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Abstract
We analyze the long-term behavior of interacting populations which can be controlled
through harvesting. The dynamics is assumed to be discrete in time and stochastic
due to the effect of environmental fluctuations. We present powerful extinction and
coexistence criteria when there are one or two interacting species. We then use these
tools in order to see when harvesting leads to extinction or persistence of species, as
well aswhat the optimal harvesting strategies, whichmaximize the expected long-term
yield, look like. For single species systems, we show under certain conditions that the
optimal harvesting strategy is of bang-bang type: there is a threshold under which
there is no harvesting, while everything above this threshold gets harvested. We are
also able to show that stochastic environmental fluctuations will, in most cases, force
the expected harvesting yield to be lower than the deterministic maximal sustainable
yield. The second part of the paper is concerned with the analysis of ecosystems that
have two interacting species which can be harvested. In particular, we carefully study
predator–prey and competitive Ricker models. We are able to analytically identify the
regions in parameter space where the species coexist, one species persists and the
other one goes extinct, as well as when there is bistability. We look at how one can
find the optimal proportional harvesting strategy. If the system is of predator–prey
type, the optimal proportional harvesting strategy is, depending on the interaction
parameters and the price of predators relative to prey, either to harvest the predator
to extinction and maximize the asymptotic yield of the prey or to not harvest the
prey and to maximize the asymptotic harvesting yield of the predators. If the system
is competitive, in certain instances it is optimal to drive one species extinct and to
harvest the other one. In other cases, it is best to let the two species coexist and harvest
both species while maintaining coexistence. In the setting of the competitive Ricker
model, we show that if one competitor is dominant and pushes the other species to
extinction, the harvesting of the dominant species can lead to coexistence.
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1 Introduction

A fundamental problem in population biology has been to find conditions for when
interacting species coexist or go extinct. Since the dynamics of interacting popula-
tions is invariably influenced by the random fluctuations of the environment, realistic
mathematical models need to take into account the joint effects of biotic interactions
and environmental stochasticity. A successful way of analyzing the persistence and
extinction of interacting species has been to look at Markov processes, in either dis-
crete or continuous time, and describe their asymptotic properties. There has been a
recent resurgence in stochastic population dynamics, and significant progress has been
made for stochastic differential equations (Schreiber et al. 2011; Hening and Nguyen
2018), piecewise deterministic Markov processes (Hening and Strickler 2019; Hening
and Nguyen 2020), and stochastic difference equations (Benaïm and Schreiber 2019).
The first focus of this paper is to present new results for persistence and extinction
in the setting of stochastic difference equations when there are one or two interacting
species. These results significantly generalize the work by Chesson and Ellner (1989),
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Ellner (1989) which only treated competition models and had no extinction results,
as well as the more recent work by Benaïm and Schreiber (2019) which only looks at
compact state spaces. We are able to give explicit conditions for extinction and per-
sistence in the setting of competitive or predator–prey Ricker equations with random
coefficients, adding to the previously known results by Ellner (1989), Vellekoop and
Högnäs (1997), Fagerholm and Högnäs (2002), Schreiber et al. (2011). Our results
involve computing the invasion rates (Turelli 1978; Chesson 1982; Ellner 1984; Ches-
son and Ellner 1989) of each species into the random equilibrium of the other species.
We show that if both invasion rates are strictly positive, there is coexistence. If, instead,
one invasion rate is positive and one is negative, the species with the positive invasion
rate persists, while the one with the negative invasion rate goes extinct. If there is
coexistence, we prove that under natural conditions, the populations converge to a
unique invariant probability measure. If there is extinction, we show that, with prob-
ability one, one or both species go extinct exponentially fast. The general theory for
the setting with n > 2 interacting species will appear in future work by the author and
his collaborators (Hening et al. 2020).

Once criteria for persistence and extinction are established; our focus shifts towards
a key problem from conservation ecology: what is the optimal strategy for harvesting
species? This is a delicate issue as overharvesting can sometimes lead to extinction
while underharvesting can mean the loss of precious economic resources. In continu-
ous time models, recent studies have been able to find the optimal harvesting strategy,
which maximizes either the discounted total yield or the asymptotic yield under very
general assumptions if the ecosystem has only one species (Alvarez and Shepp 1998;
Hening et al. 2019; Alvarez and Hening 2019). For multiple species, the theory is
less developed. Nevertheless, partial results exist (Lungu and Øksendal 1997; Alvarez
et al. 2016; Tran and Yin 2015, 2016; Hening et al. 2019; Hening and Tran 2020).

Quite often harvesting models are intrinsically discrete in time. For example, if one
looks at themanagement of fisheries, mostmodels (Getz andHaight 1989; Hilborn and
Walters 1992; Clark 2010; Hilker and Liz 2019) assume that the population in a given
year can be described by a single continuous variable, and that without harvesting the
population levels in successive years are related by

xn+1 = F(xn)

where F is the so-called recruitment function or the reproduction function. Most
discrete time harvesting results ignore random environmental fluctuations and their
effects on the availability of food, competition rates, growth and death rates, strength
of predation and other key factors. Ignoring environmental stochasticity can create
significant problems, in some cases making the models unrealistic (May et al. 1978)
and hard to fit to data (Larkin 1973). A series of key studies where environmental
fluctuations are included was done by Reed (1978, 1979). Reed looked at the setting
where there is one species whose dynamics in the absence of harvesting is given by

Xn+1 = ZnF(Xn)
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where (Zn)n∈Z+ is a sequence of i.i.d. random variables. We extend Reed’s analysis
in two ways. First, we study the more general stochastic difference equation

Xn+1 = F(Xn, ξn+1)

where (ξn)n∈Z+ is an i.i.d. sequence. Second, we are able to analyze systems of two
interacting species. To our knowledge, these are the first results in discrete time that
study the harvesting of multiple species.

Single Species Ecosystem

We are able to give exact conditions under which harvesting leads to persistence or
to extinction. In particular, we show that if there is only one species present, then
the criteria for persistence only involve the harvesting rate of the population at 0. We
are able to find the maximal harvesting rate which does not lead to extinction. If the
species Yt undergoing harvesting persists, we prove it converges in law to a random
variable Y∞ and, if the fraction of the population that gets harvested is given by the
strategy h(y), we show that the long run average and the expected long-term harvest
both converge to Eh(Y∞). In many applications, one is interested in seeing how the
environmental fluctuations change the long-term yield. We show that in most settings
the environmental fluctuations are detrimental and lower the harvesting yield. Only in
special cases can we have that the maximum deterministic sustainable yield is equal
to the steady-state harvest yield of the stochastic system.

An interesting corollary of our results is that threshold harvesting strategies (also
called constant-escapement strategies), where one does not harvest anything below a
threshold and harvests everything above that threshold, do not influence the persistence
of species as long as the threshold at which one starts harvesting is strictly positive.
We showcase two examples where environmental fluctuations are not detrimental for
threshold harvesting: (1) The threshold w at which we harvest is self-sustaining, i.e.,
if at the start of the year we are at level w, the fluctuations of the environment cannot
push the population’s size underw. In this setting, the expected value of the long-term
yield in the stochastic model equals the yield from the equivalent deterministic model.
The downside is that the variance of the yield is higher due to the environmental
fluctuations. 2) The threshold w is not self-sustaining, and the maximum yield of the
dynamics happens at a self-sustaining threshold x < w. In this case, the expected
yield of the constant escapement strategy is strictly greater than the yield of the same
strategy in the deterministic system.

When looking at constant effort harvesting strategies, where a constant proportion
of the return is captured every year, we show that even though the deterministic model
might say that we harvest at a sustainable rate, the environmental fluctuations might
lead to extinction.

We are able to say more in the setting of the Ricker model. We give conditions
under which we can get the same maximal yield in the deterministic and stochastic
settings. This includes giving information about the threshold for which the yield is
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maximized. We also find the optimal harvesting strategy if we restrict ourselves to
proportional harvest strategies.

Two Interacting Species

We analyze a system of two interacting species that can be exploited through harvest-
ing. We show that threshold harvesting strategies do influence the persistence criteria,
unlike in the single species setting. In order to be able to compute things explic-
itly, we focus on Ricker models, also called discrete time Lotka–Volterra models, and
assume that the harvesting strategy is of proportional type, where we harvest a fraction
q ∈ [0, 1] of the first species and a fraction r ∈ [0, 1] of the second species.

The first studied model is a predator–prey system where species 1 is the prey and
species 2 the predator.We give analytical expressions for when one has the persistence
of both species, the persistence of the prey and the extinction of the predator as well
as the extinction of both species. These expressions tell us exactly for which rates
q, r we get one of the three scenarios above. Which strategy, among all proportional
harvesting strategies, maximizes the expected long-term harvesting yield? We find
by using both analytical results and numerical simulations that it is never optimal to
harvest both the predator and the prey. Either we drive the predator extinct and we
harvest the prey or we do not harvest the prey at all and we harvest the predator.

The second model we look at consists of an ecosystem where the two species
compete with each other for resources. We show that depending on the inter- and
intracompetition coefficients of the system, one can have two different regimes each
having three regions which depend on the harvesting rates q, r :

(a) (I) Persistence of species 1 and extinction of species 2; (II) Extinction of species
1 and persistence of species 2; (III) Coexistence

(b) (I) Persistence of species 1 and extinction of species 2; (II) Extinction of species
1 and persistence of species 2; (III) Bistability, i.e., with probability px,y > 0,
which depends on the initial abundances (x, y) of the two species, that species 1
persists and species 2 goes extinct, and with probability 1− px,y > 0 the opposite
happens.

We show that harvesting can facilitate coexistence in certain cases. When species 1
is dominant and drives species 2 extinct in the absence of harvesting, it is possible to
harvest species 1 and ensure the persistence of both species.

Finally, we look at the optimal harvesting strategies for the competitive system.
Combining analytical proofs and numerical simulations, we see that in contrast to the
predator–prey setting, it can be optimal, depending on the inter and intra competition
rates, to harvest one or both of the species.

2 Stochastic Population Dynamics

We start by describing the stochastic population models we will be working with. To
include the effects of random environmental fluctuations, ecologists and mathemati-
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cians often use stochastic difference equations of the form:

Xi
t+1 = Xi

t fi (Xt , ξt+1). (2.1)

here the vector Xt := (X1
t , . . . , X

n
t ) ∈ S ⊂ R

n+ records the abundances of the n pop-
ulations at time t ∈ Z+ and ξt+1 is a random variable that describes the environmental
conditions between time t and t + 1. The subset S will denote the state space of the
dynamics. It will either be a compact subset of Rn+ or all of Rn+. The coexistence set
is the subset S+ = {x ∈ S | xi > 0, i = 1, . . . n} of the state space where no species
is extinct. The real function fi (Xt , ξt+1) captures the fitness of the i-th population at
time t and depends both on the population sizes and the environmental state. Mod-
els of this type can capture complex short-term life histories and include predation,
cannibalism, competition, and seasonal variations.

We have to differentiate between the setting where the dynamics is bounded, and
the process enters and remains in a compact set, and the case when the dynamics is
unbounded. We will make the following assumptions throughout the paper:

(A1) ξ1, . . . , ξn, . . . is a sequence of i.i.d. random variables taking values in a Polish
space E .

(A2) For each i the fitness function fi (x, ξ) is continuous in x on S, measurable in
(x, ξ) and strictly positive.

