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Abstract
In this paper, we continue the construction of variational integrators adapted to contact
geometry started in Vermeeren et al. (J Phys A 52(44):445206, 2019), in particular,
we introduce a discrete Herglotz Principle and the corresponding discrete Herglotz
Equations for a discrete Lagrangian in the contact setting. This allows us to develop
convenient numerical integrators for contact Lagrangian systems that are conformally
contact by construction. The existence of an exact Lagrangian function is also dis-
cussed.
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1 Introduction

Contact Hamiltonian and Lagrangian systems have deserved a lot of attention in recent
years Bravetti (2017, 2018) or de León and Lainz Valcázar (2019b). One of the most
relevant features of contact dynamics is the absence of conservative properties con-
trarily to the conservative character of the energy in symplectic dynamics; indeed,
we have a dissipative behavior. This fact suggests that contact geometry may be the
appropriate framework to model many physical and mathematical problems with dis-
sipation we find in thermodynamics, statistical physics, quantum mechanics (Ciaglia
et al. 2018), gravity or control theory, among many others. Consequently, it becomes
an important necessity to develop numerical methods adapted to the contact setting for
applications in the above mentioned subjects. The idea is to develop geometric inte-
grators, that is, numerical methods for differential equations which preserve geometric
properties like contact structure, symmetries, configuration space. This preservation
of structural properties is often desirable to achieve correct qualitative behavior and
long time stability (Hairer et al. 2010; Sanz-Serna and Calvo 1994; Blanes and Casas
2016).

As far as we know, the first attempt to develop geometric integrators for the contact
case is in the paper (Vermeeren et al. 2019) (see also Bravetti et al. 2020), where the
authors present geometric numerical integrators for contact flows that stem from a
discretization of Herglotz variational principle.

Our goal in the current paper is to go further in the discrete description of contact
dynamics, so we will mention some of the new and relevant results that the reader
can find in the next pages. Instead of deriving the discrete Herglotz equations by
an heuristic argument, they are directly obtained from a clear discrete variational
principle. In addition, to develop thediscrete algorithmweuse thenatural discretization
Q × Q × R, which preserves all the contact geometry flavor.

Another relevant point is the discussion of the existence of an exact discrete
Lagrangian function (Marsden and West 2001; Patrick and Cuell 2009), which will
lead us to define the contact exponential map and prove its existence. This construc-
tion is essential to develop a complete theory of variational error analysis for contact
Lagrangian systems.

Finally, we consider a discrete version of the infinitesimal symmetries discussed in
de León and Valcázar (2020) and Gaset et al. (2020), jointly with the corresponding
dissipated quantities.

The paper is structured as follows. Section 2 is devoted to a quick review of contact
Hamiltonian and Lagrangian systems in the continuous setting. In particular, we recall
the Herglotz variational principle, since it will be the motivation to develop the cor-
responding discrete version. Section 3 is devoted to construct the discrete version of
contact Lagrangian dynamics for a discrete Lagrangian Ld : Q× Q×R → R, where
Q is the configuration manifold. We consider the discrete Herglotz principle to obtain
the so-called discrete Herglotz equations. The Legendre transformations F−Ld and
F+Ld are defined, and consequently the discrete flow (at the Lagrangian andHamilto-
nian levels); the main result is that the discrete flow is a conformal contactomorphism.
In Sect. 4 we define the contact exponential map for the Herglotz vector field and
prove that it is a local diffeomorphism. This result permits to study the existence of
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an exact Lagrangian function. Finally, we consider several examples to illustrate our
theoretical developments.

2 Continuous Contact Mechanics

2.1 Contact Manifolds and Hamiltonian Systems

In this section we will recall the main definitions and results on the theory of contact
manifolds and Hamiltonian system. See de León and Lainz Valcázar (2019a) for a
more detailed overview.

A contact manifold (M, η) is an (2n + 1)-dimensional manifold with a contact
form η (Libermann and Marle 1987). That is, η is a 1-form on M such that η ∧ dηn is
a volume form. This type of manifolds have a distinguished vector field: the so-called
Reeb vector field R, which is the unique vector field that satisfies:

iRdη = 0, η(R) = 1. (1)

On a contact manifold (M, η), we define the following isomorphism of vector
bundles:

� : T M −→T ∗M,

v �−→ivdη + η(v)η.
(2)

Notice that �(R) = η.
There is a Darboux theorem for contact manifolds. In a neighborhood of each point

in M one can find local coordinates (qi , pi , z) such that

η = dz − pidq
i . (3)

In these coordinates, we have

R = ∂

∂z
. (4)

An example of a contact manifold is T ∗Q ×R. Here, the contact form is given by

ηQ = dz − θQ = dz − pidq
i , (5)

where θQ is pullback the tautological 1-form of T ∗Q, (qi , pi ) are natural coordinates
on T ∗Q and z is the R-coordinate.

We say that a (local) diffeomorphism between two contactmanifolds F : (M, η) →
(N , τ ) is a (local) contactomorphism if F∗τ = η. We say that F is a (local) conformal
contactomorphism if F∗ ker τ = ker η or, equivalently, F∗τ = ση, where σ : M →
R \ {0} is the conformal factor.
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We say that a vector field X onM is an infinitesimal (conformal) contactomorphism
if its flow Ft consists of (conformal) contactomorphisms.

From the general identity, where Ft is a flow and X is its infinitesimal generator

∂

∂t
F∗
t η = F∗

t LXη, (6)

we deduce that X is an infinitesimal contactomorphism if and only if

LXη = 0. (7)

Furthermore, X is a conformal contactomorphism if and only if

LXη = aη, (8)

for some a : M → R. The function a is related to the conformal factors σt of the
conformal contactomorphisms Ft by

σt (x) = exp

(∫ t

0
a(Fτ (x))dτ

)
. (9)

Given a smooth function f : M → R, its Hamiltonian vector field X f is given by

�(X f ) = d f − ( f + R( f ))η. (10)

A vector field X is the Hamiltonian vector field of some function f if and only if it is
an infinitesimal conformal contactomorphism. In that case X = X f for f = −η(X).
Moreover, LXη = −R( f )η. Hence X is an infinitesimal contactomorphism if and
only if X = X f for some function f such that R( f ) = 0.

We call the triple (M, η, H) a contact Hamiltonian system, where (M, η) is a
contact manifold and H : M → R is the Hamiltonian function.

In contrast to their symplectic counterpart, contact Hamiltonian vector fields do not
preserve the Hamiltonian. In fact

XH (H) = −R(H)H . (11)

2.2 Contact Lagrangian systems

Now we review the Lagrangian picture of contact systems. In de León and Lainz
Valcázar (2019b) we give a more comprehensive description which also covers the
case of singular Lagrangians.

