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Abstract
Westudy the periodic cubic derivative nonlinear Schrödinger equation (DNLS) and the
(focussing) quintic nonlinear Schrödinger equation (NLS). These are both L2 critical
dispersive models, which exhibit threshold-type behavior, when posed on the line R.
We describe the (three-parameter) family of non-vanishing bell-shaped solutions for
the periodic problem, in closed form. The main objective of the paper is to study their
stability with respect to co-periodic perturbations.We analyze these waves for stability
in the framework of the cubicDNLS.We provide criteria for stability, depending on the
sign of a scalar quantity. The proof relies on an instability index count, which in turn
critically depends on a detailed spectral analysis of a self-adjoint matrix Hill operator.
We exhibit a region in parameter space, which produces spectrally stable waves. We
also provide an explicit description of the stability of all bell-shaped travelingwaves for
the quintic NLS, which turns out to be a two-parameter subfamily of the one exhibited
for DNLS. We give a complete description of their stability—as it turns out some
are spectrally stable, while other are spectrally unstable, with respect to co-periodic
perturbations.
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1 Introduction

We are interested in the cubic derivative nonlinear Schrödinger equation (DNLS) in
periodic context. More specifically, we consider

iqt + ∂2x q + i(|q|2q)x = 0. (1.1)

where q is subject to the periodic boundary conditions, q(−T ) = q(T ), qx (−T ) =
qx (T ). This particular model (along with some variations) was derived to model polar-
ized Alfven waves in a magnetized plasma, under a constant magnetic field. As usual,
the conserved quantities provide an important threshold information with respect to
the well-posedness. Let us state for the record that, at least for smooth solutions, (1.1)
conserves the mean, energy and mass. That is,

∫ T
−T q(t, x)dx = rmconst ., and

E =
∫ T

−T
|qx |2dx + 3

2
�

∫ T

−T
|q|2qx q̄dx + 1

2

∫ T

−T
|q|6dx = const. (1.2)

M =
∫ T

−T
|u|2dx = const. (1.3)

The basic question, that one has got to be immediately interested in, is the well-
posedness of the Cauchy problems (1.1) and (1.6). For DNLS, posed on the real line,
local well-posedness is established , for data in Hs(R), s ≥ 1

2 , in Takaoka (1999,
2001). This is sharp, in the sense that the data to solution map fails to be Lipschitz in
Hs, s < 1

2 , Biagioni and Linares (2001), Takaoka (2001). Global solutions may also
be constructed, under a specific smallness condition on ‖u0‖L2 , Hayashi and Ozawa
(1992, 1994), Ozawa (1996). There are however intriguing recent results, which make
use of the completely integrable structure of (1.1), Jenkins et al. (2018), Liu et al.
(2016), Liu et al. (2018), Pelinovsky et al. (2017), Pelinovsky and Shimabukuro (2018)
that establish global well-posedness for DNLS, under no smallness requirements,
albeit for a.e. data in weighted Sobolev spaces. Finally, very recently, it was shown
in Bahouri and Perelman (2020) that the DNLS is globally well-posed for all data in

H
1
2 (R), without any smallness restrictions. Turning to the existence and the stability

of solitary waves for DNLS, there has been quite a surge in activity in the last twenty
years. In Guo and Wu (1995), the authors have shown the stability of the cubic DNLS
solitons,whileColin andOhta (2006) have improved upon their results. Recently,Miao
et al. (2017) has established stability results for sum of two solitary DNLS waves. At
this point, we would like to draw the reader’s attention to the important work Liu et al.
(2013). In it, the authors have constructed solitary wave solutions on the lineR for the
generalized DNLS (i.e., with general power |u|2σux in the nonlinearity) and they have
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studied their respective stability. The results obtained therein are about exhaustive and
introduce some new methods, that we use ourselves herein.

For the periodic problem, local well-posedness on the (almost) optimal space
Hs(T), s > 1

2 was established in Herr (2006). It is immediate, due to conserva-
tion laws, that one can extend such H1(T) solutions to global, under a small L2 data
assumption, but the question on whether large global solutions persist remains open
for the periodic cubic DNLS. There has been quite an activity recently on the construc-
tion of new solutions to (1.1) in the periodic context, see for example Chen and Zhang
(2020) for some newquasi-periodic solutions, using algebro-geometricmethods.Also,
in Upsal and Deconinck (2020), the authors use the complete integrability of (1.1) to
study the spectrum of the linearized operators by relating it to its Lax spectrum.

Next, we would like to explore a connection of (1.1) to a related nonlinear
Schrödinger equation, namely

iut + ∂2x u + i |u|2ux = 0, (t, x) ∈ R+ × [−T , T ]. (1.4)

It is well known and easy to check fact is that q is a solution to (1.1) if and only if

u(t, x) = q(t, x)ei
1
2

∫ x
−T |q(t,y)|2dy (1.5)

is a solution1 of (1.4).Note however that ifq is periodic on [−T , T ], u is not necessarily
periodic on [−T , T ]. In fact, there is no standard well-posedness theory for (1.4) in
the periodic context, other than the following—given initial data u0 for (1.4), one can

translate to q0(x) = u0(x)e
−i 12

∫ x
−T |u0(y)|2dy and if q0 is periodic, then solve (1.1).

That is, for the Cauchy problem of (1.4), one can solve in the periodic setting for say
H1[−T , T ] initial data u0 : ∫ T

−T |u0(x)|2dx ∈ {0,±4π,±8π, . . .}, where the solution
is recovered through (1.5). This is somethingwewill need to eventually address.On the
other hand, the gauged equation (1.4) is better suited for our purposes, as it yields better
coordinates for our periodic wave solutions as well as the corresponding linearized
problem.

Another model of interest, which as is turns out is very much related to both (1.1)
and (1.4), is the quintic nonlinear Schrödinger equation (NLS), which takes the form

{
iut + uxx + b|u|4u = 0,−T < x < T ,

u(0, x) = u0(x)
(1.6)

subject to the same periodic boundary conditions. In addition, we consider only the
focusing case, so b > 0.

The question for local and global well-posedness for the quintic NLS, (1.6) is well
understood. To summarize the classical by now results, the local well-posedness, holds
under the assumption u0 ∈ Hs, s > 1

2 , both when the problem is posed on the line R
or on the torusT. Such solutions can be extended to global solutions, provided ‖u0‖L2

is small enough. On the other hand, on the line, it is well known that appropriately

1 It is important to observe that in the gauge relation (1.5), we have that |q| = |u|, so the phase function
can be written either with q or u inside of it
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chosen initial data, close to the bell-shaped traveling soliton, will produce a solution,
which experiences a finite time blow up, that is the soliton experiences instability
by blow-up. It is not at all clear however, whether or not blow up for large L2 data,
happens in the periodic case. That is, it is an interesting open problem, whether or
not solutions with large L2 data can persist globally. This applies to both DNLS and
quintic NLS in the periodic context.

This is actually one of the motivations behind our work. As is well known, most of
the dynamical properties of the system, can be inferred from its periodic waves and the
behavior of the Cauchy problem for data close to them. Therefore, to understand better
the dynamics of the problem, the natural place to start is data close to the periodic
waves, in other words their stability. In this work, our main goal is to investigate the
stability of the corresponding waves in the periodic case, which is an outstanding open
question in the theory. We work only with the case of cubic derivative nonlinearity,
which is physically best motivated, but also because we need explicit formulas for
our calculations2. We explicitly identify all bell-shaped traveling waves, which turn
out to be a rich, three-parameter family of explicit solutions. For the analysis of the
matrix Hill operator, our approach mirrors the approach in Liu et al. (2013), by relying
on the spectral properties of the scalar linearized operators L±. In addition, we use
topological methods to establish the expected spectral properties as they are difficult
to obtain in a direct manner. Finally, we use the instability index counting theory
(instead of the direct Grillakis–Shatah–Strauss approach in Liu et al. (2013), where
it is somewhat easier to compute the necessary quantities), due to the need to apply
topological methods for the spectral problem (1.26) below.

Next, we give the description of the waves.

1.1 Description of the Solutions for DNLS

We now construct the periodic wave solutions for the DNLS, (1.1).We look instead for
periodic wave solutions for the gauged equation (1.4), which will then later translate
into true DNLS waves via the gauge transformation (1.5).

More precisely, let u(x, t) = �(x − ct)eiωt and plug it inside the model (1.4). We
obtain the equation

− ω� − ic�′ + �′′ + i |�|2�′ = 0. (1.7)

Further, we use the assignment

�(y) = φ(y)eiθ(y), θ(y) = c

2
y − 1

4

∫ y

−T
φ2(η)dη + const., (1.8)

to reduce the problem to one, where we look for a real-valued wave φ. In terms of φ,
we obtain the following equation

− φ′′ + (ω − c2

4
)φ + c

2
φ3 − 3

16
φ5 = 0 − T ≤ y ≤ T . (1.9)

2 In the work Liu et al. (2013), the authors exhibit explicit sech-type solutions for all powers σ
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Here, it has to be noted that more general solutions are possible, and this has been done
in Chen et al. (2020). More specifically, the authors have considered the most general
case, by using the ansatz (1.8). This introduces a system of two second-order ODE for
θ and φ, see equations (5.1) and (5.2) in Chen et al. (2020). Our case corresponds to
the case a = 0 in their setup. On the other hand, it is argued in Chen et al. (2020) that
the solutions with the additional term share the same stability/instability properties
with the solutions for which this term set to zero.

In our situation, we concentrate to the case (1.8), which forces the relation (1.9).
Note that we will be looking for periodic solutions φ of (1.9), but we should be aware
that the resulting function�(y) = φ(y)eiθ(y) maynot be periodic. The point is that, we
will need to translate this back to true periodic waves for the original DNLS equation
(1.1) in order to impose the necessary periodic conditions, and we shall do so later on,
see (1.17).

Turning back to the solution set of (1.9), it is the case that the set of solutions for
(1.9) is fairly rich as it depends on three independent parameters, see Proposition 1.
Related to this, the periodic waves were described in detail in some similarly general
situations, see for example Chen and Pelinovsky (2019) for the case of a quadratic
nonlinearity. We will restrict our analysis to the set of bell-shaped solutions, a notion
which we introduce next.

