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Abstract
This paper investigates stability analysis of flapping flight. Due to time-varying aero-
dynamic forces, such systems do not display fixed points of equilibrium. The problem
is therefore approached via a limit cycle analysis based on Floquet theory. Stability is
assessed from the eigenvalues of the Jacobian matrix associated with the limit cycle,
also known as the Floquet multipliers. We developed this framework to analyze the
flapping flight equations of motion of a bird in the longitudinal plane. Such a system is
known to be not only nonlinear and time dependent, but also driven by state-dependent
forcing aerodynamic forces. A model accounting for wing morphing under prescribed
kinematics is developed for generating realistic state-dependent aerodynamic forces.
The morphing wing geometry results from the envelope of continuously articulated
rigid bodies, modeling bones and feather rachises, and capturing biologically relevant
degrees of freedom. A sensitivity analysis is carried out which allows studying sev-
eral flight configurations in trimmed state. Our numerical results show that in such a
system one instability mode is ubiquitous, thus suggesting the importance of sensory
feedback to achieve steady-state flapping flight in birds. The effect of wingbeat ampli-
tude, governed by the shoulder joint, is found to be crucial in tuning the gait toward
level flight, but marginally affects stability. In contrast, the relative position between
the wing and the center of mass is found to significantly affect the values of Floquet
multipliers, suggesting that the distribution of pitching moment plays a very important
role in flapping flight stability.
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1 Introduction

Biological fliers have been a source of scientific inspiration for decades, thanks to their
impressive performance. Due to a recent interest in flapping vehicles, there is a strong
effort from the scientific community to unveil the biomechanics of animal flapping
flight.

Control capabilities, in particular, are outstanding as demonstrated by accelerations
of up to 14G, roll rates up to 5000 deg

s achieved by barn swallows (Hirundo rustica,
Shyy et al. 1999), and the ability of mitigating environmental perturbations such as
wind and gust. It is therefore critical to establish flight dynamic stability in order to
investigate the mechanisms governing such behaviors. Over the years, a lot of work
has been accomplished to assess flight dynamic stability at different scales.

The first attempt to assess the longitudinal stability in flapping flight was carried out
by Taylor and Thomas (2002). They addressed the problem using a quasi-static and
blade element approach in order to estimate aerodynamic loads. Subsequently, they
analytically evaluated the static stability, by considering the variation of the pitching
moment with respect to the angle of attack. They concluded that, in flapping flight,
longitudinal stability drastically depends on where the quasi-static flight force acts
with respect to the body center of mass. They suggested that particular wing motions,
such as sweeping, have significant impact on the overall system stability.

However, static stability is only a necessary condition for dynamic stability. Early
studies investigating dynamic stability leveraged on averaging the system dynamics
over the flapping period. In particular, Taylor and Thomas (2003) and Xiong and
Sun (2008) linearized the equations of motion from experimental measurements of
the aerodynamic derivatives. The averaging approach however fails if the wingbeat
frequency is close to the natural frequency of the body motion, such as for large birds
in slow forward flight, or in transitions between two different flight regimes, such
as from fast forward flight to hovering (Taylor and Thomas 2002; Iosilevskii 2014).
Moreover, Taha et al. (2015) showed that direct averaging may also fail for larger time
scales separation, requiring higher-order averaging methods.

Taylor and Żbikowski (2005) conducted the first study of stability in terms of
periodic orbits, re-defining the stability of flapping flight as the asymptotic orbital
stability in the phase space. For the first time, they introduced a limit cycle approach
to study flapping flight dynamics.

Dietl andGarcia (2008) followed this approach by introducing forcing aerodynamic
terms. They defined the trim condition as the limit cycle described by the state-space
variables of the equations of motion with the same period as the flapping wingbeat,
and used Floquet theory to determine its stability. They studied the longitudinal flight
dynamics of an ornithopter treated as a rigid body, with imposed joint kinematic
trajectories, and developed a limit cycle detectionmethod based on amultiple-shooting
algorithm to concomitantly identify the limit cycle, and assess its stability. Importantly,
they restricted the kinematic analysis to two degrees of freedom only, namely the
plunging angle, and the wing twist, defining the wingbeat amplitude and the angle of
attack, respectively. This model did not capture important features of the wing, such
as morphing and sweep angle.
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This approach has also been found suitable to shed light on flapping flight dynamics
at a level of insect scales (Hassan and Taha 2019; Wu and Sun 2012).

The estimation of the forces that a bird develops, coupled to the dynamical problem,
comes from the aerodynamics of flappingwings,whichhas been a challenging research
question for the last few decades. Early effort to model bioinspired aerodynamics were
aimed to estimate power consumption of fliers. A pioneering work was carried out by
Pennycuick (1968) who accounted for the effect of the induced velocity of a pigeon
with a correction of the actuator disk theory. The first landmark of modeling the wake
of a bird was proposed by Rayner (1979) with the ultimate goal to estimate the induced
power. He proposed a newmethod where the wake was prescribed as a chain of elliptic
vortex rings, whose dimensions were determined by the imposed bird kinematics and
forward velocity. The wing was assumed to be aerodynamically loaded during the
downstroke only, and the associated shed vortex rings were then interacting according
to Biot–Savart law for determining the induced velocity field.

Subsequently, Phlips et al. (1981) applied for the first time the Prandtl lifting line
theory. The wing was a single flapping element, oscillating about a hinge axis with one
degree of freedom only. On the same wing model, Smith et al. (1996) implemented a
panel method that gave the possibility to account for wing porosity and flexibility.

Thanks to the remarkable effort of describing the kinematics of birdwings (Tobalske
and Dial 1996), an important leap forward has been possible in order to couple the
aerodynamic models with a more realistic bird gait. A detailed wingbeat was proposed
by Wu and Popović (2003) in the field of computer graphics, who for the first time
modeled a bird wing with all of its joints and degrees of freedom, accounting for
the feathers and tail. A similar wing model was employed by Parslew and Crowther
(2010)which used high accuracywingmotion and a quasi-steady blade element theory
to study the effect of the wing kinematics in terms of energy-saving and lift/drag
production. Colognesi et al. (2021) proposed a model of morphing wing with an
immersed lifting line aerodynamic model and the wake was modeled with a vortex-
particle mesh method in order to capture its behavior over long distances.

Important effort of modeling aerodynamic loads of flapping wings has also been
conducted at the insect scales. A CFD model of two degrees of freedom flapping
wing was proposed byWu and Sun (2012) in order to study the longitudinal dynamics
of two hovering insects. Unsteady aerodynamics was also proposed by Mouy et al.
(2017), Nogar et al. (2017), and Dickinson et al. (1999) to account for leading edge
vortex phenomena and rotational effect, which are relevant features of lift production
in small animal scales.

