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Abstract
In this paper, we consider solutions to the incompressible axisymmetric Euler equa-
tions without swirl. The main result is to prove the global existence of weak solutions

if the initial vorticity wθ
0 satisfies that

wθ
0
r ∈ L1 ∩ L p(R3) for some p > 1. It is not

required that the initial energy is finite, that is, the initial velocity u0 belongs to L2(R3)

here. We construct the approximate solutions by regularizing the initial data and show
that the concentrations of energy do not occur in this case. The key ingredient in the
proof lies in establishing the L2+α

loc (R3) estimates of velocity fields for some α > 0,
which is new to the best of our knowledge.
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1 Introduction andMain Results

In this paper, we are concerned with the three-dimensional incompressible Euler equa-
tions {

∂t u + u · ∇u = −∇ p,

∇ · u = 0,
(1.1)

in the whole space R3 with initial data u(0, x) = u0(x), where u = (u1, u2, u3) and
p = p(x, t) represent the velocity fields and pressure, respectively.

The mathematical study to the incompressible Euler equations takes a long history
with a large amount of associated literature. For two-dimensional case, Wolibner
(1933) obtained the global well-posedness of smooth solutions in 1933. Then, this
work was extended by Yudovich (1963), who proved the existence and uniqueness
for a certain class of weak solutions if the initial vorticity w0 lies in L1 ∩ L∞(R2).
Later, under the assumption that w0 ∈ L1 ∩ L p(R2) for some p > 1, DiPerna and
Majda showed that the weak solutions exist globally in DiPerna and Majda (1987b).
Furthermore, ifw0 is a finite Radon measure with one sign, there are also many works
about the global existence of weak solutions, which can be referred to Delort (1991),
Majda (1993), Evans and Müller (1994) and Liu and Xin (1995) for details. However,
the global existence of smooth solutions for 3D incompressible Euler equations with
smooth initial data is still an important open problem, with a large literature.

From mathematical point of view, in two-dimensional case, the corresponding vor-
ticity w = ∂2u1 − ∂1u2 is a scalar field and satisfies the following transport equation

∂tw + u · ∇w = 0,

which infers that its L p norm is conserved for all time. Nevertheless, for the three-
dimensional case, w becomes a vector fields and the vortex stretching term w · ∇u
appears in the equations of vorticity

∂tw + u · ∇w = w · ∇u,

where w = ∇ × u. The presence of vortex stretching term brings more difficulties
to prove the global regularity, which is the main reason causing this problem open.
Therefore, many mathematicians explore the flows with certain geometrical assump-
tions, which attempt to fill the gap between 2D and 3D flows. One typical case is the
axisymmetric flows.

Whereas, even with this axisymmetric structure, it is still open to exclude possible
singularities. But if the swirl component of velocity fields uθ is trivial, i.e., so-called
flowswithout swirl orwith non-swirl, Ukhovskii and Yudovich (1968), Serfati (1994),
Saint Raymond (1994) and Majda and Bertozzi (2002) proved that the weak solutions
of incompressible axisymmetric Euler equations are regular for all time. It should be
noted that under the assumption without swirl, the corresponding vorticity quantity
wθ

r is a scalar field and transported by a divergence free vector fields, which makes
the problem closer to the 2D case.
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However, for the incompressible axisymmetric Euler equations without swirl and
vortex sheets initial data, the problem on global existence of weak solutions remains
open, which is quite different from the 2D case. In the subsequent research, many
mathematicians are concentrated in determining more precisely for which initial vor-
ticity (allowed a little more regular than for vortex sheets), one can obtain the global
existence of a weak solution. There is a large literature devoted to this subject. In
1997, D. Chae and N. Kim proved the global existence of a weak solution under the

assumption that
wθ
0
r ∈ L p(R3) for some p > 6/5 in Chae and Kim (1997). Later,

Chae and Imanuvilov (1998) obtained the similar result by assuming u0 ∈ L2(R3)

and |wθ
0
r |[1 + (log+|wθ

0
r |)α] ∈ L1(R3) with α > 1/2. Recently, Jiu et al. (2015) also

obtained the global existence result under the assumptions that u0 ∈ L2(R3) and
wθ
0
r ∈ L1 ∩ L p(R3) (for some p > 1) by using the method of viscous approxima-
tions. It is referred to Jiu and Liu (2015), Jiu and Liu (2018), Liu (2016), Leonardi
et al. (1999), Shirota and Yanagisawa (1994), Gang and Zhu (2007), Danchin (2007),
Jiu and Xin (2004), Jiu and Xin (2006), Liu and Niu (2017), Jiu et al. (2018), Bronzi
et al. (2015), Jiu et al. (2017), Ettinger and Titi (2009) and DiPerna and Majda (1988)
for more related works. It should be noted that in Chae and Imanuvilov (1998) and Jiu
et al. (2015), the initial velocity is assumed with the finite energy, i.e., u0 ∈ L2(R3).
The main reason lies in that the proof in Chae and Imanuvilov (1998) and Jiu et al.
(2015) highly relies on a key estimate, that is

∫ T

0

∫
R3

1

1 + z2

(ur
r

)2
dxdt ≤ C

(
‖u0‖2L2(R3)

+ ‖wθ
0

r
‖L1(R3)

)
, (1.2)

which is raised by Chae–Imanuvilov in Chae and Imanuvilov (1998).
Nevertheless, one very important open problem is to identify whether the weak

solutions (possessing only locally finite kinetic energy other than finite kinetic energy,
see Definition 1.1 for details) conserve kinetic energy or if it is possible to lose energy
to the small scales of the flow, i.e., through the concentrations of energy, such as the
pioneeringwork (DiPerna andMajda 1987b) byDiPerna andMajda, whosemain point
of departure is to search for the initial vorticity that generates flows conserving kinetic
energy, namely, without concentrations. Motivated by this work and recent progress in
this direction for helically symmetric flows without helical swirl (Jiu et al. 2017), we
would like to know whether analogical phenomenon happens for the incompressible
axisymmetric Euler equations without swirl.

In this paper, we give a positive answer to this question. That is, given the initial

vorticity such that
wθ
0
r ∈ L1∩L p(R3) for some p > 1, the incompressible axisymmet-

ric Euler equations without swirl has at least one weak solution, which indicates that
the concentrations of energy do not occur if the initial vorticity is slightly more regular
than for vortex sheets. Moreover, we have a new observation that wθ

r ∈ L1 ∩ L p(R3)

implies u ∈ L
2p
2−p
loc (R3) for 1 < p < 2.

