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Abstract
We are modelling multiscale, multi-physics uncertainty in wave–current interaction
(WCI). Tomodel uncertainty inWCI, we introduce stochasticity into the wave dynam-
ics of two classic models of WCI, namely the generalised Lagrangian mean (GLM)
model and the Craik–Leibovich (CL)model. The key idea for the GLMapproach is the
separation of the Lagrangian (fluid) and Eulerian (wave) degrees of freedom in Hamil-
ton’s principle. This is done by coupling an Euler–Poincaré reduced Lagrangian for
the current flow and a phase-space Lagrangian for the wave field. WCI in the GLM
model involves the nonlinear Doppler shift in frequency of the Hamiltonian wave
subsystem, which arises because the waves propagate in the frame of motion of the
Lagrangian-mean velocity of the current. In contrast, WCI in the CL model arises
because the fluid velocity is defined relative to the frame of motion of the Stokes mean
drift velocity, which is usually taken to be prescribed, time independent and driven
externally. We compare the GLM and CL theories by placing them both into the gen-
eral framework of a stochastic Hamilton’s principle for a 3D Euler–Boussinesq (EB)
fluid in a rotating frame. In other examples, we also apply the GLM and CL methods
to add wave physics and stochasticity to the familiar 1D and 2D shallow water flow
models. The differences in the types of stochasticity which arise for GLM and CL
models can be seen by comparing the Kelvin circulation theorems for the two models.
The GLM model acquires stochasticity in its Lagrangian transport velocity for the
currents and also in its group velocity for the waves. However, the CL model is based
on defining the Eulerian velocity in the integrand of the Kelvin circulation relative to
the Stokes drift velocity induced by waves driven externally. Thus, the Kelvin theorem
for the stochastic CL model can accept stochasticity in its both its integrand and in
the Lagrangian transport velocity of its circulation loop. In an “Appendix”, we also
discuss dynamical systems analogues of WCI.
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1 Introduction

The first objective of this paper is to build a consistent variational theory of the inter-
actions of the wave and current degrees of freedom for two quite different approaches
to mean wave–current interaction (WCI). The two different approaches are the gener-
alised Lagrangianmean (GLM)model (Andrews andMcIntyre 1978) for wavemotion
in the ocean or atmosphere, and theCraik–Leibovich (CL)model (Craik andLeibovich
1976) for air-sea interaction due to wind and waves on the sea surface.

After this first objective has been achieved, we will introduce several types of noise
into these deterministic variational formulations, and develop a new theoretical basis
for modelling uncertainty in a theory of WCI which combines aspects of both GLM
and CL.

The generalised Lagrangian mean (GLM) model. In the GLM model of WCI, the
current is interpreted as the Lagrangian-mean flow velocity, uL(x, t), while the wave
phase, φ(x, t) and the wave action density, N (x, t) are interpreted as Eulerian-mean
fields. This dual interpretation is intuitively clear, because the waves would propagate
through the fluid even if it were not moving. It is also clear in Kelvin’s circulation
integral, in which the loop is moving in a Lagrangian sense and the integrand is an
Eulerianquantity infixed spatial coordinates. Thus,waves and currentswouldnaturally
be treated separately in applying Hamilton’s variational principle, namely δS = 0 for
an action integral S = ∫ t2

t1
�(uL , N , φ)dt , to generate coupled WCI dynamics in the

GLM model.
The key idea we use for deriving the Hamilton’s principle for WCI analysis in the

GLM model is the introduction of a phase-space Lagrangian (PSL) written as a Leg-
endre transform L(φ, ∂tφ) = 〈N , ∂tφ〉 − HW (N ,∇φ) for the canonically conjugate
wave degrees of freedom (N , φ). Here, the brackets

〈 · , · 〉 denote L2 pairing of dual
variables. This PSL is manifestly invariant under translations in the phase φ. Noether’s
theorem then implies conservation of the volume integral of the conjugate momentum
N (the wave action density). Our approach follows the PSL formulation of quantum
mechanics introduced in 1934 by Frenkel and Dirac (1934). This approach has also
become a mainstay of plasma physics, where it has been used to model the time-mean
(ponderomotive) forces exerted externally by rapid electromagnetic oscillations (e.g.
microwaves) on the slow dynamics of a fluid plasma (Dewar 1970, 1973; Littlejohn
1981; Similon et al. 1986; Kaufman and Holm 1984). For a modern application of
the Frenkel–Dirac phase-space Lagrangian in the classical-quantum interaction for
non-adiabatic electron dynamics in molecular chemistry, see Foskett et al. (2019).
For a recent treatment of phase-space Lagrangians for fast-slow WKB dynamics of
high-frequency acoustic waves interacting with a larger-scale compressible isothermal
flow, see Burby and Ruiz (2019).
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GLMmain result. For GLM with fluid variables denoted (uL , a, b) and canonically
conjugate wave variables (q, p), the main result of the paper is Theorem 4.2. This
theorem derives a closed dynamical GLM theory of WCI which can be extended
into stochastic wave–current dynamics from Hamilton’s principle with action integral
given by the following sum of Lebesque and Stratonovich time integrals of a fluid
Lagrangian with stochastic advection constraints and a phase-space Lagrangian for
the wave variables with a stochastic Hamiltonian,