From a bird flight perspective, the wing kinematics also defines the flight regime.
Indeed, birds canmodulate different degrees of freedom in order to adapt their forward
speed, gain or lose altitude, and perform maneuvers. To the best of our knowledge,
an extensive analysis of the influence of such parameters on the stability properties of
the flier, and on its performance, has not been conducted to date.

Based on the aforementioned definition of trimmed flight, this paper reports a
method that relies on a multiple-shooting algorithm to identify limit cycles for large
birds dynamics and evaluate their stability via Floquet theory. In particular, we couple
an aerodynamics model that relies on a quasi-steady lifting line, and which is capable
of dealing with poly-articulated morphing wings to the bird body moving in space.
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Finally, we identify a family of limit cycles corresponding to different flight regimes
(climbing, descending, and level flight).

Furthermore, this analysis is successfully employed to investigate the sensitivity of
flight stability to the reciprocal position between the wing root and the bird center of
mass.

Two impacting results have been found. First, the wingbeat amplitude defines the
flight regime (climbing, descending, or level) without significantly affecting its stabil-
ity. Second, thewing insert position drastically impacts the system stability, suggesting
that the attitude of the wing for developing nose-down moment is beneficial in terms
of longitudinal stability.

The rest of the paper is structured as follows. Sect. 2 reports the dynamic model
of the bird, and more particularly the coupling between the dynamical model of the
animal and the aerodynamic loading. Sect. 3 presents the multiple-shooting algorithm
and the numerical parameters employed in the simulations. Sect. 4 reports the results
obtained in the numerical investigations. Finally, in Sect. 5, we discuss the influence
the wingbeat amplitude and wing insert position have on the dynamic stability of
the flier. The paper is finally concluded and some perspectives for controlling and
achieving stable flight inspired by our model are outlined.

2 Dynamical Model of a Flying Bird

In this section, the equations of motion of a flying bird are developed. We build this
model upon three main assumptions:

1. The flight is restricted to the longitudinal plane, so that the bird main body has
only three degrees of freedom: two in translation and one in rotation. The system
is symmetric with respect to this plane. As a consequence, lateral forces, rolling
moments, and yawing moments are identically equal to zero at every time and
therefore do not have to be considered in the equations of motion. Stability of these
degrees of freedom is thus not discussed in the present paper.

2. The inertial effect of the wings on the main body can be neglected. The model
therefore does not account of the effect of flapping on the motion of the center of
gravity. This is guided by the fact that for large and fast migratory birds, the wing
mass is much lower than the body mass, about 5% according to Berg and Rayner
(1995). This assumption has been extensively used for both ornithopter and insect
scale models (Taylor and Żbikowski 2005; Dietl and Garcia 2008; Dietl et al. 2011;
Taha et al. 2014).

3. The aerodynamic effects due to the tail are not explicitly modeled. The proposed
model compensates for the missing tail by sweeping of the wing around the body
center of mass, thus providing the possibility to generate both nose-up and nose-
down pitching moments.

The main morphological parameters used to model the main body and the wing kine-
matics are introduced in the following sections.
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Fig. 1 Reference frames describing flight dynamics in the longitudinal plane. The origin of the moving
body frame is taken at the bird’s center of mass G. Image re-adapted from www.fotki.com

2.1 Equations of Longitudinal Motion

The considered bird ismodeled as a rigid body ofmassmb located at the center ofmass
G, and moving in the longitudinal plane. Two reference frames are required in order
to study the longitudinal flight dynamics, as shown in Fig. 1: a fixed inertial frame
O(X ,Y , Z), and a moving body frame G(x ′, y′, z′) with unit vectors (êx ′ , êy′ , êz′).
Since only longitudinal motions are considered, the body state is captured by three
degrees of freedom: the translations along the X and Z axes, and the relative angle
between both frames, i.e., the so-called pitch angle θ (Etkin and Reid 1959). The body
frame is assumed to be centered in the center of mass of the bird, and oriented by
taking the x ′-axis aligned with the longitudinal axis of the flier and pointing forward,
the z′-axis pointing downward, and y′-axis to define a right-handed frame (Fig. 1).

Under the aforementioned hypotheses, the set of Newton–Euler equations govern-
ing the longitudinal dynamics is obtained following the conventional equations for
fixed-wing aircraft, i.e., in the form of (Etkin and Reid 1959; Casarosa 2013)

u̇ = −qw − g sin θ + 1

mb
Fx ′(x(t), t)

ẇ = qu + g cos θ + 1

mb
Fz′(x(t), t)
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q̇ = 1

Iyy
My′(x(t), t)

θ̇ = q (1)

where u is the velocity component along local axis x ′, w is the velocity component
along local axis z′, θ is the pitch angle describing the body inertial orientation, q is its
derivative, i.e., the body angular velocity, positive according to the orientation given
in Fig. 1 and t is the time. The parameter Iyy is the moment of inertia about the y′-axis.

Accordingly, the state vector describing the longitudinal motion is

x = {u, w, q, θ} .

The forcing terms in Eq. (1), namely Fx ′ , Fz′ , and My′ , are the aerodynamic
loads acting on the bird. Consequently, the bird model is actually a four-state non-
autonomous system, where the aerodynamic terms at the generic time t > 0 depends
not only on the instantaneous state vector, but also on the instantaneous configuration
of the wing ϕ(t) in the flapping cycle. This is obviously the main difference with
respect to an equivalent fixed-wing aircraft model.

Formally, the forcing terms depend on the whole past state history. Therefore, these
forcing aerodynamic terms can be expressed in the form of Eq. (1) only if a quasi-
steady-state approximation is used, which typically holds for large-scale birds (Taha
et al. 2012).

2.2 Wing Kinematics

The wings are attached to the main body and feature kinematic degrees-of-freedom
as pictured in Fig. 2. They both consist of three rigid bodies corresponding to the
bird arm, forearm, and hand. Relative motions between these segments govern wing
morphing. To these wing segments are attached “master-feather” bodies representing
the plumage and capturing its movements.