Assumptions (A1) and (A2) ensure that the process Xt is a Feller process that lives
on S+, i.e., Xt ∈ S+, t ∈ Z+ whenever X0 ∈ S+. One has to make extra assumptions
(see (A3) or (A4) in “Appendix A”) in order to ensure the process does not blow up
or fluctuate too abruptly between 0 and ∞. We note that most ecological models will
satisfy these assumptions. For more details see the work by Benaïm and Schreiber
(2019), Hening et al. (2020).

Remark 2.1 Suppose the dynamics is given by the more general model of the type

Xi
t+1 = Fi (Xt , ξt+1). (2.2)

Note that (2.2) reduces to (2.1) if Fi is C1 and Fi (x) = 0 whenever xi = 0. This
means that Fi is a nice, sufficiently smooth, vector field which takes the value 0 if
species i is extinct—this is a natural assumption as there is no reason the population
should be able to come back from extinction. Under these assumptions, we can see
that (2.1) is satisfied by setting

fi (x, ξ) =
{

Fi (x,ξ)
xi

if xi > 0,
∂Fi (x,ξ)

∂xi
if xi = 0.

We will sometimes compare the stochastic model (2.1) with its averaged determin-
istic counterpart

xit+1 = xit f i (xt ) (2.3)
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where f i (x) := E fi (x, ξ1). Note that

E[Xi
t+1 | Xt = x] = xiE fi (x, ξ1) = xi f i (x),

so that (2.3) is the average of (2.1) in this sense.
For example, if f (x, ξ) = ξu(x) and ξ1 is a random variable with expectation

Eξ1 = 1, then

E[Xi
t+1 | Xt = x] = xi u(x).

This is the setting used by Reed (1978).

2.1 Stochastic Persistence

We define the extinction set, where at least one species is extinct, by

S0 := S \ S+ = {x ∈ S : min
i

xi = 0}.

The transition operator P : B → B of the process X is an operator which acts on
Borel functions B := {h : S → R | h Borel} as

Ph(x) = Ex[h(X(1))] := E[h(X(1)) | X(0) = x], x ∈ S.

The operator P acts by duality on Borel probability measures μ by μ → μP where
μP is the probability measure given by

∫
S
h(x)(μP)(dx) :=

∫
S
Ph(x)μ(dx)

for all h ∈ C(S). A Borel probability measureμ onS is called an invariant probability
measure if

μP = μ

where P is the transition operator of the Markov process Xt . An invariant probability
measure or stationary distribution is a way of describing a ‘random equilibrium’. If the
process starts with X0 having an initial distribution given by the invariant probability
measure μ, then the distribution ofXt is μ for all t ∈ Z+. In a sense this is the random
analogue of a fixed point of a deterministic dynamical system. It turns out that a key
concept is the realized per-capita growth rate (Schreiber et al. 2011) of species i when
introduced in the community described by an invariant probability measure μ

ri (μ) =
∫
R
n+
E[ln fi (x, ξ1)] μ(dx) =

∫
ri (x)μ(dx) (2.4)
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where

ri (x) = E[ln fi (x, ξ1)]

is the mean per-capita growth rate of species i at population state x. This quantity tells
uswhether species i tends to increase or decreasewhen introduced at an infinitesimally
small density into the subcommunity described by μ. If the i th species is among the
ones supported by the subcommunity given by μ, i.e., i lies in the support of μ, then
this species is in a sense ‘at equilibrium’ and one can prove that

ri (μ) = 0. (2.5)

The only directions i in which ri (μ) can be nonzero are those which are not supported
by μ.

One can show that the invariant probability measures living on the extinction set S0,
together with some tightness assumptions, fully describe the long-term behavior of the
system. In a sense, if any such invariant probability measure is a repeller which pushes
the process away from the boundary in at least one direction, then the system persists.
Let Conv(M) denote the set of all invariant probability measures supported on S0. In
order to have the convergence of the process to a unique stationary distribution, one
needs some irreducibility conditionswhich keep the process frombeing too degenerate
(Hening et al. 2020; Meyn and Tweedie 1992). The following theorem characterizes
the coexistence of the ecosystem.

Theorem 2.1 Suppose that for all μ ∈ Conv(M) we have

max
i

ri (μ) > 0. (2.6)

Then, the system is almost surely stochastically persistent and stochastically persis-
tent in probability. Under additional irreducibility conditions, there exists a unique
invariant probability measure π on S+ and as t → ∞ the distribution ofXt converges
in total variation to π whenever X(0) = x ∈ S+. Furthermore, if w : S+ → R is
bounded, then

lim
t→∞Ew(Xt ) =

∫
S+

w(x) π(dx).

A sketch of the proof of this result appears in “Appendix A”.

2.2 Classification of Two Species Dynamics

Sometimes one is not only interested in persistence and coexistence, but also in con-
ditions which lead to extinction. Extinction results are more delicate and require a
technical analysis. Some extinction results appeared in work by Hening and Nguyen
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(2018), Benaïm and Schreiber (2019). We restrict our discussion to a system with two
species. In this setting, (2.1) becomes

X1
t+1 = X1

t f1(X
1
t , X

2
t , ξt+1),

X2
t+1 = X2

t f2(X
1
t , X

2
t , ξt+1).

(2.7)

The exact assumptions and technical results are found in “AppendixB”.Wecan classify
the dynamics as follows.We first look at the Dirac delta measure δ0 at the origin (0, 0)

ri (δ0) = E[ln fi (0, ξ1)], i = 1, 2.

If ri (δ0) > 0, then species i survives on its own and converges to a unique invariant
probability measure μi supported on S i+ := {x ∈ S | xi �= 0, x j = 0, i �= j}. The
realized per-capita growth rates can be computed as

ri (μ j ) =
∫

(0,∞)

E[ln fi (x, ξ1)]μ j (dx).

(i) Suppose r1(δ0) > 0, r2(δ0) > 0.

• If r1(μ2) > 0 and r2(μ1) > 0, we have coexistence and convergence of the
distribution of Xt to the unique invariant probability measure π on S+.

• If r1(μ2) > 0 and r2(μ1) < 0, we have the persistence of X1 and extinction
of X2.

• If r1(μ2) < 0 and r2(μ1) > 0, we have the persistence of X2 and extinction
of X1.

• If r1(μ2) < 0 and r2(μ1) < 0, we have that for any X0 = x ∈ S+

px,1 + px,2 = 1,

where px, j > 0 is the probability that species j persists and species i �= j
goes extinct.

(ii) Suppose r1(δ0) > 0, r2(δ0) < 0. Then, species 1 survives on its own and con-
verges to its unique invariant probability measure μ1 on S1+.

• If r2(μ1) > 0, we have the persistence of both species and convergence of the
distribution of Xt to the unique invariant probability measure π on S+.

• If r2(μ1) < 0, we have the persistence of X1 and the extinction of X2.

(iii) Suppose r1(δ0) < 0, r2(δ0) < 0. Then, both species go extinct with probability
one.

We note that our results are significantly more general than those from Ellner (1989).
In Ellner (1989), the author only gives conditions for coexistence and does not treat
the possibility of the extinction of one or both species.
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Example 2.1 The simplest case is when the noise is multiplicative, that is

X1
t+1 = X1

t Z
1
t+1 f1(X

1
t , X

2
t )

X2
t+1 = X2

t Z
2
t+1 f2(X

1
t , X

2
t ),

(2.8)

where Z1
1, Z

1
2, . . . is an i.i.d. sequence of random variables and Z2

1, Z
2
2, . . . is an

independent sequence of i.i.d. random variables. In this case for i = 1, 2 we have

ri (δ0) = E[ln(Zi
t+1 fi (0))]

= E ln Z1 + ln fi (0).
(2.9)

The growth rates at 0 in the stochastic model differ from the growth rates at 0 of the
deterministic model only by the term E ln Z1.

2.3 Harvesting

We next describe how the harvesting effects are taken into account. We assume that
the harvesting takes place during a short harvest season. The size of the population at
the beginning of the harvest season in year t will be denoted by Yt and will be called
return in year t . If we assume the harvest season is short so that growth and natural
mortality can be neglected during the harvesting and that the harvesting strategy is
stationary, i.e., the size of the harvest in any year depends only on the size of the
population return Y in that year, we can write

Xi
t = Y i

t − hi (Yt ) = ui (Yt ) (2.10)

where Xi
t is the escapement of the i th population from the harvest and hi (Yt ) is the

amount of species i that is harvested at time t . The function ui is called the escapement
function and measures how much is left after harvesting. Note that since we cannot
harvest a negative amount or more than the total population size, we will always have

0 ≤ hi (y) ≤ yi .

Set u(y) := (u1(y), . . . , un(y)). Once the harvesting is done, the population evolves
according to (2.1) so that the size of the return in year t+1 is related to the escapement
in year t via

Y i
t+1 = Xi

t fi (Xt , ξt+1). (2.11)

Combining (2.10) and (2.11), we get

Y i
t+1 = ui (Yt ) fi (u(Yt ), ξt+1). (2.12)

In order to be able to analyze the process Yt , we have to make sure that it can be
written in the Kolmogorov form (2.1). In order to get this, we assume that
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Assumption 2.1 For all i = 1, . . . , n the following properties hold

(a) The function ui is strictly positive on S+, with

ui (y) ≤ yi .

(b) The function ui is continuous on S and continuously differentiable at yi = 0.

Remark 1 Note that Assumption 2.1 implies that ui (y) = 0 if yi = 0 and

∂ui
∂ yi

(y) = lim
yi→0

ui (y)
yi

≤ 1

if y ∈ S with yi = 0.

2.4 Persistence with Harvesting

Since overharvesting can lead to extinction,wewant to find sufficient conditionswhich
ensure the process Yt converges to a unique invariant probability measure on S. Note
that we need to put (2.12) into the form (2.1). For this, using Remark 2.1, let

gi (x, ξ) :=
{ ui (x)

xi
fi (u(x), ξ) if xi > 0,(

∂ui
∂xi

(x)
)
fi (u(x), ξ) if xi = 0.

(2.13)

We can write (2.12) as

Y i
t+1 = Y i

t gi (Yt , ξt+1). (2.14)

In order to use Theorem 2.1, we have to make sure that conditions (A1)–(A4) are
satisfied that the process Yt is φ-irreducible and that (2.6) holds. If μ is an invariant
probabilitymeasure ofYt living on the extinction setS+, the realized per capita growth
rates will be given by

ri (μ) =
∫
S
E[ln gi (x, ξ1)] μ(dx). (2.15)

Specifically, if we look at the Dirac mass at 0, we get

ri (δ0) =
∫
S0

E[ln gi (x, ξ1)] δ0(dx)

= E[ln gi (0, ξ1)]
= E

[
ln

(
∂ui
∂xi

(0) fi (0, ξ)

)]
.

(2.16)
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Example 2.2 If the noise is multiplicative and we are in the setting of Example 2.1,
i.e.,

Y i
t+1 = Y i

t Z
i
t+1gi (Yt ), (2.17)

then

ri (δ0) = E[ln(Zi
t+1gi (0))]

= E ln Z1 + ln

(
∂ui
∂xi

(0) fi (0)

)

= E ln Z1 + ln

(
∂ui
∂xi

(0)

)
+ ln fi (0).