S(uL , a, b, q, p) =
∫ t2

t1
�(uL , a)dt
︸ ︷︷ ︸
Fluid Lagrangian

+
∫ t2

t1

〈
b , da + Ldxt a

〉

V︸ ︷︷ ︸
Advection Constraint

+
∫ t2

t1

〈
p , dq + Ldxt q

〉

V
−

(
H(q, p) dt + K(q, p) ◦ dBt

)

︸ ︷︷ ︸
Legendre Transformation in Stochastic Fluid Frame

,

(1.1)

in which the differential d appearing, for example, in the stochastic Eulerian fluid
velocity dxt (x) denotes the Stratonovich temporal integral. That is, the time integral
of the semimartingale vector field

dxt (x) = uL(x, t) dt +
∑

i

ξi (x) ◦ dWi (t), (1.2)

generates the stochastic Lagrangian fluid flow

xt (x) − x0(x) =
∫ t

0
uL(x, s) ds +

∑

i

∫ t

0
ξi (xs(x)) ◦ dWi (s), (1.3)

with spatially dependent correlation eigenvectors ξi (x), i = 1, 2, . . . , N , fluid drift
velocity vector field uL , advected fluid quantities (a, b), and wave phase-space mean
fields (q, p). Here, the distinct fluid and wave Stratonovich Brownian motions are
denoted, respectively, by ◦dWi (t) and ◦dBt . Note that the wave Hamiltonian in the
last term of the action integral in (1.1) is also a semimartingale.

Mean quantities in this stochastic GLM model are defined as averages over the
rapid phase of the wave component of the flow at fixed Lagrangian coordinate, as
done, e.g., in Gjaja and Holm (1996), Kaufman and Holm (1984). Consequently,
the PSL basis for the WCI closure derived here is natural in the GLM approach
(Andrews and McIntyre 1978). In the PSL approach, the WCI closure depends on the
dispersion relation, ω(k), which connects the wave-frequency scalar field, ω(x, t),
with the wave-number covector field, k(x, t) = ∇φ(x, t). The dispersion relation,
ω(k), identifies the type of wave being considered in the WCI. It also will determine
the Hamiltonian dynamics of the canonically conjugate variables of the wave field,
(φ, N ). The wave variables (φ, N ) evolve in the local reference frame moving with
the GLM transport velocity of the mean current, uL(x, t). Thus, the wave and current
momentum dynamics each contribute independently to the total circulation around
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every material loop, as interpenetrating fluid degrees of freedom. The independence of
these contributions to the total circulation represent the well-known non-acceleration
result for GLM (Andrews and McIntyre 1978).

The GLM closure introduced here is flexible enough to treat a variety of different
types of WCI, and it also allows the wave and current components of the flow to be
made stochastic independently.

The Craik–Leibovich (CL) model. Craik and Leibovich (1976) derived an expression
for the wave–current interaction called the Stokes vortex force (SVF) and showed that
the SVF induces roll structures similar to the Langmuir circulations (LCs) observed in
the oceanic surface boundary layer driven by the wind. Today, the SVF representation
of the wave–current interaction in the momentum equation is often used for numer-
ically modelling the effects of LCs on mixed-layer turbulence by using large-eddy
simulations (LES), although the theoretical issues are by no means settled (Fujiwara
et al. 2018, 2019; Mellor 2019; Tejada-Martínez et al. 2020). The main discussion of
the CL model in this paper is treated in Sects. 7 and 8.

CLmain result. The main result of the paper for CL is Theorem 8.1 which introduces
Ornstein–Uhlenbeck (OU) wave dynamics into the CL equations for EB fluid flow as
a system of Euler–Poincaré equations obtained from Hamilton’s principle with the
action integral (7.5). The corresponding extension of the CL model for the 3D flow of
EB fluid is obtained as an Euler–Poincaré equation for Hamilton’s principle δS = 0
with action integral given by, cf. Eq. (7.5),

S =
∫ t2

t1

∫ [
1

2
D|u|2 − Du · uS(x)Nt − gbDz − p(D − 1)

]

d3x dt . (1.4)

Here, the function Nt is the solution of the Ornstein–Uhlenbeck (OU) stochastic pro-
cess (Gardiner 1985)

dNt = θ(N − Nt )dt + σdWt , (1.5)

with long-term mean N , and real-valued constants θ and σ . Namely, Nt is the scalar
function of time,

Nt = e−θ t N0 + (1 − e−θ t )N + e−θ tσ

∫ t

0
eθsdWs, (1.6)

in which onemay assume an initially normal distribution, N0 ≈ N (N , σ 2/(2θ)), with
mean N and variance σ 2/(2θ). Thus, uncertainty in the prescribed Stokes mean drift
velocity uS(x) may be modelled probabilistically in the CL equations, by introducing
uS(x)Nt in the Lagrangian ofHamilton’s principle for thewave dynamics of the classic
CL equations for EB fluid flow.