We do not solve the wing dynamics in the state-space equations of the flier, but we
rather assume that their kinematics are imposed. Consequently, the internal torques in
the wing joints do not have to be computed for solving the body equations of motion.
The description of the right and the left wing kinematics are assumed to bemirror, since
movements are symmetric. For the sake of simplicity, each joint angle i is considered
to follow a harmonic trajectory qi (t), with respective amplitude Ai , offset q0,i and
phase φ0,i :

qi (t) = q0,i + Ai sin
(
ωt + φ0,i

)
(2)

with ω = 2π f and f is the flapping frequency, identical for each joint. For the six
rotational joints of the model in Figure 2, this makes a total of 19 gait parameters
(including the wingbeat frequency) prescribing a particular set of wing kinematics.

Feather movements are governed by a simplified version of the model developed
in Colognesi et al. (2021), which is itself inspired from Wu and Popović (2003).
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Fig. 2 Top view of the bird wing kinematic model. Each cylinder captures a rotational degree of freedom,
i.e., three at the shoulder (between the body and arm), one at the elbow (between the arm and forearm),
and two at the wrist (between the forearm and hand). Moreover, each master feather is attached to one of
these bodies via two more degrees of freedom, except the most distal one which aligned with the last bone
segment

Indeed, feathers are similarly attached to the wing bodies via two rotational degrees
of freedom (allowing spreading and pitching in a bone-relative frame of reference)
but the motion of these degrees of freedom follows here predefined trajectories, while
they feature some dynamic compliance in Colognesi et al. (2021) andWu and Popović
(2003).More precisely, we constrained feather movements via kinematic relationships
depending on the angles between the wing segments in order to make them spreading
and folding smoothly with the wing. These kinematic relationships are reported in
the online version of the code available at https://github.com/vortexlab-uclouvain/
multiflap.

2.3 Aerodynamic Model

In this section, the model used to compute the aerodynamic forces acting on the wing
is developed. The model assumes that all aerodynamic forces act on the wings, and
none on the main body. We use a quasi-steady lifting line approach, where the wake
is shed backward in the form of straight and infinitely long vortex filaments at each
time step of the simulation. More details about this aerodynamic model are reported
in Colognesi et al. (2021). We checked a posteriori the validity of these assumptions,
reported in Appendix 2. The wing motion and its position are defined in a wing-bone
frame (xw, yw, zw) shown in Fig. 3. The respective unit vectors along these axes are
(êx ′

w
, êy′

w
, êz′w). This frame is taken to follow the orientation of the body frame, while

the translation of its origin determines the position of the bird shoulder with respect to
its center of mass. The projection of Ow on the x ′-axis, identifies the O ′

w point. From
this wing position, the lifting line is then consequently extracted. It is defined as the
line passing through the quarter of the chord, which is itself defined as the segment
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Fig. 3 Aerodynamic forces acting on the wing are applied at the discretized points of the lifting line (red),
over the wing span. Adapted from www.fotki.com

orthogonal to the lifting line, going from the leading to the trailing edge of the wing.
From a given wing configuration, the leading and trailing edges are defined as follows.
The former goes from the shoulder to the wrist in a straight line, then to the tip of the
outermost feather. The latter connects the tip of each feather from the innermost to the
outermost. The lifting line is then obtained through an iterative process guaranteeing
that it is located at the quarter of the chord distance and that it is orthogonal to the
chord at each points.

In order to compute the aerodynamic forces, it is required to know the wing angle
of attack. A generic wing cross section is shown in Fig. 4, where c(y) represents the
aerodynamic chord length. Each wing element is identified by a plane containing the
lifting line. The unit vector orthogonal to such a plane is denoted by ên , the unit vector
tangent to the lifting line êt and the binormal one êb = êt × ên .

According to this notation, −wd ên is the induced velocity (downwash) and

U = U∞ − Ukin − vq

is the relative velocity seen by a wing profile, which accounts for the flight speed U∞
and the wing motion Ukin while its component along êt is previously eliminated and
vq is the contribution induced from the angular velocity of the body q computed as
vq(y) = q ĵ × (P − G).

Hence, the effective angle of attack is given by

αr = α − αi � α − wd

|U| . (3)
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Fig. 4 Left: Wing element between two wing profiles, and identifying a plane � containing the lifting line.
Right: Cross section containing the chord point Pi where the velocities are applied

The wake is considered to be composed of semi-infinite vortex tubes aligned with
the x-axis, as shown in Fig. 5. In theory, because the wing is not straight, the bound
vortex (i.e., the circulation of the lifting line itself) also induces velocities on the line
itself. However in the presented model, these induced velocities are neglected since
their magnitude is much lower as compared to the flight velocity. Therefore, the only
induced velocity accounted for is a vertical component due to the wake. This velocity
at a point y ≡ (y′

w, z′w) along the wingspan and induced by a set of semi-infinite vortex
tube of circulation d	i is computed via Biot–Savart law (Buresti 2012), i.e.,

wd(y) = − 1

4π

∑

i

(
− d	i

(y − yi ) × êx ′
w

|y − yi |2
)

· ên (4)

where i are the discretized elements of the lifting line.
Considering the theorem of Kutta–Joukowski, the local circulation 	 is computed

as

	(y) = 1

2
|Ur(y)|c(y)Clα(α − αi ) (5)

where Ur is the norm of the local relative velocity vector, c is the local chord, and
Clα is equal to 2π as a result of thin airfoil theory. We now assume the downwash
velocity to be sufficiently small to approximate |Ur|(y) � |U|. Considering Eq. (5)
and injecting Eq. (4) in Eq. (3), we get the lifting line Equation:

	(y) = 1

2
c(y)Clα

[
|U|α(y) − 1

4π

∑

i

(
− d	i

(y − yi ) × êx ′
w

|y − yi |2
)

· ên
]
. (6)

To satisfy the solenoidal property of the vorticity field, the circulation 	 must form
closed loops. This means that the circulation of the vortex tubes can be computed from
the variations of 	 along the lifting line. For a given vortex tube i + 1 between the
points i and i + 1 of the lifting line, the circulation of a shed tube d	i+1 is equal to

d	i+1 = 	i+1 − 	i (7)

where 	i is the local circulation at the i th point of the lifting line.
The circulation of the lifting line is computed iteratively. Starting from an initial

guess, the induced velocities are computed at each point of the lifting line, with the
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Fig. 5 The vortex wake of the bird is considered straight and infinite at each time step of the flapping period.
The variations in the line circulation 	 induce vortex tubes of circulation d	i+1 = 	i+1 − 	i , which in
turn induce velocities in the wake

contribution of each vortex tube from Biot–Savart law. The angle of attack is then
modified with the new local flow conditions and new values are obtained from Eq.
(3). The circulation of the vortex tubes is then computed from Eq. (7), thus closing
the loop.