To this end, we shall need the concept of a decreasing rearrangement of a function.
More precisely, introduce for α > 0, d f (α) = |{x ∈ (−T , T ) : | f (x)| > α}| and for
each t ∈ (−T , T ), let f ∗(t) := inf{s > 0 : d f (s) <

|t |
2 }. Note that f ∗ is positive,

even, decreasing in [0, T ].
Definition 1 We say that a real-valued function f ∈ H1

per .[−T , T ] is bell-shaped, if
it coincides with its decreasing rearrangement f ∗. Equivalently, f ∈ H1

per .[−T , T ]
is bell-shaped, if it is positive and it has a single maximum on [−T , T ].
Remark Our results will apply equally well to waves φ, so that |φ| is bell-shaped (i.e.,
−φ is bell-shaped), but we shall not dwell on this henceforth.

Going back to (1.9)—after multiplying by φ and integrating in the equation, we
get,

φ′2 = − 1

16
φ6 + c

4
φ4 +

(

ω − c2

4

)

φ2 + a, (1.10)

where a is a constant of integration. We look for solution in the above equation in the
form ϕ = φ2. In particular, ϕ needs to be a positive function. We get the following
equation for ϕ

ϕ′2 = 1

4
ϕ

[

−ϕ3 + 4cϕ2 + 16

(

ω − c2

4

)

ϕ + a

]

=: 1
4
ϕ [a − R(ϕ)] , (1.11)

where the cubic polynomial R is given by

R(z) = z3 − 4cz2 − 16

(

ω − c2

4

)

z.

123



54 Page 6 of 38 Journal of Nonlinear Science (2021) 31 :54

Note that as we are looking for bell-shaped and non-vanishing solution ϕ, it must be
that all three roots of R, ϕ1 ≤ 0 < ϕ2 < ϕ3 are real, and at least two of them are
positive. This is the situation of interest.

We henceforth assume3 ω > 0.

Proposition 1 (Existence of non-vanishing bell-shaped waves)
Assume ω > 0. We have the following possibilities

(1) If ω − c2
4 > 0, and

16

27

(√
c2 + 12ω + 2c

) (
c2 − 12ω − c

√
c2 + 12ω

)
< a < 0,

then the algebraic equation R(z) = a has three roots ϕ1 < 0 < ϕ2 < ϕ3,
depending on a, ω, c in a smooth manner. As a consequence, (1.11) has a unique
bell-shaped solution ϕ, which satisfies

ϕ(0) = ϕ3, ϕ(−T ) = ϕ(T ) = ϕ2.

Moreover, we have the explicit formula for the solution

φ2(ξ) = ϕ(ξ) =
ϕ3(ϕ2 − ϕ1) + ϕ1(ϕ3 − ϕ2)sn2

(
ξ
2g , κ

)

(ϕ2 − ϕ1) + (ϕ3 − ϕ2)sn2
(

ξ
2g , κ

) , (1.12)

where

g = 2√
ϕ3(ϕ2 − ϕ1)

, κ2 = −ϕ1(ϕ3 − ϕ2)

ϕ3(ϕ2 − ϕ1)
∈ (0, 1). (1.13)

(2) If ω− c2
4 > 0, then for every a > 0, there is unique solution ϕ3 of a = R(ϕ), with

ϕ3 > 0. As a consequence, there is unique bell-shaped solution ϕ : ϕ(0) = ϕ3,
ϕ(−T ) = ϕ(T ) = 0.

(3) If ω − c2
4 > 0 and

a ≤ 16

27

(√
c2 + 12ω + 2c

) (
c2 − 12ω − c

√
c2 + 12ω

)
,

there are no bell-shaped solutions of (1.11).

Assume now ω > 0, ω − c2
4 < 0. We have the following possibilities:

(1) Assume c > 0 and

16

27

(√
c2 + 12ω + 2c

) (
c2 − 12ω − c

√
c2 + 12ω

)
< a < 0,

3 Even though, there are certainly interesting solutions for ω < 0 as well
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then the algebraic equation R(z) = a has three rootsϕ1 < 0 < ϕ2 < ϕ3, depend-
ing on a, ω, c in a smooth manner. There exists unique bell-shaped solution, so
that ϕ(0) = ϕ3, ϕ(−T ) = ϕ(T ) = ϕ2. The solution ϕ is given by the exact same
Formula (1.12) as above.

(2) Assume ω − c2
4 < 0. Then, for each a > 0, there is a unique positive root

ϕ3. Thus, there is unique bell-shaped solution of (1.11), which satisfies ϕ(0) =
ϕ3, ϕ(−T ) = ϕ(T ) = 0.

(3) Assume c > 0 and

a ≤ 16

27

(√
c2 + 12ω + 2c

) (
c2 − 12ω − c

√
c2 + 12ω

)
,

then the equation R(ϕ) = a has no positive roots and hence, (1.11) has no
bell-shaped solutions.

(4) Assume ω − c2
4 < 0, c < 0 and a < 0. Then, the equation R(ϕ) = a has no

positive roots and hence, (1.11) has no bell-shaped solutions.

Proof Wenote first that the function R has a localminimumat z= 2
3

(√
c2+12w + 2c

)

and it is the case that

R

(
2

3
(
√
c2 + 12w + 2c)

)

= 16

27

(√
c2 + 12ω + 2c

) (
c2 − 12ω − c

√
c2 + 12ω

)
.

This implies all the statements about the roots of the algebraic equation a = R(z).
The existence of solutions made in Proposition 1 follows from an elementary ordinary
equations reasoning.

In the cases of three different roots, it remains to establish Formula (1.12). If

ϕ1, ϕ2, ϕ3 are nonzero roots of the polynomial 0 = −t3 + 4ct2 + 16
(
ω − c2

4

)
t + a,

then the Viet’s formulas yield then

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ1 + ϕ2 + ϕ3 = 4c

ϕ1ϕ2 + ϕ1ϕ3 + ϕ2ϕ3 = −16
(
ω − c2

4

)

ϕ1ϕ2ϕ3 = a.

(1.14)

If ϕ1 < 0 < ϕ2 < ϕ3 and ϕ2 < ϕ < ϕ3, we get

∫ ϕ3

ϕ

ds√
s(s − ϕ1)(s − ϕ2)(ϕ3 − s)

= 1

2
(ξ − ξ0)

and the solution ϕ is given by (1.12). Finally, this solution is 2T periodic, with ϕ(0)
= ϕ3, while ϕ(T ) = ϕ2, where
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T = 2gK (κ). (1.15)


�
Our next results detail the translation to the periodic waves of the DNLS problem
(1.1).

Proposition 2 Let φ be the wave constructed in Proposition 1, that is it is given by
(1.12). Then,

q(t, x) = φ(x − ct)eiωt e
i
(
c
2 (x−ct)− 3

4

∫ x−ct
−T φ2(y)dy+const.

)

, (1.16)

is a periodic wave for (1.1), provided

cT − 3

4

∫ T

−T
φ2(y)dy ∈ {0,±2π,±4π, . . .}. (1.17)

Proof We know that �(x − ct)eiωt eiθ(x−ct) is a solution of (1.4). We use the gauge
transformation to obtain

q(t, x) = u(t, x)e−i 12
∫ x
−T |u|2 = φ(x − ct)eiωt e

i
(
c
2 (x−ct)− 3

4

∫ x−ct
−T φ2(y)dy+const.

)

,

as specified. Finally, it can be easily checked that the function given in (1.16) is 2T
periodic, together with its derivative, exactly when (1.17) holds true. 
�

1.2 The Linearized Equations for DNLS

We need to derive the relevant linearized equations. Our main interest is in the spectral
stability of the periodic waves (1.16), constructed in Proposition 2. If one tries directly
the linearization ansatz suggested by the periodic wave solution (1.16), the resulting
linear equations are not in a very convenient form that could easily be analyzed, see
the discussion after Formula (4.3). So, it is better to argue in the framework suggested
by the waves for the gauged equation (1.4). We shall need an orthogonality relation,
see (1.20), which will make this possible. In accordance with Formula (1.16), we take
the ansatz

q = (φ(x − ct) + eλtη(x − ct))ei(ωt+
c
2 (x−ct)− 3

4

∫ x−ct
−T φ2(y)dy). (1.18)

We can now write the eigenvalue problem for η as follows - denoting σ(x) = c
2 x −

3
4

∫ x
−T φ2dy and plug it in (1.1). Ignoring O(η2) terms, we obtain

0 = i(λη − cηy + iη(ω − cσ ′)) + (ηyy + 2iηyσ
′ + η(iσ ′′ − (σ ′)2)) +

+i[φ2ηy + 2φ2�η′ + z(2φφ′ + iσ ′φ2) + �η(4φφ′ + 2φ2iσ ′)].

Taking into account
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σ ′ = c

2
− 3

4
φ2, σ ′′ = −3

2
φφ′,

and splitting η = (�η,�η), we arrive at

JL

(�η

�η

)

= λ

(�η

�η

)

, (1.19)

where

J =
(

0 1
−1 0

)

,L =
(
L1 N
N∗ L2

)

,

L1 = −∂yy +
(

ω − c2

4

)

+ 3c

2
φ2 − 11

16
φ4

N = −3

2
φ2∂y + 3

2
φφ′, N∗ = 3

2
φ2∂y + 9

2
φφ′,

L2 = −∂yy +
(

ω − c2

4

)

+ c

2
φ2 − 3

16
φ4

By direct inspection, L

(
0
φ

)

= 0, whence

0 = 〈L
(�η

�η

)

,

(
0
φ

)

〉 = λ〈J −1
(�η

�η

)

,

(
0
φ

)

〉 = λ〈�η, φ〉.