We construct the approximate solutions by smoothing the initial data and prove
that there exists a subsequence of the approximate solutions that converge strongly in
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L2
loc-space (with respect to time and space variables). In the process of proof, there

are two main difficulties to be overcome. Firstly, the basic energy estimates take no
effect and hence we do not have any estimates of velocity fields itself. As a matter of
fact, for the incompressible axisymmetric Euler equations without swirl, whether or
not wθ

r ∈ L1∩L p(R3) (p > 1) conclude u ∈ L2(R3), even L2
loc(R

3), is an interesting
and open problem itself. To overcome them, we make the first attempt to establish the
L p
loc(R

3) (p > 1) estimates for the velocity fields. More precisely, we find out the
explicit form of stream function in terms of vorticity and then establish the L p

loc(R
3)

estimates and further W 1,p
loc (R3) estimates of velocity fields for any p > 1.

However, this is still far from resolving the original problem, because current esti-
mates only guarantee the strong convergence of approximate solutions in L2(0, T ; Q)

for any Q ⊂⊂ R
3\{x ∈ R

3|r = 0}, other than L2(0, T ; L2
loc(R

3)). As in Jiu et al.
(2015), current argument is enough to conclude the global existence of weak solutions,
if the following proposition introduced by Jiu and Xin (2006) is applicable.

Proposition Suppose that u0 ∈ L2(R3). For the approximate solutions {uε} con-
structed in Theorem 4.1 (see Jiu and Xin 2006), if there exists a subsequence
{uε j } ⊂ {uε} such that, for any Q ⊂⊂ R

3\{x ∈ R
3|r = 0} and ε j → 0,

uε j → u strongly in L2
(
0, T ; L2(Q)

)
,

then there exists a further subsequence of {uε j }, still denoted by itself, such that, as
ε j → 0,

uε j → u strongly in L2
(
0, T ; L2

loc(R
3)

)
.

Unfortunately, in our case, this method would not work any more due to lack
of the initial assumption u0 ∈ L2(R3). This brings the other difficulty in solving our
problem. It is necessary to find a newway to establish the convergence of approximate
solutions in the region contains the axis of symmetry. To this end, we try to look
for some estimates of velocity fields stronger than L2

loc(R
3) and then establish the

L
2p
2−p
loc (R3) estimates of velocity fields for 1 < p < 2, based on delicate analysis of

the axisymmetric structure of model. The obtained estimates seem optimal. Finally,
we deduce the strong convergence of approximate solutions in L2(0, T ; L2

loc(R
3)),

which is sufficient to prove the global existence of weak solutions.
Before stating our main theorems, we introduce the definition of weak solutions to

the system (1.1).

Definition 1.1 (Weak solution) A velocity fields u(x, t) ∈ L∞(0, T ; L2
loc(R

3)) for any
T > 0 is a weak solution of the 3D incompressible Euler equations with initial data
u0(x) provided that

(i) for any vector field ϕ ∈ C∞
0 ([0, T );R3) with ∇ · ϕ = 0,

∫ T

0

∫
R3

u · ϕt dxdt +
∫ T

0

∫
R3

u · ∇ϕ · u dxdt =
∫
R3

u0 · ϕ0 dx;
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(ii) the velocity fields u(x, t) is incompressible in the weak sense, i.e., for any scalar
function φ ∈ C∞

0 ([0, T );R3),

∫ T

0

∫
R3

u · ∇φ dxdt = 0;

(iii) the velocity fields u(x, t) belongs to Lip(0, T ; H−L
loc (R3)) for some L > 0 and

u(x, 0) = u0(x) in H−L
loc (R3).

Our main results are stated as follows.

Theorem 1.1 Suppose thatwθ
0 = wθ

0(r , z) is a scalar axisymmetric function such that

w0 = w(x, 0) = wθ
0eθ and

wθ
0
r ∈ L1 ∩ L p(R3) for some p > 1. Then, for any T > 0,

there exists at least an axisymmetric weak solution u without swirl in the sense of
Definition 1.1.

Remark 1.1 On the basis of Definition 1.1, the weak solution is a solution with locally
finite kinetic energy. It is natural that u0 ∈ L2

loc(R
3) instead of L2(R3), which is

guaranteed by the initial assumptions in Theorem 1.1 and Proposition 3.3.

This paper is organized as follows. In Sect. 2, we introduce some notations and
technical lemmas. In Sect. 3, we will concentrate on the a priori estimates of velocity
fields. Section 4 is devoted to proving the global existence of weak solutions, i.e., the
proof of Theorem 1.1.

2 Preliminary

In this section, we introduce notations and set down some basic definitions. Initially,
we would like to introduce the definition of axisymmetric flow.

Definition 2.1 (Axisymmetric flow) A vector fields u(x, t) is called axisymmetric if it
can be described by the form of

u(x, t) = ur (r , z, t)er + uθ (r , z, t)eθ + uz(r , z, t)ez (2.1)

in the cylindrical coordinate, where er = (cosθ, sinθ, 0), eθ = (−sinθ, cosθ, 0), ez =
(0, 0, 1). We call the components of vector fields ur (r , z, t), uθ (r , z, t), uz(r , z, t)
as radial, swirl and z-component, respectively.

Throughout this paper, for simplicity, we will use ur , uθ , uz to denote ur (r , z, t),
uθ (r , z, t), uz(r , z, t), respectively.

Then, we set up the equations satisfied by ur , uθ , uz . Under the cylindrical coordi-
nate, the gradient operator can be expressed in the form of ∇ = er∂r + 1

r eθ ∂θ + ez∂z .

123



36 Page 6 of 24 Journal of Nonlinear Science (2021) 31 :36

Then, by some basic calculations, one can rewrite (1.1) as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂t ur + ũ · ∇̃ur + ∂r p = (uθ )
2

r
,

∂t uθ + ũ · ∇̃uθ = −uθur
r

,

∂t uz + ũ · ∇̃uz + ∂z p = 0,

∂r (rur ) + ∂z (ruz) = 0,

(2.2)

where ũ = (ur , uz) and ∇̃ = (∂r , ∂z). In addition, by (2.2)2 and some basic calcula-
tions, it is clear that the quantity ruθ satisfies the following transport equation:

∂t (ruθ ) + ũ · ∇̃ (ruθ ) = 0. (2.3)

Thanks to (2.3), the following conclusion holds.

Proposition 2.1 Assume u is a smooth solution of incompressible axisymmetric Euler
equations, then the swirl component of velocity fields uθ will be vanishing if its initial
data uθ

0 be given zero.

Proof Thanks to the incompressible condition (2.2)4, by multiplying (2.3) with ruθ

and integrating on (0, t), it follows that

‖ruθ (t)‖L2(R3) ≤ ‖ruθ
0‖L2(R3) = 0.

