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Abstract
Using the integrability of the sinh-Gordonequation,wedemonstrate the spectral stabil-
ity of its elliptic solutions. With the first three conserved quantities of the sinh-Gordon
equation, we construct a Lyapunov functional. By using such Lyapunov functional,
we show that these elliptic solutions are orbitally stable with respect to subharmonic
perturbations of arbitrary period.
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1 Introduction

Stability analysis for solutions of partial differential equations (PDEs) plays an impor-
tant role in many aspects of the physical world, including fluid mechanics (Drazin and
Reid 1981), nonlinear optics (Hasegawa 1989) and plasma physics (Chen 1984). The
stability of solutions is important for relating mathematical models to applications in
science and engineering. If a solution of a mathematical model persists when affected
by small perturbations, it is likely observable in the physical world, while unsta-
ble solutions are not. In different areas of science and engineering, many important
mathematical models have been derived, which do not lend themselves easily to thor-
ough analysis. However, using asymptotic and perturbation methods, one may study
a simpler approximate model instead. Stability analysis may be used to examine the
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dynamics of mathematical solutions and structures even when the dynamical vari-
able is not necessarily a time-like variable: The stability analysis serves to allow an
understanding of the space of solutions in the neighborhood of the solution of interest.

Two types of solutions and boundary conditions are extensively studied for non-
linear PDEs: localized solutions that decay at infinity, and periodic solutions. Elliptic
solutions are a class of periodic solutions that have found application in the physical
world, such as near-shore ocean waves (Wiegel 1960). In this paper, we focus on the
stability of elliptic solutions of the integrable sinh-Gordon equation.

In real space-time coordinates, denoted (X , T ), the Sinh–Gordon equation reads
(Ablowitz 1981; McKean 1981)

uTT − uXX + sinh(u) = 0, (1)

where partial derivatives are denoted by subscripts. Passing to light-cone coordinates
(x, t), with

x = 1

2
(X + T ), t = 1

2
(X − T ), (2)

the sinh-Gordon equation becomes

uxt = sinh u. (3)

The sinh-Gordon equation (1) is rewritten in system form as:

uT = −p, (4a)

pT + uXX − sinh(u) = 0. (4b)

Here, u is a real-valued function. The sinh-Gordon equation arises in the context
of particular surfaces of constant mean curvature. The geometrical interpretation
of (1) was shown by studying surfaces of constant Gaussian curvature in a three-
dimensional pseudo-Riemannian manifold of constant curvature (Chern 1981). It has
appeared in differential geometry and various applications. For example, (3) can
be used to describe generic properties of string dynamics for strings and multi-
strings in constant curvature space (Larsen and Sanchez 1996). Equation (3) is
an integrable system and has a self-adjoint Lax pair (Ablowitz 1981). The stabil-
ity and instability of periodic wave solutions were studied in Natali (2011), where
it was shown that the periodic wave solutions are orbitally stable for (u, p) ∈
H1
m,per ([0, L]) × L2

per ([0, L]), for specific choices of the traveling wave velocity.

Here, H1
m,per ([0, L]) =

{
f ∈ H1

per ([0, L]); 1
L

∫ L
0 f (x)dx = 0

}
. It is noted that in

Natali (2011) the closely related equation uTT − uXX − sinh(u) = 0 is studied and
the author obtained a criterion for instability (as well as stability) of periodic waves
with respect to the perturbations of the same period. Equation (1) can be viewed as
a special case of a nonlinear Klein–Gordon equation. The spectral stability (as well
as instability) of periodic wavetrains with respect to localized perturbations for the
nonlinear Klein–Gordon equation has been discussed in Jones et al. (2014).
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InNatali (2011), only perturbations of the same period are considered and only one
type of periodic solution is considered. Moreover, in Jones et al. (2014) no orbital sta-
bility result is obtained. In this paper, using the integrability of (1),we show the spectral
and orbital stability of elliptic solutions of the sinh-Gordon equation with respect to
arbitrary subharmonic perturbations: periodic perturbations having period equal to
an integer multiple of the period of the potential solution. The study of the stability
of solutions with respect to subharmonic perturbations is important for at least two
reasons: (i) For many well-established models, such as the focusing modified KdV
equation (Deconinck and Nivala 2011), the focusing NLS equation (Deconinck and
Segal 2017) and the sine-Gordon equation (Deconinck et al. 2020), some elliptic solu-
tions are stable with respect to periodic perturbations of the same period, but unstable
with respect to subharmonic perturbations (Deconinck and Nivala 2011; Deconinck
and Segal 2017; Deconinck et al. 2020); (ii) in some physical applications, like ocean
wave dynamics, one usually takes into account more larger perturbation classes that
are physically justified, and are not restricted to having the same period as the solution.
The stability of elliptic solutions with respect to subharmonic perturbations has been
investigated for certain integrable PDEs (Bottman et al. 2011; Bottman and Decon-
inck 2009; Deconinck and Kapitula 2010; Deconinck and Nivala 2011; Deconinck
and Upsal 2020; Gallay and Pelinovsky 2020).

Since the sine-Gordon equation and sinh-Gordon equation have a similar form,
we need to talk about some differences about their stability analysis. Although the
spectral stability and instability of the elliptic solutions to sine-Gordon equation have
been studied (Deconinck et al. 2020; Jones et al. 2013), no nonlinear (orbital) stability
results were obtained in Deconinck et al. (2020); Jones et al. (2013). Besides, the
structure of the linear stability problem in Deconinck et al. (2020); Jones et al. (2013)
cannot be used to prove orbital stability here. To get the orbital stability result, we
need to ensure that the Hessian of the Hamiltonian of the sinh-Gordon equation is
equal to the operator of the linear problem. To this end, we obtain a linear stability
problem whose structure is completely different from that in Deconinck et al. (2020);
Jones et al. (2013).