Having been derived as a system of Euler–Poincaré equations, the probabilistic CL
model with OUwave dynamics (called the OUCLmodel) preserves all of the geomet-
ric mechanics properties of the original CL model, including its vorticity dynamics
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and preservation of potential vorticity. The uncertainty in the wave field in the OU
CL model in Theorem 8.1 appears as an OU term in the circulation integrand rather
than in the transport velocity of the circulation loop as occurs in GLM. In Eq. (8.22),
the OU term in the circulation integrand represents large-scale effects through which
rapidly oscillating forces of wind and waves at the surface of the domain can produce
the Stokes mean drift velocity which, in turn, transmits a mean force on the current
flow as a momentum shift associated with the moving reference frame. As for the
GLM model, the OU CL model also admits the introduction of stochasticity in the
Lagrangian transport velocity of its Kelvin circulation loop, as in Eq. (8.22). Thus, we
regard the OU term in the circulation integrand as the slow ponderomotive average
effect of the Stokes mean drift due to the random wind and wave oscillations on the
air-sea surface. At the same time, we regard the stochastic transport velocity of the cir-
culation loop as the result of rapid, small-scale effects which perturb the Lagrangian
trajectories of the CL model. This dual viewpoint is consistent with the stochastic
modelling approach to Richardson’s metaphor of three-way interactions among Big,
Little and Lesser Whorls whose stochastic theory was developed in Holm (2019a).

Although our efforts here are directed to stochastic variationalmodels of uncertainty
in WCI, the fundamental ideas are based on variational derivations of the Navier–
Stokes equations from stochastic equations.

Remark 1.1 (Variational derivations of the Navier–Stokes equations from stochastic
equations) The derivation of the Navier–Stokes equations in the context of stochastic
processes has a long and well-known history. See. e.g., Constantin and Iyer (2008),
Eyink (2010), and references therein. Previous specifically variational treatments of
stochastic fluid equations generally started from the famous remark by Arnold (1966)
(about Euler’s equations for the incompressible flowof an ideal fluid being geodesic for
kinetic energy given by the L2 norm of fluid velocity), and they havemainly treated Itô
noise in this context. For more discussion of these variational derivations of stochastic
fluid equations and their relation to the Navier-Stokes equations, one should consult
original sources such as, in chronological order, Inoue and Funaki (1979), Rapoport
(2000, 2002), Gomes (2005), Cipriano and Cruzeiro (2007), Constantin and Iyer
(2008), Eyink (2010), Gliklikh (2010), Arnaudon et al. (2014). We emphasise that the
goal of the present work is limited to the derivation of SPDEs forWCI by following the
stochastic variational strategy outlined above. For additional information, review and
background references for random perturbations of PDEs and fluid dynamic models,
viewed from complementary viewpoints to the present paper, see also Flandoli (2011);
Flandoli et al. (2014). In particular, Flandoli (2011); Flandoli et al. (2014) study the
interesting possibility that adding stochasticity can have a regularising effect on fluid
equations which might otherwise be ill-posed.

Plan of the paper and main content. Section 2 introduces the ideas behind phase-
space Lagrangians (PSLs) and formulates the closed set of deterministic GLM
equations forWCI in (2.18) whichwill be the basis for the introduction of stochasticity
into the GLM model in Sect. 3. The closure of the deterministic GLM theory for a
given fluid Lagrangian depends on the choice of wave dispersion relation, ω(k), for
frequency as a function of wave vector, which appears in the PSL Hamiltonian for
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the wave field dynamics. This feature is what makes the present GLM closure flexible
enough to treat a variety of interactions of the current with different types of waves.
For example, upon choosing the dispersion relation for internal waves in Eq. (5.6),
the WCI equations (2.18) yield the generalised Lagrangian mean (GLM) equations
for stratified, rotating, incompressible Euler–Boussinesq (EB) fluid motion in three
dimensions (Andrews and McIntyre 1978).

Section 3 reviews the stochastic variational principle underlying theSALT (Stochas-
tic Advection by Lie Transport) approach to the derivation of stochastic fluid equations
which preserve the geometric structure of fluid dynamics (Holm 2015). The motiva-
tions and recent applications of the SALT approach for uncertainty quantification and
data assimilation are also briefly discussed (Cotter et al. 2019a, b, c).

Section 4 combines the ideas in the first two sections to extend the SALT approach
to stochastic nonlinear wave propagation (SNWP) in deriving a new stochastic theory
of Wave–Current interaction (WCI) in which the dynamics of either or both the waves
and the currents can be made stochastic. The stochastic WCI model is formulated and
its main geometrical mechanics properties are established.

Section 5 applies the WCI model formulated in Sect. 4 to derive the SALT and
SNWP terms for GLM in 3D stratified EB fluids, while Sect. 6 derives the SALT and
SNWP terms for 1D and 2D shallow water WCI (SW-WCI) equations. Section 6 also
derives the Hamiltonian structure for SW-WCI, which turns out to recover a type of
non-canonical Lie–Poisson bracket which was first discovered for superfluid 4He and
3He in Holm and Kupershmidt (1982) and was later formulated in more general terms
by Krishnaprasad and Marsden in Krishnaprasad and Marsden (1987) who applied
the formulation to the dynamics of a rigid body with a flexible attachment. It seems
fitting that the WCI should have such deep roots in geometric mechanics.