(2.18)

Biological interpretation The above equation showcases the additive contributions of
the random environmental fluctuations, the intrinsic growth rate at 0 of the population
and harvesting to the persistence of the population. Suppose first there is no harvesting.
Suppose for simplicity that EZ1 = 1. Then, the population persists if

E ln Z1 + ln fi (0) > 0,

that is when

fi (0) − 1 > e−E ln Z1 − 1 =: A.

Note that fi (0) − 1 represents the limiting expected annual growth rate at the zero
population level, also called the average intrinsic annual growth rate. The above tells
us that there is a threshold A above which the average annual growth rate has to be so
that the population persists. The quantity A measures the dispersion or spread of the
distribution of the environmental fluctuations around their mean value. In other words,
A is a measure of the degree of environmentally induced fluctuations. For example, if
Z1 has a log-normal distribution with mean one and variance σ 2, one can show that

A =
√
1 + σ 2 − 1.

This shows that the critical value of the average intrinsic annual growth rate necessary
for survival has to be higher in an environment with a high degree of fluctuation
that in an environment with a low degree of fluctuation. Next, let us assume there is
harvesting. Since ∂ui

∂xi
(0) ≤ 1, we always have ln( ∂ui

∂xi
(0)) ≤ 0 so that, as expected,

harvesting is always detrimental to the survival of each individual species. Arguing as
above, we get that for persistence, the minimal escapement rate is such that

∂umin
i

∂xi
(0) > e−(E ln Z1+ln fi (0)) = e−E ln Z1

fi (0)
.
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Since hi (y) = 1 − ui (y), this implies that the maximal harvesting rate satisfies

∂hmax
i

∂xi
(0) < 1 − e−(E ln Z1+ln fi (0)) = 1 − e−E ln Z1

fi (0)
.

If Z1 has a log-normal distribution with mean one and variance σ 2, we get that the
maximal harvesting rate is

1 −
√
1 + σ 2

fi (0)
.

This shows that high environmental fluctuations are detrimental to harvesting and
cannot be neglected. The effects of environmental variability have been seen espe-
cially in fishing. In four case studies from marine fisheries, including northern cod,
haddock, oysters and krill Hofmann and Powell (1998) argue that exploited fisheries
must include the effects of environmental fluctuations.

3 Single Species Harvesting

This section explores the setting when there is only one species in the ecosystem. The
results can be seen as an extension of the results from Reed (1978). Our results show
that environmental fluctuations are usually detrimental to the optimal harvesting yield.
Actually, only under very special conditions, it is possible for the stochastic dynam-
ics to have the same maximal expected long-term yield as the related deterministic
dynamics. Even in that case, the nonzero variance of the stochastic long-term yield
makes it more risky than its deterministic analogue.

We can show that in some special cases of constant-escapement strategies, it is
possible for the stochastic expected long-term yield to be higher than the deterministic
yield.

One can see from (2.14) that the dynamics of the return will be given by

Yt+1 = Yt g(Yt , ξt+1) (3.1)

for

g(x) :=
{

u(x)
x f (u(x), ξ) if x > 0,(
∂u
∂x (0)

)
f (u(0), ξ) if x = 0.

We will work under the assumption that without harvesting we have

E [ln ( f (0, ξ1))] > 0 (3.2)
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so that the species persists. Suppose the assumptions of one of the Theorems A.1, A.2,
A.3 or 2.1 hold. Then, in order to have persistence we need

r1(δ0) =
∫

∂R+
E[ln g(x, ξ1)] δ0(dx) = E

[
ln

((
∂u

∂x
(0)

)
f (0, ξ1)

)]
> 0 (3.3)

where δ0 is the point mass at 0 and we made use of (2.15) and Assumption 2.1. We
can express this result as

∂u

∂x
(0) > e−E ln f (0,ξ1). (3.4)

Let us next compute the expected long-term harvest yield. If the assumptions of The-
orem 2.1 are satisfied we will have

Yt → Y∞

in distribution as t → ∞. Here Y∞ is a random variable whose distribution equal to
the invariant probability measure πu . In many models, and for well-behaved functions
h one can show by Theorem 2.1 that Eh(Y∞) exists and is finite. As a result, we have
that with probability one

lim
T→∞

∑T
t=0 h(Yt )

T
= Eh(Y∞).

This tells us that the long-run average harvest yield converges to a steady yield
Eh(Y∞). Furthermore, we can also see that expected yield also converges to the same
quantity

lim
T→∞Eh(YT ) = Eh(Y∞) =

∫
(0,∞)

h(x) πu(dx).

From now on we will call Eh(Y∞) the expected steady-state yield. In general, it is not
possible to find Eh(Y∞). However, in certain instances we can exploit the fact that,
at stationarity, the realized per-capita growth rates in the directions supported by the
measure πu are all zero (Hening et al. 2020). In other words,

0 = r1(π) =
∫

(0,∞)

E

[
ln

(
u(x)

x
f (u(x), ξ1)

)]
πu(dx). (3.5)

3.1 Stochastic Versus Deterministic Harvesting

Let us compare the stochastic dynamics (3.1) with its deterministic average

xt+1 = xt f (xt ) (3.6)
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where f (x) := E f (x, ξ1) and F(x) := x f (x). If h is any stationary harvesting
strategy, the deterministic equilibrium return y satisfies

y = F(u(y))

and the equilibrium yield is

h(y) = y − u(y) = F(u(y)) − u(y) = G(u(y))

where G(x) := F(x) − x . The deterministic maximum sustainable yield (DMSY)
is obtained by keeping the escapement u(y) at the level x1 at which G attains its
maximum, i.e., at the point x1 where

0 = G
′
(x1) = F

′
(x1) − 1 = f (x1) + x1 f

′
(x1) − 1.

The DMSY Mdet will be

Mdet = G(x1) = x1 f (x1) − x1.

Theorem 3.1 The expected value of the steady state harvest yield Eh(Y∞) of any
stationary harvesting policy h of the model (3.1) is always dominated by the maximum
deterministic sustainable yield of the equivalent deterministic model (3.6),

Eh(Y∞) ≤ Mdet.

The only way to achieve an equality in the above is when the following conditions are
satisfied:

(1) The unharvested dynamics Xt+1 = Xt f (Xt , ξt+1) is able to go to a level greater
or equal to x1.

(2) The harvesting policy is bang-bang with threshold x1, that is

h∗(y) :=
{
y − x1 if y > x1,

0 if y ≤ x1.

(3) The level x1 is self-sustaining, i.e., the stochastic effects do notmake the population
ever go below x1 once it reaches this level.
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Proof LetG(x, ξ) := x f (x, ξ)−x and note thatEG(x, ξ1) = G(x). For the stochastic
model, if we use the harvesting policy h, the long-run average yield is

Eh(Y∞) = EY∞ − E[u(Y∞)]
= Eu(Y∞) f (u(Y∞), ξ1) − E[u(Y∞)]
= EG(u(Y∞)), ξ1)

=
∫ ∫

G(u(y), ξ)P(Y∞ ∈ dy, ξ1 ∈ dξ)

=
∫ ∫

G(u(y), ξ)P(Y∞ ∈ dy)P(ξ1 ∈ dξ)

=
∫ (∫

G(u(y), ξ)P(ξ1 ∈ dξ)

)
P(Y∞ ∈ dy)

= EG(u(Y∞))

(3.7)

where we used the fact that Y∞ and u(Y∞) f (u(Y∞), ξ1) have the same distribution
and Y∞ is independent of ξ1. Since G attains its maximum at x1, we have

Eh(Y∞) = EG(u(Y∞)) ≤ G(x1) = Mdet. (3.8)

In order to have equality in (3.8), we need the law of u(Y∞) to be the point mass δx1
at x1. This means that with probability 1

Y∞ − h(Y∞) = x1.

One can achieve this if:

(1) the population can get to a level that is equal or greater to x1,
(2) one uses the bang-bang, also called constant escapement or threshold, harvest

policy at the level x1

h∗(y) :=
{
y − x1 if y > x1,

0 if y ≤ x1,

and
(3) once the population reaches the level x1, it never decreases to a lower level, that

is, if Xt = x1, then

Yt+1 = X1 f (X1, ξ1) = x1 f (x1, ξ1) ≥ x1

with probability 1.

The last property is equivalent to having P( f (x1, ξ1) ≥ 1) = 1—if this is true, we say
that the level x1 is self-sustaining. �
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Biological Interpretation In general, it is not possible to have the samemaximal yield in
the stochastic setting as in the deterministic setting. Due to environmental fluctuations
the expected long-term yield of any harvesting strategy h will be dominated by the
deterministic maximum sustainable yield. The only case when the maximal yields
in the stochastic and deterministic setting are equal, is when one uses a constant
escapement strategy with threshold x1 (which maximizes the deterministic MSY), the
stochastic dynamics can reach levels greater or equal to x1 and x1 and then never goes
below x1 due to environmental fluctuations. These very specific conditions will not
usually hold. As such, for most situations we cannot expect to get the same optimal
harvesting yields in the deterministic and stochastic settings. This is the case for
natural populations. In Bayliss (1989), the author shows that the effects of variable
rainfall decrease the maximum harvest rate and themaximum harvest yield for magpie
geese by 25%. Since the magpie goose is one of the most important game species
in Australia, it is key to take into account environmental fluctuations. In general,
sustainable harvesting strategies will be overestimated if one ignores environmental
fluctuations. As a result, one needs to adjust harvesting strategies in order to adapt
to increasing environmental variability (Hulme 2005). The greater the environmental
variation, the greater the proportion of time a population is likely to spend below its
carrying capacity, making the population more prone to extinction.

We note that threshold (or bang-bang) harvesting strategies do not influence the
persistence criterion in the one-dimensional case. The unharvested system

Xt+1 = Xt f (Xt , ξt+1) (3.9)

has

r X1 (δ0) = E ln f (0, ξ1) > 0.

If one adds harvesting, then

Yt+1 = Yt g(Yt , ξt+1)

where

g(x) :=
{ uw(x)

x f (uw(x), ξ) if x > 0,(
∂uw

∂x (0)
)
f (uw(0), ξ) if x = 0.

The bang-bang strategy

hw(y) :=
{
y − w if y > w,

0 if y ≤ w,

with w > 0 also has

rY1 (δ0) = E ln g(0, ξ1) = E ln

(
∂uw

∂x
(0)

)
f (u(0), ξ) = E ln f (0, ξ1) = r X1 (δ0).
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This implies that a constant escapement strategy with a threshold w > 0 does not
change the per-capita growth rate and thus does not interfere with persistence. This
is one reason why bang-bang harvesting strategies are robust and make sense when
there is only one species present. This is not the case anymore when there are multiple
species present.
Biological InterpretationAtany sustainable harvesting level, the a thresholdharvesting
strategy produces a lower risk of depletion or extinction than any other strategy. This is
because threshold harvesting keeps the population at relatively high levels by allowing
it to recover at the natural rate, without harvesting, when its population is below the
threshold. Furthermore, at any level of risk of depletion or extinction, the optimal
threshold strategy produces a higher mean annual yield than any other strategy.

3.2 Constant Effort Harvesting

Quite often in fisheries a constant effort harvesting method is used. These strategies
are such that the same fixed proportion of the return is captured every year. In other
words, for some fixed θ ∈ (0, 1) we have

hθ (x) = θx

and

uθ (x) = (1 − θ)x .