In this paper, using the integrable method as in (Deconinck and Nivala 2011;
Bottman et al. 2011; Nivala and Deconinck 2010; Bottman and Deconinck 2009;
Deconinck and Segal 2017), we construct the spectrum and eigenfunction connec-
tions between the Lax pair and linear stability problem. With such connections, we
show the spectral stability of the elliptic solutions to the sinh-Gordon equation. Next,
as in (Deconinck andKapitula 2010; Deconinck andNivala 2011; Bottman et al. 2011;
Nivala and Deconinck 2010; Deconinck and Upsal 2020), we employ the Lyapunov
method (Arnold 1997; Deconinck and Kapitula 2020; Arnold 1969; Weinstein 2003;
Holm et al. 1985; Henry et al. 1982), to conclude the orbital stability with the help of
classical results of Grillakis, Shatah and Strauss (Grillakis et al. 1987).

2 The Elliptic Solutions of the sinh-Gordon Equation

We construct the real, bounded, periodic, traveling wave solutions to the sinh-Gordon
equation. Toobtain the travelingwave solutions, one rewrites the sinh-Gordon equation
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Fig. 1 Typical ( f , g) phase plane for c2 > 1 (left) and c2 < 1 (right)

in a frame moving with constant velocity c. With z = X − cT and τ = T , the Sinh–
Gordon equation becomes

(
c2 − 1

)
uzz − 2cuzτ + uττ + sinh(u) = 0. (5)

In what follows, we assume that c �= ±1. Stationary solutions are time-independent
solutions of (5): u(z, t) = f (z). They satisfy the ordinary differential equation

(
c2 − 1

)
f ′′(z) + sinh( f (z)) = 0, ′ := d

dz
. (6)

Multiplying by f ′(z) and integrating once,

1

2

(
c2 − 1

)
f ′(z)2 + cosh( f (z)) = E, (7)

where E is a constant of integration referred to as the total energy.
Equation (6) is rewritten as the first-order two-dimensional system

f ′(z) = g(z), g′(z) = −2 sinh( f (z))

c2 − 1
, (8)

with (0, 0) as a fixed point. The linearization about the origin has eigenvalues

λ = ±
√ −2

c2 − 1
. (9)

For c2 > 1, the fixed point is a center using the linear approximation and nearby
trajectories are closed curves. Since system (8) is conservative, the fixed point is also a
center when nonlinear terms are considered, as shown in Fig. 1. For c2 < 1, the fixed
point is a saddle and all orbits are unbounded, as shown in Fig. 1. Thus, the periodic
solutions are expected for c2 − 1 > 0. If c2 > 1, then E > 1, from (7).
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Motivated by Natali (2011), we look for solutions to (7) of the form

cosh( f (z)) = α

1 − βv(z)2
+ d, (10)

where v(z) is a function to be determined, and α, β and d are parameters. Differenti-
ating and squaring (10), one obtains

4α2β2v2

(1 − βv2)4

(
dv

dz

)2

= sinh2( f (z))

(
d f

dz

)2

. (11)

Using (7), the above equation can be reduced to

(
dv

dz

)2

= [α2(1 − βv2) + 2αd(1 − βv2)2 + (d2 − 1)(1 − βv2)3][2E − 2d − 2α − (2E − 2d)βv2]
4α2β2v2(c2 − 1)

.

(12)

To obtain the elliptic solutions, we introduce sn(z, k), the Jacobi elliptic sine function
with argument z and modulus k Lawden (1989). It satisfies the first-order nonlinear
equation

(
dv

dz

)2

=
(
1 − v2

) (
1 − k2v2

)
. (13)

Motivated by (13), we wish to eliminate the higher-order terms in the numerator
and v2 from the denominator of (12). This is accomplished by equating E = d and
(α + d)2 = 1, d2 = 1 and α + 2d = 0 or d2 = 1 and E = d + α.

Case I: with the condition E = d and (α + d)2 = 1, we know that α < 0 and
d > 1 since E > 1, and equation (12) becomes

(
dv

dz

)2

= −2α(1 − βv2)(−2αdβ − 2β(d2 − 1) + (d2 − 1)β2v2)

4α2β2(c2 − 1)
. (14)

Motivated by the form of (13), we need −2αdβ − 2β(d2 − 1) < 0. We rewrite (12)
as

(
dv

dz

)2

=
−2α(−2αdβ − 2β(d2 − 1))(1 − βv2)(1 − (d2−1)

2αdβ+2β(d2−1)
β2v2)

4α2β2(c2 − 1)
.

(15)

We note that −2α(−2αdβ−2β(d2−1))
4α2β2(c2−1)

< 0, which means that no elliptic solutions are
obtained from (13).

123



63 Page 6 of 23 Journal of Nonlinear Science (2021) 31 :63

Case II: with the condition d2 = 1 and E = d+α, we cannot find elliptic solutions
from (12). In fact, with d2 = 1 and E = d + α, motivated by the form of (13), the
expression of (12) implies that β = 1 or β = 1 + α

2d .

• For β = 1 + α
2d , Equation (12) becomes

(
dv

dz

)2

= (1 − βv2)[2αdβ(1 − v2)](−2E + 2d)β

4α2β2(c2 − 1)
. (16)

Comparing (16) and (13), we obtain 0 < β < 1 since the elliptic modulus 0 <

k < 1 in (13). Since d2 = 1 and E > 1, we know that α = E − d > 0. From
β = 1+ α

2d , we know d = −1 so that 0 < β < 1. From β = 1− α
2 > 0, we know

α < 2. But when d = −1, we know that α = E + 1 > 2.
• For β = 1 and d = 1, Equation (12) becomes

(
dv

dz

)2

=
(
1 − v2

) (
α2 + 2α

) [(
1 − 2α

α2+2α
v2
)]

(−2E + 2)

4α2
(
c2 − 1

) , (17)

from which (−2E+2)(α2+2α)

4α2(c2−1)
< 0, and no elliptic solutions are obtained from (13).