Section 9 summarises the paper’s main results for the WCI model derived here.
Namely, the WCI model derived here enables the exchange of energy through the
coupling between the two different kinds of motion: Lagrangian flows and Eulerian
waves. In the WCI approach which we have implemented here, the GLM fluid trans-
port velocity in the rotating frame is determined by taking the difference of the total
momentum and the wave momentum in the frame of the transport velocity. The flow
velocity is measured relative to the rotation of the Earth and the wave group velocity
is measured relative to the flow velocity. This is reminiscent of L. F. Richardson’s
well-known metaphor of “whorls within whorls” for fluid turbulence. For a recent
discussion Richardson’s metaphor in the context of stochastic parametrisation for
geophysical flows, see Holm (2019a).

Non-acceleration result for wave mean-flow interaction (WMFI). In the WCI model
derived here, the wave dynamics may create circulation, but only within the wave
subsystem of the incompressible EB flow which is transported by the GLM fluid flow.
This is particularly clear in the Kelvin circulation theorem representation of WCI for
the example of EBflow,whenEq. (2.20) is comparedwith Eqs. (2.25) and (2.27). Thus,
Eq. (2.27) represents a dynamical version of the famous non-acceleration theorem for
GLM (Vallis 2017). Namely, in the absence of dissipation, equation (2.27) shows that
the presence of waves has no net effect on the mean-flow equations of the GLMWCI
model.
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Section 7 compares the deterministic features of the Craik–Leibovich (CL) model
with the corresponding deterministic results for GLM discussed in the main text.

Section 8 derives a new stochastic version of CL which differs from the GLM
approach both in the type and location of its probabilistic features. In particular, the
probabilistic features are Lagrangian inGLM,while they are Eulerian in theCLmodel.
However, theCLmodel is not subject to a non-acceleration result. This is becausewave
forcing in the CL model is external, while for GLM the waves represent an internal
degree of freedom. The introduction of uncertainty in both the Stokes velocity and in
the Lagrangian mean velocity of the CL equations reinforces the concept ofmultiscale
uncertainty for the WCI.

Section 9 reviews the main geometric mechanics ideas underlying our approach to
WCI and suggests other open problems which may be treated via this approach.

“Appendix” A discusses the gyrostat as a potential dynamical systems analogue
of WCI. (The gyrostat is a rigid body with a flywheel attached along its intermediate
axis.) The dynamics of the gyrostat system can also be formulated in the presence of
gravity, as a heavy top with a flywheel attached. The solution behaviour of the gyrostat
is close toGLMbehaviour. Namely, the effect of the flywheel on the rigid body is small
except near the unstable equilibria of the rigid body. However, on the slow time scale,
this weak effect can accumulate over time for motion along the unstable manifold of
the perturbed equilibrium. The gyrostat example may even suggest some ideas about
dealing with tipping points (bifurcations) in perturbed GLM systems.

“Appendix” A also discusses the swinging spring, or elastic spherical pendulum, as
a potential dynamical systems analogue of WCI. When a rigid spherical pendulum is
made radially elastic, the possibility opens for the new oscillation degree of freedom to
interact with the rotational degrees of freedom. The resulting exchange of energy can
be quite dramatic if resonances between the two dynamical modes can occur (Holm
and Lynch 2002). However, the non-acceleration result for GLM implies that no such
exchange of energy is generally available for GLM.

Both the gyrostat and swinging spring also have structural similarities with WCI
from the GLM viewpoint, because the Hamiltonian matrix operator in all three Hamil-
tonian formulations is block-diagonal.

2 Deterministic GLM Background for Waves in the Ocean

Wave trains in the compound wave–current ocean flow can be excited by external
forces such as the tides, as well as by the mean ponderomotive force of winds blowing
along the sea-surface, or by the restoring force of buoyancy due to gravity for flows
over bathymetry, or even along outcroppings in the horizontal boundaries. Then, once
excited, these wave trains can propagate through the ocean, even if the ocean currents
are still and calm. This observation argues for regarding ocean wave excitations as a
degree of freedom which can be distinguished from ocean currents.

The statement of the Wave–Current Interaction (WCI) problem involves a hybrid,
or compound, description in which the wave field is regarded as a separate Eulerian
degree of freedom in the decomposition of the Lagrangian fluid-parcel trajectory into
fast and slow components. The generalised Lagrangian mean (GLM) fluid description
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(Andrews and McIntyre 1978) is a natural approach in this regard, because it also
arises from a fast–slow dynamic decomposition of hybrid wave and current degrees
of freedom which itself goes back to averaged Lagrangian methods formulated by
Whitham (2011). The fast–slow averaging approach is also familiar in many other
branches of physics. For example, in the guiding centre and oscillation centre models
in plasma physics, averaging over the fast degrees of freedom for oscillation leads to
ponderomotive forces of the wave envelope on the mean flow. See, e.g., Dewar (1973),
Littlejohn (1981), Kaufman and Holm (1984), Brizard (2009). All of these theories in
continuum mechanics separate the full flow into a composition of a slow mean flow
from which rapid fluctuations depart. Their objective is to model the combined mean
dynamics of the full flow at the slow time scale.