It follows that for λ �= 0, 〈�η, φ〉 = 0. Therefore, at least as far as the analysis of
the linearized problem is concerned, we might take η : �η ⊥ φ. That is, it suffices to
consider the following simplified reduced linearization

q = (φ(x − ct) + η(t, x − ct))ei(ωt+θ(x−ct)− 1
2

∫ x−ct
−T φ2(y)dy),�η ⊥ φ. (1.20)

We would like to translate this particular form of the perturbation of q into the corre-
sponding problem for u in the gauged equation. According to the gauge transformation
(1.5), we have that

u(t, x) = q(t, x)e
i
2

∫ x
−T |q(t,y)|2dy

Using the particular form of (1.18) and expanding in powers of η, we obtain

u(t, x) = (φ(x − ct) + eλtη(x − ct))eiωt e
i
(
c
2 (x−ct)− 1

4
∫ x−ct
−T φ2(y)dy+∫ x−ct

−T φ(y)�η(y)dy
)

+ O(η2)

=
(

φ(x − ct) + eλtη(x − ct) + iφ(x − ct)
∫ x−ct

−T
φ(y)�η(y)dy

)

eiωt e
i
(
c
2 (x−ct)− 1

4
∫ x−ct
−T φ2(y)dy

)

+

+O(η2) =: (φ(x − ct) + eλt z(x − ct))ei(ωt+θ(x−ct)) + O(η2),

where we have made the assignment z := η+ iφ
∫ x
−T φ(y)�η(y)dy. Note that we still

need to address the periodicity of z, and we do this now. We have, by the periodicity
of η and �η ⊥ φ,

123



54 Page 10 of 38 Journal of Nonlinear Science (2021) 31 :54

z(T ) = η(T ) + iφ〈φ,�η〉 = η(T ) = η(−T ) = z(−T ). (1.21)

and similarly, z′(T ) = z′(−T ). We have, for the real and imaginary parts,

{�z = �η

�z = �η + φ(x)
∫ x
−T φ(y)�η(y)dy

(1.22)

or conversely

{�η = �z
�η = �z − φ(x)

∫ x
−T φ(y)�z(y)dy

. (1.23)

In other words, starting with the appropriate form (1.20), we have represented

u(t, x) = (φ(x − ct) + eλt z(x − ct))ei(ωt+θ(x−ct)) + O(z2) (1.24)

where z is a periodic increment and incidentally, by virtue of (1.23), we also have
�z ⊥ φ.

Plug in Formula (1.24) in (1.4), and using that φ satisfies (1.9), and ignoring all
terms in the form O(z2), we arrive at the following linear equation for the increment
z

i(λz − czy + i z(ω − cθ ′)) + (zyy + 2i zyθ
′ + z(iθ ′′ − (θ ′)2))

+i[φ2(zy + i zθ ′) + 2φ(φ′ + iθ ′φ)�z] = 0.

Noting

θ ′ = c

2
− φ2

4
, θ ′′ = −1

2
φφ′,

we can write

iλz + zyy +
[

−ω + c2

4
− i

1

2
φφ′ − c

2
φ2 + 3

(16
φ4

]

z +

+i zy
1

2
φ2 + 2iφ

(

φ′ + i
c

2
φ − i

1

4
φ3

)

�z = 0.

Split z in real and imaginary parts, namely z = v + iw. In terms of v,w, we have a
linear system that reads as follows

λv + wyy + 1

2
φ2vy + 3

2
φφ′v +

[

−ω + c2

4
− c

2
φ2 + 3

(16
φ4

]

w = 0

−λw + vyy − 1

2
φ2wy +

[

−ω + c2

4
− 3c

2
φ2 + 11

16
φ4

]

v + 1

2
φφ′w = 0.
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We can write the eigenvalue problem in the form

JL

(
v

w

)

= λ

(
v

w

)

(1.25)

where

J =
(

0 1
−1 0

)

,L =
(
L1 M
M∗ L2

)

,

M = 1

2
φ2∂y − 1

2
φφ′, M∗ = −1

2
φ2∂y − 3

2
φφ′.

Here, we introduce the linearized operators associated with the profile equation (1.9),
namely the second-order Schrödinger operators

L+ = −∂yy + (ω − c2

4
) + 3c

2
φ2 − 15

16
φ4

L− = L2 = −∂yy + (ω − c2

4
) + c

2
φ2 − 3

16
φ4.

They would be instrumental in the eigenvalue problem, associated with the periodic
waves under consideration. Record the eigenvalue problem (1.25) in the compact form

JLU = λU,U ∈ H2
per [−T , T ] × H2

per [−T , T ]. (1.26)

We note that the linearized problem (1.26) is in the standard Hamiltonian form
JL ,J ∗ = −J , L ∗ = L . As we have mentioned above the corresponding
linearized problem one obtains for η in (1.20) is not as convenient, see the discussion
after (4.3). However, our analysis shows that as first-order approximations, this prob-
lem is equivalent to (1.26), through the change of variables (1.22). More precisely,
starting with z, which solves (1.26) for any λ �= 0, we see thatL z = λJ −1z, whence

J −1z ⊥ Ker(L ). It follows that �z = v ⊥ φ, as

(
0
φ

)

∈ Ker(L ). This can be

seen directly, but see also Proposition 7. Next, one substitutes η instead of z according
to (1.22) in (1.26), we obtain the linearized problem for η. Based on this analysis, we
say that the waves given in (1.16) are stable, if the eigenvalue problem (1.26) is stable.
More formally,

Definition 2 We say that the wave �(x − ct)eiωt e− 3i
4

∫ x−ct
−T φ2(y)dy+const . is spectrally

stable solution of (1.1), if the eigenvalue problem (1.26) does not have non-trivial
solution (λ,U), with �λ > 0.

Remark In principle, an instability for the waves would mean that there exists λ :
�λ > 0, so that λ ∈ σ(JL ). As all the potentials inL are periodic, it is a standard
fact that all possible solutions of (1.26) represent eigenvalues only4.

4 Indeed, as the resolvent operators (JL − λ)−1, λ ∈ R, λ >> 1 are smoothing of order two, this
guarantees that (JL − λ)−1 : L2[−T , T ] × L2[−T , T ] → L2[−T , T ] × L2[−T , T ] is compact,
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1.3 Main Results: DNLS

Before we proceed with the statements, we shall need to introduce an object that will
play a role in the statement. First, it is established, see Proposition 7, that

Ker(L ) = span

{(
0
φ

)

,

(
φ′

−φ3

4

)}

,

whence L : Ker(L )⊥ → Ker(L )⊥ is well-defined unbounded operator. Given
that, we consider a symmetric 2 × 2 matrix D, with entries

D11 = 〈L −1
(

φ

0

)

,

(
φ

0

)

〉,

D12 = D21 = 〈L −1
(

φ

0

)

,

(
φ3

4
φ′

)

〉,

D22 = 〈L −1

(
φ3

4
φ′

)

,

(
φ3

4
φ′

)

〉,

Note that since

(
φ

0

)

,

(
φ3

4
φ′

)

∈ Ker(L )⊥, the elementsL −1
(

φ

0

)

,L −1

(
φ3

4
φ′

)

∈
Ker(L )⊥ are uniquely defined.

Theorem 1 Consider the waves constructed in Proposition 2, subject to the condition
(1.17). These waves represent all non-vanishing bell-shaped periodic waves for (1.4).

These waves are spectrally stable if and only if the matrix D defined above has
exactly one negative eigenvalue. Equivalently (since from general considerations, D
has at most one negative eigenvalue), the waves are stable, if and only if

det(D) = 〈L −1
(

φ

0

)

,

(
φ

0

)

〉〈L −1

(
φ3

4
φ′

)

,

(
φ3

4
φ′

)

〉 − 〈L −1
(

φ

0

)

,

(
φ3

4
φ′

)

〉2 < 0.(1.27)

We have the following corollary

Corollary 1 The non-vanishing bell-shaped periodic waves considered in Theorem 1

are stable, provided 〈L −1
(

φ

0

)

,

(
φ

0

)

〉 < 0. Since, we also establish that

sgn(〈L −1
(

φ

0

)

,

(
φ

0

)

〉) = sgn(〈L −1+ φ, φ〉),

an alternative stability criteria is 〈L −1+ φ, φ〉 < 0.

whence its spectrum consists entirely of eigenvalues converging toward zero. It follows that σ(JL )

consists of eigenvalues only.
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Remark We have an explicit but long formula for 〈L −1+ φ, φ〉, depending on the alter-
native parametrization of the waves in g, κ, μ = ω − c2

4 as in Proposition 1. For
example, we have produced several representative slices of the graphs of 〈L −1+ φ, φ〉—
see Fig. 5 for μ = 1 and Fig. 6 for μ = −1.

Related to this discussion, we observe from the graphs that 〈L −1+ φ, φ〉 changes sign
over the three-dimensional domain of parameters. Onemight somehow conjecture that
in line with the Vakhitov–Kolokolov theory, the condition 〈L −1+ φ, φ〉 > 0 by itself,
might imply instability. We have a result, which shows that this is not the case.

Corollary 2 There are waves of the type described in Theorem 1, which are stable and

at the same time 〈L −1
(

φ

0

)

,

(
φ

0

)

〉 > 0.

For the proof, we mention first that we establish, see Sect. 5.3, that the quantities
D11 and D12 do not vanish simultaneously. Thus, consider a parameter point P0 for

which D11(P0) = 〈L −1
(

φ

0

)

,

(
φ

0

)

〉 = 0 and P0 ∈ ∂{P : D11(P) < 0}. As
D11(P0) = 0, it must be that D12(P0) �= 0. So,

det(D(P0)) = D11(P0)D22(P0) − D2
12(P0) = −D2

12(P0) < 0,

whence this particular periodic wave is still stable. In fact, by the continuity with
respect to parameters, det(D) < 0 in a neighborhood, so all of these waves are still
stable. On the other hand, as P0 is on the boundary of {P : D11(P) < 0}, for some of
them D11(P) > 0. This completes the proof.

1.4 Main Results: Quintic NLS

Starting with the quintic NLS, (1.6), after a change of variables u(t, x) →
αu(bt,

√
bx) and α4 = 3

16 , we rescale to the following problem

iut + uxx + 3

16
|u|4u = 0,−T ≤ x ≤ T , (1.28)

with a rescaled T , in comparison to (1.6). This transformation allows us to consider
(1.28), instead of the more general (1.6).

Evidently, plugging in the standing wave ansatz u = eiωtφ, φ > 0, ω > 0, we
obtain the profile equation for the wave

− φ′′ + ωφ − 3

16
φ5 = 0,−T ≤ x ≤ T . (1.29)

Clearly, this is exactly the profile equation (1.9), with c = 0. Consequently, we have
the bell-shaped solutions described in Proposition 1. We state the existence result.