Then, considering that uθ is smooth and uθ |r=0 ≡ 0, we can conclude that uθ ≡ 0 for
any t > 0. ��

Therefore, if uθ
0 = 0, then the corresponding velocity fields become ũ and its

vorticity can be described as w = wθeθ , where wθ = ∂zur − ∂r uz . What is more, the
scalar quantity wθ is satisfied by the equation

∂twθ + ũ · ∇̃wθ = urwθ

r
, (2.4)

and wθ

r is transported by ũ, i.e.,

∂t

(wθ

r

)
+ ũ · ∇̃

(wθ

r

)
= 0. (2.5)

This means that wθ

r is conserved along the particle trajectory. As a result, given the
initial data smooth sufficiently, the incompressible axisymmetric Euler equationswith-
out swirl always possess a unique global solution (DiPerna and Majda 1987a; Saint
Raymond 1994). Besides, by employing the incompressible condition and some basic
calculations, we have the following conclusion.
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Conservation laws for wθ

r . Suppose that u is a smooth solution of incompressible
axisymmetric Euler equations, with its initial swirl component uθ

0 vanishing, then the
estimates

‖wθ

r
‖L p(R3) ≤ ‖wθ

0

r
‖L p(R3) (2.6)

hold for any p ∈ [1,∞], where wθ
0 = wθ(x, 0).

Subsequently, we will introduce the stream function, whose existence is proved in
Lemma 2 of Liu and Wang (2009).

Proposition 2.2 Let u be a smooth axisymmetric vector fields without swirl and∇·u =
0, then there exists a unique scalar function ψ = ψ(r , z) such that u = ∇ × (ψeθ )

and ψ = 0 on the axis of symmetry r = 0.

Finally, we will collect below some useful estimates of velocity fields in terms of
wθ

r , see Lei (2015), Jiu and Liu (2015) and Miao and Zheng (2013) for instance.

Lemma 2.1 Let ψ be as in Proposition 2.2, it holds that

‖∂2r
(

ψ

r

)
‖L p(R3) + ‖1

r
∂r

(
ψ

r

)
‖L p(R3) + ‖∂2r z

(
ψ

r

)
‖L p(R3) + ‖∂2z

(
ψ

r

)
‖L p(R3)

≤ C‖wθ

r
‖L p(R3)

for any p > 1, where C is an absolute constant. In particular,

‖∂r
(ur
r

)
‖L p(R3) + ‖∂z

(ur
r

)
‖L p(R3) ≤ C‖wθ

r
‖L p(R3). (2.7)

Lemma 2.2 Suppose that u is a smooth solution of incompressible axisymmetric Euler
equations without swirl, then there holds

‖ur
r

‖
L

3p
3−p (R3)

≤ C‖wθ

r
‖L p(R3) ∀p ∈ (1, 3), (2.8)

where C is an absolute constant.

3 A Priori Estimates of Velocity Fields

3.1 W1,p
loc (R3) (p > 1) Estimates

In this section, we will focus on the W 1,p
loc (R3) estimates of velocity fields. Firstly,

Proposition 2.2 together with ∇ · u = 0 and w = ∇ × u = wθeθ tells us that

−	(ψeθ ) = wθeθ .
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Then, by the elliptic theory, we have

ψ (rx , zx ) eθx =
∫
R3

G(X ,Y )wθ (ry, zy)eθydY , (3.1)

where X = (rx , θx , zx ) and G(X ,Y ) = |X − Y |−1 stands for the three-dimensional
Green’s function in the whole space. Regarding the Green’s function G(X ,Y ), it is
well known that the following two properties hold

(i)
|Dk

XG(X ,Y )| ≤ Ck |X − Y |−1−k, (3.2)

(ii)
G

(
X̄ , Y

) = G
(
X , Ȳ

)
, ∂r G

(
X̄ , Y

) = ∂r G
(
X , Ȳ

)
, ∂zG

(
X̄ , Y

) = ∂zG(X , Ȳ ), (3.3)

for all (X ,Y ) ∈ R
3, X̄ = (−x,−y, z) and k = 0, 1, 2.

Until now, we have established the formulation (3.1). However, in order to find out
the explicit form of ψ(rx , zx ), we need to fix the value of θx . Therefore, by making
use of the rotational invariance and putting θx = 0 in (3.1), we derive the explicit form
of ψ in terms of wθ

ψ (rx , zx ) =
∫ ∞

−∞

∫ ∞

0

∫ π

−π

G(X ,Y )wθ cos θyrydθydrydzy, (3.4)

where X = (rx , 0, zx ).
On this basis, we intend to utilize the stream function to establish the L p

loc(R
3)

estimates of velocity fields. And we would like to introduce the following lemma,
which is the cornerstone of this paper.

Lemma 3.1 Assume u and ψ be as in Lemma 2.2, w = ∇ × u = wθeθ , then there
holds that

|ψ (rx , zx ) | ≤ C
∫
R3

min

(
1,

rx
|X − Y |

) |wθ |
|X − Y |dY (3.5)

and

|∂rψ (rx , zx ) | + |∂zψ (rx , zx ) | ≤ C
∫
R3

min

(
1,

rx
|X − Y |

) |wθ |
|X − Y |2 dY , (3.6)

where C is an absolute constant and X = (rx , 0, zx ).
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Proof First of all, we do the estimate of |∂rψ |. From (3.4), we have

∂rψ =
∫ ∞

−∞

∫ ∞

0

∫ π

−π

∂rG(X ,Y )wθ cos θyrydθydrydzy,

which together with (3.3) yields that

∂rψ =
∫ ∞

−∞

∫ ∞

0

∫ π
2

− π
2

(∂rG(X ,Y ) − ∂rG(X̄ ,Y ))wθ cos θyrydθydrydzy .

Thus, to prove (3.6), it suffices to verify that

H �
∫ π

2

− π
2

(
∂rG(X ,Y ) − ∂rG(X̄ ,Y )

)
wθ cos θydθy

≤ C
∫ π

2

− π
2

min

(
1,

rx
|X − Y |

) |wθ |
|X − Y |2 dθy .

Without loss of generality, we assume θ∗ to be the unique real number θy ∈ [0, π
2 ]

such that |X − Y | = rx and split the integral H into H = I + II + III, with

I =
∫ −θ∗

− π
2

dθy, II =
∫ θ∗

−θ∗
dθy, III =

∫ π
2

θ∗
dθy,

where |X − Y | > rx for I, III and |X − Y | ≤ rx for II. Otherwise, |X − Y | > rx or
|X − Y | < rx for all θy ∈ [− π

2 , π
2 ]. For these two cases, one can prove them along

the same lines with estimating I or II.
Because |X−Y | ≤ |X̄−Y | for all |θy | ≤ π

2 and the interval [− θ∗, θ∗] corresponds
to those θy for which |X − Y | ≤ rx , one can conclude that II satisfies the desired
estimate easily.

Regarding the first and third terms, to start with, we fix some angle θy ∈ [θ∗, π
2 ]

and denote Xβ = (rcosβ, rsin β, z) for β ∈ [−π, 0]. Besides, for the func-
tion f (x, y, z) = f (rcos θ, rsin θ, z), it is clear that ∂θ f = r∂h f · eθ , where
∂h = (∂x , ∂y, 0). Therefore, by the fundamental theorem of calculus, it follows that

∂rG(X ,Y ) − ∂rG(X̄ ,Y ) = πrx

∫ 0

−π

∂h∂rG
(
Xβ,Y

) · eβdβ.