Comparing the GLM and CL equations The Generalised Lagrangian Mean (GLM)
flow theory ofAndrews andMcIntyre (1978) is in principle an exact theory of nonlinear
waves on a Lagrangian mean flow, within an Eulerian framework. Its potential univer-
sality hasmadeGLMthe canonical theory for investigatingwavemeanflow interaction
(WMFI) (Andrews andMcIntyre 1978; Gjaja and Holm 1996) or, equivalently, wave–
current interaction (WCI) (Leibovich 1980). In certain asymptotic regimes, the GLM
equations can be reduced to the Craik–Leibovich (CL) equations (Craik and Leibovich
1976), in particular when thewave field is irrotational and the shear is weak (Leibovich
1980). The GLM theory also affords an extension of Craik–Leibovich (CL) instability
theory to admit rotational wave fields and strong shear (Craik 1982a, b, 1985). The
CL theory of linear instability of the wave-mean flow interaction in the latter case
produces longitudinal vortices which are generally expected to develop nonlinearly
into Langmuir circulations (Craik 1982b; Thorpe 2004).

However, regardless of these formal similarities in certain asymptotic regimes, the
nonlinear mathematical structures of the GLM equations and the CL equations derived
in this paper will turn out to be quite different. This difference is not unexpected,
because the CL equations have an external forcing term which is absent in the GLM
equations. Moreover, a non-acceleration result exists for the GLM equations under
which the wave degree of freedom cannot influence the circulation of the current
degree of freedom. These differences will emerge when the CL model is discussed in
detail in Sects. 7 and 8. In fact, the differences between CL and GLM fluid dynamics
reside largely in how the choice between Eulerian and Lagrangian velocity averaging
affects the Kelvin circulation theorem. Eulerian averaging in the CL approach affects
the Eulerian velocity 1-form in the circulation integrand in Kelvin’s theorem, while
Lagrangian averaging in the GLM approach affects the material velocity of the Kelvin
circulation loop. This profound difference in how the two approaches affect circulation
dynamics means that the physics of the two approaches can differ widely.

GLM is basedon slow-fast decomposition. TheGLMequations are based on defining
fluid quantities at a displaced, rapidly fluctuating position xξ := x + ξ(x, t). In the
GLM description, χ denotes the Eulerian mean of a fluid quantity χ = χ + χ ′ while
χ L denotes the Lagrangian mean of the same quantity, defined by
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χ L(x) ≡ χξ (x), with χξ (x) ≡ χ(x + ξ(x, t)). (2.1)

Here xξ ≡ x + ξ(x, t) is the current position of a Lagrangian fluid trajectory whose
current mean position is x. Thus, ξ(x, t) denotes the fluctuating displacement with
vanishing Eulerian mean ξ = 0 of a Lagrangian particle trajectory about its current
mean position x.

GLM defines the fluid velocity at the displaced oscillating position as uξ (x, t) :=
u(x+ ξ(x, t)) where x is evaluated as the current position on a Lagrangian mean path
and

uξ := DL

Dt

(
x + ξ(x, t)

)
= uL(x, t) + u�(x, t) with

DL

Dt

= ∂

∂t
+ uL · ∂

∂x
and u� := DLξ

Dt
. (2.2)

One then defines the Lagrangian mean velocity as uξ (x, t) = uL(x, t), where ( · ) is a
time, or phase average at fixed Eulerian coordinate x.

Thus, theGLMapproach decomposes the Lagrangian trajectory as xξ := x+ξ(x, t)
into its current mean position, x, plus a rapidly fluctuating displacement ξ(x, t), then
GLM investigates the Lagrangianmean dynamical implications of this decomposition.
Postulating the unknown fluctuating displacement vector field ξ(x, t) introduces an
additional degree of freedom of the Lagrangian mean fluid description whose effects
must be modelled.

A quick derivation of the GLM motion equation by time averaging Kelvin’s theorem.
One may derive the GLM motion equation by applying Lagrangian-mean time aver-
aging to the Kelvin circulation theorem for the ideal fluids in the form of Newton’s
law, which equates the rate of change of the momentum to the force on a distribution
of mass on a material loop,

d

dt

∮

c(uξ )

u(xξ , t) · dxξ

L

=
∮

c(uξ )

(
· f ·

)ξ · dxξ

L

, (2.3)

where f denotes the sum over whatever prescribed forces per unit mass are present.
In Kelvin’s theorem (2.4), the loop moves with the flow, so the loop is a Lagrangian
quantity. The integrand is fixed in space, so the integrand is Eulerian. Thus, after
taking averages, the loop velocity will be the Lagrangian mean velocity, uL , and the
integrand will be given by its Eulerian mean ( · ) at the displaced location of the
Lagrangian trajectory xξ := x + ξ(x, t). Namely,

d

dt

∮

c(uL )

u(xξ , t)
) · dxξ = d

dt

∮

c(uL )

uL(x, t) + u�(x, t)
) · d(x + ξ(x, t))

=
∮

c(uL )

(
· f ·

)ξ · dxξ (2.4)
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Equation (2.2) implies an evolution equation for the fluctuating displacement ξ(x, t),

DLξ

Dt
=: u�(xξ , t) = (ξ · ∇)uL(x, t) 	⇒ ∂ξ

∂t
+ (uL · ∇)ξ = (ξ · ∇)uL(x, t).(2.5)

The last equation means the displacement vector field ξ := ξ(x, t) · ∇ is advected
by the Lagrangian mean velocity uL . That is, ∂tξ + [uL , ξ ] = 0 = ∂tξ − aduL ξ .
This, in turn, means that the fluctuating vector field ξ is pushed forward by the time-
dependent flow φL

t , which itself is generated by the vector field uL . That is, ξ(t) =
φL
t ∗ξ(0). Furthermore, ∂tξ(t) = ∂tφ

L
t ∗ξ(0) = −φL

t ∗LuL ξ(0) = −LuL ξ(t). Formore
discussion of the geometric properties of the GLM theory, see Gilbert and Vanneste
(2018), Holm (2019b).