Proposition 3 Let ω > 0. Then, these are all bell-shaped solutions of (1.29):

123



54 Page 14 of 38 Journal of Nonlinear Science (2021) 31 :54

(1) If

−64
√
12

9
ω

3
2 < a < 0,

then, R(ϕ) = a has three roots ϕ1 < 0 < ϕ2 < ϕ3 and ϕ(0) = ϕ3, ϕ(−T ) =
ϕ(T ) = ϕ2, described by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ1 + ϕ2 + ϕ3 = 0,

ϕ1ϕ2 + ϕ1ϕ3 + ϕ2ϕ3 = −16ω,

ϕ1ϕ2ϕ3 = a.

(1.30)

The solution is then given by

φ2(ξ) = ϕ(ξ) =
ϕ3(ϕ2 − ϕ1) + ϕ1(ϕ3 − ϕ2)sn2

(
ξ
2g , κ

)

(ϕ2 − ϕ1) + (ϕ3 − ϕ2)sn2
(

ξ
2g , κ

) , (1.31)

g = 2√
ϕ3(ϕ2 − ϕ1)

, κ2 = −ϕ1(ϕ3 − ϕ2)

ϕ3(ϕ2 − ϕ1)
∈ (0, 1). (1.32)

(2) For every a > 0, there is unique solution ϕ3 of a = R(ϕ), with ϕ3 > 0. As
a consequence, there is unique bell-shaped solution ϕ : ϕ(0) = ϕ3, ϕ(−T ) =
ϕ(T ) = 0.

Thus,we are interested in the solutions described in (1.31). Linearizing around the trav-
elingwave eiωtφ, u = eiωt (φ+v), yields the eigenvalue problem for v = eλt (�v,�v),

(
0 1

−1 0

) (
L+ 0
0 L−

)

v = λv. (1.33)

Theorem 2 Let ω > 0 and φ are the bell-shaped traveling wave of the quintic NLS,
described in (1.31), which alternatively can be parametrized by (1.32) and

g ∈ (0,∞), κ ∈ (0, 1), ω =
√
1 − k2 + k4

4g2
.

Then, these solutions are stable, whenever 〈L −1+ φ, φ〉 < 0.

The plan of the paper is as follows—the main object of investigation, namely the
DNLS problem is considered in all sections, but the last one. More specifically, in
Sect. 2, we introduce the basics of the instability index counting theory. In Sect. 2.2,
we construct small waves via a variational method. This is, on one hand standard, but
wefind it useful in the sequel, as it provides an important piece of spectral information5,

5 which proved to be extremely non-trivial to obtain with the explicit waves under consideration
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namely that the scalar linearized operator L+ has a single negative eigenvalue, for
all points in the parameter space. This property is then established for all linearized
operators (about the waves of interest) via topological arguments, as eigenvalues of
L+ are shown not to cross the zero eigenvalue, see Proposition 6 later on. In Sect. 3,
we study the spectral properties of L±—first, we need and present an alternative
parametrization of the waves, see Sect. 3.1, and then we describe the first few elements
of σ(L±), see Proposition 6. In Sect. 4, we use the spectral information from Sect. 3
to study the properties of the matrix Hill operator L , which arises in the linearized
problem. Namely, we show that its kernel is always two dimensional in Proposition 7.
Note that this is the minimal dimension dictated by the Nöther’s theorem, as the
Hamiltonian system has two symmetries. It is at this point that we start introducing
some concrete calculations, based on the formulas for the waves6, see Sect. 4.2. In
Sect. 5, we wrap up the proof of the stability criteria for DNLS waves.

In Sect. 6, we study the stability of the quintic NLS waves. These turn out to be
a two-parameter subfamily of the three-parameter family of DNLS waves considered
earlier. One can compute the quantity 〈L −1+ φ, φ〉, but in this case, the index counting
theory stipulates that the spectral stability is exactly equivalent to 〈L −1+ φ, φ〉 < 0.
We have an explicit, but long formula, which shows the intervals of stability for each
given point in the parameter space—some graphs are given at the end of Sect. 6, which
illustrate where this is the case.

2 Some Preliminaries

First, we introduce some notations. Let S be a self-adjoint operator, with domain
D(S) ⊂ L2, which is bounded from below, i.e., inf‖u∈D(S):‖u‖L2=1〈Su, u〉 > −∞.
Very often, such operator have only (real) eigenvalues in their spectrum, each with
finite multiplicity. For example, this is the case when (S−λI )−1 is a compact operator
for some λ : λ >> 1, which would be the main situation considered herein. In such
case, we denote their real eigenvalues λ0(S) ≤ λ1(S) < . . .. In particular, from the
min–max characterizations, we have that

λ0(S) = inf
u∈D(S):‖u‖L2=1

〈Su, u〉, λ1(S) = sup
ζ �=0

inf
u∈D(S)∩{ζ }⊥:‖u‖L2=1

〈Su, u〉.

Next, we present some classical results about the instability index count theories.
These allow us to count the number of unstable eigenvalues for eigenvalue problems
of the form (1.26), based on the information about the self-adjoint portion L and
some specific quantities, which are also, in principle, computable.

6 Interestingly, we need to resort to differentiation with respect to parameters. This is always tricky, as
the period generally depends on these parameters and one needs to appropriately prepare the problem by
rescaling to a fixed period, see Sects. 3.2 and 5.1 for specifics about these calculations
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2.1 Instability Index Theory

We use the instability index count theory, as developed in Pelinovsky (2005), Kapitula
et al. (2004, 2005), Kapitula and Promislow (2013), see also Lin and Zeng (2017).
We present a corollary, which is enough for our purposes. For eigenvalue problem in
the form

IH U = λU. (2.1)

we assume that H = H ∗ has dim(Ker(H ) < ∞, and also a finite number of
negative eigenvalues, n(H ), a quantity sometimes referred to as Morse index of the
operator H . In addition, I ∗ = −I and we shall require that I −1 : Ker [H ] →
Ker [H ]⊥. Let kr be the number of positive eigenvalues of the spectral problem (2.1)
(i.e., the number of real instabilities or real modes), kc be the number of quartets
of eigenvalues with nonzero real and imaginary parts, and k−

i , the number of pairs
of purely imaginary eigenvalues with negative Krein signature. For a simple pair of

imaginary eigenvalues ±iμ,μ �= 0, and the corresponding eigenvector z =
(
z1
z2

)

,

the Krein signature is sgn(〈H z, z〉), see Kapitula et al. (2004, p. 267).
The matrix D is introduced as follows—for Ker [H ] = span{ζ1, . . . , ζn}

Di j := 〈H −1[I −1ζi ],I −1ζ j 〉. (2.2)

Note that the last formula makes sense, since J −1ζi ∈ Ker [H ]⊥. Thus
H −1[J −1ζi ] ∈ Ker [H ]⊥ is well defined. The index counting theorem, see Theo-
rem 1, Kapitula et al. (2005) states that if det(D) �= 0, then

kHam := kr + 2kc + 2k−
i = n(H ) − n(D). (2.3)

Note that kHam = 0 guarantees spectral stability7. A particularly useful corollary of
this result occurs when n(H ) = 1, since then the stability is equivalent to kHam = 0,
see (2.3). Clearly, the stability is equivalent to n(D) = 1, whereas n(D) = 0 leads to
kHam = 1 = kr , hence instability.

2.2 Variational Construction of SmallWaves

This section constructs variational solution for the profile equation (1.9). This may
seem redundant, given the fact that we are able to construct, in a fairly explicit manner
(i.e., with explicit dependence on the parameters), all solutions of interest to it. This is
all so, but the variational construction yields an important additional property of these
solutions that arise as constrained minimizer, which will be relevant later on. Namely,
they will have the important property that n(L+) = 1, which turns out hard to verify
in this context.

7 But note that this is not necessary. For example, one might have kHam = 2 = 2k−
i , kr = k−

i = 0, which
means that no instabilities are present, but there is a pair of purely imaginary eigenvalues, with a negative
Krein signature.
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Proposition 4 Let T > 0, c ∈ R. Then, there exists ε0 = ε0(T , c) > 0, so that the
variational problem

{
J [v] = 1

2

∫ T
−T |v′(x)|2 + c

8

∫ T
−T |v(x)|4dx − 1

32

∫ T
−T |v(x)|6dx → min

∫ T
−T |v(x)|2dx = ε

(2.4)

has solution V for every 0 < ε < ε0. Moreover, it is a bell-shaped function, which
satisfies the Euler–Lagrange equation

− V ′′ + ζV + c

2
V 3 − 3

16
V 5 = 0,−T < x < T , (2.5)

where ζ = ζ(c, ε, T ) is the Euler–Lagrange multiplier. In addition, the linearized
operator

L+ := −∂xx + ζ + 3c

2
V 2 − 15

16
V 4

has exactly one negative eigenvalue.

Proof We first need to check that the variational problem (2.4) is well-posed. That is,
for sufficiently small ε and under the constraint ‖v‖2

L2 = ε, the functional J is bounded
from below. Indeed, from the Gagliardo–Nirenberg–Sobolev (GNS) inequality, we
have

‖v‖6L6[−T ,T ] ≤ C‖v‖6
Ḣ

1
3 [−T ,T ]

≤ C‖v′‖2L2‖v‖4L2 = Cε2‖v′‖2L2 .

Similarly, (with c �= 0 as in the definition of J (v), if c = 0, just skip this step)

‖v‖4L4[−T ,T ] ≤ C‖v′‖L2‖v‖3L2 = C‖v′‖L2ε
3
2 ≤ 1

4c
‖v′‖2L2 + Cε3.

This allows one to estimate J from below

J [v] ≥
(
1

4
− Cε2

)

‖v′‖2 − Cε3 > −Cε3 (2.6)

provided ε : Cε2 ≤ 1
4 . This shows the well-posedness.