The persistence criteria (3.4) become

θ < θmax := 1 − e−E ln f (0,ξ1)

where θmax is the maximum sustainable rate of exploitation. Let us compare this with
the deterministic system

xt+1 = xt f (xt ) = F(xt )

where f (x) = E f (x, ξ1). In this setting, themaximum sustainable rate of exploitation
θdet is given by

θdet = 1 − 1

f (0)
= 1 − e− lnE f (0,ξ1).

Since the logarithm is a concave function, Jensen’s inequality implies that

E ln f (0, ξ1) ≤ lnE f (0, ξ1),

with equality if and only if f (0, ξ1) is constant with probability one. As a result,

θmax < θdet,
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which was shown by Reed (1978) in a simpler model.
Biological Interpretation If one neglects environmental fluctuations, one might use
a rate of exploitation that seems sustainable θ < θdet. However, if one has θ ∈
(θmax, θdet), this constant effort harvesting with rate of exploitation θ will lead to
extinction. This inequality is important because it shows that one is in danger of
driving species extinct if environmental stochasticity is neglected. This analysis pro-
vides theoretical evidence for the ‘harvest-interaction hypothesis’ (Shelton andMangel
2011; Rouyer et al. 2012; Cameron et al. 2016; Gamelon et al. 2019) from conserva-
tion ecology which says that certain harvesting strategies might increase the risk of
extinction.

It is well known that in the setting of (3.6) the deterministic maximum sustainable
yield (DMSY) is achieved when the rate of exploitation is

θDMSY = 1 − 1

f (x1)

for x1 satisfying

f
′
(x1) = 1.

Under environmental conditions which are large enough, we can have

e− lnE f (0,ξ1) >
1

f (x1)

which implies

θDMSY = 1 − 1

f (x1)
> θmax = 1 − e−E ln f (0,ξ1)

Biological Interpretation If the environmental fluctuations are significant, one has
θDMSY > θmax. This shows that if large environmental fluctuations are possible and
we harvest the population according to the deterministic MSY rate of exploitation, we
will drive it to extinction. This provides more evidence that environmental fluctuations
are of fundamental importance when considering harvesting strategies. This result is
important for resource management as a theoretical example of how harvesting can
alter the dynamics of the exploited species and lead to extinction. It supports the
conclusion of the empirical study Anderson et al. (2008) which shows that fishing can
increase the fluctuations in fish abundance by increasing the dynamic instability of
populations.

Theorem 3.2 If the deterministic averaged system (3.6) has a strictly concave F, and
the dynamics (3.9) is not purely deterministic, then the asymptotic expected yield of
any constant effort harvest strategy is strictly lower than the deterministic yield of that
harvesting policy.
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Proof For a constant-effort policy hθ (y) = θ y, the asymptotic expected yield is given
by

Ehθ (Y∞) = θEY∞.

Set uθ (y) = (1 − θ)y. Using that uθ (Y∞) f (uθ (Y∞), ξ1) and Y∞ have the same
distribution, an argument similar to the one from (3.7) shows that

EY∞ = EY∞ f (uθ (Y∞), ξ1) = 1

1 − θ
EF(uθ (Y∞)).

If the function

F(y) = yE f (y, ξ1)

is strictly concave, then by Jensen’s inequality

1

1 − θ
EF(uθ (Y∞)) ≤ 1

1 − θ
F(Euθ (Y∞)). (3.10)

One can have equality in (3.10) only if Y∞ is with probability one a constant random
variable. This implies that

EY∞ ≤ F((1 − θ)EY∞).

As we know, in the deterministic model, using the same policy with harvest rate θ , the
equilibrium return ŷθ satisfies

ŷθ = F((1 − θ)ŷθ ).

This together with the strict concavity of F implies that

EY∞ ≤ ŷθ .

Equality can only hold if Y∞ is with probability one a constant, which means the
dynamics is deterministic. �


3.3 Bang-Bang Threshold Harvesting

Bang-bang or constant-escapement harvesting strategies are important and are used
in many theoretical models as well as in actual harvesting situations, like fisheries.
These policies have been shown to be optimal in many instances both for the continu-
ous (Lungu and Øksendal 1997; Alvarez and Shepp 1998; Hening et al. 2019; Alvarez
and Hening 2019) and discrete time (Reed 1978, 1979) settings. Constant escape-
ment strategies turned out to be optimal for maximizing discounted yield, asymptotic
yield, as well as discounted economic revenue under many different conditions. In
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discrete time, the work by Reed (1979) implies that a bang-bang policy maximizes
the expected discounted net revenue in a discrete time stochastic model. It has not
been shown in discrete time, to our knowledge, that the expected steady-state yield
is always maximized under a bang-bang strategy. However, both heuristic arguments
and analytical results in specific cases hint that these strategies are probably the ones
that will in general be optimal. In addition, these are the strategies that are most widely
used in fisheries, where the escapement is controlled. We will explore how well these
bang-bang strategies do in the stochastic harvesting setting (3.1) in comparison with
the deterministic setting (3.6).

Suppose we harvest according to the bang-bang strategy

hw(y) :=
{
y − w if y > w,

0 if y ≤ w,
(3.11)

with w > 0. Let rs be the maximum self-sustaining level

rs = max{x | P( f (x, ξ1) ≥ 1) = 1}.

We have to differentiate between two cases:

(1) The level w is self-sustaining, i.e.,

P( f (w, ξ1) ≥ 1) = 1.

(2) The level w is not self-sustaining.

Proposition 3.1 If the threshold level w is self-sustaining, then the expected value of
the long-term yield Ehw(Y∞) is equal to the deterministic yield of the same strategy
G(w). The variance of the yield hw(Y∞) is given by

σ 2(hw(Y∞)) := w2
E[ f 2(w, ξ1) − f (w)2].

Proof Suppose w is self-sustaining. Then,

Ehw(Y∞) = E(Y∞ − w) = Ew f (w, ξ1) − w = F(w) − w = G(w).

For the variance of the yield, we get

σ 2(hw(Y∞)) = E[hw(Y∞)2] − (Eh(Y∞))2

= E[(w f (w, ξ1) − w)2] − (F(w) − w)2

= Ew2 f 2(w, ξ1) − 2w2
E f (w, ξ1) + w2 − F

2
(w) + 2F(w)w − w2

= w2
E[ f 2(w, ξ1) − (E f (w, ξ1))

2].

This completes the proof. �
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Biological InterpretationA self-sustaining thresholdw is one where, once the popula-
tion size goes abovew, the environmental fluctuations can never push the population’s
size under this threshold. Only in this very special case, it is possible to have the same
yield in the stochastic and deterministic settings. Nevertheless, the environmental
fluctuations make the variance of the yield increase, which is bad since it can lead to
economic losses.

Proposition 3.2 Suppose the following properties hold:

• w is not self-sustaining
• All the levels x ∈ [0, rs] are self-sustaining
• G(x) = xF(x) − x is unimodal with its maximum at x
• x is self-sustaining.

The expected steady-state yield of the harvesting strategy hw is strictly greater than
the deterministic nominal yield of the same strategy

Ehw(Y∞) > G(w).

Proof If hw is given by (3.11) for some w > 0, then

uw(y) :=
{

w if y > w,

y if y ≤ w.
(3.12)

Note that Y∞ will be supported by a subset of [rs,∞). By assumption w > rs > x ,
so that

G(y) > G(w), y ∈ [rs, w].

This implies that with probability one

G(Y∞)1{Y∞ ∈ [rs, w]} > G(w)1{Y∞ ∈ [rs, w]}.

Using that the function G is nonincreasing on [rs, w] together with (3.12) and the last
inequality, we see that

Ehw(Y∞) = EG(uw(Y∞))

= E[G(Y∞)1{Y∞ ∈ [rs, w]}] + E[G(w)1{Y∞ > w}]
> E[G(w)1{Y∞ ∈ [rs, w]}] + E[G(w)1{Y∞ > w}]
= G(w).

with w > 0. �

Biological Interpretation Suppose one picks a harvesting threshold w which is not
self-sustaining, while the maximum yield of the deterministic dynamics happens at
a threshold x < w which is self-sustaining. Then, the expected yield of the constant
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escapement strategy with threshold w for the stochastic dynamics is strictly greater
than the expected yield of the same strategy in the deterministic system. The envi-
ronmental fluctuations will push the population size into the region (x, w) and in
this region, the function G, which measures the size of the deterministic harvest, is
strictly decreasing. This makes it more favorable to go below w, something which is
not possible in the deterministic dynamics.

4 The Ricker Model: Single Species

In this section, we will provide an in-depth analysis of the Ricker model. Its dynamics
is given by the functional response:

f (x, ξ) = eρ−αx .

Here, the randomness comes from ξ := (ρ, α). The quantity ρt is the fluctuating
growth rate and αt is the competition rate. We assume that ρ1, ρ2, . . . are i.i.d. random
variables on R, and α1, . . . are independent i.i.d. random variables supported on R. In
this setting, one can see that without harvesting

r X (δ0) = Eρ1

while with harvesting strategy h(y) (or escapement strategy u(y))

rY (δ0) = ln

(
∂u

∂x
(0)

)
+ Eρ1.

The maximal harvesting rate at 0 which does not lead to extinction is

∂h

∂x
(0) < 1 − e−Eρ1 .

4.1 Maximum Sustainable Yield

Wewant to see when we can apply the results of Theorem 3.1. Suppose that ρ1 is such
that Eeρ1 = K1 > 0 and assume for simplicity that α1 > 0 is a constant. Then,

f (x) = Eeρ1−α1x = K1e
−α1x ,

F(x) = x f (x) = xK1e−α1x and G(x) = xK1e−α1x − x . By the analysis from
Section 3.1, the deterministic maximum yield is achieved at the point x1 where

G
′
(x1) = f (x1) + x1 f

′
(x1) − 1 = K1e

−α1x1 − α1x1K1e
−α1x1 − 1 = 0.

Define the function

q(x) = K1e
−α1x − α1K1xe

−α1x − 1, x ∈ R+.
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Lemma 4.1 If q(0) < 0, then the equation q(x) = 0 has no solutions on (0,∞). If
instead q(0) > 0, then the equation q(x) = 0 has exactly one solution x1 > 0.

Proof Note that

q ′(x) = α1K1e
−α1x (−2 + α1x)

and

q ′′(x) = −α2
1K1e

−α1x (−2 + α1x) + α2
1K1e

−α1x .

This shows that starting from x = 0, the function q decreases to its minimum at
x = 2

α1
and then increases from there on forever. However, once q goes below zero,

it will never go above zero again. This happens because of the above properties and
the fact that

lim
x→∞ q(x) = lim

x→∞(K1e
−α1x − α1K1xe

−α1x − 1) = −1.

This implies that if q(0) < 0, there are no solutions to q(x) = 0. If we assume
q(0) > 0, we get in combination with limx→∞ < 0 by the intermediate value theorem
that there exists a solution to q(x) = 0. It is also clear by the properties of q(x) that
there exists exactly one solution to q(x) = 0 and the solution has to lie in the interval
(0, 2

α1
). �


In order to be able to achieve this yield in the stochastic setting, according to
Theorem 3.1, we need to ensure that x1 is self-sustainable. This boils down to

P ( f (x1, ξ) ≥ 1) = P
(
eρ1−α1x1 ≥ 1

) = 1,

or

P (ρ1 ≥ α1x1) = 1.