Once all the circulations are computed at every time step, the aerodynamic force
acting on each discretized point of the lifting line computed as

dFi = ρ	i (Ur × êt )dli . (8)

Finally, the global forces acting on the wing can be evaluated in order to close the
system of Eq. (1), by summing each contribution and computing the corresponding
pitching moment, i.e.,

Fx ′ =
N∑

i=1

(dFi ) · êx ′

Fz′ =
N∑

i=1

(dFi ) · êz′

My′ =
N∑

i=1

(GPi) × (dFi ) · êy′ .

(9)
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3 Flight Dynamics Analysis

We can now address how to solve Eq. (1), with the aerodynamic terms that are com-
puted according to Eq. (9). Since it has been previously established that the wings
follow a periodic trajectory governed by harmonic functions, the solution of Eq. (1)
must be a limit cycle, for some particular initial conditions. Therefore, studying the
stability of these solutions requires a specific formalism, and we will use here Floquet
stability analysis. This section investigates the key features of periodic orbits, pre-
senting a numerical algorithm both for identifying limit cycles and quantifying their
stability from the so-called corresponding Floquet multipliers.

3.1 Stability of Limit Cycles

The objective is to find a limit cycle corresponding to a trimmed configuration of
the bird flight, i.e., the flight configuration corresponding to a periodic trajectory of
all the state variables. Moreover, we are interested in assessing the stability of such
a limit cycle. Considering a generic non-autonomous system of ordinary differential
equations in the form

ẋ = v(x, t) (10)

the limit cycle is a particular solution such that x∗(t) = x∗(t + T ) with T being the
cycle period.

Limit cycles can be stable or unstable, depending on whether a perturbed initial
value tends to be dynamically attracted or repelled by the periodic orbit.

Their stability is assessed by Floquet theory (Floquet 1883), and governed by the

eigenvalues �i of the Jacobian matrix (or monodromy matrix) J(x0)
∣∣∣
t0+T

t0
that quan-

tifies how a small perturbation out of the limit cycle is deformed by the flow, after a
period T (Cvitanović et al. 2016; Strogatz 2018; Seydel 2009). Calling x0 the initial
condition, this Jacobian matrix is thus the result of the integration of the following
system up to time t = T

dJ

dt
(x0)

∣
∣∣
t

t0
= A(x, t)J(x0)

∣
∣∣
t

t0

J(x0)
∣∣∣
t0

t0
= I

(11)

where the matrix

A(x, t) = ∂

∂x j
vi(x,t)

∣∣∣∣
x=x∗

(12)

is called the Stability Matrix (Cvitanović et al. 2016) and is T -periodic on the limit
cycle. These eigenvalues are also called Floquet Multipliers. In other words, the Jaco-
bian Matrix maps infinitesimal perturbations embedded within a sphere around a
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Fig. 6 Illustration of a periodic orbit (red) and a first integration over one period of the neighboring trajectory
(blue)

specific point of the limit cycle at a given time (x0, t0), to a stretched ellipsoid after
a time t (Cvitanović et al. 2016). This stretching ratio is governed by the Floquet
Multipliers, and the stretching directions by its eigenvectors. Floquet multipliers have
the property to be independent of the choice of x0 on the limit cycle, while the Floquet
matrix and its eigenvectors depend on it (Lust 2001).

If the system was autonomous, i.e., of the form ẋ = v(x), one of the Floquet
multipliers would systematically be equal to one and its eigenvector would be tangent
to the limit cycle at x0. In the literature, this eigenvalue is often called the trivial
or marginal multiplier, and a periodic solution is said asymptotically stable if all
Floquet multipliers except this one are strictly smaller than one in absolute value.
For non-autonomous systems like the one considered here, all Floquet multipliers are
non-trivial, and therefore stability requires that all Floquet multipliers to be smaller
than one in absolute value (Taha et al. 2012).

3.2 Multiple-shootingMethod

A multiple-shooting algorithm is employed in order to identify the periodic orbits
corresponding to trimmed flight, and to simultaneously compute their stability through
their Floquet multipliers.

We use a multiple-shooting scheme first proposed by Lust (2001), which was a
modification of Keller (1968). This algorithm is adapted to our case with the advantage
that the limit cycle period is known, since it must be equal to the flapping one (Dietl
and Garcia 2008).
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Fig. 7 Generic computational scheme describing the multiple-shooting method of a phase-spaceM ∈ IR3

(without loss of generalities). The black trajectory is traced out by integrating the equations from the guessed
points (blue dots). The asymptotic limit cycle is represented in red, and the points belonging to it in green

Considering a generic T -periodic non-autonomous system described by Eq. (10),
this multiple-shooting method splits the limit cycle into several points and computes
the time integration from one point to the following along the trajectory, as illustrated
in Fig. 7.

Considering the operator

f (x∗
i )

∣∣∣
ti+τ

ti
=

∫ ti+τ

ti
v(x, t)dt + x∗

i

the point x∗
i is mapped to the point x∗

i+1 by

x∗
i+1 = f (x∗

i )
∣∣ti+τ

ti
= f (xi + �xi )

∣∣ti+τ

ti
(13)

Computing the Taylor first-order expansion of the right hand side of Eq. (13), the point
x∗
i+1 can be expressed as function of the guessed points only

xi+1 + �xi+1 = f (xi )
∣
∣ti+τ

ti
+ J(xi )

∣
∣∣
ti+τ

ti
· �xi (14)

where J
∣∣ti+τ

ti
(xi ) is the Jacobian matrix defined in Eq. (11). Re-arranging Eq. (14) as

J(xi )
∣∣∣
ti+τ

ti
· �xi − �xi+1 = −(

f (xi )
∣∣ti+τ

ti
− xi+1

)

︸ ︷︷ ︸
Error

(15)
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the multiple-shooting scheme can be derived

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

J(x0)
∣
∣∣
τ

0
−I 0 . . . 0

0 J(x1)
∣∣
∣
t1+τ

t1
−I . . . 0

.

.

.
.
.
.

. . .
. . .

.

.

.

0 0 . . . J(xm−1)

∣
∣∣
T

tm−1
−I

−I 0 . . . 0 I

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

︸ ︷︷ ︸
M [n×M,n×M]

⎛

⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

�x0
�x1

.

.

.

.

.

.

.

.

.

�xm−1

�xm

⎞

⎟⎟
⎟⎟
⎟
⎟⎟
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⎟⎟
⎟
⎠

︸ ︷︷ ︸
�x [n×M]

= −

⎛

⎜
⎜
⎜⎜
⎜⎜
⎝

f (x0)
∣
∣τ
0 − x1

f (x1)
∣
∣t1+τ

t1
− x2

.