To quadratic order in the displacement ξ(x, t) with zero mean ξ(x, t) = 0 Eq. (2.4)
implies

d

dt

∮

c(uL )

(
uL(x, t) + u�

k∇ξ k
)

· dx =
∮

c(uL )

(
· f ·

)ξ · dxξ . (2.6)

At this point the Kelvin circulation theorem for the standard GLM equations may
be derived by defining the pseudovelocity, ṽ(x, t), and the pseudomomentum, p(x, t),
as follows

ṽ(x, t) = − u�
k∇ξ k = p(x, t)/D̃, (2.7)

where D̃ is the Lagrangian mean volume element.

Pseudomomentum is a momentum map. Pseudomomentum is a 1-form density
(dual to vector fields under L2 pairing) which can be written in a variety of ways. For
example, pseudomomentum can be written as Holm (2019b)

p(x, t) = p(x, t) · dx ⊗ d3x = u�
k dξ

k ⊗ d3x = u�
k ∂φξ k dφ(x, t) ⊗ d3x

=: N dφ(x, t) ⊗ d3x . (2.8)

In the next section, the last variant in (2.8) will allow us to consider φ(x, t) and
N (x, t)d3x as canonically conjugate wave field variables. It will follow that p =
N dφ ⊗ d3x is a momentum map (Holm et al. 1998). This recognition will allow
us to use L2 pairing to couple the wave field to the Lagrangian mean fluid velocity
vector field in Hamilton’s principle. Upon applying this momentummap coupling, we
will introduce a Hamiltonian for the wave dynamics in a phase-space Lagrangian in
Hamilton’s principle. This procedure will allow us close the GLM equations explicitly
in terms of physically identifiable wave and fluid quantities.

The approximations which reduce GLM to the CL (Craik–Leibovich) equations. If
one introduces the Stokes mean drift velocity uS(x, t) as the difference between the
Lagrangian and Eulerian mean velocities, which is defined as uS(x, t) = uL − u =
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ξ k∂ku�, then Eq. (2.6) is expressible as

d

dt

∮

c(uL )

((
uL(x, t) − uS(x, t)

) · dx + Lξ (u� · dx)
)

=
∮

c(uL )

(
· f ·

)ξ · dxξ ,

(2.9)

where the expression

Lξ (u� · dx) = ( ξ k∂ku� + u�
k∇ξ k ) · dx

= (−ξ × curlu� + ∇(ξ · u� )
) · dx = (uS(x, t) − ṽ(x, t)) · dx

(2.10)

denotes the Eulerianmean ( · ) applied to the Lie derivative along the fluctuation vector
field, ξ = ξ · ∇, of the circulation 1-form of the fluctuating velocity, u� · dx.

Upon neglecting the entire Eulerian mean fluctuation term Lξ (u� · dx) → 0 in
Eq. (2.10) and also neglecting the time dependence of the Stokes mean drift velocity,
uS(x, t) → uS(x), one finds the CL (Craik–Leibovich) equations. This is the sense
mentioned earlier in which the GLM equations may be “reduced” to the CL equations.
A stochastic version of the CL equations is formulated below in Sects. 7 and 8 for the
purpose of quantifying the uncertainty of their solutions.

Finite-dimensional GLM analogues. As a finite-dimensional example which has
some close parallels with the GLM decomposition into currents and waves in the
GLM theory one can consider the gyrostat, comprising a rigid body coupled to a
flywheel. The 2D rotational effects of the flywheel on the 3D rotations of the rigid
body are discussed in A.

In “Appendix” A, we also consider the finite-dimensional rotations and oscilla-
tions of an elastic spherical pendulum. If the pendulum is only slightly elastic, then
very rapid oscillations can take place, which may be negligible for small amplitude
and in the absence of resonances. However, as the pendulum becomes more elastic
and behaves more a like a radial spring, its oscillations and the resulting oscillation-
rotation interaction (ORI) can become an important feature of the dynamics (Holm
and Lynch 2002). For example, when resonances occur in the system, one may see
regular exchanges between springing motion (oscillation) and swinging motion (rota-
tion). Analogously, GLM introduces a new degree of wave freedom and assesses what
mean effects itmay have on the full fluid solution.However, the non-acceleration result
for GLM discussed in Sect. 2 precludes any resonant exchanges of energy between
the GLM waves and currents.

Remark 2.1 (Relation of GLM to mainstream stability methods for fluid equilibria)
Fortunately, the GLM notation is also standard in the stability analysis of fluid equi-
libria in the Lagrangian picture. See, e.g., the classic works of Bernstein et al. (1958),
Frieman and Rotenberg (1960) and Newcomb (1962). See Jeffrey and Taniuti (1964)
for a collection of reprints showing applications of this approach in the course of con-
trolled thermonuclear fusion research. For insightful reviews, see Bernstein (1983),
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Chandrasekhar (1987) and, more recently, Hameiri (1998). Rather than causing con-
fusion, this confluence of notation encourages the transfer of ideas between traditional
Lagrangian stability analysis for fluids under perturbation and the GLM theory. Some-
times, as in the case of the elliptic instability, the GLM theory actually yields the
nonlinear time dependent motion equations resulting from the perturbation of the
Lagrangian path, xξ ≡ x + ξ(x, t), rather than merely producing the linear spectrum
(Gjaja and Holm 1996).