• For β = 1 and d = −1, Equation (12) becomes

(
dv

dz

)2

=
(
1 − v2

) (
α2 − 2α

) [(
1 + 2α

α2−2α
v2
)]

(−2E − 2)

4α2
(
c2 − 1

) . (18)

Since d = −1, α = E − d > 2, which implies that − 2α
α2−2α

< 0. Therefore, we
cannot obtain elliptic solutions from (13).
Case III: we consider d2 = 1 and α + 2d = 0.
Equation (12) is reduced to

(
dv

dz

)2

= (1 − βv2)[2E − 2d − 2α − (2E − 2d)βv2]
4β(c2 − 1)

. (19)

• For d = −1 and α = 2, Equation (12) becomes

(
dv

dz

)2

= (2E − 2)(1 − βv2)[1 − (2E+2)
2E−2 βv2]

4β(c2 − 1)
. (20)

Motivated by (13), β cannot be 1. In fact, if β = 1, we note (2E+2)
2E−2 > 1, which

means that k > 1. Therefore, β cannot be 1. According to the form of (13), we
obtain β = k2 and then from (20), we have

2E + 2

2E − 2
β = 1. (21)
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It follows that

cosh( f (z)) = 2

1 − k2 sn2(bz, k)
− 1. (22)

where b =
√ E+1

2(c2−1)
and k =

√
E−1
E+1 .

• For d = 1 and α = −2, Equation (12) becomes

(
dv

dz

)2

= (2E + 2)(1 − βv2)[1 − (2E−2)
2E+2 βv2]

4β(c2 − 1)
. (23)

Motivated by (13), β cannot be k2. In fact, if 0 < β = k2 < 1, we obtain
(2E−2)
2E+2 β = 1, which means that β > 1. Therefore, β cannot be k2. According to
the form of (13), we obtain β = 1 and equation (12) becomes

(
dv

dz

)2

= (2E + 2)(1 − v2)[1 − (2E−2)
2E+2 v2]

4(c2 − 1)
. (24)

It follows that

cosh( f (z)) = −2

1 − sn2(bz, k)
+ 1, (25)

where b and k have the same expressions as in (22).
The solutions are periodic with period T (k) = 2K

b , where

K (k) =
∫ π/2

0

dy√
1 − k2 sin2(y)

, (26)

the complete elliptic integral of the first kind, see Lawden (1989).
The solutions (22) and (25) have the following properties:

• Using dn2(bz, k) = 1 − k2 sn2(bz, k) and 1−k2

dn2(bz,k)
= dn2(bz + K (k), k), (22)

simplifies to

cosh( f (z)) = 2

1 − k2
dn2(bz + K (k), k) − 1 = 1 + k2

1 − k2
− 2k2

1 − k2
sn2(bz + K (k), k).

(27)

• Using the solutions (22) and (25), we could obtain the same Krein signature K1
[see section 6].
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3 The Linear Stability Problem

In this section, we examine the stability of the elliptic solutions obtained above. Con-
sidering the perturbation of a stationary solution to (5),

u(z, τ ) = f (z) + εw(z, τ ) + O
(
ε2
)

, (28)

where ε is a small parameter; we obtain the linear stability problem

(
c2 − 1

)
wzz − 2cwzτ + wττ + cosh( f (z))w = 0. (29)

With w1(z, τ ) = w(z, τ ) and w2(z, τ ) = cwz(z, τ ) − wτ (z, τ ), the linear problem is
rewritten as:

∂

∂τ

(
w1
w2

)
=
(

c∂z −1
−∂2z + cosh( f (z)) c∂z

)(
w1
w2

)
. (30)

We note that (30) is autonomous in time. By separating variables,

(
w1(z, τ )

w2(z, τ )

)
= eλτ

(
W1(z)
W2(z)

)
, (31)

the linear problem (30) is rewritten as:

λ

(
W1
W2

)
= JL

(
W1
W2

)
=
(

c∂z −1
−∂2z + cosh( f (z)) c∂z

)(
W1
W2

)
, (32)

where

J =
(

0 1
−1 0

)
,L =

(
∂2z − cosh( f (z)) −c∂z

c∂z −1

)
. (33)

Note that L is formally self-adjoint. We define the spectrum σ(JL) of the operator
JL

σJL =
{
λ ∈ C : sup

x∈R
(|W1(x)| , |W2(x)|) < ∞

}
. (34)

If λ has no strictly positive real part, spectral stability of an elliptic solution with
respect to perturbations that are bounded on the whole line is constructed. Because the
Sinh–Gordon equation is a Hamiltonian partial differential equation (McKean 1981),
the spectral stability is neutral stability (Wiggins 2003), i.e., the spectrum is purely
imaginary.
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4 The Lax Pair Restricted to the Elliptic Solution

Equation (3) admits the
following Lax pair Ablowitz (1981):

ψx =
(−iζ ux

2ux
2 iζ

)
ψ, ψt =

(
i cosh u

4ζ − i sinh u
4ζ

i sinh u
4ζ − i cosh u

4ζ

)
ψ. (35)

From (35), one has the following spectral problem:

(
i∂x − i

2ux
i
2ux −i∂x

)
ψ = ζψ. (36)

It is noted that the spectral problem is self-adjoint. Therefore, we define the Lax
spectrum:

σL := {ζ ∈ C : sup
x∈R

(|ψ1|, |ψ2|) < ∞} ⊂ R.

Through (2), (1) admits the following Lax pair:

ψX =
(

− i
2ζ + i cosh u

8ζ
uX+uT

4 − i sinh u
8ζ

uX+uT
4 + i sinh u

8ζ
i
2ζ − i cosh u

8ζ

)
ψ,

ψT =
(

− i
2ζ − i cosh u

8ζ
uX+uT

4 + i sinh u
8ζ

uX+uT
4 − i sinh u

8ζ
i
2ζ + i cosh u

8ζ

)
ψ.