Then, by employing the fact |X − Y | ≤ |Xβ − Y | for all β ∈ [−π, 0] and (3.2), it
holds that

|∂rG(X ,Y ) − ∂rG(X̄ ,Y )| ≤ Crx |X − Y |−3.
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Thus, we have obtained the estimate of III, that is

III ≤ Crx

∫ π
2

θ∗
|X − Y |−3|wθ |dθy .

What is more, the estimate of I can be treated by the same arguments with III. Thus,
by adding up all the estimates, one can derive the estimate of |∂rψ |. As for |ψ | and
|∂zψ |, one can estimate it in the similar way and we will omit it here. ��

Thanks to Lemma 3.1, we can then derive the upper bounds of ψ
r ,

∂rψ
r ,

∂zψ
r in

terms of wθ

r .

Corollary 3.1 Under the assumptions of Lemma 3.1, it further holds that

∣∣∣∣ψ (rx , zx )

rx

∣∣∣∣ ≤ C
∫
R3

|wθ |
ry |X − Y |dY (3.7)

and ∣∣∣∣∂rψ (rx , zx )

rx

∣∣∣∣ +
∣∣∣∣∂zψ (rx , zx )

rx

∣∣∣∣ ≤ C
∫
R3

|wθ |
ry |X − Y |2 dY , (3.8)

where C is an absolute constant and X = (rx , 0, zx ).

Proof Initially, if Y ∈ R
3 are such that |X − Y | ≤ rx for any rx , then one has

ry ≤ rx +|rx −ry | ≤ rx +|X −Y | ≤ 2rx , which together with (3.5) and (3.6) implies
that ∣∣∣∣ψ (rx , zx )

rx

∣∣∣∣ ≤ C
∫
R3

1

rx

|wθ |
|X − Y |dY ≤ 2C

∫
R3

1

ry

|wθ |
|X − Y |dY

and∣∣∣∣∂rψ (rx , zx )

rx

∣∣∣∣ +
∣∣∣∣∂zψ (rx , zx )

rx

∣∣∣∣ ≤ C
∫
R3

1

rx

|wθ |
|X − Y |2 dY ≤ 2C

∫
R3

1

ry

|wθ |
|X − Y |2 dY .

Otherwise, if |X −Y | > rx , it is clear that
ry

|X−Y | ≤ rx+|rx−ry |
|X−Y | ≤ rx+|X−Y |

|X−Y | ≤ 2. Then,
we can get that

∣∣∣∣ψ (rx , zx )

rx

∣∣∣∣ ≤ C
∫
R3

1

|X − Y |
|wθ |

|X − Y |dY ≤ 2C
∫
R3

1

ry

|wθ |
|X − Y |dY

and ∣∣∣∣∂rψ (rx , zx )

rx

∣∣∣∣ +
∣∣∣∣∂zψ (rx , zx )

rx

∣∣∣∣ ≤ C
∫
R3

1

|X − Y |
|wθ |

|X − Y |2 dY

123



Journal of Nonlinear Science (2021) 31 :36 Page 11 of 24 36

≤ 2C
∫
R3

1

ry

|wθ |
|X − Y |2 dY .

Thus, the proof is finished. ��
Remark 3.1 The proof of Lemma 3.1 and Corollary 3.1 borrows some ideas from
Shirota and Yanagisawa (1994) and Danchin (2007). In Danchin (2007), the author
used the explicit form of | ∂zψ

r | in (3.8) to establish the L∞(R3) estimate of ur
r . Here,

we discover more applications of stream functions in establishing some estimates of
velocity fields, which will be shown in the following content.

With the help of Lemma 3.1 and Corollary 3.1, we can then derive the following
L p
loc(R

3) estimates of velocity fields, which is the first key contribution of our work.

Proposition 3.1 (L p
loc(R

3) estimates)Given u as a smooth axisymmetric velocity fields
without swirl satisfying ∇ · u = 0, then there holds

‖u‖L p(BR×[− R,R]) ≤ CR‖wθ

r
‖L1∩L p(R3)

for any p ∈ (1,∞). Here BR = BR(0) ⊂ R
2 be a 2D ball and the constant CR

depends only on R.

Proof According to Lemma 2.2, for the smooth axisymmetric velocity fields u with
zero swirl component, there exists a unique stream function ψ such that

u = ur er + uzez = ∇ × (ψeθ ) .

This implies that ur = −∂zψ, uz = ∂rψ+ ψ
r and therefore |u| ≤ |∂zψ |+|∂rψ |+|ψ

r |.
Then, by Lemma 3.1 and Corollary 3.1, it follows that

|u| ≤ C
∫
R3

|wθ |
ry |X − Y |dY + C

∫
R3

|wθ |
|X − Y |2 dY

≤ C
∫

|X−Y |≤1

|wθ |
ry |X − Y |dY + C

∫
|X−Y |>1

|wθ |
ry |X − Y |dY

+C
∫

|X−Y |≤1

|wθ |
|X − Y |2 dY + C

∫
|X−Y |>1

|wθ |
|X − Y |2 dY

≤ C
∫

|X−Y |≤1

|wθ |
ry |X − Y |dY + C

∫
|X−Y |>1

|wθ |
ry |X − Y |dY

+Crx

∫
|X−Y |≤1

|wθ |
ry |X − Y |2 dY + C

∫
|X−Y |≤1

|wθ ||rx − ry |
ry |X − Y |2 dY

+Crx

∫
|X−Y |>1

|wθ |
ry |X − Y |2 dY + C

∫
|X−Y |>1

|wθ ||rx − ry |
ry |X − Y |2 dY

≤ C
∫

|X−Y |≤1

|wθ |
ry |X − Y |dY + C

∫
|X−Y |>1

|wθ |
ry |X − Y |dY
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+Crx

∫
|X−Y |≤1

|wθ |
ry |X − Y |2 dY + C

∫
|X−Y |≤1

|wθ |
ry |X − Y |dY

+Crx

∫
|X−Y |>1

|wθ |
ry |X − Y |2 dY + C

∫
|X−Y |>1

|wθ |
ry |X − Y |dY

≤ 2C
∫

|X−Y |≤1

|wθ |
ry |X − Y |dY + Crx

∫
|X−Y |≤1

|wθ |
ry |X − Y |2 dY

+2C
∫

|X−Y |>1

|wθ |
ry |X − Y |dY + Crx

∫
|X−Y |>1

|wθ |
ry |X − Y |2 dY

=
4∑

i=1

Ii , (3.9)

where we used the fact |rx − ry | ≤ |X − Y | in above inequalities. Therefore, by using
of Young’s inequality for convolutions, it holds that

‖I1‖L p(BR×[− R,R]) + ‖I2‖L p(BR×[− R,R])

