the origin of (21) is stable, then γ is internally
unstable. Note that the amplitude of an unstable limit cycle decreases as a increases
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by Zhang et al. (1992, Theorem 3.5, Chapter 4). When a increases from a = a0
to a = 1/(n − 1), the origin keeps stability. Therefore, γ does not disappear for
a = 1/(n − 1). This is a contradiction to our above analysis as a = 1/(n − 1), and
the proof is completed. ��

When

a = an := 2n − 1

2n − 2
,

we give the following lemma for the region where periodic orbits exist. Obviously,
an > 1 for n ≥ 3.

Proposition 7 When a = an for n ≥ 3, periodic orbits of system (21) only exist in the
strip x ∈ (−1, 1.6).

Proof Note that any periodic orbit of system (1) must lie in the first quadrant and the
y-axis of system (1) is changed into the line y = x − 1 of system (21). Therefore, the
periodic orbits of system (21) cannot intersect the line y = x − 1.

Assume that 	 is a periodic orbit of system (21) and 	 intersects with the curve
y = F(x) at the point (x∗, F(x∗)) in the right half-plane. Then, x ≤ x∗ as (x, y) ∈ 	.
If x∗ ≤ 1, we have that 	 lies in the strip x ∈ (−1, 1] and this lemma is proven. In
the following, we consider the case x∗ > 1.

Let y = ỹ(x) < F(x) denote the orbit segment of 	 as 0 ≤ x ≤ x∗. For x ≥ 1 and
a = an , we have that ỹ(x) > x − 1 and

d ỹ(x)

dx
= g(x)

F(x) − ỹ(x)
>

g(x)

F(x) − x + 1
≥ x, (33)

which implies

ỹ(x) <
1

2
(x2 − (x∗)2) + ỹ(x∗) (34)

for 1 ≤ x < x∗. Actually, the inequality g(x)/(F(x)−x +1) ≥ x in (33) is equivalent
to the inequality

a ≥ ϕ1(x)

ϕ2(x)
, (35)

where ϕ1(x) = x − 1
(x+1)n and ϕ2(x) = x − 1

(x+1)n−1 . Notice that for x ≥ 1 we get
the maximum value of the positive function ϕ1(x) − ϕ2(x) at x = 1, implying that
the function ϕ1(x)/ϕ2(x) has its maximum value an also at x = 1 and the inequality
(33) is obtained.

We can find that the curve

ϒ : y = 1

2
x2 − 1

2
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is tangent to the line y = x − 1 at the point (1, 0). Moreover, the curves ϒ and
y = F(x) have a unique intersection point at (x̃∗, ỹ∗) for x ≥ 1. Actually, from
F(x) = y = 1

2 x2 − 1
2 and a = an we get that

P(x) := 1

(x + 1)n−1 + (2n − 2)x

2n − 1
− x2

2
− 1

2
= 0.

Applying

P ′(x) = (1 − n)
1

(x + 1)n
+ 2n − 2

2n − 1
− x < 0

for x ≥ 1, P(1) = (2n−1 − 1)/(22n−1 − 2n−1) > 0 and P(1.6) = 2.61−n − 0.18 −
1.6/(2n − 1) < 0, we get a unique value x̃∗ such that P(x̃∗) = 0 and 1 < x̃∗ < 1.6.

In the following,weprove that x∗ < x̃∗.Otherwise, if x∗ ≥ x̃∗,we have−(x∗)2/2+
ỹ(x∗) ≤ −1/2, inducing

ỹ(x) <
1

2
(x2 − (x∗)2) + ỹ(x∗) ≤ 1

2
x2 − 1

2

for x = 1 by (34). Hence, we can obtain that the curve y = ỹ(x) has intersection
points with the line y = x − 1, indicating a contradiction. Therefore, x∗ < x̃∗. In
other words, the periodic orbits of system (21) must lie in the region x ∈ (−1, 1.6).
The lemma is proven. ��

Proposition 8 System (21) has no periodic orbits when a ≥ an for n ≥ 3.