Since x1 ∈ (0, 2
α1

), we see that if ρ1 ≥ 2 with probability one, then the self-sustaining
harvesting policy given by

h∗(y) :=
{
y − x1 if y > x1,

0 if y ≤ x1,

where x1 is the unique solution to q(x) = 0, maximizes the expected long-term yield
and makes it equal to the deterministic maximal sustainable yield. The value of the
optimal expected long-term yield will be

Eh∗(Y∞) = G(x1) = x1(K1e
−α1x1 − 1).
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4.2 Maximal Constant Effort Policy

Suppose we use a constant effort policy h(x) = θx for some θ ∈ (0, 1) and that both
ρ1 and α1 are random. The condition for persistence (see Theorems 2.1 and A.3) is
given by

Eρ1 + ln(1 − θ) > 0.

This forces that θ ∈ (
0, 1 − e−Eρ1

)
. Assume this condition holds so that Yt converges

to a stationary distribution πθ . Then, (3.5) becomes

0 = ln(1 − θ) + Eρ1 − (1 − θ)Eα1

∫
(0,∞)

x πθ (dx).

We can use this to show that the long run expected yield is given by (Fig. 1)

H(θ) := Eh(Y∞) =
∫

(0,∞)

h(x) πθ (dx) = θ(Eρ1 + ln(1 − θ))

(1 − θ)Eα1
.

The intermediate value theorem shows there is a solution θ∗ ∈ (
0, 1 − e−Eρ1

)
to

0 = H ′(θ∗) = Eρ1 − θ∗ + ln(1 − θ∗)
Eα1(1 − θ∗)2

. (4.1)

Fig. 1 Graph of the long-run average yield H(·) as a function of the harvesting rate θ when Eρ1 = 1 and
Eα1 = 1, 2, 3, 4
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Since the function p(x) = ln(1 − x) − x is strictly decreasing on (0, 1), we also get
that the solution x∗ is unique. Taking another derivative, evaluating at x∗ and using
(4.1) we get

H ′′(θ∗) = 2Eρ1 − θ∗ + 2 ln(1 − θ∗) − 2

Eα1(1 − θ∗)3
= θ∗ − 2

Eα1(1 − θ∗)3
< 0.

This implies that θ∗ is a global maximum of H(θ) on
[
0, 1 − e−Eρ1

]
. The maximal

expected constant effort harvesting yield will be

H(θ∗) = (θ∗)2

(1 − θ∗)Eα1
.

5 Harvesting of two Interacting Species

In this section, we analyze the situation when there are two interacting species that
can be harvested. The system is modeled in the absence of harvesting by

X1
t+1 = X1

t f1(X
1
t , X

2
t , ξt+1),

X2
t+1 = X1

t f2(X
1
t , X

2
t , ξt+1).

As the theory from “Appendix B” shows, one needs to first look at the quantities

ri (δ0) = E[ln fi (0, ξ1)], i = 1, 2.

If ri (δ0) > 0, then species i survives on its own and converges to a unique invariant
probability measure μi supported on (0,∞). Suppose r1(δ0) > 0, r2(δ0) > 0. The
realized per-capita growth rates can be computed via

ri (μ j ) =
∫

(0,∞)

E[ln fi (x, ξ1)]μ j (dx).

If r1(μ2) > 0 and r2(μ1) > 0 by Theorem 2.1, we have the convergence to a unique
stationary distribution π supported on S+.

5.1 Two Species with Harvesting

Assume next that we harvest according to the strategies h1(x1, x2) and h2(x1, x2).
Using (2.13) and (2.14) the dynamics becomes

Y i
t+1 = Y i

t gi (Yt , ξt+1). (5.1)
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where for i = 1, 2

gi (y1, y2, ξ) :=
{ ui (y1,y2)

yi
fi (u1(y1, y2), u2(y1, y2), ξ) if yi > 0,(

∂ui
∂xi

(y1, y2)
)
fi (u1(y1, y2), u2(y1, y2), ξ) if yi = 0.

(5.2)

Species Y i persists on its own with harvesting if

rYi (δ0) = E[ln gi (0, 0, ξ1)]
= E ln

[(
∂ui
∂xi

(0, 0)

)
fi (u1(0, 0), u2(0, 0), ξ1)

]

= ln

(
∂ui
∂xi

(0, 0)

)
+ E ln fi (0, 0, ξ1)

> 0.

(5.3)

or equivalently

∂ui
∂xi

(0, 0) > e−E ln fi (0,0,ξ1). (5.4)

At this point, there are three possibilities one may want to look at:

(1) E ln fi (0, 0, ξ1) > 0, i = 1, 2 and ∂ui
∂xi

(0, 0) > e−E ln fi (0,0,ξ1), i = 1, 2 so that
both harvested species persist on their own and have unique invariant probability
measures μ1 and μ2 on the two positive axes. This describes the harvesting of a
competitive system.

(2) E ln fi (0, 0, ξ1) > 0, i = 1, 2, ∂u1
∂x1

(0, 0) > e−E ln f1(0,0,ξ1) and ∂u2
∂x2

(0, 0) <

e−E ln f2(0,0,ξ1). In this case, there are two species which compete with each other,
both species persist on their ownwhen there is no harvesting, and species 1 persists
with harvesting on its own, while species 2 goes extinct if it is on its own and gets
harvested.

(3) E ln f1(0, 0, ξ1) > 0, E ln f2(0, 0, ξ1) < 0, and ∂u1
∂x1

(0, 0) > e−E ln f1(0,0,ξ1). In
this setting, species 1 is a prey that persists on its own both with harvesting and
without harvesting while species 2 is a predator that cannot persist on its own.

Example 5.1 Assume we work with constant threshold harvesting strategies, so that
we harvest species 1 according to

h(y1, y2) :=
{
y1 − w if y1 > w,

0 if y1 ≤ w

where w > 0. We will suppose species 2 does not get harvested. As we have seen in
Sect. 3.1, constant escapement harvesting strategies do not influence the persistence
of a single species (as long as the threshold is strictly positive). However, we can show
that they do change the persistence criteria if there are two interacting species.
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Suppose species 1 persists one its own: E ln f1(0, 0, ξ1) > 0. Without harvesting
it converges to a stationary distribution μ̃1, while with harvesting it converges to a
different stationary distribution μh

1. Without harvesting we have

r2(μ1) =
∫

(0,∞)

E[ln f2(x, 0, ξ1)]μ̃1(dx)

while with harvesting

r2(μ
h
1) =

∫
(0,∞)

E[ln g2(x, 0, ξ1)]μh
1(dx)

=
∫

(0,∞)

E[ln f2(u1(x1, 0), 0, ξ1)]μh
1(dx1)

=
∫

(0,w)

E[ln f2(x1, 0, ξ1)]μh
1(dx1) +

∫
(w,∞)

E[ln f2(w, 0, ξ1)]μh
1(dx1).

(5.5)

We see that in general, since μh
1 �= μ̃1, we will have r2(μ1) �= r2(μh

1). Therefore, the
persistence criteria are influenced by the threshold policies.

5.2 Two-Dimensional Lotka–Volterra Predator–Prey Model

Suppose that we have model with a predator and a prey, that get harvested pro-
portionally at rates q, r ∈ (0, 1). This means that u1(y1, y2) = (1 − q)y1 and
u2(y1, y2) = (1 − r)y2. Using this in (5.1), we get

Y 1
t+1 = Y 1

t exp
(
ρt+1 + ln(1 − q) − αt+1(1 − q)Y 1

t − at+1(1 − r)Y 2
t

)
Y 2
t+1 = Y 2

t exp
(
−dt+1 + ln(1 − r) − ct+1(1 − r)Y 2

t + bt+1(1 − q)Y 1
t

)

where the random coefficients have the following interpretations: dt+1 > 0 is the
predator’s death rate, at+1 > 0 is the predator’s attack rate on the prey, bt+1 > 0
is the predator’s conversion rate of prey, ct+1 > 0 is the predator’s intraspecific
competition rate. Let dr := E[d1] − ln(1 − r) > 0, ρq := E[ρ1] + ln(1 − q) and
assume (ρt )t∈Z+ , (αt )t∈Z+ , (at )t∈Z+ , (dt )t∈Z+ , (ct )t∈Z+ and (bt )t∈Z+ form indepen-
dent sequences of i.i.d. random variables. We assume for simplicity that the different
random variables have compact support and are absolutely continuous with respect
to Lebesgue measure. Then, one can show by Hofbauer et al. (1987), Benaïm and
Schreiber (2019) that there is K > 0 such that the process Yt eventually enters and
then stays forever in the compact set K = [0, K ]2. We assume that the boundaries
{0} × (0, K ) and (0, K ) × {0} are accessible for all q, r ∈ (0, 1). This can be easily
checked, for example, if ρ1 has (0, L) for some L > 0 in its support.
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As long as ρq > 0, by our previous results, there exists a unique stationary distri-
bution μ

q
1 on (0,∞) × {0} and

∫
x1 μ

q
1(dx1) = ρq

(1 − q)Eα1
= E[ρ1] + ln(1 − q)

(1 − q)Eα1
.

This can be used to get

r2(μ
q
1) = −dr + E[b1] ρq

Eα1
= −(E[d1] − ln(1 − r)) + E[b1]Eρ1 + ln(1 − q)

Eα1
.

If r2(μ
q
1) < 0, the predator Y 2 will go extinct with probability one. This means that,

for a given harvesting rate q ∈ (
0, 1 − e−Eρ1

)
of the prey, the maximal harvesting rate

of the predator that does not lead to its extinction is

rmax = 1 − exp

(
Ed1 − E[b1]Eρ1 + ln(1 − q)

Eα1

)
.

As long as r2(μ
q
1) > 0, or equivalently

dr
ρq

<
Eb1
Eα1

,

we get the existence of a unique invariant probabilitymeasureμ
q,r
12 supported on a sub-

set of (0,∞)2. Putting all the conditions together, we get the following classification
of the harvested dynamics:

• If

0 < q < 1 − e−Eρ1

0 < r < rmax = 1 − exp

(
Ed1 − E[b1]Eρ1 + ln(1 − q)

Eα1

)
,

then the two species coexist and there is a unique invariant probability measure
when

• If

0 < q < 1 − e−Eρ1

1 > r ≥ rmax = 1 − exp

(
Ed1 − E[b1]Eρ1 + ln(1 − q)

Eα1

)
,

then the prey persists and the predator goes extinct with probability 1.
• If

1 > q ≥ 1 − e−Eρ1 ,

then both the prey and the predator go extinct with probability 1.
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Fig. 2 The regions of the harvesting rates q, r for which both species persist, for which just the prey persists
and for which both species go extinct. The parameters areEa1 = Ed1 = Eα1 = Eρ1 = 1,Eb1 = 2,Ec1 =
1.5

We depict one example of the three possible regions in Fig. 2. Suppose next that the

two species persist. If we set Y
1 := ∫

(0,∞)2
x1μ

q,r
12 (du),Y

2 := ∫
(0,∞)2

x2μ
q,r
12 (du),

since by (2.5) the per-capita growth rates at stationarity are zero, we get

r1(μ
q,r
12 ) = 0 = ρq − E[α1](1 − q)Y

1 − E[a1](1 − r)Y
2

r2(μ
q,r
12 ) = 0 = −dr − E[c1](1 − r)Y

2 + (1 − q)E[b1]Y 1
.