Let Q be an n-dimensional configuration manifold and consider the extended phase
space T Q × R and a Lagrangian function L : T Q × R → R. In this paper, we will
assume that the Lagrangian is regular, that is, the Hessian matrix with respect to the
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velocities (Wi j ) is regular where

Wi j = ∂2L

∂q̇i∂q̇ j
, (12)

and (qi , q̇i , z) are bundle coordinates for T Q × R. Equivalently, L is regular if and
only if the one-form

ηL = dz − θL (13)

is a contact form. Here,

θL = S∗(dL) = ∂L

∂q̇i
dqi , (14)

where S is the canonical vertical endomorphism S : T T Q → T T Q extended to
T Q × R, that is, in local T Q × R bundle coordinates,

S = dqi ⊗ ∂

∂q̇i
. (15)

The energy of the system is defined by

EL = �(L) − L = q̇i
∂L

∂ q̇i
− L, (16)

where � is the Liouville vector field on T Q extended to T Q × R in the natural way.
The Reeb vector field of ηL , which we will denoted by RL is given by

RL = ∂

∂z
− (Wi j )

∂2L

∂q̇i∂z

∂

∂ q̇ j
, (17)

where (Wi j ) is the inverse of the Hessian matrix with respect to the velocities (Wi j )

(Eq. (12)).
The Hamiltonian vector field of the energy EL will be denoted ξL = XEL , hence

�L(ξL) = dEL − (RL(EL) + EL)ηL , (18)

where �L(v) = ivdηL + ηL(v)ηL is the isomorphism defined in Eq. (17) for this
particular contact structure.

ξL is a second-order differential equation (SODE) (that is, S(ξL) = �) and its
solutions are just the ones of the Herglotz equations (also called generalized Euler–
Lagrange equations) for L (see de León and Lainz Valcázar 2019b):

d

dt

(
∂L

∂ q̇i

)
− ∂L

∂qi
= ∂L

∂q̇i
∂L

∂z
. (19)
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There exists a Legendre transformation for contact Lagrangian systems. Given
the vector bundle T Q × R → Q × R, one can consider the fiber derivative FL
of L : T Q × R → R, which has the following coordinate expression in natural
coordinates:

FL : T Q × R → T ∗Q × R

(qi , q̇i , z) �→
(
qi ,

∂L

∂q̇i
, z

)
.

(20)

If we consider the contact structure ηQ (5) on T ∗Q ×R, and ηL on T Q ×R then FL
is a local contactomorphism.

In the case thatFL is a global contactomorphism, thenwe say that L is hyperregular.
In this situation, we can define a Hamiltonian H : T ∗Q × R → R such that EL =
H◦FL and theLagrangian andHamiltonian dynamics areFL-related, that is,FL∗ξL =
XH .

2.2.1 Herglotz Variational Principle

Equations (19) can be derived from a modified variational principle (Herglotz 1930).
In contrast to the symplectic case, the action is not a definite integral. The contact
action is the value at the endpoint of solution to a non-autonomous ODE.

In de León and Lainz Valcázar (2019b) we defined the action on the space of curves
with fixed endpoints. However, for our purposes here it is more convenient to define
the action on the space of all curves and all initial conditions and then restrict it to the
appropriate submanifold.

Let 
 be the (infinite dimensional) manifold of curves on Q, c : [0, 1] → Q. We
denote by 
(q0, q1) ⊆ 
, where q0, q1 ∈ Q, the submanifold whose elements are
the smooth curves c ∈ 
 such that c(0) = q0, c(1) = q1. The tangent space of 
 at
a curve c is given by vector fields over c. In the case of Tc
(q0, q1), the vector fields
over c vanish a the endpoints. That is,

Tc
 = {δv ∈ C∞([0, 1] → T Q) | τQ ◦ δv = c}, (21)

Tc
(q0, q1) = {δc ∈ Tc
 | δc(0) = 0, δc(1) = 0}. (22)

We define the operator

Z : 
 × R → C∞([0, 1] → R), (23)

which assigns to each curve and initial condition (c, z0) the curve Zz0(c) that solves
the following ODE:

{
dZz0 (c)

dt = L(c, ċ,Zz0(c)),
Zz0(c)(0) = z0.

(24)
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Nowwe define the contact action functional as themapwhich assigns to each curve
c and initial condition z0, the solution to the previous ODE evaluated at the endpoint:

A : 
 × R → R,

(c, z0) �→ Zz0(c)(1).
(25)

When restricted to 
(q0, q1) × {z0}, the critical points of A are the solutions to
Herglotz equation. More precisely,

Theorem 2.1 (Herglotz variational principle) Let L : T Q ×R → R be a Lagrangian
function and let c ∈ 
(q0, q1) and z0 ∈ R. Then, (c, ċ,Zz0(c)) satisfies the Herglotz
equations (19) if and only if c is a critical point of Az0 |
(q0,q1).

Although it is not strictly necessary for this proof we will compute TZ in order to
compare with the discrete case. The variational principle follows from the expression
of TδcAz0 = TδcZz0(1).

Lemma 2.2 The tangent map to the operator Z defined in (24) is given by

T(c,z0)Z(δc, ż)(t) = ż

σ(t)
+ δci (t)

∂L

∂ q̇i
(χ(t))

+ 1

σ(t)

∫ t

0
δci (τ )σ (τ )

(
∂L

∂qi
(χ(τ)) − d

dτ

∂L

∂q̇i
(χ(τ)) + ∂L

∂ q̇i
(χ(τ))

∂L

∂z
(χ(τ))

)
dτ,

where

σ(t) = exp

(
−

∫ t

0

∂L

∂z
(χ(τ))dτ

)
> 0. (26)

Proof Let c ∈ 
(q0, q1) be a curve and consider some tangent vector δc ∈ Tc
. We
will first compute the partial derivative with respect to c by fixing z0 ∈ R, and then we
will fix the curve and compute the partial derivative with respect to the initial condition
z0. In order to simplify the notation, let χ = (c, ċ,Zz0(c)) and put ψ = TcZz0(δc).

Consider a curve cλ ∈ 
 (that is, a smoothly parametrized family of curves) such
that

δc = dcλ

dλ

∣∣∣
λ=0

Since Zz0(cλ)(0) = z0 for all λ, then ψ(0) = 0.
We compute the derivative of ψ by interchanging the order of the derivatives using

the ODE defining Z:

ψ̇(t) = d

dλ

d

dt
Zz0(cλ(t))|λ=0

= d

dλ
L(cλ(t), ċλ(t),Z(cλ)(t))|λ=0
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= ∂L

∂qi
(χ(t))δci (t) + ∂L

∂q̇i
(χ(t))δċi (t) + ∂L

∂z
(χ(t))ψ(t).

Hence, the function ψ is the solution to the ODE above. Using that ψ(0) = 0, we
can solve the Cauchy problem and obtain

ψ(t) = 1

σ(t)

∫ t

0
σ(τ)

(
∂L

∂qi
(χ(τ))δci (τ ) + ∂L

∂q̇i
(χ(τ))δċi (τ )

)
dτ, (27)

where

σ(t) = exp

(
−

∫ t

0

∂L

∂z
(χ(τ))dτ

)
> 0. (28)

Integrating by parts we get the following expression

ψ(t) = δci (t)
∂L

∂ q̇i
(χ(t))

+ 1

σ(t)

∫ t

0
δci (τ )

(
σ(τ)

∂L

∂qi
(χ(τ)) − d

dτ

(
σ(τ)

∂L

∂q̇i
(χ(τ))

))
dτ

= δci (t)
∂L

∂ q̇i
(χ(t))

+ 1

σ(t)

∫ t

0
δci (τ )σ (τ )

(
∂L

∂qi
(χ(τ)) − d

dτ

∂L

∂ q̇i
(χ(τ))

+ ∂L

∂q̇i
(χ(τ))

∂L

∂z
(χ(τ))

)
dτ.