Recall the Szegö inequality ‖vx‖L2[−T ,T ] ≥ ‖v∗
x‖L2[−T ,T ], where v∗ is the decreas-

ing rearrangement of v as previously defined. Note that the equality holds only when
v = v∗, i.e., if v is bell-shaped. At the same time, for all 1 ≤ p ≤ ∞, there
is ‖v‖L p[−T ,T ] = ‖v∗‖L p[−T ,T ]. This shows that J [v] ≥ J [v∗], while ‖v∗‖2

L2 =
‖v‖2

L2 = ε. Thus, it suffices to restrict the variational problem (2.4) to bell-shaped
entries only.
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We now show that (2.4) has solutions. Let J∗ = inf‖v‖2=ε J [v] and pick a mini-
mizing sequence of bell-shaped functions, vn : ‖vn‖2 = ε, J [vn] → J∗. It follows
from (2.6) that

lim sup
n

‖vn‖H1[−T ,T ] <
Cε3 + J∗
1
4 − Cε2

< ∞.

Thus, {vn}n is a bounded sequence in H1[−T , T ], hence a precompact in L2[−T , T ].
Thus, we may extract a subsequence, which converges weakly in H1 and strongly in
L2.Without loss of generality, the subsequence is vn , say limn ‖vn−V ‖L2 = 0. By the
GNS inequality and the supn ‖vn‖H1 < ∞, it follows that limn ‖vn − V ‖L p[−T ,T ] =
0, 1 < p < ∞. In particular, vn → V in L4, L6. At the same time, by the lower semi-
continuity of the H1 norm, with respect to weak convergence, lim infn ‖vn‖H1 ≥
‖V ‖H1 . It follows that

J∗ = lim inf
n

J [vn] ≥ J [V ].

while ‖V ‖2
L2 = ε. Thus, V is a solution of (2.4) and it is a bell-shaped as a limit of

bell-shaped functions. It now remains to establish the Euler–Lagrange equation (2.5)
and n(L+) = 1. This is all very standard. Fix h : 〈h, V 〉 = 0 and consider

f (δ) := J

[√
ε

V + δh

‖V + δh‖2
]

Since V is a minimizer of (2.4), it follows that f has a minimum at δ = 0. Thus,
f ′(0) = 0, which yields exactly (2.5). Furthermore, f ′′(0) ≥ 0, which amounts to

〈L+h, h〉 ≥ 0, h ⊥ V

Thus, n(L+) ≤ 1. On the other hand, by direct inspection, L+[V ′] = 0 and the
function V ′ has two zeros, at zero and at T . Thus, this is not the ground state, which
needs to be positive, hence there is a negative eigenvalue, whence n(L+) = 1.


�

3 Spectral Properties ofL±

We need to establish some useful spectral properties for the scalar Schrödinger opera-
torsL±, such as (3.12). In addition, we shall also need to compute various quantities
involving L −1+ φ. This requires explicit calculations involving the waves, so we start
with an alternative parametrization, which will be useful in the actual computations.

3.1 An Alternative Parametrization of theWaves

As we shall see, it is possible to obtain formulas in terms of the roots ϕ1, ϕ2, ϕ3. These
are not necessarily good variables to work with. We introduce a new set of parameters.
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Namely, we shall use g, κ andμ = 16(ω− c2
4 ).Based on that and the types of solutions

that we consider, it is convenient to further distinguish between the cases, μ > 0 and
μ < 0.

3.1.1 The Case� > 0

In terms of this variables, (see (1.13) for the formulas connecting the roots to g, κ),
we can express the roots as follows

ϕ1ϕ2 = 1

3

(

− 4

g2
+ 8κ2

g2
− μ

)

=: −A(g, κ, μ) (3.1)

ϕ2ϕ3 = 1

3

(
8

g2
− 4κ2

g2
− μ

)

=: B(g, κ, μ) (3.2)

ϕ1ϕ3 = 1

3

(

− 4

g2
− 4κ2

g2
− μ

)

=: −C(g, κ, μ). (3.3)

Recall that we are interested in a case, where ϕ1, ϕ2, ϕ3 are all real and ϕ1 < 0 <

ϕ2 < ϕ3. The assumption ω − c2
4 > 0 ensures ϕ3 > 0. It is easy to see that the

rest is equivalent to ϕ1ϕ2 < 0 and ϕ2ϕ3 > 0. Indeed, ϕ1ϕ2 < 0 rules out complex
eigenvalues (since then ϕ1ϕ2 = ϕ1ϕ̄1 > 0). Additionally, ϕ2ϕ3 > 0 rules out the
possibility ϕ1 < ϕ2 < 0 < ϕ3. Thus, in the case under consideration, namely μ > 0,

ϕ1 < 0 < ϕ2 < ϕ3 ⇐⇒ −A = ϕ1ϕ2 < 0 & B = ϕ2ϕ3 > 0.

Working out these inequalities leads to the following conditions on the newparameters

μ > 0 & 0 < g2 <
8

μ
& 0 < κ2 < min

(
4 + μg2

8
,
8 − μg2

4

)

. (3.4)

Note that min
(
4+μg2

8 ,
8−μg2

4

)
≤ 1, so the standard restriction for κ ∈ (0, 1) is not

violated. In fact, for the case μ > 0,

ϕ1 < 0 < ϕ2 < ϕ3 ⇐⇒ 0 < g <

√
8

μ
& 0 < κ2 < min

(
4 + μg2

8
,
8 − μg2

4

)

.

(3.5)

For future reference,weneed the formula forϕ1, ϕ2, ϕ3, c in termsof the newvariables.
We have from Viet’s formulas and (3.1), (3.2), (3.3),

ϕ1 = −
√

AC

B
, ϕ2 =

√
AB

C
, ϕ3 =

√
BC

A
, (3.6)

c = AB + BC − AC

4
√
ABC

. (3.7)
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3.1.2 The Case� ≤ 0

This case, μ ≤ 0 is very similar to the case μ > 0—all the formulas stay unchanged,
while the regions of validity, such as (3.4) change. More specifically, (3.1), (3.2),
(3.3) remain unchanged, but now, we have to find new constraints corresponding that
ϕ1, ϕ2, ϕ3 are real and ϕ1 < 0 < ϕ2 < ϕ3. So, we need to enforce A > 0, B > 0,C >

0. Note that B > 0 is automatic, due to the inequalities κ < 1 and μ ≤ 0. Also, note
that since A < C , it is enough to enforce A > 0. This gives rise to the new constraints,
similar to (3.5), namely—for μ < 0,

ϕ1 < 0 < ϕ2 < ϕ3 ⇐⇒ 0 < g <

√

− 4

μ
& 0 < κ2 <

4 + μg2

8
. (3.8)

The case μ = 0 can be naturally considered as part of (3.8), so we get

ϕ1 < 0 < ϕ2 < ϕ3 ⇐⇒ 0 < g < +∞ & 0 < κ2 <
1

2
.

Combining the results from the cases μ > 0, μ ≤ 0, we can formulate the new
parametrization in the following proposition.

Proposition 5 Let

μ ∈ R & 0 < g <

√

max

(
8

μ
,− 4

μ

)

& κ2 ≤ min

(
4 + μg2

8
,
8 − μg2

4

)

.(3.9)

Then, Formulas (3.6) and (1.12) describe all non-vanishing bell-shaped solutions,
with

ϕ(0) = ϕ3 > ϕ(T ) = ϕ(−T ) = ϕ2 > 0,

constructed in Proposition 1.

Now that we have the alternative description of the waves, it is time to establish some
further structural facts about the first few eigenvalues in the spectrums of L±.

3.2 Description of the Spectrum ofL±

Proposition 6 For all bell-shaped waves constructed in Proposition 1, the scalar lin-
earized Schrödinger operatorsL±, with D(L±) = H2

per (−T , T ) have the properties

(1) L− ≥ 0, λ0(L−) = 0, with Ker [L−] = span[φ], λ1(L−) > 0.
(2) L+ has exactly one simple negative eigenvalue λ0(L+) < 0 (say with a ground

state χ0), it has a simple eigenvalue at zero, λ1(L+) = 0, with Ker [L+] =
span[φ′], and λ2(L+) > 0. In particular, there exists δ > 0, so that

inf
u⊥χ0,u⊥φ′〈L+u, u〉 ≥ δ‖u‖2L2 . (3.10)
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Proof The statement for L− is straightforward. Indeed, by a direct check L−φ =
0, whence 0 is an eigenvalue. Since φ does not change sign, it means that 0 is a
simple eigenvalue at the bottom of σ(L−). Hence, λ0(L−) = 0 < λ1(L−) and
L−|span[φ]⊥ ≥ δ > 0.

We now turn our attention to the spectral properties ofL+. One issue complicating
matters is the dependence of the period on the variables g, κ , which makes differentia-
tion with respect to them problematic. In order to avoid this dependence, we introduce

a scaling transformation. Namely, a new function Q : φ(ξ) = Q
(

ξ
T

)
is introduced,

which is 2 periodic. Then, the new equation that we need to consider is

− Q′′ + T 2μ

16
Q + cT 2

2
Q3 − 3T 2

16
Q5 = 0,−1 < η < 1. (3.11)

Then, the new linearized operator relevant to this problem is

L̃+ := −∂ηη + T 2μ

16
+ 3cT 2

2
Q2 − 15T 2

16
Q4,

with D(L̃+) = H2
per .[−1, 1]. One can also see that L̃+[Q′] = 0 by differentiating

(3.11).
It is clear now that the results we want to establish are equivalent to

λ0(L̃+) < λ1(L̃+) = 0 < λ2(L̃+); Ker [L̃+] = span[Q′]. (3.12)

So, our goal is to show (3.12). Since, L̃+[Q′] = 0, Q′, zero is an eigenvalue and Q′ is
an eigenfunction. It is also clear that λ0(L̃+) < 0, since Q′ is an eigenfunction at zero
and it changes sign. Thus, one conclude that the ground state eigenvalue is negative.

Our plan for the rest of the proof is as follows—we need to show that

(1) Ker [L̃+] = span[Q′] for all values of the parameters (g, κ, μ) described in
(3.9).

(2) n(L̃+(μ0, g0, κ0) = 1 for some value (μ0, g0, κ0) in the parameter space.