Solving this linear system, we get the unique solution

Y
1 = E[c1]ρq + E[a1]dr

1 − q

1

E[α1]E[c1] + E[a1]E[b1]
Y
2 = E[b1]ρq − E[α1]dr

1 − r

1

E[α1]E[c1] + E[a1]E[b1]
(5.6)

On the other hand, if r2(μ
q
1) < 0, we get by the results from “Appendix B” that

limt→∞ ln Y 2
t

t = r2(μ
q
1) < 0 so that the predator goes extinct exponentially fast.

Proposition 5.1 If r2(μ
q
1) < 0 and r1(δ0) = ρq > 0, the prey will persist and EY 1

t →
ρq

(1−q)E[α1] as t → ∞.
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Proof Pick ε, δ > 0 small. We know that r2(μ
q
1) < 0 implies that Y 2

t → 0 almost
surely as t → ∞. Because of this, we can find T > 0 and �δ ⊂ � such that on �δ

one has Y 2
t < ε for t > T and P(�δ) ≥ 1− δ. In other words with probability at least

1 − δ one has Y 2
t < ε for t > T . As a result for t > T , it is true that

Y 1
t e

ρt+1+ln(1−q)−αt+1(1−q)Y 1
t −at+1(1−r)ε < Y 1

t+1

= Y 1
t e

ρt+1+ln(1−q)−αt+1(1−q)Y 1
t −at+1(1−r)Y 2

t

< Y 1
t e

ρt+1+ln(1−q)−αt+1(1−q)Y 1
t

(5.7)

on �δ . Let 1U be the indicator function of the set U ⊂ �. This means that if ω ∈ U ,
then 1U (ω) = 1 and if ω /∈ U , then 1U (ω) = 0. Define the processes (Y ε

t )t∈Z+ and
(Ỹt )t∈Z+ via

Y ε
t+1 = Y ε

t e
ρt+1+ln(1−q)−αt+1(1−q)Y ε

t −at+1(1−r)ε

Ỹ 1
t+1 = Ỹ 1

t e
ρt+1+ln(1−q)−αt+1(1−q)Ỹ 1

t

and assume that Y ε
0 = Ỹ 1

0 = Y 1
0 . By the results from “Appendix A”, it is easy to see

that

lim
t→∞EỸ 1

t+1 = Eρ1 + ln(1 − q)

(1 − q)Eα1

and

lim
t→∞EY ε

t+1 = Eρ1 + ln(1 − q) − ε

(1 − q)Eα1
.

By (5.7), we get

lim sup
t→∞

E

[
Y 1
t

]
≤ lim

t→∞EỸ 1
t+1 = Eρ1 + ln(1 − q)

(1 − q)Eα1
(5.8)

We let �C
δ = � \ �δ and note that P(�C

δ ) ≤ δ. Using (5.7) again

lim
t→∞EỸ ε

t+1 − lim
t→∞E

[
1�C

δ
Ỹ ε
t+1

]
= lim

t→∞E

[
1�δ Ỹ

ε
t+1

]
≤ lim inf

t→∞ E

[
(1 − 1�C

δ
)Y 1

t

]
≤ lim inf

t→∞ EY 1
t + lim sup

t→∞

(
−E

[
1�C

δ
Y 1
t

])
≤ lim inf

t→∞ EY 1
t − lim inf

t→∞ E

[
1�C

δ
Y 1
t

]
.
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The last sequence of inequalities yields

lim
t→∞EỸ ε

t+1 − lim
t→∞E

[
1�C

δ
Ỹ ε
t+1

]
+ lim inf

t→∞ E

[
1�C

δ
Y 1
t

]
≤ lim inf

t→∞ EY 1
t .

Since P(�C
δ ) ≤ δ, we can let δ ↓ 0 to get

Eρ1 + ln(1 − q) − ε

(1 − q)Eα1
= lim

t→∞EỸ ε
t+1 ≤ lim inf

t→∞ EY 1
t . (5.9)

Combining (5.8) and (5.9) forces

Eρ1 + ln(1 − q) − ε

(1 − q)Eα1
= lim

t→∞EỸ ε
t+1 ≤ lim inf

t→∞ EY 1
t ≤ lim sup

t→∞
EY 1

t ≤ lim
t→∞EỸ 1

t+1

= Eρ1 + ln(1 − q)

(1 − q)Eα1

Letting ε ↓ 0 in the above gives us

lim
t→∞EY 1

t = ρq

(1 − q)E[α1]
which finishes the proof. �


Suppose we want to find the optimal harvesting strategy. Since the profit from
harvesting prey or predators might be different, we let β > 0 represent the relative
value of the predator compared to the prey. The problem then becomes maximizing
the function

H(q, r) := lim
T→∞E[h1(Y 1

T ) + βh2(Y
2
T )] = lim

T→∞E[qY 1
T + βrY 2

T ]

= lim
T→∞

∑T
n=1 qY

1
n + rβY 2

n

T
= qY

1 + rβY
2
,

for q, r ∈ [0, 1]2. Using the expressions for Y
1
, Y

2
from (5.6) together with Propo-

sition 5.1, with the understanding that we set Y
1 = ρq

(1−q)E[α1] ,Y
2 = 0 if the prey

persists and the predator goes extinct, and the domain regions identified above we get

H(q, r) =

⎧⎪⎨
⎪⎩

(
E[c1]qρq+E[a1]qdr

1−q + βE[b1]rρq−βE[α1]rdr
1−r

)
1

E[α1]E[c1]+E[a1]E[b1] r < rmax, 0 < q < 1 − e−Eρ1

qρq
(1−q)E[α1] r ≥ rmax, 0 < q < 1 − e−Eρ1

0 q ≥ 1 − e−Eρ1 .

Economic InterpretationWe present the first rigorous results regarding the harvesting
of both species from a predator–prey system. First of all, we are able to describe the
results of harvesting by splitting the q − r plane, where q and r represent the prey
and predator proportional harvest rates, into a region where both species go extinct, a
regionwhere the species coexist, and a regionwhere only the prey persists—see Fig. 2.
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Fig. 3 The graph of H(q, r). The parameters areβ = Ea1 = Ed1 = Eα1 = Eρ1 = 1,Eb1 = 2,Ec1 = 1.5

Fig. 4 The graph of H(q, r). The parameters are β = 5,Ea1 = Ed1 = Eα1 = Eρ1 = 1,Eb1 = 2,Ec1 =
1.5

It is never optimal to harvest both the predator and the prey. If the relative price β of
the predator compared to the prey is low, it is always optimal to harvest the predator
to extinction (see Fig. 3). This then lets the prey population increase, and one gains by
harvesting the prey. If instead the relative price β is high, it is optimal to never harvest
the prey (see Fig. 4). This leads to an increase in the predator population, which then
increases the harvesting yield of the predators. This result is the first of its kind for
stochastic harvesting—it complements the deterministic results of Myerscough et al.
(1992), Dai and Tang (1998), Martin and Ruan (2001), Xia et al. (2009).

5.3 Two-Dimensional Lotka–Volterra CompetitionMode

We look at a two-species discrete Lotka–Volterra competition model when the two
species get harvested proportionally at rates q, r ∈ (0, 1). The harvested dynamics is
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given by

Y 1
t+1 = Y 1

t exp
(
ρ1
t+1 + ln(1 − q) − αt+1(1 − q)Y 1

t − at+1(1 − r)Y 2
t

)
Y 2
t+1 = Y 2

t exp
(
ρ2
t+1 + ln(1 − r) − ct+1(1 − r)Y 2

t − bt+1(1 − q)Y 1
t

)

We set ρ1
q := E[ρ1

1 ] + ln(1 − q) and ρ2
q := E[ρ2

1 ] + ln(1 − r) > 0. We assume
the different random coefficients are independent and form sequences of i.i.d. random
variables. Furthermore,wemake the same assumptions thatweremade in the predator–
prey system. These ensure that the state space is compact and that the boundaries are
accessible.

As long as ρ1
q , ρ

2
r > 0, by our previous results, there exists a unique stationary

distribution μ
q
1 (respectively μr

2) on (0,∞) × {0} (respectively, {0} × (0,∞)) and

∫
x1 μ

q
1(dx1) = ρ1

q

(1 − q)Eα1
= E[ρ1

1 ] + ln(1 − q)

(1 − q)Eα1
,

∫
x2 μr

2(dx2) = ρ2
r

(1 − r)Ec1
= E[ρ2

1 ] + ln(1 − r)

(1 − r)Ec1
.

One can then compute the per-capita growth rates

r1(μ
r
2) = ρ1

q − Ea1(1 − r)
∫

x2 μr
2(dx2)

= (E[ρ1
1 ] + ln(1 − q)) − Ea1

Eρ2
1 + ln(1 − r)

Ec1
,

and

r2(μ
q
1) = ρ2

r − Eb1(1 − q)

∫
x1 μ

q
1(dx1)

= (E[ρ2
1 ] + ln(1 − r)) − Eb1

Eρ1
1 + ln(1 − q)

Eα1
.

We get the following classification of the dynamics:

• If

0 < q < 1 − e−Eρ1
1

0 < r < 1 − e−Eρ2
1

Ea1
Ec1

<
Eρ1

1 + ln(1 − q)

Eρ2
1 + ln(1 − r)

<
Eα1

Eb1
,

then the two species coexist and the process converges to its unique invariant
probability measure.
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• If

0 < q < 1 − e−Eρ1
1

0 < r < 1 − e−Eρ2
1

Ea1
Ec1

<
Eρ1

1 + ln(1 − q)

Eρ2
1 + ln(1 − r)

Eb1
Eα1

>
Eρ2

1 + ln(1 − r)

Eρ1
1 + ln(1 − q)

,

then species 1 persists and species 2 goes extinct with probability 1.
• If

0 < q < 1 − e−Eρ1
1

0 < r < 1 − e−Eρ2
1

Ea1
Ec1

>
Eρ1

1 + ln(1 − q)

Eρ2
1 + ln(1 − r)

Eb1
Eα1

<
Eρ2

1 + ln(1 − r)

Eρ1
1 + ln(1 − q)

,

then species 2 persists and species 1 goes extinct with probability 1.
• If (Y 1

0 ,Y 2
0 ) = (x, y) ∈ (0,∞)2, then let px,y = P(Y 1

t → μ
q
1 ,Y

2
t →

0 | (Y 1
0 ,Y 2

0 ) = (x, y)). If

0 < q < 1 − e−Eρ1
1

0 < r < 1 − e−Eρ2
1

Ea1
Ec1

>
Eρ1

1 + ln(1 − q)

Eρ2
1 + ln(1 − r)

Eb1
Eα1

>
Eρ2

1 + ln(1 − r)

Eρ1
1 + ln(1 − q)

then we have bistability, that is, px,y ∈ (0, 1) and 1− px,y = P(Y 2
t → μr

2,Y
1
t →

0 | (Y 1
0 ,Y 2

0 ) = (x, y)).

Note that for a given set of coefficients one cannot have all the 4 regions ifwe varyq and
r . There are two possibilities, each having three regions. One is to have coexistence,
the persistence of species 1 and extinction of species 2, or the extinction of species 1
and the persistence of species 2 (see Fig. 5). The other possibility is to have bistability,
the persistence of species 1 and extinction of species 2, or the extinction of species 1
and the persistence of species 2 (see Fig. 6).
Biological Interpretation An important controversy in ecology addressed the relative
importance of competition and predation in determining the structure of food chains—
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ultimately it was shown that predation can be just as important as competition (Sih
et al. 1985). There is strong evidence frommultiple ecological systems, that predation
is capable of forcing coexistence among competing species, some of which would go
extinct in the absence of predation (Caswell 1978; Crowley 1979; Hsu 1981). Our
results show that harvesting can have similar effects to a predator which can lead two
competitors to coexist due to predator-mediated coexistence. This leads to the concept
of harvesting-mediated coexistence. For example, suppose that

Ea1
Ec1

<
Eα1

Eb1
<

Eρ1
1

Eρ2
1

.