Now we compute the partial derivative with respect to the initial condition z0. We
interchange the order of the derivatives

d

dt

∂Zz0(c)

∂z0
= ∂L

∂z
(c, ċ,Z(c))

∂Zz0(c)

∂z0
(29)

If we solve for
∂Zz0 (c)

∂z0
the ODE above using that

∂Zz0 (c)
∂z0

(0) = 1, we notice that

∂Zz0(c)

∂z0
(t) = exp

(∫ t

0

∂L

∂z
(χ(τ))dτ

)
= 1

σ(t)
, (30)

where σ is defined in (26). ��

2.2.2 Symmetries and Dissipated Quantities on Contact Lagrangian Systems

As explained inGaset et al. (2020) and de León andValcázar (2020), given a symmetry
on a contact system, one does not obtain a conserved quantity, but a quantity f that
dissipates at the same rate as the Hamiltonian.

123



Journal of Nonlinear Science (2021) 31 :53 Page 9 of 30 53

Given a contact Hamiltonian system (M, η, H), we say that a quantity f : M → R

is dissipated if

LXH f = −R(H) f , (31)

or, equivalently,

φt
∗( f ) = σt , (32)

where φ is the flow of XH and σt , its conformal factor.
Notice that the quotient of two dissipated quantities (if it is well defined) is a

conserved quantity.
We end this section by stating a Noether theorem in this setting, which provides a

link between symmetries of the Lagrangian and conserved quantities.
Let L : T Q ×R → R be a regular Lagrangian. Let G be a Lie group acting on Q

� : G × Q → Q. (33)

We defined the lifted action as

�̃ : G × T Q × R → T Q × R, (34)

given by �̃(g, vq , z) = (Tq�(vq), z) where vq ∈ TqQ. We denote by ξT Q×R to the
vector field on T Q × R which is the infinitesimal generator by the lifted action of an
element ξ of the Lie algebra g of G.

We define the momentum map JL :

JL : T Q × R → g∗,
〈JL(vq , z), ξ 〉 = −ηL(ξT Q×R).

(35)

and we define Ĵ (ξ) : T Q × R → R by Ĵ (ξ)(vq , z) = 〈JL(vq , z), ξ 〉.
Then we have the following (de León and Valcázar 2020, Section 4.1)

Theorem 2.3 Let the lifted action �̃ preserve the Lagrangian L, then �̃ acts by con-
tactomorphisms on (T Q × R, ηL , EL) and Ĵ (ξ) is a dissipated quantity for every
ξ ∈ g.

3 Discrete Contact Mechanics

In this section, we will extend the approach to discrete mechanics as in Marsden and
West (2001) to the case of contact dynamics (see also Vermeeren et al. 2019).

Let Ld : Q × Q ×R → R be a discrete Lagrangian function. In our point of view
Q × Q ×R will be the discrete space corresponding to the manifold T Q ×R, where
continuous contact Lagrangian mechanics takes place. We fix a time-step h > 0, on
which Ld depends, though we will omit this explicit dependence.
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For each N ∈ N, let us define the discrete path space as the space containing
sequences on Q with length N + 1, i.e.,

CN
d (Q) = {(q0, q1, . . . , qN )|qk ∈ Q, k = 0, . . . , N }.

The set CN
d (Q) is a manifold and it is canonically identified with the product space

QN+1.
To each qd ∈ CN

d (Q) and each z0 ∈ R we will associate another sequence (zk) ∈
R

N+1 defined by

zk+1 − zk = Ld(qk, qk+1, zk), k = 0, . . . , N − 1. (36)

In the sequel, for each 1 ≤ k ≤ N , we will denote by Zk the function Zk : Q × Q ×
R −→ R

Zk(qk−1, qk, zk−1) = zk−1 + Ld(qk−1, qk, zk−1).

We define the contact discrete action to be the functional that for each point
qd ∈ CN

d (Q) and each real number z0 returns as output the real number zN obtained
recursively from (36), i.e.,

Ad : CN
d (Q) × R −→ R

(qd , z0) �→ zN .
(37)

A variation of a sequence qd ∈ CN
d (Q) is a curve q̃d : (−ε, ε) → CN

d (Q) satisfying
q̃d(0) = qd . Given such a variation, we will define its infinitesimal variation by

δqd := d

dε

∣∣∣∣
ε=0

q̃d(ε) = (δq0, . . . , δqN ),

where δqk := d
dε

∣∣
ε=0 q̃k(ε).

Proposition 3.1 Let Ld be a smooth discrete Lagrangian. Then, if we fix z0 ∈ R, we
obtain the functional

Ad,z0 : CN
d (Q) −→ R

qd �→ Ad(qd , z0).
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The differential of the functional Ad,z0 is the following

dAd,z0(qd) = σN · · · σ2
∂Z1

∂q0
(q0, q1, z0)dq0

+
N−1∑
k=1

N∏
j=k+2

σ j ·
(

∂Zk+1

∂qk
+ ∂Zk+1

∂zk

∂Zk

∂qk

)
dqk

+ ∂ZN

∂qN
(qN−1, qN , zN−1)dqN ,

(38)

where we are using the identification of CN
d (Q) with QN+1 and for each 1 ≤ j ≤ N

σ j = ∂Z j

∂z j−1
(q j−1, q j , z j−1).

Proof Using the identification of CN
d (Q)with QN+1, note that the discrete action may

be rewritten as

Ad,z0(qd) = ZN (qN−1, qN ,ZN−1(qN−2, qN−1,ZN−2(...Z1(q0, q1, z0)...)).

Using that

dAd,z0(qd) = ∂Ad,z0

∂q0
dq0 +

N−1∑
k=1

∂Ad,z0

∂qk
dqk + ∂Ad,z0

∂qN
dqN .

and applying the chain rule, we deduce that

∂Ad,z0

∂q0
= ∂ZN

∂zN−1
· · · ∂Z2

∂z1

∂Z1

∂q0
,

since the function Z1 is the only one that depends on q0 among all the N functions
Zk . It is also clear that

∂Ad,z0

∂qN
= ∂ZN

∂qN
,

since none of the functions Zk depend on qN except the function ZN . Finally if
1 ≤ k ≤ N − 1 we have that

∂Ad,z0

∂qk
= ∂ZN

∂zN−1
· · · ∂Zk+2

∂zk+1

(
∂Zk+1

∂qk
+ ∂Zk+1

∂zk

∂Zk

∂qk

)
,

where we applied the chain rule and the fact that the functions Zk+1 and Zk are the
only ones that depend on qk . Hence, we finished the proof. ��
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Remark 3.2 Let us see the special case N = 2, where we can directly compute the
differential of the action:

Let Ld be a smooth discrete Lagrangian. In the case where N = 2, the differential
of the discrete action function satisfies:

dAd,z0 = (D1Ld(q1, q2, z1) + (1 + DzLd(q1, q2, z1)D2Ld(q0, q1, z0)) dq1
+ D2Ld(q1, q2, z1)dq2 + (1 + DzLd(q1, q2, z1))D1Ld(q0, q1, z0)dq0.