We transform the Lax pair by moving into a traveling reference frame, letting z =
X − cT , τ = T and u(z, τ ) = f (z). The Lax pair restricted to the stationary solution
is

ψz =
(

− i
2ζ + i cosh f (z)

8ζ
(1−c) f ′(z)

4 − i sinh f (z)
8ζ

(1−c) f ′(z)
4 + i sinh f (z)

8ζ
i
2ζ − i cosh f (z)

8ζ

)
ψ,

ψτ =
(
A B
C −A

)
ψ

=
(

− i(1+c)
2 ζ + (c − 1) i cosh f (z)

8ζ
(1−c)(c+1) f ′(z)

4 + (1 − c) i sinh f (z)
8ζ

(1−c)(c+1) f ′(z)
4 + (c − 1) i sinh f (z)

8ζ (c + 1) i2ζ + (1 − c) i cosh f (z)
8ζ

)
ψ. (37)

Because A, B and C are independent of τ , by separating variables we expect the
solutions of the following form:

ψ(z, τ ) = e�τϕ(z), (38)
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Fig. 2 The graph of �2 as a function of real ζ

where � is independent of τ . We substitute (38) in the τ -part of the Lax pair and
obtain

(
A − � B
C −A − �

)
ϕ = 0. (39)

To guarantee the existence of nontrivial solutions, we require

�2 = A2 + BC = −16ζ 4(c + 1)2 − 8ζ 2
(
c2 − 1

) E + (c − 1)2

64ζ 2 . (40)

Here, the expression of f ′(z)2 obtained before has been used. Equation (40) determines
� in terms of ζ . Since ζ is real, � is real or imaginary. Further, �2 is an even function
of ζ . From the discriminant of (40), we know that with E > 1 and c2 > 1, (40) is
expressed as:

�2 = − (ζ − ζ1)(ζ − ζ2)(ζ + ζ2)(ζ + ζ1)

4ζ 2 , (41)

where ζ1 = 1
2

√
(c−1)(E−√E2−1)

(c+1) and ζ2 = 1
2

√
(c−1)(E+√E2−1)

(c+1) , see Fig. 2.
The eigenvectors corresponding to the eigenvalue � are

ϕ(z) = γ (z)

( −B(z)
A(z) − �

)
, (42)

where γ (z) is a scalar function. Substituting (42) in the z-part of the Lax pair, we
obtain
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γ (z) = exp

⎡
⎣
∫ ⎛

⎝ i

2
ζ − i cosh f (z)

8ζ
−

B
[

(1−c) f ′(z)
4 + i sinh f (z)

8ζ

]
+ A′

A − �

⎞
⎠ dz

⎤
⎦

= 1

A − �
exp

⎡
⎣
∫ ⎛

⎝ i

2
ζ − i cosh f (z)

8ζ
−

B
[

(1−c) f ′(z)
4 + i sinh f (z)

8ζ

]

A − �

⎞
⎠ dz

⎤
⎦ .

(43)

Excluding the branch points, where � = 0, each ζ results in two values of �. Thus,
(42) represents two linearly independent solutions. When ζ = ζ1 or ζ = ζ2, only one
solution is obtained. The second one may be obtained using the reduction of order
method.

Since the vector part of the eigenvector ϕ(z) is bounded in z, we need to check for
which ζ the scalar function γ is bounded for all z, including as |z| → ∞. A necessary
and sufficient condition for this is that Bottman et al. (2011); Bottman and Deconinck
(2009)

〈
Re

⎛
⎝−

B
[

(1−c) f ′(z)
4 + i sinh f (z)

8ζ

]
+ A′

A − �

⎞
⎠
〉

= 0. (44)

Here, 〈·〉 = 1
T

∫ T
2

− T
2

·dz means the average over a period. Recently, Upsal and Decon-

inck Upsal and Deconinck (2020) demonstrated that purely real Lax spectrum implies
spectral stability. We show this explicitly below.

a) When � is imaginary, the integrand of (44) is

Re

⎛
⎝−

B
[

(1−c) f ′(z)
4 + i sinh f (z)

8ζ

]

A − �

⎞
⎠ + Re

(
− A′

A − �

)
. (45)

The second term is a total derivative, with zero average over a period. For the first
term,

Re

⎛
⎝−

B
[

(1−c) f ′(z)
4 + i sinh f (z)

8ζ

]

A − �

⎞
⎠ = f ′(z)

[
sinh f (z)(1 − c2) + sinh f (z)(1 − c)2

32ζ(−i A + i�)

]
,

(46)

which is a total derivative, resulting in zero average over a period. Thus, the Lax
spectrum contains all ζ values for which � is imaginary.
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b) If � is real, the second term is still a total derivative, thus giving zero average over
a period. We consider the first term:

Re

⎛
⎝−

B
[

(1−c) f ′(z)
4 + i sinh f (z)

8ζ

]

A − �

⎞
⎠ = �

(1+c)(1−c)2 f ′(z)2
16 + (c−1)(sinh2( f (z)))

64ζ 2

�2 + A2

+ f ′(z)F( f (z)). (47)

The second term is a total derivative, thus giving zero average over a period. The
first term results in a zero average only when � is zero. Thus, all values of ζ for
which � is real (except for the four branch points, where � = 0) are not part of
the Lax spectrum.

Based on the above analysis, the Lax spectrum consists of all ζ values for which
�2 ≤ 0:

σL = (−∞,−ζ2] ∪ [−ζ1, 0) ∪ (0, ζ1] ∪ [ζ2,∞) . (48)

Moreover, �2 takes on all negative values for (−∞,−ζ2] , [−ζ1, 0) , (0, ζ1] and
[ζ2,∞), respectively, which means that � covers the imaginary axis four times.

5 The Squared Eigenfunction Connection

The eigenfunction connections between the Lax pair and the linear stability problem
have been studied in different integrable systems (Ablowitz 1981; Sachs 1983; Newell
1985; Deconinck and Nivala 2011; Bottman et al. 2011; Nivala and Deconinck 2010;
Bottman and Deconinck 2009; Deconinck and Segal 2017).