.

.

f (xm−1)
∣
∣T
tm−1

− xm
xm − x0

⎞

⎟
⎟
⎟⎟
⎟⎟
⎠

︸ ︷︷ ︸
E [n×M]

.

(16)

Calling n the number of states of the dynamical system and M the amount of points
employed in the multiple-shooting, M is the Multiple-shooting matrix of dimension
[n×M, n×M],�x the unknown vector of dimension [n×M] and E the error vector
of dimension [n × M].

By expressing Eq. (16), in a compact form

M(xi )�x = E(xi ). (17)

Finding the solution of Eq. (17) consists in finding x∗
i ∈ IRn such that E(x∗

i ) = 0
and this can be solved with an iterative scheme. A Newton’s method can be derived to
iterate on Eq. (17) until convergence to 0. However, the main drawback of this method,
is the high sensitivity on the choice of the initial guess x(0)

i . It can be mathematically
proved that Newton’s method quadratically converges only if the choice of the initial
conditions is sufficiently close to the solution (for a proof of this Theorem, please refer
to Quarteroni et al. (2010), chap. 7).

Consequently, we implemented a modified Newton’s method, in order to improve
the robustness of the scheme with respect to the initial value. The proposed method
relies on the Levenberg–Marquardt algorithm (Marquardt 1963) (LMA). Such an
implementation of LMA in a multi-shooting code was already adopted by Dednam
andBothaDednamandBotha (2015) and the codewas validatedwith both autonomous
and non-autonomous systems.

The estimation of a new unknown vector δx that solves for Eq. 18, and used to
update the state variables at the generic iteration step k, is computed as follows

[
MTM + λdiag(MTM)

]
δx = MTE (18)

where λ is a nonnegative, adaptive damping parameter, and a candidate algorithm is
presented in Algorithm (1).
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Algorithm 1 Levenberg–Marquardt

1: x(0)
i ← guessed_points

2: k ← 0
3: function LMA(guessed_points,tolerance)
4: λ ← set
5: M(x(o)

i ),E(x(o)
i ) ← Compute

6: while |E(x(k)
i )| > ε do

7: M(x(k)
i ),E(x(k)

i ) ← Compute

8:
[
MTM + λdiag(MTM)

]
δx = MTE ← Solve

9: x(k+1) ← x(k) + δx(k)

10: E(x(k+1)
i ) ← Compute

11: if min |E(x(k+1)
i )| < min |E(x(k)

i )| then
12: λ = λ/ν

13: else
14: λ = λ ∗ ν

15: return x(k+1)
i

When the trajectory eventually converges to the limit cycle, the Jacobian matrix
of the whole limit cycle obeys the semi-group property and can be expressed as the
product of the submatrices of Equation (16), i.e.,

J(x0)
∣∣
∣
T

0
= J(xm−1)

∣∣
∣
T

tm−1
· · · J(x1)

∣∣
∣
t1+τ

t1
· J(x0)

∣∣
∣
τ

0
. (19)

3.3 Computation of the JacobianMatrix

Two concurrent approaches can be used to evaluate the Jacobian matrix and build the
diagonal blocks of the multiple-shooting matrixM in Eq. (16): the first one relies on a
semi-analytical approach, while the second one relies on numerical computations only.
Both methods are implemented in our code, and a comparison of the results is reported
in Appendix 1. The semi-analytical approach is the one we used in the following
simulations, and it is here described in details. The Jacobian matrix is obtained by
solving the variational equation (11) and the state equation (10), i.e.,

(
ẋ
J̇

)
=

(
v(x, t)
A(x, t) J

)
(20)

with the initial condition

(
x(t0)
J0

)
=

(
x0
I

)
. (21)

This approach requires to simultaneously solve (n+n2) ordinary differential equations
(Seydel 2009). The solution of this system corresponds to the Jacobian matrix of a
generic trajectory at time t f , obtained from an initial condition at time t0.
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In our particular case, the matrix A(t) accordingly to Eq. (12) is

A(x(t), t) =

⎛

⎜⎜⎜⎜
⎝

1
m

∂Fx ′
∂u

1
m

∂Fx ′
∂w

− q −w + 1
m

∂Fx ′
∂q −g cos θ + 1

m
∂Fx ′
∂θ

q + 1
m

∂Fz′
∂u

1
m

∂Fz′
∂w

u + 1
m

∂Fz′
∂q g sin θ + 1

m
∂Fz′
∂θ

1
Iyy

∂My′
∂u

1
Iyy

∂My′
∂w

1
Iyy

∂My′
∂q

1
Iyy

∂My′
∂θ

0 0 1 0

⎞

⎟⎟⎟⎟
⎠

. (22)

Given the complexity of our coupled system of Eq. (1), the main disadvantage of
using this approach is the need of computing the derivatives of the aerodynamic forces.
In other words, even by using such an analytical approach, a numerical differentiation
is necessary to compute these derivatives in order to solve Eq. (20).

3.4 Numerical Parameters andWingtip Trajectory

The aerodynamic model can be adapted to large-scale flapping fliers, and we imple-
mented lengths of the bones and feathers to match those of the northern bald ibis
(Geronticus eremita). This particular bird has been chosen because it has a high aspect
ratio wing—which is well suited for the lifting line approach used—and uses non-stop
flapping flight.

The parameters governing the wing kinematics described by Eq. (2) are constrained
to follow the wing kinematics of real birds. No accurate data about the kinematics of
ibises and other large birds are available in the literature.We thus re-scale the kinemat-
ics of a pigeon, reported in Tobalske and Dial (1996). The typical wingbeat frequency
is retrieved fromBerg andRayner (1995) andwe tuned thewingbeat amplitude accord-
ingly, in order to keep the angle of attack in a realistic range.

Based on the aforementioned observations, all simulations reported in the rest of
this paper have been computed with numerical parameters gathered in Table 1. The
wingbeat frequency is taken equal to f = 4Hz. In this investigation, the frequency is
kept fixed, for two main reasons: from a mathematical perspective the frequency does
not alter the qualitative behavior of the forces and moments. From a biological point
of view, birds tend to select a preferred frequency for a cruise flight, and even though
for changing flight regimes they can change it, the available range for each species is
limited (Pennycuick 1996).

The resulting wing kinematics are also pictured in Fig. 8, with a shoulder amplitude
equal to As,x = 42 deg.