We claim that this will be enough to establish (3.12). Note first, that the set

A :=
{

μ ∈ R & 0 < g <

√

max

(
8

μ
,− 4

μ

)

& κ2 ≤ min

(
4 + μg2

8
,
8 − μg2

4

)}

.

is an open and connected set in R3, and the maps (μ, g, κ) → λ j (L̃+(μ, g, κ)),
j = 0, 1, 2, . . . are continuous in μ, g, κ . Since

λ0(L̃+(μ0, g0, κ0)) < λ1(L̃+(μ0, g0, κ0)) = 0 < λ2(L̃+(μ0, g0, κ0)), (3.13)

such inequality must persist for all (μ, g, κ) ∈ A . Indeed, assume for a contradiction
that for some other value (μ1, g1, κ1) ∈ A ,

λ0(L̃+(μ1, g1, κ1)) < λ1(L̃+(μ1, g1, κ1)) < λ2(L̃+(μ1, g1, κ1)) = 0.
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Arguing by continuity, an eigenvalue crosses from being positive to being negative,
implying that in some intermediate point, there is a multiplicity two eigenvalue at zero,
which is a contradiction with Ker [L̃+] = span[Q′] for all values of the parameters
(g, κ, μ).

3.2.1 Proof of Ker[L̃+] = span[Q′]

Given what we have established already, the only remaining fact that we need to
establish is that there is no eigenfunction ψ /∈ span[χ0, Q′], corresponding to zero
eigenvalue. Assuming that such an eigenfunction does exist (and without loss of gen-
erality orthogonal to χ0, Q′), we will reach a contradiction. First, by Sturm oscillation
theory, ψ should have two zeros in [−1, 1) Since it is orthogonal to Q′, the func-
tion ψ must be even, with zeros at ±x0 : 0 < x0 < 1. Without loss of generality
ψ(x) > 0 : x ∈ (−x0, x0), while ψ(x) < 0, x ∈ (−1, x0) ∪ (x0, 1).

Our approach is as follows. We construct elements in Ker(L̃+)⊥ and then we use
them to contradict the existence of such ψ . To that end, a relation that is immediately
useful is

L̃+[Q] = −T 2[−cQ3 + 3

4
Q5]. (3.14)

Another one is to take a derivative with respect to μ in (3.11). Recall, see (1.15), that
T = 2gK (κ), so it is independent on μ. We obtain

L̃+[∂μQ] = −T 2[ 1
16

Q + ∂μc

2
Q3]. (3.15)

Finally, we take a derivative with respect to κ . We get

L̃+[∂κQ] = 2T Tκ [− μ

16
Q − c

2
Q3 + 3

16
Q5] − T 2 cκ

2
Q3

= −T 2
[
μK ′(κ)

8K (κ)
Q + (

cK ′(κ)

K (κ)
+ cκ

2
)Q3 − 3K ′(κ)

8K (κ)
Q5

]

. (3.16)

Formulas (3.14), (3.15), (3.16) allow us to solve for Q, Q3, provided

c + cκ

K (κ)

K ′(κ)
− 2μcμ �= 0. (3.17)

More precisely, isolating Q, Q3, we obtain the system

(
μ
4 c + cκK (κ)

K ′(κ)
1
16

cμ
2

) (
Q
Q3

)

= −T−2

(
L̃+(Q + 2 K (κ)

K ′(κ)
Qκ

L̃+(Qμ)

)

. (3.18)
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Fig. 1 Graph of c(g, κ, μ) + cκ (g, κ, μ)
K (κ)
K ′(κ)

− 2μcμ(g, κ, μ) , for μ = 1

We obtain

L̃ −1+ (Q) = 16T−2

cμ
2 Q + cμ

K (κ)
K ′(κ)

Qκ −
(
c + cκ

K (κ)
K ′(κ)

)
Qμ

c + cκ
K (κ)
K ′(κ)

− 2μcμ

(3.19)

and there is a similar formula for L̃ −1+ (Q3), with the samedenominator. Clearly, (3.17)
is then a solvability condition that ensures that Q, Q3 ∈ Ran(L̃+) ⊂ Ker [L̃+]⊥.
We have computed and plotted the function in (3.17), see Figs. 1 and 2 that confirm
the solvability condition (3.17).

Recall that both Q, Q3 ⊂ Ker [L̃+]⊥ are bell-shaped, hence the function

ζ(x) := Q(x)(Q2(x) − Q2(x0)) ⊥ Ker [L̃+].

satisfies ζ(x) > 0, x ∈ (−x0, x0), ζ(x) < 0, x ∈ (−1,−x0) ∪ (x0, 1). Thus, 〈ζ, ψ〉
> 0, while ζ ⊥ Ker [L̃+]. A contradiction is reached.

3.2.2 Proof of n(L̃+) = 1

In this section, we show the remaining claim in (3.12), namely that L̃+ has exactly
one negative eigenvalue. Note that it suffices to prove n(L+) = 1, as the operators
L+, L̃+ have the same Morse index.

To that end, note that Proposition 4 provides bell-shaped solutions for the profile
equation (1.9), with the property n(L+) = 1. We claim that at least one of the
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Fig. 2 Graph of c(g, κ, μ) + cκ (g, κ, μ)
K (κ)
K ′(κ)

− 2μcμ(g, κ, μ) , for μ = −1

constrained minimizers in Proposition 4 is actually in the form of one of the solutions
in Proposition 4. Going back to the full description of all possible bell-shaped solutions
of (1.9), in Proposition 1, we see that the only other bell-shaped solutions are in the
form ϕ(0) = ϕ3, ϕ(−T ) = ϕ(T ) = 0 and ϕ2 = ϕ̄1, ϕ3 > 0.

Now, fix c < 0. Also, select and fix sufficiently large half-period T
> 1

2|c|
∫ 1
0

dx√
x(1−x)

dx and sufficiently small L2 norm ε = ‖v‖L2 << 1. Then,
Proposition 4 guarantees a bell-shaped solution V , which in particular satisfies the
Euler–Lagrange equation (2.5).We claim that V is not of the form V (0) = ϕ3, V (T ) =
V (−T ) = 0. Once this is proven, we are done, since V is then necessarily in the form
of Proposition 5 and moreover, the corresponding linearized operator L+ has exactly
one negative eigenvalue.

Assume for a contradiction, that V is of the form V (0) = ϕ3, V (−T ) = V (T ) = 0.
The difficulty with generating the solutions as constrained minimizers, as we just did
is that we have no good control of the Lagrange multiplier ζ , nor of the integration
constant a. Instead, we have the parameters T and ‖V ‖2

L2[−T ,T ] to work with. Let
us write the relations for the roots that we know. By the Viet’s formulas we have for
ϕ1, ϕ2 = ϕ̄1,

ϕ1 + ϕ2 = 4c − ϕ3.

Thus, we may compute
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T =
∫ T

0
dϕ =

∫ ϕ3

0

1√
ϕ(ϕ3 − ϕ)(ϕ − ϕ1)(ϕ − ϕ̄1)

dϕ. (3.20)

But since the roots ϕ1, ϕ2 are complex-conjugate and ϕ ≥ 0

(ϕ − ϕ1)(ϕ − ϕ̄1) ≥ (ϕ − ϕ1 + ϕ̄1

2
)2 = (ϕ − 4c − ϕ3

2
)2 ≥ 4c2.

It follows that

T ≤ 1

2|c|
∫ ϕ3

0

1√
ϕ(ϕ3 − ϕ)

dϕ = 1

2c

∫ 1

0

1√
x(1 − x)

dx .

This is a contradiction with the choice of T ≥ 1
2c

∫ 1
0

1√
x(1−x)

dx . It follows that V is

of the form of Proposition 5 and n(L+) = 1. 
�

4 Spectral Properties ofL

In this section, we tackle the spectral properties of the self-adjoint operator L . This
operator, due to its matrix structure is naturally harder to analyze than its scalar coun-
terparts, L+,L−. It turns out that it is possible to extract all the necessary spectral
information, from the property

λ0(L+) < λ1(L+) = 0 < λ2(L+); Ker(L+) = span[φ′], (4.1)

which was established in Proposition 6.
ForU = (u1, u2), where u1 and u2 are periodic functions with fundamental period

2T , we have

〈LU ,U 〉 = 〈L1u1, u1〉 + 〈Mu2, u1〉 + 〈M∗u1, u2〉 + 〈L2u2, u2〉. (4.2)

Let u2 = φũ2. After integrating by parts, we obtain

〈L2u2, u2〉 = 〈φ∂y ũ2, φ∂y ũ2〉
〈Mu2, u1〉 + 〈M∗u1, u2〉 = 〈φ3∂y ũ2, u1〉.

Note that L1 = L+ + 1
4φ

4. Hence,

〈LU ,U 〉 = 〈L+u1, u1〉 +
∫ T

−T

[
1

2
φ2u1 + φ(φ−1u2)y

]2
dy. (4.3)

This particular nice structure of the bilinear form 〈LU ,U 〉, is not present, if one
considers the linearized operator in the form (1.19). More specifically, there is an
extra, sign-indefinite term in (4.3), namely const .〈φ3∂y ũ2, u1〉 which complicates the
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analysis of L . This is why we needed to convert to the form (1.25). Concerning the
kernel of L , we have the following result.

4.1 Description of Ker(L )

Proposition 7 The operator L has at most one negative eigenvalue, i.e., n(L ) ≤ 1.
Next, dim(Ker(L )) = 2. In fact,

Ker(L ) = span{�1, �2}, �1 =
(
0
φ

)

, �2 =
(

φ′
− 1

4φ
3

)

.

Remark We will show later that, as expected, n(L ) = 1. Unfortunately, this cannot
be done directly and requires some implicit analysis later on, see Sect. 5.2.

Proof Based on Formulas (4.3) and (4.1), we see that if u1 ⊥ χ0 (where χ0 is the
ground state for L+), then L |{χ0}⊥ ≥ 0. Thus,

inf

U⊥
(

χ0
0

)〈LU ,U 〉 ≥ inf
u1⊥χ0

〈L+u1, u1〉 ≥ 0.

This implies that n(L ) ≤ 1, as announced. We now discuss the structure of Ker(L ).
It is convenient to split L2 × L2 = L2

even × L2
odd ⊕ L2

odd × L2
even =: Xe,o ⊕ Xo,e

and sinceL acts invariantly on those subspaces, it suffices to determine Ker(L ) on
each.