Theorem 1 The difference of squares,

w(z, τ ) = ψ1(z, τ )2 − ψ2(z, τ )2, (49)

satisfies the linear stability problem (29). Here, ψ = (ψ1, ψ2)
T is any solution of the

Lax pair (37).

Let us construct the connection between the σJL spectrum and the σL spectrum.
Substituting (49) and (38) in (31),

e2�τ

(
ϕ2
1 − ϕ2

2−2�
(
ϕ2
1 − ϕ2

2

) + 2c (ϕ1ϕ1z − ϕ2ϕ2z)

)
= eλτ

(
W1(z)
W2(z)

)
, (50)

so that

λ = 2�(ζ), (51)
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with

(
W1(z)
W2(z)

)
=
(

ϕ2
1 − ϕ2

2−2�
(
ϕ2
1 − ϕ2

2

) + 2c (ϕ1ϕ1z − ϕ2ϕ2z)

)
. (52)

We note that all but three solutions of (32) may be written in this form. Moreover,
the squared eigenfunction connection could be used to construct all bounded solutions
of (32).

This is proven as in Deconinck and Nivala (2011); Bottman et al. (2011); Nivala
and Deconinck (2010); Bottman and Deconinck (2009): We need to figure out how
many solutions could be constructed using the squared eigenfunction connection for
a given λ. Note that �2 is an even function of ζ . Excluding the two values of λ where
�2 reaches its maximum value, (40) gives rise to four values of ζ ∈ C. We revisit
these values in (b), below. For all other values of λ = 2�, any fixed � and ζ defines
a unique solution (up to a multiplicative constant) of the Lax pair. As in Deconinck
and Nivala (2011); Bottman et al. (2011); Nivala and Deconinck (2010); Bottman and
Deconinck (2009), there are two parts for this.

(a) For any λ not equal to the two values mentioned earlier, we obtain four solutions
through the squared eigenfunction connection. Since �2 is an even function of ζ ,
the Lax parameters come in {−ζ, ζ } pairs. As in Deconinck and Nivala (2011),
only one element of these pairs gives rise to an independent solution of the sta-
bility problem, eliminating two of these four solutions. On the other hand, as in
Bottman and Deconinck (2009), when the exponential contribution from γ exists,
the remaining two solutions are linearly independent. � = 0 is the only pos-
sibility that there is no exponential contribution from γ . In that case, using the
squared eigenfunction connection, we construct only one solution, corresponding
to ( fz, c fzz)T. The other one is constructed through the reduction of order method
and introduces algebraic growth.

(b) Let us consider the case when �2 reaches its maximum value (two excluded
values of λ). Using the squared eigenfunction connection, we obtain only one
unbounded solution. The second one may be constructed using reduction of order
and introduces algebraic growth.

As a consequence of the discussion above, the double covering in the � repre-
sentation drops to a single covering. In summary, we have the following theorem.

Theorem 2 The periodic traveling wave solutions of the sinh-Gordon equation are
spectrally stable. The spectrum of their associated linear stability problem is explicitly
given by σ(JL) = iR.

Using the SCS basis lemma in Haragus and Kapitula (2008), we conclude that the
eigenfunctions form a basis for L2

per ([−N T
2 , N T

2 ]), for any integer N . Therefore, the
linear stability with respect to subharmonic perturbations is established.
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6 Orbital Stability

In this section, we study the orbital stability of the elliptic solutions to sinh-Gordon
equation. Since we will use the higher-order flows in the sinh-Gordon hierarchy, we
need u and its derivatives of up to order three to be square-integrable.

To prove orbital stability, we prove formal stability first: We construct a Lyapunov
functional for the elliptic solutions using the conserved quantities of the sinh-Gordon
equation. We introduce the Hamiltonian structure of the sinh-Gordon equation and its
hierarchy. We use the system form of the sinh-Gordon equation:

uτ = −p + cuz, (53)

pτ = cpz − uzz + sinh(u). (54)

The Hamiltonian structure is Ablowitz (1981), McKean (1981)

(
∂u/∂τ

∂ p/∂τ

)
= J

(
δH/δu
δH/δ p

)
, (55)

with

H = −
∫ N T

2

−N T
2

[
1

2
p2 + 1

2
(uz)

2 + cosh u − cpuz

]
dz, (56)

and J =
(

0 1
−1 0

)
.

We mark the conserved quantities of the sinh-Gordon equation as
{
Hj

}∞
j=0. The

first three conserved quantities are:

H0 = −
∫ N T

2

−N T
2

puzdz,

H1 = −
∫ N T

2

−N T
2

[
1

2
p2 + 1

2
(uz)

2 + cosh u

]
dz,

H2 =
∫ N T

2

−N T
2

[
−64uzz pz − 8 (uz)

3 p − 8uz p
3 + 48pz sinh u

]
dz.

In fact, all the functionals Hi are mutually in involution under the Poisson bracket.
The conservation and the involution properties for H0, H1, and H2 are straightforward
to verify. Each Hi defines an evolution equation with respect to a time variable τi by

∂

∂τi

(
u
p

)
= J H ′

i (p, u), (57)
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where H ′
i (u, p) denotes the variational gradient of Hi . The collection of (57) with

i = 0, 1, . . . is the sinh-Gordon hierarchy. Its first three members are

∂

∂τ0

(
u
p

)
=
(−uz

−pz

)
,

∂

∂τ1

(
u
p

)
=
(−p
sinh u − uzz

)
,

∂

∂τ2

(
u
p

)
=
(−8uz3 − 24uz p2 − 48uz cosh u + 64uzzz

−48pz cosh u − 24p2 pz − 24pzuz2 − 48puzzuz + 64pzzz

)
.