Refinements of GLM. The GLM theory has inspired many refinements. These refine-
ments include determination of the higher-order correction terms in the ratio of the
time scales for currents and waves from a phase-averaged Hamilton’s principle in
Lagrangian coordinates (Gjaja andHolm 1996). This particular refinement established
the noncanonical Lie-Poisson Hamiltonian formulation of GLM as the dynamics of
two interpenetrating flows, with two different types of momentum, just as in Holm
and Kupershmidt (1982) for Landau’s 2-fluid theory of superfluids, London (1950),
Putterman (1974).

The GLM equations at second order in an asymptotic expansion in the ratio of
the time scales are called the glm equations (Holm 1999, 2002a, b). Perhaps not
surprisingly, the expression in Eq. (2.10) for the mean deviation of the GLM model
from the CL model at second order is the same as the Eulerian mean of the circulation
1-form for the second order glmmodel of fluctuation dynamics in fluid flows, as found
already in equation (5.2) of Holm (2002b). Certain closures of the glm models have
led to a class of models of interest as computational large-Eddy simulations (LES) for
turbulent flows (Foias et al. 2001, 2002).

When a closure based on the Taylor hypothesis is imposed on the glm equations for
the incompressible ideal Euler fluid flow, as in Eq. (2.10), one obtains the Euler-alpha
model, originally known as the N -dimensional Camassa–Holm equation (Holm et al.
1998; Chen et al. 1998). In the Taylor hypothesis closure of glm for the Euler-alpha
equations, the length-scale (alpha) is the mean correlation length of the fluctuations
of the Lagrangian trajectory away from its mean. When viscosity is added in the
form of momentum diffusion, one obtains the Lagrangian Averaged Navier-Stokes-
alpha (LANS-alpha) turbulence model. The LANS-alpha turbulence model has been
analysed deeply mathematically (Foias et al. 2001, 2002) and its primitive equation
version has been implemented successfully for global ocean circulation (Hecht et al.
2008a, b).

For more in-depth discussions of recent developments of GLM, see Bühler and
McIntyre (1998), Bühler (2010, 2014), Gilbert and Vanneste (2018), Holm (2019b),
Thomas (2017). In particular, recent refinements of GLM include its formulation for
flows on manifolds (Gilbert and Vanneste 2018), and its extension from deterministic
to stochastic dynamics,within theEuler–Poincar’e variational framework of geometric
mechanics (Holm 2019b).

The present paper continues these refinements in reformulating theGLMvariational
principle derived in Holm (2019b) by introducing a phase-space Lagrangian in Hamil-
ton’s principle for the mean description of the wave field. The present result is a closed
Hamiltonian theory which is shown to recover the GLM equations, and to implement
the wave dynamics required for each specific application. Namely, the details of the
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closure for the wave physics of a given fluid application are governed by the dispersion
relation for the type of wave field involved, which explicitly determines the proper
Hamiltonian. Consequently, the present reformulation of GLM is potentially flexible
enough to allow application to a variety of different types of waves. This flexibility is
demonstrated by deriving the GLM equations explicitly for two applications. These
are: internal waves in 3D rotating stratified incompressible Euler–Boussinesq flows in
Sect. 5; and 1D shallow-water waves in Sect. 6.

2.1 WCI for Stratified EB Fluids: The Generalised LagrangianMean (GLM)

We introduce the idea of a phase-space Lagrangian for the wave components of fluid
flows by applying it to study WCI in the familiar example of 3D Euler–Boussinesq
(EB) fluid. The EB fluid is a stratified, rotating, incompressible flow governed by
the Euler fluid equations in the Boussinesq approximation. Here, we propose a varia-
tional formulation of WCI, with Hamilton’s principle parameterised by a phase space
Lagrangian which includes a wave Hamiltonian depending on the canonically con-
jugate phase-space variables (q, p) = (φ, N ) for the collective degrees of freedom
known as the wave phase field, φ(x, t), and its canonically conjugate momentum
density, N (x, t), which is the familiar GLM wave action density.

After computing the variational equations, we will show that choosing the wave
Hamiltonian to be HW = − ∫

D Nω(k)d3x for k = ∇φ(x, t) closes the GLM equa-
tions of Andrews and McIntyre (1978) and recovers the usual physical interpretations
of their wave properties, including the phase dynamics in the local reference frame of
the moving flow.