(39)

Definition 3.3 (Discrete Herglotz Principle) Given z0 ∈ R, a discrete path qd =
(q0, . . . , qN ) in CN

d (Q) is said to satisfy the Discrete Herglotz Principle if qd is a
critical value of the discrete action functional Ad,z0 among all paths in CN

d (Q) with
fixed end points q0, qN .

We will now obtain as a sufficient and necessary condition for a path to satisfy
the discrete Herglotz principle, a set of equations called Discrete Herglotz equations
(Vermeeren et al. 2019).

Theorem 3.4 Let Ld be a discrete Lagrangian function such that 1 + DzLd is non-
vanishing everywhere. Given z0 ∈ R, a discrete path qd ∈ CN

d (Q) satisfies the discrete
Herglotz principle if and only if it satisfies

D1Ld(qk, qk+1, zk) + (1 + DzLd(qk, qk+1, zk))D2Ld(qk−1, qk, zk−1) = 0,

zk − zk−1 = Ld(qk−1, qk, zk−1),
(40)

for k = 1, . . . , N − 1.

Proof Let qd(ε) be a variation of qd ∈ CN
d (Q) with fixed end-points q0 and qN . Then

qd is a critical value of the discrete action functional if and only if

d

dε

∣∣∣∣
ε=0

(Ad,z0(qd(ε))) = dAd,z0(δqd) = 0.

By (38) the last expression is equivalent to

N−1∑
k=1

N∏
j=k+2

σ j ·
(

∂Zk+1

∂qk
+ ∂Zk+1

∂zk

∂Zk

∂qk

)
δqk = 0.

Since the infinitesimal variations δqk , 1 ≤ k ≤ N − 1, are arbitrary we deduce

N∏
j=k+2

σ j ·
(

∂Zk+1

∂qk
+ ∂Zk+1

∂zk

∂Zk

∂qk

)
= 0.

Note that,

σ j = ∂Z j

∂z j−1
(q j−1, q j , z j−1) = 1 + DzLd(q j−1, q j , z j−1)
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is non-vanishing by hypothesis and

∂Zk+1

∂qk
+ ∂Zk+1

∂zk

∂Zk

∂qk
= D1Ld(qk, qk+1, zk) + σk+1D2Ld(qk−1, qk, zk−1),

from where the result follows. ��
Remark 3.5 The discrete principle introduced in Vermeeren et al. (2019) is just the
condition

∂Zk+1

∂qk
+ ∂Zk+1

∂zk

∂Zk

∂qk
= 0,

afer rewriting it in our notation. For discrete Lagrangian functions where 1 + DzLd

is non-vanishing, the condition above is equivalent to the Herglotz discrete principle.

3.1 Discrete Lagrangian Flows and Discrete Legendre Transforms

Given a discrete contact Lagrangian Ld , if 1+DzLd(q0, q1, z0)does not vanish,we can
define twomaps called discrete Legendre transforms:F±Ld : Q×Q×R → T ∗Q×R

F
+Ld(q0, q1, z0) = (q1, D2Ld(q0, q1, z0), z0 + Ld(q0, q1, z0))

F
−Ld(q0, q1, z0) =

(
q0,− D1Ld(q0, q1, z0)

1 + DzLd(q0, q1, z0)
, z0

)
.

(41)

Lemma 3.6 F
+Ld is a local diffeomorphism if and only if F−Ld is a local diffeomor-

phism.

Proof It is a direct consequence of the implicit function theorem. ��
The Legendre transforms allow us to rewrite discrete Herglotz equations (40) as

a momentum matching equations as in Marsden and West (2001). Indeed, provided
1 + DzLd(q0, q1, z0) is not zero, we may write

F
+Ld(q0, q1, z0) = F

−Ld(q1, q2, z1). (42)

Inspired by the following theorem, we say that a discrete contact Lagrangian is
regular if the function 1+ DzLd(q0, q1, z0) does not vanish and its negative discrete
Legendre transform F

−Ld is a local diffeomorphism. Thus, we have the following
theorem

Theorem 3.7 Suppose that the discrete Lagrangian Ld : Q × Q ×R → R is regular.
Then there is a well-defined discrete Lagrangian flow�d : Q×Q×R → Q×Q×R

for the discrete Herglotz equations. Moreover �d is a local diffeomorphism given by

�d = (F−Ld)
−1 ◦ F

+Ld .
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Proof Consider the points (q0, q1, z0) ∈ Q × Q × R and (q1, q2, z1) ∈ Q × Q × R

satisfying Eq. (42). If F−Ld is a local diffeomorphism, then the map defined by

�d = (F−Ld)
−1 ◦ F

+Ld

is also a local diffeomorphism and satisfies

�d(q0, q1, z0) = (q1, q2, z1),

showing that it is the discrete Lagrangian flow for discrete Herglotz equations. ��
The discrete Legendre transforms also allow us to define an associated discrete

Hamiltonian flow on T ∗Q × R. Indeed, considering a regular discrete Lagrangian
function Ld , let �̃d : T ∗Q × R → T ∗Q × R be defined by

�̃d = F
+Ld ◦ �d ◦ (F+Ld)

−1. (43)

It is not difficult to show that the discrete Hamiltonian flow admits the alternative
expressions

�̃d = F
−Ld ◦ �d ◦ (F−Ld)

−1 or �̃d = F
+Ld ◦ (F−Ld)

−1. (44)

Q × Q × R Q × Q × R

T ∗Q × R T ∗Q × R T ∗Q × R

�d

F
−Ld

F
+Ld

F
−Ld

F
+Ld

�̃d �̃d

(45)

We may define the one-forms

η+ = (F+Ld)
∗η, η− = (F−Ld)

∗η, (46)

where η is the canonical contact form on T ∗Q × R. These are contact forms on
Q × Q × R. If we chose natural coordinates (qi , pi , z) on T ∗Q × R where η =
dz − pidqi , the discrete 1-forms may be locally written as the pullback

η+ = dz0 + dLd(q0, q1, z0) − D2Ld(q0, q1, z0)dq1,

η− = dz0 + D1Ld(q0, q1, z0)

1 + DzLd(q0, q1, z0)
dq0,

(47)

by the corresponding discrete Legendre transform. The one-form η+ is further sim-
plified to
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η+ = (1 + DzLd(q0, q1, z0))dz0 + D1Ld(q0, q1, z0)dq0. (48)

Given a discrete Lagrangian Ld , let σd : Q × Q ×R → R be the smooth function
given by

σd(q0, q1, z0) = 1 + DzLd(q0, q1, z0)

then we have that:

Lemma 3.8 The discrete contact forms η± satisfy

(i) η+ = σd · η−;
(ii) (�d)

∗η− = η+.

Proof For the first item, observe that (48) is equivalent to

η+ = (1 + DzLd(q0, q1, z0))η
−.