Let us first show that Xo,e = span[�1, �2]. Indeed, for u1 ∈ L2
odd , u2 ∈ L2

even , we

have that u1 ⊥ χ0, whence by the argument above, forU =
(
u1
u2

)

∈ Xo,e∩Ker(L ),

0 = 〈LU ,U 〉 ≥ 〈L+u1, u1〉 ≥ 0.

Recalling again that u1 ⊥ χ0, this implies that u1 = 0 or u1 = cφ′. From (4.3), we
have that the integral is zero as well, whence either u2 = const .φ, when u1 = 0 or
else u2 = − c

4φ
3, when u1 = cφ′. This completes the analysis on Xo,e.

Next, we show that Ker(L ) ∩ Xe,o = {0}. This is a bit more complicated. Let

U =
(

f
g

)

∈ Xe,0 ∩ Ker(L ). We set

∣
∣
∣
∣
∣
∣

L1 f + Mg = 0

M∗ f + L2g = 0.
(4.4)

Not that 〈M∗ f , φ〉 = 〈 f , Mφ〉 = 0 and Ker [L2] = Ker [L−] = span[φ], so the
second equation in (4.4) is solvable and in fact

g = −L −1
2 M∗ f . (4.5)
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Next, we will be constructing Green function for the operatorL −1
2 = L −1− . We have

L2[φ] = 0. The normalized function

ψ(x) = φ(x)
∫ x

0

1

φ2(s)
ds,

∣
∣
∣
∣
φ ψ

φ′ ψ ′
∣
∣
∣
∣ = 1

also solves L2ψ = 0. The Green function, for an even function f is represented by

L −1
2 M∗ f (x) = φ(x)

∫ x

0
ψ(s)M∗ f (s)ds − ψ(x)

∫ x

0
φ(s)M∗ f (s)ds + CM∗ f ψ(x),

where CM∗ f is a constant to be selected, so that L −1
2 f is periodic with same period

as φ. Integrating by parts yields

∫ x

0
φ(s)M∗ f (s)ds = −1

2
φ3 f + 1

2
φ3(0) f (0) (4.6)

and

∫ x

0
ψ(s)M∗ f (s)ds = −1

2
φ2ψ f + 1

2

∫ x

0
φ f . (4.7)

Also,

CM∗ f = − φ(T )

ψ(T )

∫ T

0
ψM∗ f +

∫ T

0
φM∗ f = −1

2

1
∫ T
0

1
φ2 dx

∫ T

0
φ f + 1

2
φ3(0) f (0)

= − d f

2d1
+ 1

2
φ3(0) f (0).

where

d1 = 1
∫ T
0

1
φ2 dx

, d f =
∫ T

0
φ f .

All in all,

g = d f

2d1
ψ − φ

2

∫ x

0
φ f . (4.8)

Clearly, the formula for g cannot be complete, without finding f , so we take this on
now. Plugging (4.5) in the first equation of (4.4) results in

L1 f − ML −1
2 M∗ f = 0. (4.9)
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After some algebraic manipulations, we obtain

ML −1
2 M∗ f = 1

4
φ4 f − 1

4
φ3(0) f (0)φ(x) + 1

2
CM∗ f φ(x)

= φ4

4
f − d1d f

4
φ.

Finally, the left-hand side of (4.9) is now in the form

L1 f − ML −1
2 M∗ f = L+ f + 1

4
d1d f φ,

so, the equation to be solved isL+ f = − 1
4d1d f φ. This equation has a solution, since

Ker(L+) = span[φ′]. We obtain,

f = −d1d f

4
L −1+ [φ]. (4.10)

This still does not mean that we have found an element in Ker(L ) ∩ Xe,o, it simply
means that if there is one, it must be in the form (4.10). There is still a consistency
condition to be satisfied, namely about d f . We take dot product with φ. We obtain

2d f = 〈 f , φ〉 = − d1d f
4 〈L −1+ φ, φ〉, a relation that must be satisfied, in order to have

a non-trivial element in Ker(L ) ∩ Xe,o. This solvability condition amounts to

d f (8 + d1〈L −1+ φ, φ〉) = 0. (4.11)

Clearly, if d f = 0, f is trivial and this is not a new element of Ker(L ). So, it remains

that 8 + d1〈L −1+ φ, φ〉 = 0. Equivalently, it must be that 4
∫ T
−T

1
φ2 + 〈L −1+ φ, φ〉 =

0. We however need this quantity later on, so we have computed it: see (5.1) for
〈L −1+ φ, φ〉 as well as the formula

∫ T

−T

1

φ2 = 2g
∫ K (κ)

−K (κ)

1

ϕ(2gξ)
dξ

= 4g

ϕ1ϕ3

(

ϕ3K (κ) + (ϕ1 − ϕ3)�

[
ϕ1(ϕ3 − ϕ2)

ϕ3(ϕ1 − ϕ2)
, κ

])

,

which we have done symbolically in Mathematica. As a result, we can display the
following pictures (Figs. 3 and 4), which show that 4

∫ T
−T

1
φ2 + 〈L −1+ φ, φ〉 > 0, This

finishes the verification that Ker(L ) ∩ Xe,o = {0}. 
�

123



Journal of Nonlinear Science (2021) 31 :54 Page 29 of 38 54

Fig. 3 Graph of 4
∫ T
−T

1
φ2

+ 〈L−1+ φ, φ〉 , for μ = 1

Fig. 4 Graph of 4
∫ T
−T

1
φ2

+ 〈L−1+ φ, φ〉 , for μ = −1
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4.2 Preliminary Calculations for theMatrix D

According to the setup described in (2.2), we setup the matrix D as follows

D =
( 〈L −1J�1,J�1〉 〈L −1J�1,J�2〉

〈L −1J�2,J�1〉 〈L −1J�2,J�2〉
)

,

where �1, �2 span Ker(L ), they are described in Proposition 7. More explicitly,

D11 = 〈L −1J�1,J�1〉 = 〈L −1
(

φ

0

)

,

(
φ

0

)

〉,

D12 = D21 = 〈L −1J�1,J�2〉 = 〈L −1J�2,J�1〉 = 〈L −1
(

φ

0

)

,

(
φ3

4
φ′

)

〉,

D22 = 〈L −1J�2,J�2〉 = 〈L −1

(
φ3

4 ,

φ′

)

,

(
φ3

4
φ′

)

〉,

where the normalization constant satisfies k
∫ L
0 φ2 = 1

4

∫ L
0 φ4. We observe that since

(
φ

0

)

,

(
φ3

4
φ′

)

⊥ span[�1, �2] = Ker [L ]

we have that J : Ker(L ) → Ker(L )⊥, so it is justified to take L −1 in the above
formulas.

As one can imagine, these quantities are quite hard to compute in general, especially
with the involvement of the matrix Schrödinger operator L . In fact, we have the
following proposition, which establishes a reduced sufficient condition for stability of
the waves φ.

Proposition 8 Assume (4.1). If

D11 = 〈L −1
(

φ

0

)

,

(
φ

0

)

〉 < 0,

then n(D) = 1 and the corresponding wave φ is stable. In fact, we have the formula

D11 =
4

∫ T
−T

1
φ2

4
∫ T
−T

1
φ2 + 〈L −1+ [φ], φ〉

〈L −1+ [φ], φ〉. (4.12)

Remark Note that the quantity in the denominator is positive, as established in the
course of the proof of Proposition 7, see also Figs. 3 and 4 , which graphically confirm
this. Thus, for all parameter values

sgn(D11) = sgn(〈L −1+ [φ], φ〉).
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Proof First, if 〈L −1
(

φ

0

)

,

(
φ

0

)

〉 < 0, it follows from the min–max principle that

L −1 has a negative eigenvalue, which implies thatL has one too, hence n(L ) ≥ 1.
Since, we have already established, in Proposition 7, that n(L ) ≤ 1, it would follows
that n(L ) = 1. Furthermore, for the matrix D ∈ M2,2, we have D11 = 〈De1, e1〉 < 0
means that D too has a negative eigenvalue. Thus, n(D) ≥ 1. Since we already know
that n(L ) = 1, Formula (1.7) implies that n(D) ≤ 1, so n(D) = 1 and hence, we
have stability, from (2.3). Thus, D11 < 0 is sufficient for stability.

We now take on the question for the actual computation of D11. Despite being
arguably the easiest entry in the matrix D to calculate, it is not an easy task to actually
compute it. Its analysis is related to the analysis of Ker(L ) in Proposition 7. Let

L

(
f
g

)

=
(

φ

0

)

, (4.13)

which as we have observed is solvable in Xe,o, due to the fact that

(
φ

0

)

⊥ Ker [L ].

We note that such a solution comes with the property

(
f
g

)

∈ Ker(L )⊥. So, (4.13)
is equivalent to

∣
∣
∣
∣
∣
∣

L1 f + Mg = φ

M∗ f + L2g = 0.
(4.14)

Proceeding as in the proof of Proposition 7,

L1 f − ML −1
2 M∗ f = φ. (4.15)

resulting in

L+ f + 1

4
d1d f φ = φ, (4.16)

where

d1 = 1
∫ T
0

1
φ2 dx

, d f =
∫ T

0
φ f .

We obtain,

f = (1 − d1d f

4
)L −1+ [φ]. (4.17)
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Next, we determine d f . We simply take dot product of (4.17) with φ. We obtain
the equation

2d f = (1 − d1d f

4
)〈L −1+ φ, φ〉.

Let us note that this equation must have solutions as (4.4) does have a solution. In
particular,

d f = 〈L −1+ φ, φ〉
2 + d1

4 〈L −1+ φ, φ〉 , (4.18)

Since by definition, D11 = 2d f , we arrive at Formula (4.12). 
�

It becomes clear that in order to check for the stability, we need to be able to cal-
culate various quantities like 〈L −1+ φ, φ〉. We have already computed that, subject to
rescaling, see (3.19).

5 Analysis of the Spectral Stability for the Bell-ShapedWaves of DNLS

In this section, we use our preliminary calculations, which allow us to compute the
various quantities involved in the matrix D.