This implies that if there is no harvesting species 1 persists and species 2 goes extinct.
It is clear that there exists q ∈ (0, 1) such that

Ea1
Ec1

<
Eρ1

1 + ln(1 − q)

Eρ2
1

<
Eα1

Eb1

which leads to coexistence. This shows that if one species has a competitive advan-
tage so that without harvesting it drives the other competitor extinct, one can harvest
this dominant species and get coexistence. This result is similar to the setting studied
by Slobodkin (1961) who showed that by removing a constant fraction of the prey
population continuously one could reverse the outcome of competition if the losing
competitor has a higher growth rate at low densities. In the harvesting setting, similar
results have been shown by Yodzis (1976) where the author studied constant-catch
harvesting, i.e., one harvests the same amount every year. Yodzis showed that such
harvesting can possibly eliminate competitive dominance and result in stable coexis-
tence. However, if there are environmental fluctuations, the harvesting can increase
(Yodzis 1977) the niche separation for stable coexistencewhich can lead to extinctions.

If there is coexistence and the system converges to an invariant probability measure
μ
q,r
12 on (0,∞)2, we see by (2.5) that the per-capita growth rates at stationarity are

zero. This shows that

r1(μ12) = 0 = ρ1
q − E[α1](1 − q)Y

1 − E[a1](1 − r)Y
2

r2(μ12) = 0 = ρ2
r − E[c1](1 − r)Y

2 − (1 − q)E[b1]Y 1
,

whereas before Y
1 = ∫

(0,∞)2
x1μ

q,r
12 (du),Y

2 = ∫
(0,∞)2

x2μ
q,r
12 (du) are the expected

values of the two species at stationarity. Solving this linear system yields the unique
solution

Y
1 = E[c1]ρ1

q − E[a1]ρ2
r

1 − q

1

E[α1]E[c1] − E[a1]E[b1]
Y
2 = E[α1]ρ2

r − E[b1]ρ1
q

1 − r

1

E[α1]E[c1] − E[a1]E[b1] .

One can prove the following analogue of Proposition 5.1.
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Fig. 5 Figure showing the regions of the harvesting rates q, r for which both species persist, for which just
the species 1 persists, and the region for which just species 2 persists. The parameters are Ea1 = Eb1 =
1,Ec1 = Eα1 = 1.5,Eρ11 = 1,Eρ21 = 1.5

Fig. 6 Figure showing the regions of the harvesting rates q, r for which there is bistability, for which just
the species 1 persists, and the region for which just species 2 persists. The parameters areEa1 = 1.5,Eb1 =
2,Ec1 = 1,Eα1 = 1,Eρ11 = 1,Eρ21 = 1.5
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Fig. 7 The graph of H(q, r). The parameters are β = 1,Ea1 = Eb1 = 1,Ec1 = Eα1 = 1.5,Eρ11 =
1,Eρ21 = 1.5

Proposition 5.2 If r2(μ
q
1) < 0 and r1(μr

2) > 0, then species 1 will persist andEY 1
t →

ρ1
q

(1−q)E[α1] as t → ∞. If r1(μr
2) < 0 and r2(μ

q
1) > 0, then species 2 will persist and

EY 2
t → ρ2

r
(1−r)E[c1] as t → ∞.

Suppose the coefficients are such that the coexistence of the two species is possible.
We are interested in maximizing the function

H(q, r) = lim
T→∞E[qY 1

T + βrY 2
T ] = lim

T→∞

∑T
n=1 qY

1
n + rβY 2

n

T
= qY

1 + rβY
2
,

where β > 0 represents the relative value of species 2 compared to species 1. Using

the expressions for Y
1
, Y

2
, together with Proposition 5.2 and the domain regions

identified above we get

H(q, r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
q
E[c1]ρ1

q−E[a1]ρ2
r

1−q + βr
E[α1]ρ2

r −E[b1]ρ1
q

1−r

)
1

E[α1]E[c1]−E[a1]E[b1] r2(μ
q
1 ) > 0, r1(μr

2) > 0

q
ρ1
q

(1−q)E[α1] r2(μ
q
1 ) < 0, r1(μr

2) > 0

βr ρ2
r

(1−r)E[c1] r2(μ
q
1 ) > 0, r1(μr

2) < 0

0 q ≥ 1 − e−Eρ1
1 , r ≥ 1 − e−Eρ2

1 .
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Fig. 8 The graph of H(q, r). The parameters are β = 1,Ea1 = Eb1 = 1,Ec1 = Eα1 = 1.5,Eρ11 =
1.4,Eρ21 = 1.5

Fig. 9 The graph of H(q, r). The parameters are β = 1,Ea1 = Eb1 = 1.4,Ec1 = Eα1 = 1.5,Eρ11 =
1.4,Eρ21 = 1.5
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Economic Interpretation Depending on the interaction coefficients, growth rates, and
the relative value of the species there are three possible scenarios for the optimal
harvesting strategy. In one case, we harvest species 1 to extinction and maximize the
yield from harvesting species 2. In other instances, it is best to harvest species 2 to
extinction and maximize the harvest from species 1. The third instance is the one of
coexistence: the optimal harvesting strategy is to keep both species alive. In Fig. 7, we
can see that since the growth rate of species 2 is greater than that of species 1, while
the other coefficients are identical, it is optimal to harvest species 1 to extinction and
to get a higher harvesting yield from species 2. In the example from Fig. 8, when the
species are similar to each other, it is optimal to keep both species alive. However, once
we increase the competition, it becomes optimal to drive one species extinct through
harvesting (see Fig. 9). These examples show that there is a delicate balance one has
to take into account when looking for the optimal harvesting strategies. The intra-
and interspecific competition rates, growth rates, and the prices of the species turn
out to play key roles. These results show that trying to maximize economic gain in a
multispecies competitive ecosystem can lead to the extinction of the species which are
not as valuable economically. If one wants to conserve species, this has to be factored
in and a more complex harvesting model has to be considered.

Acknowledgements The author thanksDangNguyen and Sergiu Ungureanu for helpful discussions related
to the paper.

Funding The funding was provided by Division of Mathematical Sciences (Grant No. 1853463).

Appendix A. Criteria for Persistence and Extinction

A.1 Single Species System

Suppose we have one species whose dynamics is given by

Xt+1 = Xt f (Xt , ξt+1) (A.1)

We present a few known results which give the existence of a unique invariant prob-
ability measure. These results appear in work by Ellner (1984, 1989), Vellekoop and
Högnäs (1997), Fagerholm and Högnäs (2002), Schreiber (2012).

Theorem A.1 Assume that F(x, ξ) = x f (x, ξ) is continuously differentiable and
strictly increasing in x, and f (x, ξ) is strictly decreasing in x. If E[ln f (0, ξ1)] > 0
and limx→∞ E[ln f (x, ξ1)] < 0, then there exists a positive invariant probability
measure μ and the distribution of Xt converges weakly to μ whenever X0 = x > 0.

Sometimes, if monotonicity fails, one can make use of the following result
(Vellekoop and Högnäs 1997).

Theorem A.2 Assume that

f (x, ξ) = λh(x)−ξ
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where g is a positive differentiable function such that x �→ xh′(x)/h(x) is strictly
increasing on [0,∞). Assume Eξ1,Eξ21 < ∞ and ξ1 has a positive density on (0, L)

for some 0 < L < ∞. Then, there is a positive invariant probability measure μ and
the distribution of Xt converges to μ whenever X0 = x > 0.

We note that the above theorem provides a classification of the stochastic Ricker
model if the random variable ξ1 has a density and is supported on (0, L) for some
L > 0. One can also fully classify (Fagerholm and Högnäs 2002) the stochastic
Ricker model if the random coefficients do not have compact support.

Theorem A.3 Consider the stochastic Ricker model Xt+1 = Xt exp(rt+1 − at+1Xt )

where

• r1, . . . is a sequence of i.i.d. random variables such that E[r1] < ∞ and r1 has
positive density on (−∞,+∞),

• a1, . . . is a sequence of positive i.i.d. random variables independent of rt such that
E[a1] < ∞ and

• there exists xc such that E[exp(r1x)] < ∞ for all x ∈ [0, xc].
Then, if E[r1] < 0, Xt → 0 with probability 1, while if E[r1] > 0, there is a positive
invariant measure μ such that Xt converges weakly to μ.

A.2 Two Species Systems

Suppose we have a two species system. The following result appeared in work by
Ellner (1989).

Theorem A.4 Assume the following assumptions are satisfied

• For each i = 1, 2, there exists a positive invariant measure μi such that the
distribution μi such that the distribution of Xi

t converges to μi weakly whenever

Xi
0 > 0 and X j

0 = 0.
• The mean per capita growth rates ri (x) are continuous functions.
• The process X is irreducible on (0,∞) × (0,∞),
• For any Borel measurable A ⊂ R

2+ we have P(X1 ∈ A|X0 = xn) → P(X1 ∈
A|X0 = x) whenever xn → x.

• For any x ∈ R
2+, supt>0 E[ln+ Xi

t | X0 = x] < ∞ for i = 1, 2.

If r1(μ2) > 0 and r2(μ1) > 0, then there exists a unique positive invariant measure
μ and the distribution of Xt converges to μ weakly whenever X1

0, X
2
0 > 0.

A.3 General Criteria for Coexistence

Assume we have a general n species system modeled by

Xi
t+1 = Xi

t fi (Xt , ξt+1), i = 1, . . . , n. (A.2)

The subset S ⊂ R
n+ will denote the state space of the dynamics. It will either be a

compact subset of Rn+ or all of Rn+. The coexistence set is the subset S+ = {x ∈
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S | xi > 0, i = 1, . . . n} of the state space where no species is extinct. We will make
the following assumptions:

(A1) ξ1, . . . , ξn, . . . is a sequence of i.i.d. random variables taking values in a Polish
space E .

(A2) For each i the fitness function fi (x, ξ) is continuous in x, measurable in (x, ξ)

and strictly positive.
(A3) If the dynamics is unbounded: There exists a function V : S+ → R+ and

constants γ1, γ3,C > 0 and ρ ∈ (0, 1) such that for all x ∈ S+ we have

(i) V (x) ≥ |x|γ1 + 1,
(ii) E

[
V (x� f (x, ξ1))�(x, ξ1)

] ≤ ρV (x) + C , where

�(x, ξ) :=
(

n
max
i=1

{
max

{
fi (x, ξ),

1

fi (x, ξ)

}})γ3

.

(A4) If the dynamics is bounded: There exists a constant γ3 > 0 such that for all
x ∈ S+ we have

E [�(x, ξ1)] < ∞.

Remark A.1 In particular, if one supposes the conditions

1) There is a compact subset K ⊂ R
n+×R

κ0 such that all solutionsXt satisfyXt ∈ K
for t ∈ Z+ sufficiently large;

2) For all i = 1, 2, . . . , n,

sup
x,ξ

| ln fi (x, ξ)| < ∞;

then assumption (A4) is satisfied.