For the second one, note that

(�d)
∗η− = (�d)

∗ ◦ (F−Ld)
∗η = (F−Ld ◦ �d)

∗η = (F+Ld)
∗η

by applying Theorem 3.7. ��
As a consequence of the last Lemma we have the following theorem:

Theorem 3.9 Let Ld be a regular discrete Lagrangian function. The discrete flow
�d associated to Ld is a conformal contactomorphism with respect to both contact
structures η±. In particular, it satisfies

(�d)
∗η+ = (σd ◦ �d) · η+, (�d)

∗η− = σd · η− (49)

Likewise, the discrete Hamiltonian flow �̃d is also a conformal contactomorphism
satisfying

(�̃d)
∗η = (σd ◦ (F−Ld)

−1) · η. (50)

Proof The first two claims are trivial consequences of Lemma 3.8. Indeed, combining
the two statements of the Lemma we get

(�d)
∗η− = σd · η−.

Then, also

(�d)
∗η+ = (�d)

∗(σd · η−) = (σd ◦ �d) · (�d)
∗η− = (σd ◦ �d) · η+.
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As for the last equation, observing that the discrete Hamiltonian flow satisfies �̃d =
F

+Ld ◦ �d ◦ (F+Ld)
−1 by definition, then

(�̃d)
∗η = ((F+Ld)

−1)∗ ◦ (�d)
∗η+ = ((F+Ld)

−1)∗((σd ◦ �d) · η+)

= (σd ◦ �d ◦ (F+Ld)
−1) · ((F+Ld)

−1)∗η+,

where the last equality comes from the properties of the pullback. Since we have that

�d ◦ (F+Ld)
−1 = (F−Ld)

−1 and ((F+Ld)
−1)∗η+ = η,

the desired result follows.
Moreover, since the discrete Lagrangian function Ld is regular, the function σd

does not vanish. Hence, the discrete flows �d and �̃d are conformal contact. ��

3.2 Discrete Symmetries and Dissipated Quantities

Let G be a Lie group acting on Q through the map � : G × Q → Q. We define the
lifted action on Q × Q × R to be the diagonal action on Q × Q and the identity on
R, so that

�̃ : G × Q × Q × R → Q × Q × R, �̃g(q0, q1, z0) = (�g(q0),�g(q1), z0).

Let us denote by ξQ ∈ X(Q) the infinitesimal generator associated to a Lie algebra
element ξ ∈ g and by ξ̃ ∈ X(Q × Q × R) the corresponding infinitesimal generator
on Q × Q × R.

Notice that, since pr3(�g(q0, q1, z0)) = z0 is constant for all g ∈ G, where pr3 :
Q × Q × R → R is the projection onto the third factor, then we have that

T(q0,q1,z0)pr3(̃ξ (q0, q1, z0)) = 0.

In fact, the infinitesimal generator may be identified with

ξ̃ (q0, q1, z0) = (ξQ(q0), ξQ(q1), 0z0) ∈ Tq0Q × Tq1Q × Tz0R, (51)

where 0 : R → TR is the zero section of TR.

Lemma 3.10 If Ld : Q × Q × R → R is an invariant discrete Lagrangian function,
i.e., Ld ◦ �̃g = Ld for all g ∈ G, then it satisfies the equation

D1Ld(q0, q1, z0)ξQ(q0) + D2Ld(q0, q1, z0)ξQ(q1) = 0. (52)

Proof Since the discrete Lagrangian function is invariant for the lifted action, it satis-
fies

〈dLd(q0, q1, z0), ξ̃ (q0, q1, z0)〉 = 0, ∀(q0, q1, z0) ∈ Q × Q × R.
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Then using Eq. (51), one immediately gets the desired expression. ��
Now consider the discrete momentum map Jd given by

Jd : Q × Q × R → g∗,
〈Jd(q0, q1, z0), ξ 〉 = 〈η−, ξ̃ (q0, q1, z0)〉.

(53)

Theorem 3.11 Let Ld be an invariant discrete Lagrangian function for the lifted action
�̃. Then �̃ acts by contactomorphisms on Q × Q × R and the function Ĵd(ξ) :
Q × Q × R → R given by

Ĵd(ξ)(q0, q1, z0) = 〈Jd(q0, q1, z0), ξ 〉

is dissipated along the discrete flow of Herglotz equations in the sense that

Ĵd(ξ)(�d(q0, q1, z0)) = σd(q0, q1, z0) Ĵd(ξ)(q0, q1, z0),

where σd(q0, q1, z0) = 1 + DzLd(q0, q1, z0).

Proof The fact that �̃ acts by contactomorphisms is immediately checked by comput-
ing the pullback of either the 1-forms η±:

(�̃g)
∗η± = η±.

Indeed, it is a direct consequence of the G-invariance of Ld . Following a similar proof
as in Subsection 1.3.3 inMarsden andWest (2001) (where the authors show that, in the
symplectic context, G-invariance implies that the action map preserves the discrete
Lagrangian one-forms), we differentiate the equality Ld ◦ �̃g = Ld with respect to
z0 and obtain

DzLd(�̃g(q0, q1, z0)) = DzLd(q0, q1, z0),

while differentiation with respect to q0 implies

(�̃g)
∗(D1Ld(q0, q1, z0)dq0) = D1Ld(q0, q1, z0)dq0.

Then, from the local expressions (47) and (48) and noting that (�̃g)
∗dz0 = dz0, the

result follows.
In order to simplify the notation, let P0 = (q0, q1, z0) and P1 = �d(q0, q1, z0).

By definition we have that

Ĵd(ξ)(P1) = 〈η−(P1), ξ̃ (P1)〉.

Now applying the definition of η− and Eq. (51) we get

Ĵd(ξ)(P1) = 1

σd(P1)
〈D1Ld(P1), ξQ(q1)〉.
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Using the discrete Herglotz equations, the right-hand side reduces to

Ĵd(ξ)(P1) = −〈D2Ld(P0), ξQ(q1)〉.

From the infinitesimal symmetry formula in Eq. (52), we deduce

Ĵd(ξ)(P1) = 〈D1Ld(P0), ξQ(q0)〉.

Now inserting σd(P0) so that

Ĵd(ξ)(P1) = σd(P0)〈D1Ld(P0)

σd(P0)
, ξQ(q0)〉,

we deduce

Ĵd(ξ)(P1) = σd(P0)〈η−(P0), ξ̃ (P0)〉

and so we have proved that

Ĵd(ξ)(P1) = σd(P0) Ĵd(ξ)(P0).

��

4 Exact Discrete Lagrangian for Contact Systems

4.1 The Contact Exponential Map

Given a contact regular Lagrangian L : T Q × R → R, consider the corresponding
Lagrangian vector field ξL and denote its flow by φ

ξL
t .