The reference position of the wing-bone frame is vertically aligned with the center
of mass, and placed at a certain distance ahead of it. This default distance is 5cm,
although a dedicated sensitivity analysis on this parameter is conducted later on (see
Sect. 4). Using the kinematic parameters of Table 1 in Eq. (2) for each joint, and
considering the relative position between the wing-bone frame and the body frame,
the resulting tip trajectory is shown in Fig. 9. Considering a counter-clockwise motion,
the blue trajectory represents the region where the lifting line lies ahead of the center
of massG. Assuming a positive lift for the whole wingbeat period, this region provides
a positive pitching moment due to the lift (nose-up). The tip positions corresponding
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Table 1 Numerical parameters used in the simulations

(a) Parameters describing the bird morphology

Bird body

Mass (mb), [kg] 1.2

Moment of Inertia (Iy), [kg · m2] 0.1

Bird wing

Wingspan (b), [m] 1.35

Mean aerodynamic chord (c), [m] 0.15

Arm bone length (la), [m] 0.134

Forearm bone length (l f ), [m] 0.162

Hand bone length (lh), [m] 0.084

Bird feathers

Primary feather 1 (l p1), [m] 0.25

Primary feather 2 (l p2), [m] 0.275

Primary feather 3 (l p3), [m] 0.25

Secondary feather 1 (ls1), [m] 0.225

Secondary feather 2 (ls2), [m] 0.2

Secondary feather 3 (ls3), [m] 0.175

Secondary feather 4 (ls4), [m] 0.15

(b) Kinematic parameters governing the wing motion, defined according to Eq. (2). Note that
the amplitude of the shoulder joint along the x-axis, denoted As,x in the table, varies across the
experimental conditions in order to guarantee trimmed flight
Joint q0[deg] A[deg] φ[deg]
Shoulder y 11.5 0.8 −90

Shoulder x 0 As,x 180

Shoulder z 19 20 90

Elbow x 30 30 −90

Wrist z −30 30 90

Wrist y 0 30 −90

to the orange segment of the trajectory correspond to the region where the lifting
line lies behind the center of mass, generating a negative pitching moment due to the
lift effect, under the aforementioned assumption. This is an important feature of our
model since no additional lifting surface such as a tail is considered in the present
study. Consequently, a necessary condition for the existence of a limit cycle is that the
wing itself generates both positive and negative pitching moment, in order to achieve
rotational equilibrium of the bird body over the cycle.

The numerical parameters employed in multiple-shooting algorithm are reported
in Table 2 and the numerical integration has been performed using a fourth-order
Runge–Kutta scheme.
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t = 0

t = 0.25T

t = 0.5T

t = 0.75T

t = T

x′

z′

Fig. 8 Snapshots of the wing kinematics within one flapping period, taken every T /4

Fig. 9 Tip path trajectory over a wingbeat cycle. Blue line: position of the lift ahead of the center of mass,
contributing for a nose-up (positive) pitching moment; orange line: position of the lift ahead of the center
of mass, contributing for a nose-down (negative) pitching moment. Scatter points represent the position of
the wing profile every T /20

Table 2 Numerical parameters
used in the multiple-shooting
algorithm

Multiple-shooting settings

Integrator order 4

Time steps over a period 150

Amount of points (M) 5

Iteration error 10−5
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Fig. 10 Convergence error (left) and Floquet multipliers (right) for the reference case with the imposed
kinematics of Table 1

4 Results: Identification, Stability, and Sensitivity Analysis of Limit
Cycles

This section reports three experiments that were conducted to validate the capacity of
the developed framework to identify limit cycles, assess their stability, and quantify the
sensitivity of flight regime and stability with respect to kinematic and morphological
parameters

4.1 Experiment 1: Representative Limit Cycle and Stability Analysis

A representative limit cycle solution is reported here, as the result of a multiple-
shooting computation. This solution corresponds to the reference case in which the
kinematics is described by the governing parameters of Table 1, with As,x = 42 deg.
The initial value at time t = 0 to start the multiple-shooting scheme was chosen to
resemble a reasonable cruise flight condition of large birds

x0(t = 0) = [16.5, 0.5, 0.5, 0]

and the other M − 1 points were spread by straightforward numerical integration

xn+1(tn+1) = f (xn(tn))
∣
∣∣
tn+τ

tn

in order to have a column of zeros in the RHS of Eq. (16), except for the last element.
Convergence analysis and consequently stability results are shown in Fig. 10. In par-
ticular, rapid convergence is obtained, after seven iterations. The error is evaluated as
the max{|E(x)|} of Eq. (17). Such configuration presents one expanding eigenvalue,
which leads the system to be unstable. The numerical values of the Floquet multipliers,
are also reported in Table 3

The expanding eigenvalue has an absolute value of �1 = 1.40. The related
eigenvector is e1 = [−0.69, 0.68, 0.12, 0.16]T evaluated at the point x(t0 = 0) =
[18.24,−1.93,−0.10,−0.115]T . This therefore excites the perturbation along each
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Table 3 Floquet multipliers
obtained for the reference case
with the imposed kinematics of
Table 1

Multiplier Value

�1 1.40 + 0 j

�2 0.829 + 0.260 j

�3 0.829 − 0.260 j

�4 0.212 + 0 j

(a) (b)

(c) (d)

Fig. 11 Reference limit cycle solution. Trajectory of each state variable (left) and phase portrait (right)

eigenbase directions with the same order of magnitude. Considering a flapping period
of T = 0.25s, the expanding Floquet exponent is

λ1 = 1

T
ln(�1) = 1.34s−1

and therefore the time needed for the perturbation to double its value is approximately

tdoubling = ln(2)

λ1
≈ 0.51s.

This corresponds to approximatively two flapping periods and is thus larger than the
one reported in previous studies focusing on smaller-scale animals (Dietl and Garcia
2008; Taylor et al. 2006). The eigenvalue spectrum was found qualitatively similar to
the one presented by Dietl and Garcia (2008), and interestingly a similar pattern was
also observed for insect scales in previous research efforts (Taha et al. 2014; Xiong
and Sun 2008; Gao et al. 2009). Figure 11 pictures the periodic solution of the state
variables describing this limit cycle in the phase space. This solution is a trimmed
state of the bird, for the prescribed kinematics and morphology. The states are plotted
with respect to one cycle in the moving body frame. At time zero, the wing position
corresponds to the middle of the downstroke.