Proof ByArtés et al. (2018) and Chen and Tang (2019), there is a a∗ ∈ (1, 3) such that
system (21) has no periodic orbits for a > a∗ when n = 2. When n = 3 and a = an ,
we can calculate numerically that the function H(x, a) in (31) has not zeros as x lies
between x̃∗ and the positive zero of F(x), where the curves ϒ and y = F(x) intersect
at (x̃∗, ỹ∗) for x ≥ 1, as shown in the proof of Proposition 7. By Proposition 2.1 of
Chen and Chen (2015) system (21) has no periodic orbits when n = 3 and a = an . In
the rest of this proof, we only need consider the case n ≥ 4.

From (32), we have that

dH

dx
(x, a) = a(n − 1)2

Hn
1 (x, a)

− 1

a

and

dH1(x, a)

dx
= − a(n − 2)

(x + 1)n−1 + n − 2

n − 1

⎧⎨
⎩

< 0, 0 < x < x0,
= 0, x = x0,
> 0, x > x0,
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where

x0 = n−1
√

a(n − 1) − 1 > 0

as a ≥ an > 1. Further, we obtain

min
x>−1

{H1(x, a)} = H1(x0, a),

implying

max
x>−1

{
dH

dx
(x, a)

}
= dH

dx
(x0, a) = n − 1

n−1
√

a(n − 1)
− 1

a
> 0.

Moreover, we have

lim
x→+∞

dH

dx
(x, a) < 0

and

dH

dx
(0, a) = a(n − 1)2(

a + n − 2

n − 1

)n − 1

a
= H2(a)

a
(

a + n − 2

n − 1

)n < 0,

where

H2(a) = a2(n − 1)2 −
(

a + n − 2

n − 1

)n
,

because

dH2(a)

da
= 2a(n − 1)2 − n

(
a + n − 2

n − 1

)n−1
<

dH2(a)

da
|a=1 < 0,

d2H2(a)

da2 = 2(n − 1)2 − n(n − 1)
(

a + n − 2

n − 1

)n−2
<

d2H2(a)

da2 |a=1 < 0,

d3H2(a)

da3 = −n(n − 1)(n − 2)
(

a + n − 2

n − 1

)n−3
< 0.

Notice that

H(0, a) = 1
(
a + n − 2

n − 1

)n−1
− 1

a(n − 1)
< 0

from (31) and a similar discussion as dH(0, a)/dx < 0.
If the inequality H(x, a) < 0 always holds as a ≥ 1, we can get that system

(21) has no periodic orbits by Proposition 2.1 of Chen and Chen (2015) and a similar
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Fig. 3 y = H(x, a)

discussion as the proof of Proposition 6. So, in the following, we consider the case
that there exists a value x∗ > x0 such that

max
x>−1

{H(x, a)} = H(x∗, a) > 0.

Without loss of generality, we assume that

H(x0, a) = 1 − x0
a

− 1

a(n − 1)
> 0.

When H(x0, a) ≤ 0, we can research by a similar way. Thus, there are values x1
and x2 such that x1 > x2 > 0 and H(x, a) > 0 (resp. < 0) for x ∈ (x2, x1) (resp.
x ∈ (0, x2) ∪ (x1,+∞)) when n ≥ 4, as shown in Fig. 3.

The function F ′(x) has a unique zero at x = n
√

a(n − 1) − 1 > 0, and there
exists a unique positive x3 such that F(x3) = 0 and F(x) > 0 (resp. < 0) for
x ∈ (−1, 0) ∪ (x3,+∞) (resp. x ∈ (0, x3)). Letting z0 = n−1

√
a(n − 1), we can find

that z0 > 1 and

F(x0) = 1

a(n − 1)
+

n−1
√

a(n − 1) − 1

a
− 1

= 1

zn−1
0

− 1 + z0 − 1

a

= (1 − z0)

(
1 + z0 + · · · + zn−2

0

zn−1
0

− 1

a

)
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= (1 − z0)

(
1 + z0 + · · · + zn−2

0

zn−1
0

− n − 1

zn−1
0

)
< 0,

indicating x0 < x3.
Consider the case a = an > 1. Calculating the equation F(x3) = 0 from (21), we

can let

x3 = (n − k(n))an

n − 1
, (36)

where k ∈ (1, 1.5) and k = k(n) is decreasing in n. Specially, x3 = 1 as n → +∞
and x3 ≈ 0.92 as n = 4. Further, by (36) we have that