Define the open subset Uh of T Q × R given by

Uh = {(q0, q̇0, z0) ∈ T Q × R | φ
ξL
t is defined for t ∈ [0, h]}

and let the contact exponential map be defined by

expξL
h : Uh ⊆ T Q × R → Q × Q × R

(q0, q̇0, z0) �→ (q0, q1, z0),
(54)

where q1 = pQ ◦ φ
ξL
h (q0, q̇0, z0) and pQ : T Q × R → Q is the projection onto Q

given by pQ(vq , z) = q for vq ∈ TqQ.
We will prove that the contact exponential map is a local diffeomorphism, using

the fact that the non-holonomic exponential map, i.e., the exponential map of a non-
holonomic system is a local embedding (see Anahory Simoes et al. 2020; Marrero
et al. 2016). This recent result is a consequence from the analogous fact that the
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exponential map for arbitrary SODE vector fields is a local diffeomorphism and from
classical analytical results in boundary values problems for second-order differential
equations (cf. Chapter XII, Part II in Hartman 2002).

Indeed, to every regular contact system, one can associate a non-holonomic
Lagrangian system on T (Q × R) with nonlinear constraints.

Consider the singular Lagrangian function

L̃ : T (Q × R) → R, L̃ = L ◦ π, (55)

where π : T (Q × R) → T Q × R is a projection onto T Q × R. Also, we take the
nonlinear constraints

ML = {(q, z, q̇, ż) ∈ T (Q × R) | ż = L(q, q̇, z)}. (56)

Observe that ML is the zero level set of the real-valued function � : T (Q ×R) → R

given by �(q, z, q̇, ż) = ż − L(q, q̇, z).
The pair (L̃, ML) forms a Lagrangian non-holonomic system with nonlinear con-

straints determined by the submanifoldML and dynamics given byChetaev’s principle
(see Bloch 2015; de León and de Diego 1996 and references therein). According to
this principle the equations of motion are

d

dt

(
∂ L̃

∂q̇i

)
− ∂ L̃

∂qi
= λ

∂�

∂q̇i

d

dt

(
∂ L̃

∂ ż

)
− ∂ L̃

∂z
= λ

∂�

∂ ż

�(qi , z, q̇ i , ż) = 0,

(57)

with Lagrange multiplier λ. As L̃ does not depend on ż it is straightforward to check
that the Lagrange multiplier is just

λ = −∂L

∂z

and that Eq. (57) are equivalent to the Herglotz equations for L .
Moreover, since L is regular, we can define a SODE vector field �(L̃,ML ) ∈ X(ML)

as the unique vector field on ML whose integral curves satisfy Eq. (57). Hence, we
deduce

Tπ(�(L̃,ML )) = ξL ◦ π. (58)

Let us denote the flow of the vector field �(L̃,ML ) by φ
�(L̃,ML )

t : ML → ML .
Consider now the submanifold of ML given by

ML,h = {(q0, q̇0, z0, ż0) ∈ T (Q × R) | φ
�(L̃,ML )

t is defined for t ∈ [0, h]}.
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We define the non-holonomic exponential map to be

exp
�(L̃,ML )

h : ML,h ⊆ ML −→ (Q × R) × (Q × R)

(q0, z0, q̇0, ż0) �→ (q0, z0, q1, z1),
(59)

where (q1, z1) = τQ×R ◦ φ
�(L̃,ML )

h (q0, z0, q̇0, ż0), with τQ×R : T (Q × R) → Q × R

the tangent bundle projection.
In Anahory Simoes et al. (2020) the authors prove that there is an open subset

Nh ⊆ ML,h such that the non-holonomic exponential map exp
�(L̃,ML )

h |Nh is a smooth
embedding and, hence, a diffeomorphism into its image, which we will denote by Md .

Theorem 4.1 There exists a sufficiently small h > 0 and an open set Vh ⊆ Uh such
that the contact exponential map expξL

h |Vh is a diffeomorphism.

Proof Let us consider the non-holonomic system (L̃, ML) defined previously.
According to Eq. (58), the vector fields ξL and �(L̃,ML ) are π -related therefore, its

flows satisfy

π ◦ φ
�(L̃,ML )

t = φ
ξL
t ◦ π.

We remark that π |ML is a diffeomorphism, since ML is diffeomorphic to the graph of
the Lagrangian function L . As such, we can also write

φ
�(L̃,ML )

t = (π |ML )
−1 ◦ φ

ξL
t ◦ π |ML .

Thus, we canwrite the non-holonomic exponential map in terms of the contact dynam-
ics in the following way

exp
�(L̃,ML )

h (q0, z0, q̇0, ż0) = (q0, z0, q1, z1),

with (q1, z1) = τQ×R ◦ (π |ML )
−1 ◦ φ

ξL
h ◦ π |ML (q0, z0, q̇0, ż0) where ż0 =

L(q0, q̇0, z0).
Also note that τQ×R ◦ (π |ML )

−1 = pQ×R, where

pQ×R : T Q × R → Q × R, pQ×R(vq , z) = (q, z).

In Diagram (60) we show the different projections we can define on the manifolds
involved in this section.

T (Q × R)

T Q × R Q × R

Q

π τQ×R

pQ×R

pQ pr1

(60)
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With these projections we can also write the contact exponential map as

expξL
h (q0, q̇0, z0) = (q0, q1, z0),

with q1 = pr1 ◦ pQ×R ◦ φ
ξL
h (q0, q̇0, z0). Hence, we can write it as

expξL
h = p̃r1 ◦ exp

�(L̃,ML )

h ◦ (π |ML )
−1, (61)

with

p̃r1 : (Q × R) × (Q × R) −→ Q × Q × R

(q0, z0, q1, z1) �→ (q0, pr1(q1, z1), z0).

Therefore, if p̃r1|Md is a local diffeomorphism then, by Eq. (61), the contact expo-
nential map expξL

h |Vh is a diffeomorphism if we choose

Vh = π |ML (Nh),

where Nh is the open subset where exp
�(L̃,ML )

h |Nh is an embedding.
We are going to prove in the next Lemma that p̃r1|Md is a local diffeomorphism. ��

Lemma 4.2 Using the same notation as in the previous theorem, p̃r1|Md is a local
diffeomorphism.

Proof All we must prove is that p̃r1|Md is a local submersion (immersion) since, by
dimensional reasons, this forces p̃r1|Md to be also a local immersion (submersion).

Let x ∈ Md . Any vector in the kernel of Tx p̃r1|Md must be the tangent vector of a
curve of the form

Z(s) = (q0, z0, q1, w · s) ∈ Md , w ∈ R.

Let γs(t) = φ
�(L̃,ML )

t ◦ (exp
�(L̃,ML )

h )−1(Z(s)). For each fixed value of s, this is an
integral curve of �(L̃,ML ) satisfying

τQ×R ◦ γs(0) = (q0, z0), τQ×R ◦ γs(h) = (q1, w · s).

Moreover, note that the projection of γs(t) to T Q×R, i.e., the curve π ◦γs(t) is an
integral curve of ξL with endpoints q0 and q1 for each fixed value of s and so π ◦γ0(t)
must satisfy Herglotz’ principle. Note that the action over the curves π ◦γs(t) is given
by

A(pQ ◦ π ◦ γs(t)) = pR ◦ π ◦ γs(h) = w · s,

where pR : T Q × R → R is the projection onto the second factor.
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Therefore, pQ ◦ π ◦ γ0(t) is a critical value of the action if and only if w =
0. Therefore, Tx p̃r1|Md is trivial and p̃r1|Md must be a local diffeomorphism in a
neighbourhood of each point. ��

Since the contact exponential map is a local diffeomorphism we can define a local
inverse called the exact retraction and denote it by Re−

h : Q × Q × R → T Q × R.
We will also use its translation by the flow

Re+
h : Q × Q × R → T Q × R, Re+

h := φ
ξL
h ◦ Re−

h .