≤ C‖χ{|x |≤1}
|x | ‖L1(R3)‖

wθ

r
‖L p(R3) + CR‖χ{|x |≤1}

|x |2 ‖L1(R3)‖
wθ

r
‖L p(R3)

≤ C(R + 1)‖wθ

r
‖L1∩L p(R3) (3.10)

for any p ∈ (1,∞) and cut-off function χA with compact support set A.
Regarding the left terms, by applying Hölder inequality and Young’s inequality for

convolutions, it follows that

‖I3‖L p(BR×[− R,R]) + ‖I4‖L p(BR×[− R,R])
≤ CR2‖I3‖L3p(BR×[− R,R]) + CR‖I4‖

L
3p
2 (BR×[− R,R])

≤ CR2‖χ{|x |>1}
|x | ‖L3p(R3)‖

wθ

r
‖L1(R3) + CR2‖χ{|x |>1}

|x |2 ‖
L

3p
2 (R3)

‖wθ

r
‖L1(R3)

≤ CR2‖wθ

r
‖L1(R3). (3.11)

Finally, by summing up (3.9)–(3.11), one can finish all the proof. ��

Subsequently, we get to establish the L p
loc(R

3) estimates of ∇u in terms of wθ .

According to Proposition 2.20 in Majda and Bertozzi (2002), the gradient of velocity
fields can be expressed in terms of its vorticity by

[∇u]h = [Pw]h + 1

3
w × h. (3.12)
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Here P is a singular integral operator of Calderón–Zygmund type which is generated
by a homogeneous kernel of degree − 3 (see Kato 1972) and h is a vector fields.
Moreover, the explicit form of [Pw]h is

[Pw]h = −P.V .

∫
R3

(
1

4π

w(y) × h

|x − y|3 + 3

4π

{[(x − y) × w(y)] ⊗ (x − y)} h
|x − y|5

)
dy.

(3.13)

Therefore, with the help of (3.12) and (3.13), we are in the position to build up the
following estimates.

Proposition 3.2 (‖∇u‖L p
loc(R

3) estimates) Assume that u is a smooth axisymmetric
velocity fields with divergence free and zero swirl component, then for any p ∈ (1,∞),
there holds

‖∇u‖L p(BR×[− R,R]) ≤ CR‖wθ

r
‖L1∩L p(R3),

where BR = BR(0) ⊂ R
2 be a 2D ball and the constant CR depends only on R.

Proof Thanks to (3.12), it is clear that ‖∇u‖L p(R3) � ∑
i

‖[∇u]ei‖L p(R3) holds for any

p ∈ (1,∞), where ei (i = r , θ, z) is the orthogonal basis in (2.1). Then, by setting
χ(r , z) be a smooth cut-off function such that χ(r , z) = 1 in B2R × [− 2R, 2R], and
suppχ ⊂ B3R × [− 3R, 3R], we can split [∇u]ei into three parts as

[∇u]ei = [P (χw)] ei + [P {(1 − χ)w}] ei + 1

3
w × ei

= I + II + III.

Because P is a singular operator of Calderón–Zygmund type, by the Calderón–
Zygmund inequality for p ∈ (1,∞), it is clear that

‖I‖L p(BR×[− R,R]) + ‖III‖L p(BR×[− R,R])
≤ C‖ [P(χw)] ‖L p(R3) + C‖w‖L p(BR×[− R,R])
≤ C‖wθ‖L p(B2R×[− 2R,2R])
≤ CR‖wθ

r
‖L p(R3). (3.14)

As for the second term, by (3.13), we have

II = −P.V .

∫
R3

(
1

4π

g(y) × ei
|x − y|3 + 3

4π

{[(x − y) × g(y)] ⊗ (x − y)} ei
|x − y|5

)
dy,
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where g(y) = (1 − χ(y))w(y). In addition, as supp (1 − χ(y)) ⊂ R
3 \ B2R ×

[− 2R, 2R], it is clear that |x − y| ≥ |y| − |x | ≥ R for x ∈ BR × [− R, R] and
y ∈ R

3 \ B2R × [− 2R, 2R]. Therefore, for x ∈ BR × [− R, R], there holds

|II| ≤ C
∫

|x−y|≥R

|wθ(y)|
|x − y|3 dy

≤ Crx

∫
|x−y|≥R

|wθ(y)|
ry |x − y|3 dy + C

∫
|x−y|≥R

|wθ(y)||rx − ry |
ry |x − y|3 dy

≤ Crx

∫
|x−y|≥R

|wθ(y)|
ry |x − y|3 dy + C

∫
|x−y|≥R

|wθ(y)|
ry |x − y|2 dy

≤ C

R2 ‖wθ

r
‖L1(R3),

which further implies, after utilizing some basic calculations, that

‖II‖L p(BR×[− R,R]) ≤ CR‖wθ

r
‖L1(R3). (3.15)

Thus, we can finish the proof by adding up (3.14) and (3.15). ��

3.2 Lploc(R
3) (p > 2) Estimates

As stated in the introduction, to prove the global existence of weak solutions, we need
the strong convergence of approximate solutions in L2(0, T ; L2

loc(R
3)). Although we

have built up the W 1,p
loc (R3) (p > 1) estimates of velocity fields, it only implies the

strong convergence of approximate solutions in L2(0, T ; Q) for any Q ⊂⊂ R
3\{x ∈

R
3|r = 0}, other than L2(0, T ; L2

loc(R
3)).

To solve this gap, we will focus on establishing the estimates of velocity fields
stronger than L2

loc(R
3). The first step is to achieve the L p

loc(R
2+) (p > 1) estimates for

ũ, which is a new ingredient in this paper.

Lemma 3.2 (‖ũ‖L p
loc(R

2+) estimates) Suppose u = ur (r , z, t)er + uz(r , z, t)ez is a

smooth axisymmetric velocity fields without swirl satisfying ∇ · u = 0 and let ũ =
(ur , uz), then the estimates

‖ũ‖L p([0,R]×[− R,R]) ≤ CR‖wθ

r
‖L1∩L p(R3)

hold for any p ∈ (1,∞) and the constant CR depending only on R.