H(x3, an) = 1

(1 + (k−1)an−1
n−1 )n−1

+ k − n − 1/an

n − 1

= 1 − H3(n)

(1 + (k−1)an−1
n−1 )n−1

> 0,

where

H3(n) =
(
1 − k − 1 − 1/an

n − 1

)(
1 + (k − 1)an − 1

n − 1

)n−1

=
(
1 + (1 − 1

an
)
((k − 1)an − 1)

n − 1
− ((k − 1)an − 1)2

an(n − 1)2

)(
1 + (k − 1)an − 1

n − 1

)n−2

< 1,

because an > 1 and (k − 1)an − 1 < 0. Thus, we can get x0 < x3 < x1. From
Proposition 7, any limit cycle of system (21) must lie in the region {(x, y) ∈ R

2|x <

1.6}. Hence, we consider the solution of (23) satisfying x3 < x < 2 for x > 0. In
order to prove H(x, an) > 0 for x3 < x < 2, we only need to show H(2, an) > 0 by
Fig. 3. We can compute that

∂(aH(2, a))

∂a
=

1 − 1

1/(n − 1) + 3n−1(n − 2)/(a(n − 1)2)(
a31−n + (n − 2)/(n − 1)

)n−1 > 0

as n > 3 and a ∈ [1, an + ε] for small enough ε > 0. It implies that the function
aH(2, a) is increasing in a for a ∈ [1, an + ε]. Thus, from H(2, 1) > 0 we can get
H(2, an) > 0. Moreover, we have

H(2, 1) = 1(
31−n + n − 2

n − 1

)n−1 − 2 − 1

n − 1
= 1 − Ĥ(n)(

31−n + n − 2

n − 1

)n−1 ,
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where

Ĥ(n) =
(
2 + 1

n − 1

) (
31−n + n − 2

n − 1

)n−1

.

In the following, we prove that Ĥ(n) < 1 and then H(2, 1) > 0. First, we get

H4(n) = ln
n−1
√

Ĥ(n)

= 1

n − 1
ln

(
2 + 1

n − 1

)
+ ln

(
31−n + 1 − 1

n − 1

)

= u ln(2 + u) + ln(3− 1
u + 1 − u),

where u = 1
n−1 ∈ (0, 1

3 ]. Noticing that

Ĥ(4) ≤ 0.814 < 1, Ĥ(5) ≤ 0.76 < 1, Ĥ(6) ≤ 0.74 < 1,

Ĥ(7) ≤ 0.738 < 1, Ĥ(8) ≤ 0.736 < 1

and Ĥ(n) → 2
e as n → +∞. We can only consider the case n ≥ 9 and u ∈ (0, 1

8 ] for
proving the inequality Ĥ(n) < 1. Moreover,

H ′
4(n) = ln(2 + u) + u

2 + u
+

3− 1
u ln 3
u2

− 1

3− 1
u + 1 − u

= ξ1(u) + ξ2(u),

where

ξ1(u) = ln(2 + u) + u

2 + u
− 1,

ξ2(u) = 3− 1
u − u + 3− 1

u ln 3
u2

3− 1
u + 1 − u

=: ξ3(u)

3− 1
u + 1 − u

.

In addition, for u ∈ (0, 1
8 ] we get

ξ ′
1(u) = 1

2 + u
+ 2

(2 + u)2
> 0,

ξ ′
3(u) = −1 + 3− 1

u ln 3

u2 + 3− 1
u ln2 3

u4 − 2
3− 1

u ln 3

u3

=
(

−1 + 3− 1
u ln2 3

u4

)
+ 3− 1

u ln 3

u2

(
1 − 2

u

)
< 0.
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It follows that

ξ1(u) ≤ ξ1

(
1

8

)
= ln(17/8) − 16/17 < 0,

ξ3(u) ≤ lim
u→0+ ξ3(u) = 0,

indicating H ′
4(n) < 0 and then Ĥ(n) < 1. Therefore, we get H(2, 1) > 0 and then

H(2, an) > 0, implying that H(x, an) > 0 for x ∈ [x3, 2]. In other words, the
equations (23) have no roots for a = an . By Proposition 2.1 of Chen and Chen (2015),
system (21) has no periodic orbits when n ≥ 3 and a = an . Since the amplitude of the
stable or unstable limit cycle of system (21) varies monotonically in a by Proposition
5, system (21) has no periodic orbits when n ≥ 3 and a ≥ an . ��

When a ∈ (1/(n − 1), an), we will study the existence and uniqueness of limit
cycle in the following proposition.