Assumptions (A1) and (A2) ensure that Xt is a Feller process that lives on S+, i.e.,
Xt ∈ S+, t ∈ Z+ whenever X0 ∈ S+. One has to make the extra assumptions (A3) or
(A4) in order to ensure the process does not blow up or fluctuate too abruptly between
0 and ∞. We note that most ecological models will satisfy these assumptions. For
more details see the work by Benaïm and Schreiber (2019), Hening et al. (2020).

We will follow the notation, methods and results developed by Meyn and Tweedie
(1992). A point y ∈ R

n+ is said to be accessible from x ∈ S+ if for every neighborhood
U of y, there exists t ≥ 0 such that Pt (x,U ) > 0. Define

�x := {y ∈ S+ | y is accessible from x}

and for A ⊂ R
n+

�A =
⋂
x∈A

�x.
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Note that �A is the set of points which are accessible from every point of A. We say
a set A is accessible if for all x ∈ R

n,◦
+

�x ∩ A �= ∅.

Suppose there exist x∗ ∈ �S+ , a neighborhood U of x∗, and a nonzero measure φ on
S+, such that for any x ∈ U there is m∗ ∈ Z+ such that

Px(Xm∗ ∈ ·) ≥ φ(·).

We will assume that such conditions are satisfied in our models. In many cases, it is
not hard to check that these conditions hold—see Ellner (1989), Hening et al. (2020).
Suppose the dynamics happens in either a compact subset of Rn+ or in Rn+. We denote
the state space of the dynamics by S. We define the extinction set, where at least one
species is extinct, by

S0 := {x ∈ S : min
i

xi = 0}.

For any η > 0 let

Sη := {x ∈ S : min
i

xi ≤ η}

be the subset ofS where at least one species is within η of extinction. Denote byM the
set of all ergodic invariant probability measures supported on S0 and by Conv(M) the
set of all invariant probabilitymeasures supported onS0.We say (A.2) is stochastically
persistent in probability (Chesson 1982) if for all ε > 0 there exists η(ε) = η > 0
such that for all x ∈ S+

lim inf
t→∞ Px{Xt /∈ Sη} > 1 − ε.

For any t ∈ N define the normalized occupation measure

�t (B) := 1

t

t∑
s=1

δX(s)(B)

where δX(s) is the Dirac measure at X(s) and B is any Borel subset of S. Note that �t

is a random probability measure and �t (B) tells us the proportion of time the system
spends in B up to time t . Denote the (random) set of weak∗-limit points of (�t )t∈N by
U = U(ω). We say (A.2) is almost surely stochastically persistent (Schreiber 2012;
Benaïm and Schreiber 2019) if for all ε > 0 there exists η(ε) = η > 0 such that for
all x ∈ S+

lim inf
t→∞ �t (S \ Sη) > 1 − ε, X(0) = x.

The following general theorem gives us persistence for a general n species system.
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Theorem A.5 Suppose that for all μ ∈ Conv(M) we have

max
i

ri (μ) > 0. (A.3)

Then, the system is almost surely stochastically persistent and stochastically persis-
tent in probability. Under additional irreducibility conditions, there exists a unique
invariant probability measure π on S+ and as t → ∞ the distribution ofXt converges
in total variation to π whenever X(0) = x ∈ S+. Furthermore, if w : S+ → R is
continuous and either bounded or satisfies

w(x) ≤ E

[
V (x� f (x, ξ1))�(x, ξ1)

]
, x ∈ S+

then

Ew(Xt ) →
∫
S+

w(x) π(dx).

Sketch of proof First, using the Markov property and Assumption A3) one can show
that for all t ∈ Z+ and x ∈ S

Ex(V (Xt ) ≤ ρt V (x) + C

1 − ρ
,

and

Ex�(Xt , ξt+1) ≤ ρt+1V (x) + C

1 − ρ
.

As a next step, one can show that if a continuous function w satisfies
limx→∞ w(x)

E[V (xT f(x,ξt ))�(x,ξt )] = 0, then w is μ-integrable for any invariant probability
measure μ of X. Moreover, the strong law of large numbers for martingales will show
that

lim
T→∞

1

T

T∑
0

(log fi (Xt+1) − P log fi (Xt )) = 0, when X(0) = x (A.4)

where P is the transition operator of Xt . This combined with arguments by Benaïm
and Schreiber (2019) implies that if μ(S+) = 1 then ri (μ) = 0 for any i ∈ I .

The next step is to show that there exist M,C2, γ4 > 0, ρ2 ∈ (0, 1) such that

Ex

[
V (X1)

n∏
i=1

X pi
i (1)

]
≤ (

1{|x|<M}(C2 − ρ2) + ρ2
)
V (x)

n∏
i=1

x pi
i , x ∈ S

for any p = (p1, . . . , pn) ∈ R
n satisfying

|p|1 :=
∑

|pi | ≤ γ4. (A.5)
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It is shown in Schreiber et al. (2011) by the min-max principle that Assumption (A.3)
is equivalent to the existence of p > 0 such that

min
μ∈M

{∑
i

pi ri (μ)

}
:= 2r∗ > 0. (A.6)

One can then prove, using arguments by Hening and Nguyen (2018), that there
exists an integer T ∗ > 0 such that, for any T > T ∗, x ∈ S0, |x| < M one has

T∑
t=0

Ex

(
ln V (Xt+1) − ln V (Xt ) −

∑
pi ln fi (Xt , ξt+1)

)
≤ −r∗(T + 1). (A.7)

Define U : S+ → R+ by

U (x) = V (x)
n∏

i=1

x−pi
i

with p and r∗ satisfying (A.6). Let n∗ ∈ N be such that

ρ1−n∗
2 > C2. (A.8)

Using the previous results, as well as the analysis developed by Hening and Nguyen
(2018) one can prove the following: There exist numbers θ ∈ (

0, γ4
2

)
, Kθ > 0, such

that for any T ∈ [T ∗, n∗T ∗] ∩ Z and x ∈ S+, ‖x‖ ≤ M ,

ExU
θ (XT ) ≤ U θ (x) exp

(
−1

2
θr∗T

)
+ Kθ .

One can show that the process (ρ−t
2 U (X(t)))t≥0 is a supermartingale and use this in

conjunctionwith theMarkovproperty to show that there exist numbersκ = κ(θ, T ∗) ∈
(0, 1) and K̃ = K̃ (θ, T ∗) > 0 such that

ExU
θ (Xn∗T ∗) ≤ κU θ (x) + K̃ for all x ∈ S+. (A.9)

If the Markov chainXt is irreducible and aperiodic on S+, and a compact set is petite,
then one can use the well-known results by Meyn and Tweedie (1992) in conjunction
with the Lyapunov condition (A.9) to conclude that there is c4 > 1 such that for all
x ∈ S+

ct4‖Pt (x, ·) − π(·)‖T V → 0 as t → ∞,

where ‖ · ‖T V is the total variation distance. In particular, this implies that the distri-
bution of Xt converges weakly to π as t → ∞. �
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Appendix B. Two Species Systems

In general, one needs stronger assumptions for extinction. We will assume for sim-
plicity n ≤ 2, so that we have one or two species. We need one more condition for
extinction. This condition makes sure that the martingale part of Xt is bounded and
that the family of occupation measures (�t )t∈Z+ is tight.

A5) There exists a function φ : S → (0,∞) and constants C, δφ > 0 such that for
all x ∈ S

ExV (X1) ≤ V (x) − φ(x) + C

and

Ex (V (X1) − ExV (X1))
2 + E |log f (x, ξ1) − E log f (x, ξ1)|2 ≤ δφφ(x).

Define S j := {x ∈ S | xi = 0, i �= j} to be the subspace supported by the species
j . If we restrict the process to S j , then the extinction set is given by S0 := {0} and
the persistence set by S j

+ := S j \ {0}. Let M j := {μ ∈ M | μ(S j ) = 1},M j,+ :=
{μ ∈ M | μ(S j

+) = 1} be the sets of ergodic probability measures on S j and S j
+.

We also assume that the subspaces S1
0 ,S2

0 ,S+ are accessible, i.e., we can get close
to them from any starting point x ∈ S+ with positive probability, and each subspace
supports at most one ergodic probability measure. Consider two species interacting
via the general system

X1
t+1 = X1

t f1(X
1
t , X

2
t , ξt+1),

X2
t+1 = X2

t f2(X
1
t , X

2
t , ξt+1),

(B.1)

The results by Chesson and Ellner (1989), Ellner (1989) assumed some type of mono-
tonicity and only looked at competitive behavior. They can be generalized as follows
(see Hening et al. 2020 for proofs). We first look at the Dirac delta measure δ0 at the
origin (0, 0)

ri (δ0) = E[ln fi (0, ξ1)], i = 1, 2.

If ri (δ0) > 0, then species i survives on its own and converges to a unique invariant
probability measure μi supported on S i+ := {x ∈ S | xi �= 0, x j = 0, i �= j}.
Remember that the (random) set of weak∗-limit points of the family of occupation
measures (�t )t∈N is denoted by U = U(ω). Thus, if we say that U(ω) = {μ1}, this
means that for the realization ω we have �t → μ1 weakly.

(i) Suppose r1(δ0) > 0, r2(δ0) > 0. The realized per-capita growth rates can be
computed via

ri (μ j ) =
∫

(0,∞)

E[ln fi (x, ξ1)]μ j (dx).
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• If r1(μ2) > 0 and r2(μ1) > 0, we have coexistence and convergence of the
distribution of Xt to the unique invariant probability measure π on S+.

• If r1(μ2) > 0 and r2(μ1) < 0, we have the persistence of X1 and extinction
of X2. In other words, for any x ∈ S+

Px

{
U(ω) = {μ1} and lim

t→∞
ln X2

t

t
= r2(μ1) < 0,

}
= 1.

• If r1(μ2) < 0 and r2(μ1) > 0, we have the persistence of X2 and extinction
of X1. In other words, for any x ∈ S+

Px

{
U(ω) = {μ2} and lim

t→∞
ln X1

t

t
= r1(μ2) < 0,

}
= 1.

• If r1(μ2) < 0 and r2(μ1) < 0, we have that for any x ∈ S+

px, j := Px

{
U(ω) = {μ j } and lim

t→∞
ln Xi

t

t
= ri (μ j ) < 0, i �= j

}

and

px,1 + px,2 = 1.

(ii) Suppose r1(δ0) > 0, r2(δ0) < 0. Then, species 1 survives on its own and con-
verges to its unique invariant probability measure μ1 on S1+.

• If r2(μ1) > 0, we have the persistence of both species and convergence of the
distribution of Xt to the unique invariant probability measure π on S+.

• If r2(μ1) < 0, we have the persistence of X1 and the extinction of X2. In other
words, for any x ∈ S+

Px

{
U(ω) = {μ1} and lim

t→∞
ln X2

t

t
= r2(μ1) < 0,

}
= 1.

(iii) Suppose r1(δ0) < 0, r2(δ0) < 0. Then, both species go extinct with probability
one. In other words, for any x ∈ S+

Px

{
lim
t→∞

ln Xi
t

t
= ri (δ0) < 0

}
, i = 1, 2.

We note that our results are significantly more general than those from Ellner (1989).
In Ellner (1989), the author only gives conditions for coexistence and does not treat
the possibility of the extinction of one or both species.
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