Proof Firstly, with the help of the estimates of ‖ ur
r ‖L p(BR×[− R,R]) in Proposition 3.2

and noticing p > 1, it is clear that

‖ur‖L p([0,R]×[− R,R])

=
[

1

2π

∫ R

−R

∫ R

0

∫ π

−π

|ur
r

|pr p−1rdθdrdz

] 1
p
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≤ CR1− 1
p ‖ur

r
‖L p(BR×[− R,R])

≤ CR1− 1
p ‖wθ

r
‖L1∩L p(R3). (3.16)

Regarding the estimates of ‖uz‖L p([0,R]×[− R,R]), by Proposition 2.2, there holds
that |uz | ≤ |∂rψ | + |ψ

r |. Then, we will estimate the two terms by different ways. For
the first term, by similar skills as in (3.16) and Corollary 3.1, it follows that

‖∂rψ‖L p([0,R]×[− R,R]) ≤ CR1− 1
p ‖∂rψ

r
‖L p(BR×[− R,R])

and

|∂rψ
r

| ≤ C
∫
R3

|wθ |
ry |X − Y |2 dY

≤ C
∫

|X−Y |≤1

|wθ |
ry |X − Y |2 dY + C

∫
|X−Y |>1

|wθ |
ry |X − Y |2 dY

= I1 + I2. (3.17)

Then, by making use of Young’s inequality for convolutions, we finally deduce that

‖∂rψ‖L p([0,R]×[− R,R])
≤ CR1− 1

p ‖I1‖L p(BR×[− R,R]) + CR‖I2‖
L

3p
2 (BR×[− R,R])

≤ CR1− 1
p ‖χ{|x |≤1}

|x |2 ‖L1(R3)‖
wθ

r
‖L p(R3) + CR‖χ{|x |>1}

|x |2 ‖
L

3p
2 (R3)

‖wθ

r
‖L1(R3)

≤ C(R + 1)‖wθ

r
‖L1∩L p(R3) (3.18)

for any p ∈ (1,∞) and cut-off function χA with compact support set A. As for the
other term, by using the notation X̃ = (rx , zx ) and Corollary 3.1, we firstly obtain

|ψ
r

| ≤ C
∫
R3

|wθ |
ry |X − Y |dY

= C
∫ ∞

−∞

∫ ∞

0

∫ π

−π

|wθ |√
r2x + r2y − 2rxry cos θy + (

zx − zy
)2 drydθdzy

≤ 2πC
∫ ∞

−∞

∫ ∞

0

|wθ |√(
rx − ry

)2 + (
zx − zy

)2 drydzy
= 2πC

∫ ∞

−∞

∫ ∞

0

|wθ |
|X̃ − Ỹ |drydzy
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≤ C
∫ ∞

−∞

∫ 2R

0

|wθ |
|X̃ − Ỹ |drydzy + C

∫ ∞

−∞

∫ ∞

2R

|wθ |
|X̃ − Ỹ |drydzy

≤ C
∫
R2

|wθ |χ{0<ry<2R}
|X̃ − Ỹ | dỸ + C

∫ ∞

−∞

∫ ∞

2R

|wθ |
|X̃ − Ỹ |drydzy

≤ C
∫

|X̃−Ỹ |≤1

|wθ |χ{0≤ry<2R}
|X̃ − Ỹ | dỸ + C

∫
|X̃−Ỹ |>1

|wθ |χ{0≤ry<2R}
|X̃ − Ỹ | dỸ

+C
∫ ∞

−∞

∫ ∞

2R

|wθ |
|X̃ − Ỹ |drydzy

= I3 + I4 + I5, (3.19)

where we used the fact that wθ = 0 on the axis of symmetry r = 0 in the fourth
inequality. Then, for any 0 ≤ rx < R and ry > 2R, it clear holds |X̃ − Ỹ | > R and

then I5 ≤ C
R ‖wθ

r ‖L1(R3). Thus, by applying Young’s inequality for convolutions, we
have

‖ψ

r
‖L p([0,R]×[− R,R])

≤ C‖I3‖L p([0,R]×[− R,R]) + CR
1
p ‖I4‖L2p([0,R]×[− R,R]) + C‖I5‖L p([0,R]×[− R,R])

≤ C‖I3‖L p(R2) + CR
1
p ‖I4‖L2p(R2) + CR‖wθ

r
‖L1(R3)

≤ C‖χ{|x |≤1}
|x | ‖L1(R2)‖wθχ{0<r<2R}‖L p(R2)

+CR
1
p ‖χ{|x |>1}

|x | ‖L2p(R2)‖wθχ{0<r<2R}‖L1(R2) + CR‖wθ

r
‖L1(R3)

≤ CR1− 1
p ‖wθ

r
‖L p(R3) + CR

1
p ‖wθ

r
‖L1(R3) + CR‖wθ

r
‖L1(R3)

≤ C(R + 1)‖wθ

r
‖L1∩L p(R3), (3.20)

which together with (3.18) further implies

‖uz‖L p([0,R]×[− R,R]) ≤ C(R + 1)‖wθ

r
‖L1∩L p(R3). (3.21)

In the end, we can finish all the proof by adding up (3.16) and (3.21). ��
Thanks to Lemma 3.3 and by fully exploiting the structure of axisymmetric flows

without swirl, we then build up the following estimates stronger than L2
loc(R

3).

Proposition 3.3 (‖u‖
L

2p
2−p
loc (R3)

estimates) Let u be a smooth axisymmetric velocity

fields without swirl as in Lemma 3.2, then the estimates

‖u‖
L

2p
2−p (BR×[− R,R])

≤ CR‖wθ

r
‖L1∩L p(R3)

123



Journal of Nonlinear Science (2021) 31 :36 Page 17 of 24 36

hold for any 1 < p < 2. Here BR = BR(0) ⊂ R
2 is a 2D ball and the constant CR

depending only on R.

Proof Step 1: ur ∈ L
2p
2−p
loc (R3)Thanks to the Sobolev embedding inequalityW 1,p

loc (R2+)

↪→ L
2p
2−p
loc (R2+) for any 1 < p < 2, and the equality

‖r 2−p
2p ur‖

L
2p
2−p ([0,R]×[− R,R])

= 2π− 2−p
2p ‖ur‖

L
2p
2−p (BR×[− R,R])

,

to prove ur ∈ L
2p
2−p
loc (R3), it suffices to verify r

2−p
2p ur ∈ W 1,p

loc (R2+). First of all,

we certify r
2−p
2p ur ∈ L p([0, R] × [− R, R]). Through some basic calculations and

Proposition 3.2, it clearly follows that

‖r 2−p
2p ur‖L p([0,R]×[− R,R]) =

[ 1

2π

∫ R

−R

∫ R

0

∫ π

−π

|ur
r

|pr p
2 rdθdrdz

] 1
p

≤ CR
1
2 ‖ur

r
‖L p(BR×[− R,R]) ≤ CR‖wθ

r
‖L1∩L p(R3). (3.22)

In the second stage, we demonstrate ∂r
(
r

2−p
2p ur

) ∈ L p([0, R] × [− R, R]). To
achieve this goal, we decompose it into two terms by ∂r

(
r

2−p
2p ur

) = ∂r
( ur
r r

2+p
2p

) =
∂r

( ur
r

)
r

2+p
2p + 2+p

2p

( ur
r

)
r

2−p
2p and estimate them separately. Again by some basic cal-

culations and borrowing (2.7) in Lemma 2.1, we have

‖r 2+p
2p ∂r

(ur
r

)
‖L p([0,R]×[− R,R]) =

[
1

2π

∫ R

−R

∫ R

0

∫ π

−π

|∂r
(ur
r

)
|pr p

2 rdθdrdz

] 1
p

≤ CR
1
2 ‖∂r

(ur
r

)
‖L p(BR×[− R,R])