Proposition 9 For n ≥ 3, there exists a constant a∗ ∈ (1/(n −1), an) such that system
(21) has a unique limit cycle when a ∈ (1/(n − 1), a∗) and no periodic orbits when
a ∈ (a∗,+∞). Moreover, the limit cycle is stable and hyperbolic, and its amplitude
increases with a.

Proof ByZhang et al. (1992, Theorem3.5, Chapter 4) and Proposition 5, the amplitude
of the stable limit cycle surrounding the origin of (21) is monotonous with respect to a
as x > −1 and a > 0. From Llibre and Mousavi (2021), the Hopf bifurcation occurs
and a stable limit cycle appears when a varies from 1/(n − 1) to 1/(n − 1)+ ε, where
ε > 0 is small. The amplitude of the stable limit cycle is sufficiently small for small
enough ε > 0. Thus, the amplitude of the stable limit cycle increases as a increases.

On the other hand, system (21) has no periodic orbits when a ∈ (−∞, 1/(n −
1)] ∪ [an,+∞) by Propositions 6 and 8, and has a unique finite equilibrium at the
origin. Therefore, there exists a∗ ∈ (1/(n − 1), an) such that the amplitude of the
stable limit cycle approaches infinity when a = a∗ − ε for sufficiently small ε > 0 by
the continuity of the vector field and the monotonous properties of amplitude of the
stable limit cycle in parameter a.

In the following, we will prove the uniqueness of periodic orbits when a ∈ (1/(n −
1), a∗). From system (21), we calculate

d
(

f (x)/g(x)
)

dx
= a

n − 1

x2
+ ((n − 1)x − 1)(x + 1)n−1

x2
= Q(x)

x2
, (37)

where Q(x) := a(n − 1) + ((n − 1)x − 1)(x + 1)n−1, and

Q′(x) := n(n − 1)x(x + 1)n−2. (38)

Notice that Q(0) = a(n − 1) − 1 > 0 since a > 1/(n − 1). Moreover, it is easy to
see that Q(x) > 0 when x ∈ [1/(n − 1),+∞). When x ∈ [0, 1/(n − 1)), we get
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Fig. 4 Numerical phase portraits
of system (1)
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Q′(x) ≥ 0 from (38). Thus

min{Q(x)}x∈[0,1/(n−1)) = Q(0) > 0,

inducing Q(x) > 0 in this case. When x ∈ (−1, 0] we get Q′(x) ≤ 0 from (38).
Thus,

min{Q(x)}x∈(−1,0] = Q(0) > 0,

also inducing Q(x) > 0 in this case. Therefore, we obtain Q(x) > 0 when
x ∈ (−1,+∞), and then, the function f (x)/g(x) is increasing from (37) when
x ∈ (−1, 0) ∪ (0,+∞).

Moreover, we can verify that xg(x) > 0 for all x �= 0, F(0) = 0, F ′(0) �= 0
and f (x)/g(x) is not a constant when |x | is small. Hence, all conditions in Theorem
3 hold and we can get that system (21) has at most one limit cycle in (−1,+∞).
Moreover, the limit cycle is stable if it exists. Notice that for our system (21), the
function φ(y) = y in the general system (2). The proposition is proven. ��

From Propositions 5–9, we can obtain Theorem 1.
At last, some numerical examples are provided as follows to verify our theoretical

results for n = 3.
Consider parameters in the supercritical Hopf bifurcation curve of system (1) for

n = 3, i.e., a = 1/(n − 1) = 0.5. Then, the unique equilibrium (1, 1) is a stable
weak focus, as shown in Fig. 4a. When a = 0.55, equilibrium (1, 1) is an unstable
hyperbolic focus and the Hopf bifurcation generates a stable hyperbolic limit cycle,
as shown in Fig. 4b. When a = 0.6, equilibrium (1, 1) is still an unstable hyperbolic
focus and the stable hyperbolic limit cycle disappears at infinity, as shown in Fig. 4c.
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