Since the flows in the sinh-Gordon hierarchy commute, we could construct a new
Hamiltonian system using the linear combination of the above Hamiltonians. The n-th
sinh-Gordon equation with evolution variable tn is defined as

∂

∂tn

(
u
p

)
= J Ĥ ′

n(u, p), (58)

Ĥn = Hn +
n−1∑
i=0

cn,i Hi , n ≥ 1, (59)

where the coefficients cn,i are constants. For example, Ĥ1 = H1 − cH0 = H is the
Hamiltonian of the Sinh–Gordon equation (53) and (4), as shown in (56).

Every equation in the sinh-Gordon hierarchy admits a Lax pair. They have the same
z-part ψz = −T0ψ , while the τ j -part (ψτ j = Tjψ) is different:

ψτ0 = T0ψ = −
(

i cosh u
8ζ − i ζ

2
1
4 (uz − p) − i sinh u

8ζ
1
4 (uz − p) + i sinh u

8ζ − i cosh u
8ζ + i ζ

2

)
ψ,

ψτ1 = T1ψ =
(

− i cosh u
8ζ − i ζ

2
1
4 (uz − p) + i sinh u

8ζ
1
4 (uz − p) − i sinh u

8ζ
i cosh u

8ζ + i ζ
2

)
ψ,

ψτ2 = T2ψ =
(
A2 B2
C2 −A2

)
ψ,

where

A2 = 32iζ 3 − i cosh u

2ζ 3 + 8iζ

(
−puz + 1

2
p2 + 1

2
u2z

)

+ 2

ζ

(
−2i pzcschu + 2i pz cosh u coth u − i puz cosh u − 1

2
i p2 cosh u − 1

2
iu2z cosh u

−2iuzzcschu + 2iuzz cosh u coth u − i cosh2 u + i
)

,

B2 = i sinh u

2ζ 3 + 1

16
iζ 2 (256iuz − 256i p) + p + uz

ζ 2 + 8iζ (2pz − 2uzz + sinh u)

+ i sinh u

ζ
(−4pz coth u + 2puz + p2 + u2z − 4uzz coth u + 2 cosh u)
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+ i

128
(−512i p cosh u

−256i p3 + 2048i pzz − 768i pu2z + 768i p2uz + 256iu3z − 2048iuzzz + 1536iuz cosh u),

C2 = −i sinh u

2ζ 3 + 1

16
iζ 2 (256iuz − 256i p) + p + uz

ζ 2 − 8iζ (2pz − 2uzz + sinh u)

− i sinh u

ζ
(−4pz coth u + 2puz + p2 + u2z − 4uzz coth u + 2 cosh u)

+ i

128
(−512i p cosh u

−256i p3 + 2048i pzz − 768i pu2z + 768i p2uz + 256iu3z − 2048iuzzz + 1536iuz cosh u).

The Lax pair for the n-th sinh-Gordon equation is obtained:

ψtn = T̂nψ =
(
Ân B̂n

Ĉn − Ân

)
ψ, (60)

T̂n = Tn +
n−1∑
i=0

cn,i Ti , T̂0 = T0. (61)

We study the stationary solutions of the sinh-Gordon hierarchy. Since the flows
commute, any stationary solution of the Sinh–Gordon equation solves any other flows,
for a suitable choice of the coefficients cn,i .

For example, the travelingwave solutions ( f , c fz) are the stationary solutions of the
first equation in the Sinh–Gordon hierarchy with c1,0 = −c. They are also stationary
solutions of the second equation in the sinh-Gordon hierarchy provided

16
(−3c2 − 1

) E(
c2 − 1

) − c2,1c − c2,0 = 0. (62)

This gives one condition for the two coefficients c2,1 and c2,0. In order to proceed
as in Refs. Grillakis et al. (1990), Bottman et al. (2011), we consider stability in the
space of subharmonic functions of period NT , for 1 ≤ N ∈ N, i.e.,

V0,N =
{
W : W ∈ H3

per ([−N
T

2
, N

T

2
])
}

. (63)

To prove the orbital stability of the solution (u, p) in this space, we construct a
Lyapunov function (Grillakis et al. 1990; Maddocks and Sachs 1993), i.e., a constant
of the motion E(u, p) for which (u, p) is an unconstrained minimizer:

dE(u, p)

dτ
= 0, E ′(u, p) = 0, 〈v,L(u, p)v〉 > 0, ∀v ∈ V0, v �= 0, (64)

where E ′(u, p) denotes the variational gradient of E and L is the Hessian of E . The
existence of the Lyapunov function yields formal stability. We know that ( fz, c fzz)T

is in the kernel of Ĥ ′′
1 = L. This is obtained from the action of the infinitesimal
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generator ∂z , acting on ( f (z), p(z))T, where p(z) = c fz . Following the results of
Grillakis, Shatah, and Strauss (Grillakis et al. 1987, 1990), under certain conditions
(see the orbital stability theorem in Deconinck and Kapitula (2010); Deconinck and
Nivala (2011); Bottman et al. (2011); Nivala and Deconinck (2010)) one could prove
the orbital stability. Since the sinh-Gordon equation is an integrable Hamiltonian
system, all the conserved quantities of the equation satisfy the first two conditions. It
suffices to construct one that satisfies the third requirement.

To prove orbital stability, we check the Krein signature K1 (Grillakis et al. 1987),
associated with Ĥ1:

K1 = 〈W ,L1W 〉 =
∫ N T

2

−N T
2

W ∗L1Wdz, (65)

where L1 = L. Using the squared eigenfunction connection, we have

W ∗L1W = 2�W ∗ J−1W

= 2�
(
W1W

∗
2 − W2W

∗
1

)

= 8�2(|ϕ1|4 + |ϕ2|4 − ϕ2
1ϕ

∗
2
2 − ϕ2

2ϕ
∗
1
2
) + 2�(2cϕ2

1ϕ
∗
1ϕ

∗
1z + 2cϕ2

2ϕ
∗
2ϕ

∗
2z − 2cϕ2

2ϕ
∗
1ϕ

∗
1z

−2cϕ2
1ϕ

∗
2ϕ

∗
2z − 2cϕ∗2

1 ϕ1ϕ1z − 2cϕ∗2
2 ϕ2ϕ2z + 2cϕ∗2

1 ϕ2ϕ2z + 2cϕ∗2
2 ϕ1ϕ1z),

(66)

with ϕ1 = −γ (z)B(z) and ϕ2 = γ (z)(A(z) − �). Using (43), we have

|γ |2 = 1

|A − �| . (67)