5.1 Computing 〈L −1+ �,�〉

In the calculations for D11, see (4.12), a major role is played by 〈L −1+ φ, φ〉. In order
to compute that, we use Formula (3.19), which gives L̃−1Q, in the rescaled framework
of Sect. 3.2.

So, let us continue to use the setup introduced in Sect. 3.2 and more precisely in
Eq. (3.11). By taking dot product of (3.19) with Q, we obtain

〈L̃ −1+ Q, Q〉 = 16T−2

cμ
2 〈Q, Q〉 + cμ

K (κ)
K ′(κ)

〈Qκ , Q〉 −
(
c + cκ

K (κ)
K ′(κ)

)
〈Qμ, Q〉

c + cκ
K (κ)
K ′(κ)

− 2μcμ

,

where recall that the function c = c(A, B,C) is given explicitly in (3.7), while the
quantities A, B,C , all in terms of g, κ, μ are explicitly in (3.1), (3.2), (3.3).

We have, 〈Q, Q〉 = T−1‖φ‖2. Also, since T = T (g, κ) is independent on μ,

〈Qμ, Q〉 =
∫ 1

−1
Qμ(ξ)Q(ξ)dξ = 1

2
∂μ

∫ 1

−1
Q2(ξ)dξ = 1

2
∂μT

−1‖φ‖2 = T−1

2
∂μ‖φ‖2.
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On the other hand,

〈Qκ , Q〉 =
∫ 1

−1
Qκ(ξ)Q(ξ)dξ = 1

2
∂κ

∫ 1

−1
Q2(ξ)dξ

= 1

2
∂κ [T−1‖φ‖2] = T−1

2
∂κ‖φ‖2 − T−2Tκ

2
‖φ‖2.

Thus, we have reduced matters to computing the following formula

〈 ˜L −1+ Q, Q〉 = 16T−2

cμ
2 T−1‖φ‖2 + cμ

K (κ)

K ′(κ)
( T

−1
2 ∂κ‖φ‖2 − T−2Tκ

2 ‖φ‖2) −
(
c + cκ

K (κ)

K ′(κ)

)
T−1
2 ∂μ‖φ‖2

c + cκ
K (κ)

K ′(κ)
− 2μcμ

= 16T−3

cμ
2 ‖φ‖2 + cμ

K (κ)

K ′(κ)
( 12 ∂κ‖φ‖2 − K ′(κ)

2K (κ)
‖φ‖2) −

(
c + cκ

K (κ)

K ′(κ)

)
1
2 ∂μ‖φ‖2

c + cκ
K (κ)

K ′(κ)
− 2μcμ

= 8T−3
cμ

K (κ)

K ′(κ)
∂κ‖φ‖2 −

(
c + cκ

K (κ)

K ′(κ)

)
∂μ‖φ‖2

c + cκ
K (κ)

K ′(κ)
− 2μcμ

.

Since 〈L̃ −1+ Q, Q〉 = T−3〈L −1+ φ, φ〉, we arrive at the formula

〈L −1+ φ, φ〉 = 8
cμ

K (κ)
K ′(κ)

∂κ‖φ‖2 −
(
c + cκ

K (κ)
K ′(κ)

)
∂μ‖φ‖2

c + cκ
K (κ)
K ′(κ)

− 2μcμ

. (5.1)

As we saw earlier, the denominator is never zero, per explicit calculations done earlier,
see Figs. 1 and 2 for a particular slices at μ = 1, μ = −1, respectively.

Thus, we need to evaluate ‖φ‖2
L2 in terms of g, κ, μ. Using Mathematica, we

computed

‖φ‖2L2 = 2g
∫ K (κ)

−K (κ)

ϕ(2gξ)dξ = 4g

(

ϕ1K (κ) + (ϕ3 − ϕ1)�

[
ϕ3 − ϕ2

ϕ1 − ϕ2
, κ

])

,

where � is the elliptic � function.
With this formula in hand, we compute the quantities in (5.1) usingMathematica.

The results can be seen in the slices of the graphs for 〈L −1+ φ, φ〉, in Fig. 5, for μ = 1
and Fig. 6 for μ = −1. From these images (and this is the case for all values of μ that
we have tried), the expression 〈L −1+ φ, φ〉 always changes sign over the domain. In
particular, there is always a region �̃, where it takes negative values. It follows that
D11 vanishes on a curve in the domains, and it takes positive and negative values as
well.

5.2 n(L ) = 1 and theWaves with 〈L −1+ �,�〉 < 0 are Spectrally Stable

In this section, we finally confirm that n(L ) = 1. This is achieved by piecing together
several conclusions established in the previous sections.

123



54 Page 34 of 38 Journal of Nonlinear Science (2021) 31 :54

Fig. 5 Graph of 〈L−1+ φ, φ〉 , for μ = 1

Fig. 6 Graph of 〈L−1+ φ, φ〉 , for μ = −1
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We have already seen that n(L ) ≤ 1 in Proposition 7. We have argued in
the previous section that that the quantity 〈L −1+ φ, φ〉 is always negative, some-
where in the parameter domain, see also Figs. 5 and 6. Thus, according to (4.12),
sgn(D11) = sgn(〈L −1+ φ, φ〉) = −1 on a portion of the domain. Thus, it follows that
n(D) ≥ 1, somewhere in the parameter domain. On the other hand, from the instability
index theory, see (2.3), we always have the inequality n(L ) ≥ n(D), so n(L ) ≥ 1
somewhere on the parameter domain. We claim that n(L ) = 1 for all values in the
parameter domain. Indeed, if n(L ) = 1 somewhere on it, a potential transition to
n(L ) = 0, due to the continuous dependence on the parameters, happens only if the
negative eigenvalue crosses the zero en route to becoming a positive one. This would
require, at least for some value of the parameters to have three vectors in Ker(L ).
According to Proposition 7, this is not the case. Thus, n(L ) = 1 for all parameters
described in Proposition 5. Hence, as discussed after (2.3), the stability of the waves
is equivalent to n(D) = 1 or equivalently, det(D) < 0.

In particular, since n(D) ≥ 1, whenever 〈L −1+ φ, φ〉 < 0, we have that kHam =
n(L ) − n(D) = 0, hence spectral stability holds for these values.

5.3 D12 and D11 Do Not Vanish Simultaneously: Conclusion of the Proof

We need to establish that

D12 = 〈 f , φ3

4
〉 + 〈g, φ′〉,

with f , g as introduced in (4.13) does not vanish simultaneously with D11. Let us
consider the expression for D12, exactly on the set where D11 = 0. Clearly, D11 = 0
exactly when 〈L −1+ φ, φ〉 = 0 and since f = const .L −1+ φ, precisely when 〈 f , φ〉 =
0. Thus, on this set, we can check that g = −φ

2

∫ x
0 f φ. But, on the set {D11 = 0}, an

integration by parts shows

D12 = 〈 f , φ3

4
〉 + 〈g, φ′〉 = 1

2
〈 f , φ3〉 = const.〈L −1+ φ, φ3〉.

Thus, it suffices to check 〈L −1+ φ, φ〉, 〈L −1+ φ, φ3〉 do not vanish simultaneously. To
this end, recall that n(L+) = 1, Ker [L+) = span[φ′], and denote its positive ground
state ofL+ by �0. Clearly, 〈φ,�0〉 > 0, 〈φ3, �0〉 > 0. This, there is a scalar c0 > 0,
so that 〈φ − c0φ3, �0〉 = 0. It follows that

〈L −1+ φ, φ〉 − c0〈L −1+ φ, φ3〉 = 〈L −1+ φ, φ − c0φ
3〉

= 〈L −1+ P{�0,φ′}⊥φ, P{�0,φ′}⊥(φ − c0φ
3)〉 > 0,(5.2)

because P{�0,φ′}⊥ restricts to the positive subspace ofL −1+ . This last inequality (5.2)

shows that 〈L −1+ φ, φ〉, 〈L −1+ φ, φ3〉 cannot not vanish simultaneously.
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Fig. 7 Graph of 〈L−1+ φ, φ〉 for quintic NLS waves

6 Stability Analysis for the Quintic NLSWaves

The spectral problem (1.33) is easy to analyze, with the tools that we have prepared
so far. Indeed, by Proposition (6), we have seen that n(L+) = 1, while n(L−) = 0. In
addition, Ker(L+) = span[φ′], while Ker(L−) = span[φ]. Applying index count-
ing theory (and more specifically (2.3)), we see that the matrix D is one dimensional,
namely D11 = 〈L −1+ φ, φ〉. In addition, kHam = 0 (and hence the waves are stable)
exactly when 〈L −1+ φ, φ〉 < 0 and unstable, if
〈L −1+ φ, φ〉 > 0, with a change of instability (and an additional element in the gener-
alized kernel in the Hamiltonian linearized operator (1.33) for 〈L −1+ φ, φ〉 = 0. Thus,
we need to find 〈L −1+ φ, φ〉, for this new restricted set of parameters. We set on to
describe the waves in the style of Proposition 5.

Proposition 9 Let

0 < g < ∞ & κ ∈ (0, 1) & μ = 4
√
1 − k2 + k4

g2
. (6.1)

Let the roots ϕ1, ϕ2, ϕ3 are as described in (3.6). Then, the two family of waves
(corresponding to ± values of μ) described in (1.31) are parametrized by g, κ are all
non-vanishing bell-shaped waves of the quintic NLS.

Proof Recall that the waves (1.31) correspond to those of (1.12), with the condition
c = 0. Solving in the formula for c from (3.7), c = 0, we end up with the relation

AB + BC − AC = 0, which is solved in terms of μ to exactly μ = 4
√
1−k2+k4

g2
.
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Finally, note that the constraint for μ ensures that the inequalities required in (3.9),

namely g <
√

8
μ
. is satisfied. This completes the proof of Proposition 9. 
�

Our next task is to determine the sign of the quantity 〈L −1+ φ, φ〉, on the set of
parameters outlined in the constraint (6.1). We have plotted the graph of the relevant
graph in Fig. 7. It shows almost perfect stability result for 0 < κ < 0.54 and instability
for κ ∈ (0.54, 1).

Fund National Science Foundation (1516245 and 1908626).
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