4.2 The exact discrete Lagrangian Function

Consider the function Le
h : Q × Q × R → R defined by

Le
h(q0, q1, z0) =

∫ h

0
L ◦ φ

ξL
t ◦ Re−

h (q0, q1, z0)dt (62)

is called the exact discrete Lagrangian function.
We will need the following classical result in the proof of the next theorem: the

solution of the first-order linear equation ẏ = a(t) + db
dt (t)y with b(0) = 0 is

y(t) = eb(t)
(∫ t

0
a(s)e−b(s) ds + y(0)

)
. (63)

Theorem 4.3 The Legendre transforms of a regular Lagrangian L : T Q × R → R

are related to the discrete Legendre transforms of the corresponding exact discrete
Lagrangian Le

h : Q × Q × R → R in the following way

F
+Le

h = FL ◦ Re+
h , F

−Le
h = FL ◦ Re−

h . (64)

Proof We will prove in local computations that the derivatives of the exact discrete
Lagrangian function satisfy

D1L
e
h(q0, q1, z0) = −∂L

∂ q̇
(q0, q̇0, z0)e

b(h);

D2L
e
h(q0, q1, z0) = ∂L

∂ q̇
(q1, q̇1, z1);

DzL
e
h(q0, q1, z0) = eb(h) − 1.

(65)

where

(q0, q̇0, z0) = Re−
h (q0, q1, z0), (q1, q̇1, z1) = φ

ξL
h ◦ Re−

h (q0, q1, z0),

and b(t) =
∫ t

0

∂L

∂z
(φξL

s ◦ Re−
h (q0, q1, z0)) ds.

(66)
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Then, from the definition of Legendre transform in (20) and discrete Legendre
transforms in (41), the result follows immediately.

To simplify the notation in the proof we will use the notation γ0,1(t) =
(q0,1(t), q̇0,1(t), z0,1(t)) := φ

ξL
t ◦ Re−

h (q0, q1, z0). Under this convention we will
have

Le
h(q0, q1, z0) =

∫ h

0
L(γ0,1(t))dt .

Note first that any variation of the exact discrete Lagrangian will take the form

δLe
h(q0, q1, z0) = d

dε

∣∣∣∣
ε=0

Le
h(q̃0(ε), q̃1(ε), z̃0(ε))

=
∫ h

0

∂L

∂q
(γ0,1(t))δq0,1 + ∂L

∂q̇
(γ0,1(t))δq̇0,1 + ∂L

∂z
(γ0,1(t))δz0,1 dt .

(67)

Since γ0,1(t) is a solution of Euler–Lagrange equations, it satisfies

ż0,1 = L(q0,1(t), q̇0,1(t), z0,1(t)).

Therefore, any variation of z0,1 satisfies the variational equation

δż0,1 = ∂L

∂q
(γ0,1(t))δq0,1 + ∂L

∂q̇
(γ0,1(t))δq̇0,1 + ∂L

∂z
(γ0,1(t))δz0,1. (68)

Hence, any variation of the exact discrete Lagrangian reduces to

δLe
h(q0, q1, z0) = δz0,1(h) − δz0,1(0). (69)

Moreover,we can solve the function δz0,1 explicitly, by solving the differential Eq. (68)

δz0,1(h) = eb(h)

(∫ h

0
a(s)e−b(s) ds + δz0,1(0)

)
, (70)

with

b(t) =
∫ t

0

∂L

∂z
(γ0,1(s)) ds,

a(t) = ∂L

∂q
(γ0,1(t))δq0,1 + ∂L

∂q̇
(γ0,1(t))δq̇0,1.
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Let us compute the integration in the expression of δz0,1:

∫ h

0
a(s)e−b(s) ds =

∫ h

0

(
∂L

∂q
δq0,1 + ∂L

∂ q̇
δq̇0,1

)
e−b(t) dt

=
∫ h

0

(
∂L

∂q
− d

dt

∂L

∂q̇
+ ∂L

∂ q̇

∂L

∂z

)
δq0,1e

−b(t) dt

+ ∂L

∂q̇
(γ0,1(h))e−b(h)δq0,1(h) − ∂L

∂ q̇
(γ0,1(0))δq0,1(0),

where we are using integration by parts. Note that the term between brackets is zero,
since we are over solutions of Euler–Lagrange equations. Therefore,

δz0,1(h) = ∂L

∂q̇
(γ0,1(h))δq0,1(h) − ∂L

∂q̇
(γ0,1(0))e

b(h)δq0,1(0) + eb(h)δz0,1(0). (71)

Note that the differentials of the discrete Lagrangian D1Le
h , D2Le

h and DzLe
h are

instances of particular variations. Therefore, we have that

D1L
e
h(q0, q1, z0) =

(
∂L

∂q̇
(γ0,1(h))

∂q0,1(h)

∂qi0
− ∂L

∂q̇
(γ0,1(0))e

b(h) ∂q0,1(0)

∂qi0

+(eb(h) − 1)
∂z0,1(0)

∂qi0

)
dqi0

= − ∂L

∂q̇i
(γ0,1(0))e

b(h)dqi0,

(72)

since q0,1(h) ≡ q1 and so its derivative with respect to q0 vanishes, q0,1(0) ≡ q0 and
so its derivative with respect to q0 is the identity and, finally, z0,1(0) ≡ z0 does not
depend upon q0. Likewise, the next derivative follows from applying similar argu-
ments. Indeed, we have that

D2L
e
h(q0, q1, z0) =

(
∂L

∂q̇
(γ0,1(h))

∂q0,1(h)

∂qi1
− ∂L

∂ q̇
(γ0,1(0))e

b(h) ∂q0,1(0)

∂qi1

+(eb(h) − 1)
∂z0,1(0)

∂qi1

)
dqi1

= ∂L

∂q̇i
(γ0,1(h))dqi1.

(73)
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Analogously, we also deduce

DzL
e
h(q0, q1, z0) =

(
∂L

∂q̇
(γ0,1(h))

∂q0,1(h)

∂z0
− ∂L

∂ q̇
(γ0,1(0))e

b(h) ∂q0,1(0)

∂z0

+(eb(h) − 1)
∂z0,1(0)

∂z0

)
dz0

= (eb(h) − 1)dz0.

(74)

Now, the result follows by the definition of the discrete Legendre transforms. ��
The commutativity of the following diagram summarizes the statement of the pre-

vious theorem

Q × Q × R T Q × R

T ∗Q × R

Re±
h

F
±Le

h

FL (75)

Now, we are going to relate the continuous contact Lagrangian flowwith its discrete
counterpart, when we take as discrete Lagrangian the corresponding exact discrete
Lagrangian.