On the right side of Fig. 11 is pictured the four-state limit cycle in the phase portrait.
The periodicity in θ is plotted as a color map on the trajectory described by the three
others state-space variables.
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(a) (b)

(c) (d)

Fig. 12 Separation of the perturbed solution along the unstable eigenvector (black) over five flapping period,
from the periodic orbit (red). Trajectory of each state variable (left) and phase portrait of the variables
[u, w, q] (right)

To better highlight what leads to trajectory separation, we ran another simulation
with a perturbation of the limit cycle solution along the pure unstable direction e1 and
let the system evolve over five flapping periods. The separation is driven from the pitch
angle θ which quickly tilts down, and is subsequently followed by an increase in the
u-component of velocity, likely resulting from acceleration due to the larger action of
the gravity along the local x ′-axis as shown in Fig. 12.

The aerodynamic forces andmoment of the limit cycle solution are plotted in Fig. 13
and normalized with respect to mbg (forces) and mbgc (moment). The global action
of the forces and pitching moment over one period is zero, confirming the state of
trimmed flight, and limit cycle condition (zero acceleration over one period).

The validity of this aerodynamic model was assessed by studying the resulting
reduced frequency and angle of attack. Results of this verification are reported in
dedicated Appendix 2.

Results from the simulation settle on values that are very compatible with biolog-
ical observations for species of similar mass and aspect ratio (Sperger et al. 2017;
Pennycuick et al. 2013; Pennycuick 1989). The corresponding Strouhal number for
this flight condition is

St = f �

U∞
≈ 0.18

where f is the flapping frequency, � the vertical length identified by the tip-to-tip
excursion and U∞ the forward flight velocity. It lies in the lower margin identified by
Taylor et al. (2003) for maximizing power efficiency for birds in forward flight.

4.2 Experiment 2: Sensitivity Analysis of the Shoulder Amplitude

4.2.1 Methods

The multiple-shooting method has been applied to address the question of the gait
sensitivity, since the framework can handle the analysis of several gait configurations.
In particular, we exploited this to achieve a specific limit cycle solution corresponding

123



47 Page 22 of 30 Journal of Nonlinear Science (2021) 31 :47

Fig. 13 Dimensionless forces and pitching moment developed by the flier, expressed in the fixed frame
O(X , Z)

to level flight. Indeed, the solution reported in Experiment 1 corresponds to trimmed
flight, but not necessarily to level flight: trimmed flight might correspond to a flight
regime with a nonzero averaged vertical velocity.

In order to achieve level flight, the mean vertical velocity with respect to the fixed
frame has to be zero over the flapping period. Considering Fig. 1, the velocity com-
ponents in the fixed frame are

U f f = Ẋ = u cos θ + w sin θ

W f f = −Ż = u sin θ − w cos θ.
(23)

In particular, we report here a sensitivity analysis of the flapping gait as a function
of one of the most important kinematic parameters, namely the wingbeat amplitude
of the shoulder As,x . Consequently, seeking for a level flight configuration reduces
to a single parametric study consisting in finding the shoulder amplitude A∗

s,x that
corresponds to a limit cycle whose mean vertical velocity is equal to zero, i.e.,

W f f (A
∗
s,x ) = 0. (24)

Since W f f is a nonlinear function of As,x , we rely on a Newton–Raphson method to
find its root. Finally, the climbing or descending ratio is identified by the trajectory
angle, defined as
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Fig. 14 Different flight trajectories over one flapping period. Red path: descending behavior with a shoulder
amplitude of 42 deg; green path: level flight solution obtained with a shoulder amplitude of 43.47 deg; blue
path: climbing behavior for a wingbeat amplitude of 44 deg

β = tan−1 W f f

U f f
.

4.2.2 Results

By applying the frame transformation of Eq. (23) and subsequently integrating the
velocities, three different trajectories of the bird corresponding to three different flight
conditions, are illustrated in Fig. 14. The relationships between the shoulder ampli-
tude, and the corresponding flight velocities and trajectory angles have has also been
investigated for an interval of [40 deg < As,x < 46 deg], and results are plotted
in Fig. 15. A quasi-linear relationship is found with high sensitivity response of the
amplitude parameter to the flight condition.

Descending trajectories are achieved for amplitudes smaller that 43.47 deg cor-
responding to a negative vertical velocity, while climbing trajectories correspond to
higher values of amplitudes. Also concerning the forward flight velocity, an increase
in amplitude determines a linear increment of the flight speed, suggesting an active
role of this parameter on the production of the thrust. Finally, we investigated the
stability behavior for all the cases reported here. The Floquet multipliers are pictured
in Fig. 16 and this shows that the four multipliers are marginally affected by changing
the shoulder amplitude.

4.3 Experiment 3: Sensitivity Analysis on theWing Insertion Point

4.3.1 Methods

We now conduct a sensitivity analysis of stability as a function of the relative position
between the center of mass and the insertion point of the wing in the body frame. This
wing insertion point coincides with the rotational shoulder joint. Since the wing is free
to sweep around the body center of mass, we need to revisit the classical definition
of stability margin from the literature in flight mechanics. Considering Fig. 3, we
introduce a newmorphological parameter that we call longitudinal margin LM , which
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(a) (c)

(b) (d)

Fig. 15 a Averaged horizontal velocity, b averaged vertical velocity, c averaged norm of the velocities, d
trajectory angle

Fig. 16 Eigenvalues corresponding to several shoulder amplitudes and zoom on the unstable branch

defines the position of the center of mass with respect to the wing root projection along
x ′, normalized by the mean aerodynamic chord, i.e.,

LM = (O ′
w − G)

c
. (25)

When LM = 0%, the center of mass longitudinally coincides with the origin of the
wing frame. The interval of variation of the longitudinal margin has been explored in
the range 17.5% < LM < 32%.

4.3.2 Results

Results are illustrated in Fig. 17 where the locus of the eigenvalues is reported for
different longitudinal margins. It shows that the eigenvalues locus (and therefore sta-
bility) is governed by the wing position, relative to the center of mass, and thus from
the generation of an adequate pitching moment. Looking at Fig. 17, the expanding
eigenvalue is smaller as the wing tends to get closer to the center of mass. This means
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Fig. 17 Sensitivity of the eigenvalues with respect to the reciprocal position between wing-bone frame and
the body frame

that the capability of the wing to generate negative (nose-down) moment is benefi-
cial for the global stability behavior. In contrast, if the position of the wing is too
much ahead of the center of mass, and consequently the capability of generating nose-
down moment is reduced, the absolute value of the expanding eigenvalue, drastically
increases, leading the system to be more and more unstable.

Thus, the characteristic doubling time is putatively modulated by the wing kine-
matics and position, and is not unique for a given species as suggested by Dietl and
Garcia (2008).