With �2 = A2 + |B|2, we have

|ϕ1|4 = −(A + �)2, |ϕ2|4 = −(A − �)2, ϕ2
2ϕ

∗
1
2 = −B∗2, ϕ2

1ϕ
∗
2
2 = −B2,

ϕ2
1ϕ

∗
1ϕ

∗
1z − ϕ∗2

1 ϕ1ϕ1z = A + �

A − �
(BB∗

z − B∗Bz) − (� + A)2(�∗ − �),

ϕ2
2ϕ

∗
2ϕ

∗
2z − ϕ∗2

2 ϕ2ϕ2z = −(A − �)2(�∗ − �),

ϕ∗2
1 ϕ2ϕ2z − ϕ2

2ϕ
∗
1ϕ

∗
1z = B∗2(�∗ − �) + B∗B∗

z − B∗2

A − �
Az,

ϕ∗2
2 ϕ1ϕ1z − ϕ2

1ϕ
∗
2ϕ

∗
2z = B2(�∗ − �) − BBz + B2

A − �
Az,

where

� = i

2
ζ − i cosh f (z)

8ζ
−

B
[

(1−c) f ′(z)
4 + i sinh f (z)

8ζ

]
+ Az

A − �
. (68)
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It follows that the Krein signature K1 can be expressed as:

K1 = 〈W ,L1W 〉 = −�2
∫ N K

b

−N K
b

(−16ζ 4(c + 1) − 8ζ 2 cosh( f (z)) + c − 1

2ζ 2

)
dz

= −N�2

b

[(−1 + c

ζ 2 − 16ζ 2(1 + c) + 8

)
K (k) − 16

E(k)

1 − k2

]
(69)

= −N�2P(ζ )

bζ 2 , (70)

where E(k) is the complete elliptic integral of the second kind (Lawden 1989):

E(k) =
∫ π/2

0

√
1 − k2 sin2 y dy. (71)

We have the following properties:

1. Using the solutions (22) and (25), we could obtain the same Krein signature

K1. For solution (22),
∫ N K

b

−N K
b
cosh f (z)dz = ∫ N K

b

−N K
b

(
2

1−k2 sn2(bz,k)
− 1

)
dz =

N
(
4
b

1
1−k2

E(k) − 2 K
b

)

and for solution (25),
∫ N K

b

−N K
b
cosh f (z)dz = ∫ N K

b

−N K
b

( −2
1−sn2(bz,k)

+ 1
)
dz =

N
(
−2

(
2 K
b − 2

b
1

1−k2
E(k)

)
+ 2 K

b

)
= N

(
4
b

1
1−k2

E(k) − 2 K
b

)
. Therefore, they

have the same Krein signature K1.
2. P(ζ ) is an even function and the discriminant of P(ζ ) is positive. Since −1+c

−16(1+c) <

0, P(ζ ) = 0 has two real roots ±ζc (ζc > 0). It follows that K1(ζ ) = 0, when

�(ζ) = 0 or ζ = ±ζc. Since
d P(ζ )

ζ2

dζ
= − 2

(
16ζ 4(c+1)+c−1

)
K
(√

E−1
E+1

)

ζ 3
, we know that

for c > 1, when ζ > 0, P(ζ )

ζ 2
decreases along ζ and when ζ < 0, P(ζ )

ζ 2
increases

along ζ . For c < −1, when ζ > 0, P(ζ )

ζ 2
increases along ζ and when ζ < 0, P(ζ )

ζ 2

decreases along ζ .
3. Since ζ1 < ζc < ζ2, ±ζc is not in σL (see Appendix), K1 = 0 is

obtained only on the kernel of L1, i.e., when � = 0. For c < −1, ζc =
1
2

√
−
√

c2K (k)2+E2(k)(E+1)2−2E(k)(E+1)K (k)−E(k)(E+1)+K (k)
(c+1)K (k) . For c > 1, ζc =

1
2

√√
c2K (k)2+E2(k)(E+1)2−2E(k)(E+1)K (k)−E(k)(E+1)+K (k)

(c+1)K (k) . We note that ζc, ζ1 and

ζ2 are all greater than zero.
4. When c > 1, since P(ζ )

ζ 2
> 0 for |ζ | < ζ1, K1 > 0 for |ζ | < ζ1 and since

P(ζ )

ζ 2
< 0

for |ζ | > ζ2, K1 < 0 for |ζ | > ζ2. When c < −1, since P(ζ )

ζ 2
< 0 for |ζ | < ζ1,

K1 < 0 for |ζ | < ζ1 and since P(ζ )

ζ 2
> 0 for |ζ | > ζ2, K1 > 0 for |ζ | > ζ2.

Therefore, we could not get orbital stability from K1.
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It follows that Ĥ1 is not a Lyapunov function. Thus, we need to consider different
conserved quantities. Linearizing the n-th sinh-Gordon equation about the equilibrium
solution f , one obtains

wtn = JLnw, (72)

where Ln is the Hessian of Ĥn evaluated at the stationary solution.
Using the squared-eigenfunction connection with separation of variables gives

2�nW (z) = JLnW (z), (73)

where �n is defined through

ψ (z, tn) = e�n tnϕ(z). (74)

Substituting (74) in the Lax pair of the n-th Sinh–Gordon equation yields a relationship
between �n and ζ

�2
n(ζ ) = Â2

n + B̂nĈn . (75)

To find a Lyapunov functional, we check K2:

K2 =
∫ N T

2

−N T
2

W ∗L2Wdz = 2�2

∫ N T
2

−N T
2

W ∗ J−1Wdz = �2

�

∫ N T
2

−N T
2

W ∗L1Wdz.(76)