≤ CR
1
2 ‖wθ

r
‖L p(R3). (3.23)

The other term can be estimated by Hölder inequality and Lemma 2.2, that is

‖2 + p

2p

(ur
r

)
r

2−p
2p ‖L p([0,R]×[− R,R]) ≤

[
1

2π

∫ R

−R

∫ R

0

∫ π

−π

|ur
r

|pr− p
2 rdθdrdz

] 1
p

≤
[

1

2π

∫ R

−R

∫ R

0

∫ π

−π

|ur
r

| 3p
3−p rdθdrdz

] 3−p
3 [ 1

2π

∫ R

−R

∫ R

0

∫ π

−π

r− 3
2 rdθdrdz

] 1
3

≤ CR
1
3 ‖ur

r
‖
L

3p
3−p (R3)

[∫ R

0
r− 1

2 dr

] 1
3

≤ CR
1
2 ‖wθ

r
‖L1∩L p(R3). (3.24)
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Regarding the term ∂z
(
r

2−p
2p ur

)
, due to ∂z

(
r

2−p
2p ur

) = ∂z
( ur
r

)
r

2+p
2p , the way to estimate

it would be along the same line with ∂r
( ur
r

)
r

2+p
2p in (3.23) and we will omit it here to

avoid repetition.

Step 2: uz ∈ L
2p
2−p
loc (R3) Through recalling Proposition 2.2, it is clear that

uz = ∂rψ + ψ

r
= r∂r

(
ψ

r

)
+ 2ψ

r
(3.25)

and we will deal with the two terms by different methods. For the term ψ
r , we will

estimate it by straightforward calculations. According to Corollary 3.1, it yields

|ψ
r

| ≤ C
∫
R3

|wθ |
ry |X − Y |dY

≤ C
∫

|X−Y |≤1

|wθ |
ry |X − Y |dY + C

∫
|X−Y |>1

|wθ |
ry |X − Y |dY

= I1 + I2, (3.26)

which further implies, after making use of Hölder inequality in bounded domain
BR × [− R, R] and Young’s inequality for convolutions, that

‖ψ

r
‖
L

2p
2−p (BR×[− R,R])

≤ C‖I1‖
L

2p
2−p (R3)

+ CR
6−3p
4p ‖I2‖

L
4p
2−p (R3)

≤ C‖χ{|x |≤1}
|x | ‖L2(R3)‖

wθ

r
‖L p(R3) + C(R + 1)‖χ{|x |>1}

|x | ‖
L

4p
2−p (R3)

‖wθ

r
‖L1(R3)

≤ C(R + 1)‖wθ

r
‖L1∩L p(R3) (3.27)

for 1 < p < 2. In the above inequalities, we have used 1
4 <

6−3p
4p < 3

4 and 4p
2−p > 4.

As for the other term r∂r
(ψ
r

)
, our strategy is to testify r∂r

(ψ
r

) ∈ W 1,p
loc (R2+), which is

based on the inequality

‖r∂r
(

ψ

r

)
‖
L

2p
2−p
loc (R3)

≤ C‖r∂r
(

ψ

r

)
‖
L

2p
2−p
loc (R+

2 )

and the Sobolev embedding inequality W 1,p
loc (R2+) ↪→ L

2p
2−p
loc (R2+) for any 1 < p < 2.

To start with, we recall (3.25) that r∂r
(ψ
r

) = uz − 2ψ
r . Effectively, in Lemma 3.2,

we have proved uz ∈ L p
loc(R

2+). Besides, the L p
loc(R

2+) estimates of ψ
r have been

established in (3.20), that can be summarized in the following estimates

‖r∂r
(

ψ

r

)
‖L p([0,R]×[− R,R]) ≤ C(R + 1)‖wθ

r
‖L1∩L p(R3). (3.28)
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In the next stage, to prove ∇̃[
r∂r

(ψ
r

)] ∈ L p
loc(R

2+), we will do some decompositions,

which therebymakeLemma2.1 effective.More precisely,wewill prove ∂r
(
r∂r

(ψ
r

)) =
r∂2r

(ψ
r

) + ∂r
(ψ
r

)
, ∂z

(
r∂r

(ψ
r

)) = r∂2r z
(ψ
r

) ∈ L p
loc(R

2+). To this end, we first list the
inequality

‖ f ‖L p
loc(R

2+) ≤ C‖ f

r
‖L p

loc(R
3)

that holds for any function f = f (r , z, t). This means that it suffices to verify
1
r ∂r

(
r∂r

(ψ
r

)) = ∂2r
(ψ
r

) + 1
r ∂r

(ψ
r

)
, 1

r ∂z
(
r∂r

(ψ
r

)) = ∂2r z
(ψ
r

) ∈ L p
loc(R

3), which cer-
tainly holds according to Lemma 2.1. Thus, we finish all the proof. ��

Thus, for 1 < p < 2, we have established the L
2p
2−p
loc (R3) estimates of velocity fields.

When p ≥ 2, it is well known that the Sobolev embedding W 1,p
loc (R3) ↪→ L6

loc(R
3)

holds, which also helps us deriving the following conclusion.

Lemma 3.3 Let u = ur (r , z, t)er + uz(r , z, t)ez be a smooth axisymmetric velocity

fields without swirl,
wθ
0
r ∈ L1 ∩ L p(R3) with some p > 1, then there exists an α > 0

depending only on p such that u ∈ L2+α
loc (R3).

4 Global Existence of Weak Solutions

This section is devoted to the global existence of weak solutions. The first step is to
construct a family of approximate solutions. To begin with, we would like to introduce
the standard mollifier ρε , which can be described by

ρε(x) = 1

ε3
ρ

( |x |
ε

)
,

where ρ ∈ C∞
0 (R3), ρ ≥ 0, supp ρ ⊂ {|x | ≤ 1} and ∫

R3 ρ dx = 1. Then, we define
a cut-off function χε by

χε(x) = χ

( |x |
ε

)
,

where χ ∈ C∞
0 (R3), 0 ≤ χ ≤ 1, and χ(x) = 1 on {|x | ≤ 1}, χ(x) = 0 on {|x | ≥ 2}.

Through borrowing these definitions, we then drive the following theorem.

Theorem 4.1 Given an initial data w0 = wθ
0eθ such that

wθ
0
r ∈ L1 ∩ L p(R3) for

some p > 1, then there exists a family of smooth axisymmetric solutions uε with zero
swirl component and initial data uε

0 for any T > 0. Here, wε
0(x) = ρε ∗ w0(x) and

uε
0 = ∇ × (−	)−1wε

0. In addition, it holds that

‖uε‖W 1,p(BR×[− R,R]) ≤ CR (4.1)
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and

‖uε‖L2+α(BR×[− R,R]) ≤ CR, (4.2)

where BR = BR(0) ⊂ R
2 is a 2D ball, α be as in Lemma 3.3 and CR is the constant

depending only on R.