Importantly, none of the tested configuration, corresponds to a stable solution. The
distance between the wing insertion point and the center of mass could be made
smaller to continue bringing the largest eigenvalue close to the unit circle, but there
is a threshold above which the wing is not capable of generating enough pitching up
moment, for guaranteeing the existence of a limit cycle solution. Indeed, zero average
pitching moment over one period is a necessary condition of existence of a limit cycle.
In sum, we did not manage to find such limit cycles for LM < 17.5%, and thus no
stable limit cycle could be found.

5 Conclusions

Flapping flight stability is a central concept for understanding how complex a control
scheme is or needs to be in animal fliers, such as birds, or ornithopters. Experimental,
theoretical, and numerical studies on such “flapping systems” have provided valuable
insights on their dynamic and stability (Taylor and Thomas 2002, 2003; Xiong and
Sun 2008). With this contribution, we have made a step forward by using a new
model which is more accurate than existing ones in a couple of ways: (1) our wing is
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morphing during the cycle andwe have enriched the birdmotion by introducing critical
degrees of freedom of the wing, especially the shoulder sweep angle; and (2) we have
considered the wake effect on aerodynamic force production via a quasi-steady lifting
line approach.

Several trimmed trajectories have been retrieved by varying the gait parameters.
In particular, the wingbeat amplitude relates quasi-linearly with the climbing angle
and linear velocity in the explored range, thus determining whether the bird climbs,
descends, or stays at constant altitude. It suggests that this degree of freedom could
be a central control parameter for achieving level flight.

Results from the simulations agree with experimental observations of large bird
species with a comparable mass and wingspan. In terms of forward flight velocity, the
limit cycle converges to values that are effectively adopted by birds during migrations,
i.e., within the range from 15 to 20ms−1, (Sperger et al. 2017; Pennycuick et al. 2013;
Pennycuick 1989), and consequently the related Strouhal number lies in the lower
range identified by Taylor et al. (2003) in order to maximize power efficiency.

Furthermore, Floquet theory combined with multiple-shooting algorithms is con-
firmed as an elegant and powerful framework for analyzing the solutions of such
flapping gaits. It turns out that the relative position between the wing and bird center
of mass clearly affects pitching moments and global stability. Since our wings are
massless, this effect has been investigated by moving the relative position between the
center of mass and shoulder joint, whereas in reality this can be obtained by sweeping
movements. This choice was made in order to unveil the main physical relationship
between the generation of pitching moment and stability. Note that a more extended
and a dedicated parametric study of all kinematics degrees of freedom of the wing (in
particular, regarding sweeping motion) is left for a future work. These future investi-
gations will further focus on the performance of a bird flight, addressing the question
of quantifying the cost of transport based on a prescribed kinematics, and searching
for a trade-off between power consumption and flight stability. Although the expand-
ing eigenvalue gets closer to the unit circle when the center of mass approaches the
wing root, stable configurations have not been found. In sum, the wing cannot gen-
erate a fully stabilizing effect in pitch. If so, birds would need to continuously rely
on sensory feedback to adapt their gait via active control. In sum, we clearly showed
how the instability doubling time depends not only on the species, but also on the
wing kinematics, its morphology, and how they relate with the pitching moment. Nev-
ertheless, at least two important complementary aspects have not been investigated
here. Stabilizing benefits could indeed arise either from wing compliance or from the
aerodynamic contribution of the tail. These will be topic of our future investigations.

Other questions regarding inertial contributions of bird wings and head to dynam-
ics also remain open. Comprehensive answers within this framework would require
substantial modifications of the equations of motion adopted here.
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Fig. 18 Left: Error evolution of the reference limit cycle solution, computedwith a semi-analytical approach
(black) and a numerical approach (red). Right: Floquet multipliers of the reference limit cycle computed
with a semi-analytical approach (black) and a numerical approach (red)

A Comparison Between TwoMethods for Computing the Jacobian
Matrix

Section 3.3 reported a so-called semi-analytical approach for computing the Jacobian
matrix associatedwith the limit cycle. Themethodwas called semi-analytical because,
while it relied on an analytical derivation of the state-space matrix A, it still required a
numerical estimation of the first partial derivatives of the aerodynamic forces. In this
Appendix, we report a concurrent approach for computing the Jacobian matrix, that
directly relies on a numerical estimation of its elements. More precisely, the numerical
estimation of the Jacobian matrix relies on a finite difference approach, to numerically
estimate the derivatives of the state-space flow. The main drawbacks of this numerical
approach are its computational cost, and an accurate choice of the integration step size
if the system (20) is too stiff.

In this method, the i, j component of the Jacobian matrix is computed by a finite
differentiation of the perturbed trajectory along each state variable, i.e.,

Ji, j (x0)
∣∣
∣
t+T

t
=

fi (x0 + εê j )
∣∣
∣
t+T

t
− fi (x0)

∣∣
∣
t+T

t

ε
. (26)

The same reference case of Table 1 has been used for comparing both methods for
computing the Jacobian matrix, i.e., solving Eqs. 20 and 26, respectively. The step
size of the numerical integration was set constant and equal to dt = T /100.

The computational time per iteration with the semi-analytical approach was found
to be about 40s while the numerical approach took more than the double, around 95s
per iteration. A comparison of the resulting errors and Floquet multipliers is provided
in Fig. 18. In conclusion, both approaches provided the same eigenvalues with a very
similar convergence rate, although the semi-analytical approach took less than half of
the computational time of the fully numerical one.
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Fig. 19 Angle of attack corresponding to the kinematic parameters reported in Experiment 1. Left: Change
of angle of attack α as a function of the cycle phase, evaluated in the arm (blue), forearm (green), and hand
(red). Right: 2D top view of the wing envelope at the middle of downstroke, highlighting the three positions
where the angles of attack are computed

B A Posteriori Verification of the Aerodynamic Model

The aerodynamic model considers the lifting line being quasi-steady. To verify its
validity, we computed the reduced frequency as

k = (2π f )c

U∞
≈ 0.1 (27)

where f and c are the frequency and the mean aerodynamic chords reported in Table 1
and U∞ is the forward flight velocity corresponding to the level flight case, obtained
as a results of the multiple-shooting simulations. The value of the reduced frequency k
obtained in 27 validates the quasi-steady approach for the aerodynamic computation,
as reported in Taha et al. (2012).

The lift coefficient is calculated in the linear range of the Cl − α curves. The angle
of attack through the flapping period is shown in Fig. 19.

The maximum angle of attack is reached at the tip with a value which stays below
15◦. Moreover considering the short chord length and the low contribution of the lift
generation of this wing region, we consider that our assumption of a linear relationship
between the lift coefficient and the angle of attack is satisfied (Buresti 2012).
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