Theorem 4.4 Take a regular Lagrangian L : T Q → R and fix a time step h > 0.
Then we have that:

1. Le
h is a regular discrete Lagrangian function;

2. If H is the Hamiltonian function corresponding to L introduced at the end of
Sect. 2.2 and φ

XH
t is its contact Hamiltonian flow, we have that

F
+Le

h = φ
XH
h ◦ F

−Le
h . (76)

3. If (q, z) : [0, Nh] → Q×R is a solution of theHerglotz equations, then it is related
to the solution of the discrete Herglotz equations {(q0, z0), (q1, z1), . . . , (qN , zN )}
for the corresponding exact discrete Lagrangian with (q(0), q(h), z(0)) as initial
conditions in the following way:

qk = q(kh), zk = z(kh) for k = 0, . . . , N . (77)

Proof Item 1. is a consequence of the previous theorem, since F−Le
h is a composition

of two local diffeomorphisms it is itself a local diffeomorphism. Item 2. comes from
unwinding the definitions:

F
+Le

h = FL ◦ Re+
h = FL ◦ φ

�L
h ◦ Re−

h = φ
XH
h ◦ FL ◦ Re−

h = φ
XH
h ◦ F

−Le
h .

For item 3., it is not hard to show that

F
+Le

h = F
−Le

h ◦ (expξL
h ◦ φ

ξL
h ◦ Re−

h ).
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Moreover, for every k = 1, . . . , N − 1, since the curves q and z are solution of the
Herglotz equations, we have that

expξL
h ◦ φ

ξL
h ◦ Re−

h (q(k − 1), q(k), z(k − 1)) = (q(k), q(k + 1), z(k)).

Hence,

F
+Le

h(q(k − 1), q(k), z(k − 1)) = F
−Le

h(q(k), q(k + 1), z(k))

so that {(q0, z0), (q1, z1), . . . , (qN , zN )} given by (77) satisfy the discrete Herglotz
equations. ��

5 Numerical Examples

Given amechanical contactLagrangianwith a euclideanmetric and apotential function
V : Q → R of the type

L(q, q̇, z) = 1

2
q̇2 − V (q) + γ z, (q, q̇, z) ∈ T Q × R, γ < 0.

one usually approximates the exact discrete Lagrangian associated to L by means of a
quadrature rule. Note that the restriction of γ to negative values is necessary to model
dissipative dynamics, though we could define the integrator for any value of γ ∈ R.
If we use the middle point rule to approximate the positions, i.e., q ≈ q1+q0

2 , one may
define the discrete Lagrangian Ld : Q × Q × R → R in the following way

Ld(q0, q1, z0) = 1

2h
(q1 − q0)

2 − hV

(
q1 + q0

2

)
+ hγ z0.

We remark that the value of h should be chosen small enough so that the function σd
does not vanish anywhere. In this case, the discrete Herglotz equations are of the type

q1 − q0
h

− h

2

∂V

∂q

(
q1 + q0

2

)
= 1

(1 + hγ )

(
q2 − q1

h
+ h

2

∂V

∂q

(
q2 + q1

2

))

z1 = Ld(q0, q1, z0) = 1

2h
(q1 − q0)

2 − hV

(
q1 + q0

2

)
+ (hγ + 1)z0

Example 1 The free single particle contact Lagrangian is

L(q, q̇, z) = 1

2
q̇2 + γ z, (q, q̇, z) ∈ T Q × R.

A simple discretization of this Lagrangian would be

Ld(q0, q1, z0) = 1

2h
(q1 − q0)

2 + hγ z0. (78)
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Fig. 1 Position q and z and logarithm of the discrete Hamiltonian H ◦ F−Ld for a free particle, computed
by solving the discrete Herglotz equations for the discrete Lagrangian (78) (continuous line) and the exact
dynamics (dashed line), for γ = −0.05 and the time-step h = 0.5. The initial conditions are q0 = 1,
q1 = 2 and z0 = 0

Then, choosing h small enough so that the function σd is non-vanishing, the discrete
Herglotz equations for Ld are locally given by

q1 − q0
h

= q2 − q1
h(1 + hγ )

⇒ q2 = (hγ + 2)q1 − (hγ + 1)q0

z1 = 1

2h
(q1 − q0)

2 + (hγ + 1)z0

The discrete flow obtained by solving these equations is plotted in Fig. 1.
In this case, one can also compute the exact discrete Lagrangian and solve the exact

dynamics.

Le
h(q0, q1, z0) = γ (q1 − q0)2 eγ h

2eγ h − 2
− z0

(
eγ h − 1

)
. (79)

Example 2 The damped harmonic oscillator is described by the Lagrangian

L(q, q̇, z) = 1

2
q̇2 − 1

2
q2 + γ z, (q, q̇, z) ∈ T Q × R.

Using a middle point discretization, i.e., q ≈ q1+q0
2 , one may define the discrete

Lagrangian

Ld(q0, q1, z0) = 1

2h
(q1 − q0)

2 − h

8
(q1 + q0)

2 + hγ z0. (80)
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Fig. 2 Position q and z and logarithm of the discrete Hamiltonian H ◦ F
−Ld for a harmonic oscillator,

computed by solving the discrete Herglotz equations on the discrete Lagrangian (80) (continuous line) and
the exact dynamics (dashed line), for γ = −0.05 and the time-step h = 0.5. The initial conditions are
q0 = 1, q1 = 2 and z0 = 0

In this case, after choosing h small enough, the discrete Herglotz equations hold

q1 − q0
h

− h

4
(q1 + q0) = 1

(1 + hγ )

(
q2 − q1

h
+ h

4
(q2 + q1)

)

z1 = 1

2h
(q1 − q0)

2 − h

8
(q1 + q0)

2 + (hγ + 1)z0,

which can be solved explicitly for q2

q2 = − (h3γ + 4hγ + h2 + 4)q0 + (h3γ − 4hγ + 2h2 − 8)q1
h2 + 4

.

The discrete flow obtained by solving these equations is plotted in Fig. 2.
In this case, the exact discrete Lagrangian and the exact discrete dynamics can be

computed with the aid of a Computer Algebra system, but the analytic expressions are
complicated, so we only include their graph in Fig. 2.

6 Conclusions and FutureWork

In this paper, we went deeper in the geometry of discrete contact mechanics following,
as a starting point, the results by Vermeeren et al. (2019). We have done a detailed
study of the discrete Herglotz principle and its geometric properties, including the
discrete Legendre transforms and the associated discrete Lagrangian and Hamilto-
nian flows. Moreover, we have analyzed the existence of dissipated quantities related
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with symmetries of the system and the construction of the exact discrete Lagrangian
function giving the correspondence between the discrete and continuous system.

In future work, we will study the variational error analysis allowing us to estimate
the error order of the proposed methods just from the error of approximation of the
exact discrete Lagrangian function, that is, how well the discrete Lagrangian function
matches the exact discrete Lagrangian function (Marsden and West 2001; Patrick and
Cuell 2009).Moreover,wewill introduce higher-ordermethods for contact Lagrangian
systems extending the theory of Morse functions to Legendrian submanifolds (see
Libermann and Marle 1987; Barbero Liñán et al. 2019; Ferraro et al. 2017). For
instance, this theory will give a complete geometric explanation of other possible
discretizations of the phase space, as for instance, the one used by Vermeeren et al
which is Q × Q × R

2 instead of Q × Q × R.
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