Proof Initially, we construct

wε
0 = χε(x) (ρε ∗ w0) (x).

According to our construction for initial data, it is clear that wε
0 is axisymmetric.

Then, we denote by uε
0 the corresponding velocity fields determined by the Biot–

Savart law, namely uε
0 = ∇ × (−	)−1wε

0. Again by our assumptions on the initial
data, ∇ × uε

0 = wε
0 has only swirl component wε

θ (x, 0) such that wε
0 = wε

θ (x, 0)eθ .
Therefore, it is clear to conclude that uε

0 has zero swirl component, i.e., uε
θ (x, 0) = 0.

Moreover, uε
0 ∈ C∞(R3) and belongs to the space V = {u ∈ H3(R3)| ∇ · u = 0}.

Subsequently, by Majda and Bertozzi (2002), there exists a unique global smooth
solution uε . What is more, considering that uε

0 is axisymmetric, the Euler equations
keep invariant under the rotation and translation transformations and the uniqueness
of solutions, it is obvious that the velocity fields uε is still axisymmetric. Besides, the
swirl component uε

θ is also vanishing due to its initial data uε
0,θ given zero.

Finally, we recall a well-known conclusion that

‖wε
0

r
‖L p(R3) ≤ ‖ρε ∗ w0

θ

r
‖L p(R3) ≤ C‖wθ

0

r
‖L p(R3), ∀p ∈ [1,∞], (4.3)

whose proof can be referred to Lemma A.1 in Ben Ameur and Danchin (2002). Thus,

through evoking the transport Eq. (2.5) satisfied by
wε

θ

r , applying (2.6) and (4.3), we

can conclude that ‖wε
θ

r ‖L1∩L p(R3) ≤ C . This together with Proposition 3.1–3.3 leads
to (4.1) and (4.2). ��

As discussed in the introduction, to prove the main theorem, it suffices to build
up the strong convergence of approximate solutions in the space L2(0, T ; L2

loc(R
3)).

Based on it, for the approximate solutions we constructed, one can then take the limit
in the sense of Definition 1.1, which is essential in establishing the global existence of
weak solutions. In the end, with the help of a priori estimates in Proposition 3.1–3.3,
we get to prove our main theorem as follow.

Proof of Theorem 1.1 As stated in the introduction, for any p > 1, the W 1,p
loc (R3)

estimates of velocity fields cannot guarantee the strong convergence of approximate
solutions in L2(0, T ; L2

loc(R
3)), but in L2(0, T ; Q) for any Q ⊂⊂ R

3\{x ∈ R
3|r =

0}. Hence, we will verify the strong convergence by dividing any local domain of R3

into two parts: the region near the axis of symmetry, and the region away from it.
On the one hand, thanks to Lemma 3.3, for the approximate solutions constructed in
Theorem 4.1, there exists u such that
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uε⇀u in L∞ (
0, T ; L2+α (BR × [− R, R])

)
. (4.4)

On the other hand, for the regionCR ×[− R, R] = {(x, y) ∈ R
2| 1R ≤ √

x2 + y2 ≤
R} × [− R, R], it clearly holds ‖uε‖L∞(0,T ;W 1,p(CR×[− R,R])) ≤ CR by Theorem 4.1.
Then, by using Eq. (1.1)1, it further holds ‖∂t uε‖L∞(0,T ;W−1,p∗ (CR×[− R,R])) ≤ CR,

where p∗ = p
p−1 . Then, by noticing that |u| is a function of variables r , z and t , one

can conclude that

‖uε‖
L∞

(
0,T ;W 1,p

(
[ 1
R ,R]×[− R,R];drdz

)) + ‖∂t uε‖
L∞

(
0,T ;W−1,p∗

(
[ 1
R ,R]×[− R,R];drdz

))
≤ CR .

Next, by applying the Aubin–Lions lemma and Sobolev compact embedding
W 1,p([ 1R , R]× [− R, R]) ↪→ L2([ 1R , R]× [− R, R]) for any p > 1, we can then find
a subsequence uε j (depending on R) such that

uε j → ū in L2
(
0, T ;

(
[ 1
R

, R] × [− R, R]; drdz
))

.

Then, by the diagonal selection process, one can then extract a subsequence of uε j

independent of R (still denoted by uε j ) such that

‖uε j − ū‖
L2

(
0,T ;

(
[ 1
R ,R]×[− R,R];drdz

)) → 0 as ε j → 0,

which also implies that

‖uε j − ū‖L2(0,T ;CR×[− R,R]) → 0 as ε j → 0.

This means uε j → ū in L2(0, T ; Q), for any Q ⊂⊂ BR × [− R, R]\{x ∈ R
3|r = 0}.

Then by considering the uniqueness of limits and (4.4), we actually have derived

uε j → u in L2(0, T ; Q). (4.5)

Now, it suffices to verify the strong convergence of velocity fields in L2(0, T ; BR ×
[− R, R]). For any ε > 0, we firstly take Q ⊂⊂ BR × [− R, R]\{x ∈ R

3|r = 0} such
that the measure μ(BR × [− R, R]\Q) <

(
ε

4
√
2TCR

) 4+2α
α for α > 0 in Lemma 3.3.

Then, according to (4.5), there exists a constant M such that when j > M , ‖uε j −
u‖L2(0,T ;Q) < ε

2 . Thus, by employing Hölder inequality, (4.2) and (4.4), for j > M ,
one further has

[∫ T

0

∫
BR×[− R,R]

|uε j − u|2dxdt
] 1

2

≤
[∫ T

0

∫
BR×[− R,R]\Q

|uε j − u|2dxdt
] 1

2

+
[ ∫ T

0

∫
Q

|uε j − u|2dxdt
] 1
2
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≤ √
2T

[∫
BR×[− R,R]\Q

|uε j |2dx +
∫
BR×[− R,R]\Q

|u|2dx
] 1

2 + ε

2

≤ √
2T

[‖uε j ‖L2+α(BR×[− R,R]) + ‖u‖L2+α(BR×[− R,R])
]

× [μ (BR × [− R, R]\Q)]
α

4+2α + ε

2
< ε.

Until now, we actually have proved that there exists an axisymmetric velocity fields
u without swirl, such that

uε j → u strongly in L2
(
0, T ; L2

loc(R
3)

)
.

The last step is to pass limit in the equations (1.1) satisfied by uε . As a matter of
fact, it suffices to show the convergence of nonlinear term. Considering that uε j → u
strongly in L2(0, T ; L2

loc(R
3)), it is not hard to infer that

∫ T

0

∫
R3

uε j · ∇ϕ · uε j dxdt →
∫ T

0

∫
R3

u · ∇ϕ · u dxdt

for any ϕ ∈ C∞
0 ([0, T );R3) with ∇ · ϕ = 0. This shows that u is a weak solu-

tion of incompressible axisymmetric Euler equations without swirl in the sense of
Definition 1.1. ��
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