Therefore, we have

K2(ζ ) = �2(ζ )
K1(ζ )

�(ζ )
. (77)

Here, we use that ( f , c fz) are the stationary solutions of the second flow. To calculate
K2, we also need

T̂2 = T2 + c2,1T1 + c2,0T0, (78)

where, from before,

16
(−3c2 − 1

) E(
c2 − 1

) − c2,1c − c2,0 = 0. (79)

The second sinh-Gordon equation can be expressed as:

∂

∂t2

(
u
p

)
= J

(
H ′
2 + c2,1H

′
1 + c2,0H

′
0

) = 0. (80)
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A direct calculation gives

�2
2 =

[
c2
(
64ζ 4 + 16ζ 2E + ζ 2c2,0 + 4

) + c
(
4 − 64ζ 4

) + ζ 2(16E − c2,0)
]2

c2
(
c2 − 1

)2
ζ 4

�2.(81)

We can choose

c2,0 = −4
(
16c2ζ 4

c + 4c2ζ 2
c E + c2 − 16cζ 4

c + c + 4ζ 2
c E

)
(
c2 − 1

)
ζ 2
c

, (82)

to ensure K2 has definite sign.With this choice of c2,0 and c2,1 determined by (79), Ĥ2
is a Lyapunov functional for the dynamics (with respect to any of the time variables in
the sinh-Gordon hierarchy) of the stationary solutions. Therefore, whenever solutions
are spectrally stable with respect to subharmonic perturbations of period N , they are
formally stable in V0,N .

Since the infinitesimal generators of the symmetries correspond to the values of ζ

for which�(ζ) = 0, the kernel of the functional Ĥ ′′
2 (u, p) consists of the infinitesimal

generators of the symmetries of the solution (u, p). On the other hand, since ±ζc is
not in σL , K2(ζ ) = 0 is obtained only when � = 0 for ζ ∈ σL . We have proved the
following theorem.

Theorem 3 (Orbital stability) The elliptic solutions (22) and (25) of the sinh-Gordon
equation are orbitally stable with respect to subharmonic perturbations inV0,N , N ≥
1.
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Appendix

Lemma For c > 1, P(ζ1)

ζ 21
> 0 and P(ζ2)

ζ 22
< 0, while for c < −1, P(ζ1)

ζ 21
< 0 and

P(ζ2)

ζ 22
> 0.

Proof • For c > 1,

P(ζ1)

ζ 2
1

= 8c
√
E2 − 1K

(√E − 1

E + 1

)
+ 8(E + 1)K

(√E − 1

E + 1

)

−8(E + 1)E

(√E − 1

E + 1

)
. (83)
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Since E(k) < K (k), c > 1 and E > 1, we have P(ζ1)

ζ 21
> 0.

P(ζ2)

ζ 2
2

= 8c
(
−
√
E2 − 1

)
K

(√E − 1

E + 1

)
+ 8(E + 1)K

(√E − 1

E + 1

)

−8(E + 1)E

(√E − 1

E + 1

)
. (84)

Let P(ζ2)

ζ 22
= F(c). We note that F ′(c) = 8

(
−√E2 − 1

)
K
(√

E−1
E+1

)
< 0. We

have

F(c) < F(1) = 8
(
−
√
E2 − 1

)
K

(√E − 1

E + 1

)
+ 8(E + 1)K

(√E − 1

E + 1

)

−8(E + 1)E

(√E − 1

E + 1

)
. (85)

Using E(k)
K (k) > k′ = √

1 − k2 , see [1, 19.9.8], we have

8
(
−
√
E2 − 1

)
+ 8(E + 1) − 8(E + 1)

E
(√

E−1
E+1

)

K
(√

E−1
E+1

) < 8
(
−
√
E2 − 1

)

+8(E + 1) − 8
√
2
√E + 1. (86)

Let Q(E) = 8
(
−√E2 − 1

)
+ 8(E + 1) − 8

√
2
√E + 1. We note Q′(E) =

− 8E√E2−1
+ 8 − 4

√
2√E+1

< − 4
√
2√E+1

< 0. So we have Q(E) < Q(1) = 0 for

E > 1. Therefore, we have P(ζ2)

ζ 22
= F(c) < F(1) < K

(√
E−1
E+1

)
Q(E) < 0.

• For c < −1,

P(ζ1)

ζ 2
1

= 8c
√
E2 − 1K

(√
E − 1

E + 1

)
+ 8(E + 1)K

(√
E − 1

E + 1

)
− 8(E + 1)E

(√
E − 1

E + 1

)
.

(87)

Let P(ζ1)

ζ 21
= G(c). We note that G ′(c) = 8

(√E2 − 1
)
K
(√

E−1
E+1

)
> 0. We have

G(c) < G(−1) = 8
(
−
√
E2 − 1

)
K

(√E − 1

E + 1

)
+ 8(E + 1)K

(√E − 1

E + 1

)

−8(E + 1)E

(√E − 1

E + 1

)
. (88)
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Again, using E(k)
K (k) > k′ = √

1 − k2, we have

8
(
−
√
E2 − 1

)
+ 8(E + 1) − 8(E + 1)

E
(√

E−1
E+1

)

K
(√

E−1
E+1

) < 8
(
−
√
E2 − 1

)

+8(E + 1) − 8
√
2
√E + 1. (89)

We know Q(E) < Q(1) = 0 for E > 1. Therefore, P(ζ1)

ζ 21
= G(c) < G(−1) <

K
(√

E−1
E+1

)
Q(E) < 0.

P(ζ2)

ζ 2
2

= 8c
(
−
√
E2 − 1

)
K

(√E − 1

E + 1

)
+ 8(E + 1)K

(√E − 1

E + 1

)

−8(E + 1)E

(√E − 1

E + 1

)
. (90)

Since E(k) < K (k), c < −1 and E > 1, we have P(ζ2)

ζ 22
> 0. This finishes the

proof of the lemma.
��
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