Remark 2.2 One recalls that p := N∇φ =: Nk is called the pseudomomentum density
in the GLM theory (Andrews and McIntyre 1978). Consider the functional Mξ (φ, N )

defined by the following L2 pairing of the 1-form density N∇φ with a vector field
ξ(x)

Mξ (φ, N ) = 〈
ξ(x) , N∇φ

〉 =
∫

D
ξ(x) · N∇φ d3x . (2.11)

For the canonical Poisson bracket, the functional Mξ (φ, N ) in (2.11) generates trans-
lations in space of the wave variables φ and N along the characteristic curves of the
vector field ξ(x). This can be seen by computing the canonical Poisson brackets,

[ {φ, Mξ (φ, N )}
{N d3x, Mξ (φ, N )}

]

=
[
0 1

−1 0

] [
δMξ /δφ

δMξ /δN

]

=
[

ξ · ∇φ

div(Nξ)d3x

]

=
[ Lξφ

Lξ (N d3x)

]

,

(2.12)

where Lξ denotes Lie derivative with respect to the vector field ξ(x), which is defined
as the infinitesimal transformation along the flow generated by ξ(x). Thus, under the
Poisson bracket for the canonically conjugate, time-dependent, wave fields φ(x, t)
and N (x, t), the functional Mξ (φ, N ) generates a flow of the wave fields φ(x, t) and
N (x, t) along the characteristic curves of the vector field ξ(x).
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Phase-space Lagrangian derivation of the GLM equations We write the WCI action
integral for Hamilton’s principle as the sum of the known deterministic Lagrangian
for EB fluids (Holm et al. 1998) coupled to a phase-space Lagrangian (PSL) for the
wave-field dynamics, as follows,

S =
∫ t2

t1
�(uL , D, b, N , φ : p) dt =

∫ t2

t1

∫

D

[
D

2

∣
∣uL

∣
∣2 + DuL · R(x) − gDbz − p(D − 1)

]

d3x

−
∫ t2

t1

∫

D
N (∂tφ + uL · ∇φ) d3x +

∫ t2

t1
HW (N ,k).

(2.13)

The first line of the Lagrangian in (2.13) is the fluid Lagrangian for EB fluids in
standard vector form (Holm et al. 1998). The second line contains the PSL for the
wave degrees of freedom, obtained by a partial Legendre transform L(φ, ∂tφ) =
〈N , ∂tφ〉−H(N ,∇φ) for the canonically conjugate wave degrees of freedom (N , φ).
Note that the PSL for the wave variables is manifestly invariant under translations in
the phase φ. This means the PSL would keep its form under phase averaging at fixed
Lagrangian coordinate. Hence, one may regard the PSL as having resulted from such
an averaging process.

The term − ∫
D N∇φ · uL d3x in the second line has both wave and fluid com-

ponents. This term serves to couple the EB Lagrangian for the fluid variables with
the phase-space Lagrangian for the wave variables by pairing the wave momentum
density with the fluid velocity. Equation (2.12) shows that variations of this term in
(φ, N ) translate the wave variables along the Lagrangian trajectories of the current
flow velocity uL(x, t).

The variation of the Lagrangian in (2.13) with respect to the transport velocity
uL(x, t) produces the total Eulerian momentum density for GLM in the presence of
the wave field,

m(x, t) := δ�

δuL
= D(uL + R(x)) − N∇φ, (2.14)

in which p = N∇φ = Nk is the GLM pseudomomentum density. As we shall see,
the Hamiltonian dynamics for the momentum density in Eq. (2.14) will recover the
GLM velocity equation for the Lagrangian mean transport velocity uL(x, t).

TheHamiltonian corresponding to theLagrangian in (2.13) is given by theLegendre
transform,

H(m, N , φ, D, b)) =
∫

D
m · uL − N∂tφ d3x − �(uL , D, b, N , φ : p)

=
∫

D

[
1

2D

∣
∣m − Nk − DR

∣
∣2 + gDbz + p(D − 1)

]

d3x + HW (φ, N ).

(2.15)
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This is simply the sum of the material and wave energies. The variational derivatives
are given by

δH(m, N , φ, D, b)) =
∫

D
uL · δm + δD

(
gbz + p − 1

2
|uL |2 − uL · R(x)

)
+ (gDz)δb

− div

(

N
(
uL + δHW

δk

))

δφ +
(

δHW

δN
+ k · uL

)

δN d3x,

(2.16)

where we have used the variational identity δHW /δφ = − div(δHW /δk) at constant
N , which follows from k := ∇φ.

We may write equations of motion in Hamiltonian form by using a block-diagonal
Poisson matrix operator, as

∂t

⎡

⎢
⎢
⎢
⎢
⎣

mi

D
b
φ

N

⎤

⎥
⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎢
⎣

∂ jmi + m j∂i D∂i −b,i 0 0
∂ j D 0 0 0 0
b, j 0 0 0 0
0 0 0 0 −1
0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

δH/δm j

δH/δD
δH/δb
δH/δφ

δH/δN

⎤

⎥
⎥
⎥
⎥
⎦

. (2.17)

Remark 2.3 (Next steps) The key idea in proposing the action for WCI dynamics in
Eq. (2.13) is the separation of the Lagrangian (current) and Eulerian (wave) degrees
of freedom in Hamilton’s principle. This has been accomplished by introducing a
standard Euler–Poincaré Lagrangian for the current flow (Holm et al. 1998) and a
phase-space Lagrangian for the wave field. The two Lagrangians are coupled by the
mechanical connection term − ∫

D N∇φ ·uL d3x in the Lagrangian in (2.13) obtained
by pairing the velocity of the current flowwith the momentummap of the Hamiltonian
wave system. Coupling by this pairing has the effect that the waves propagate in the
local reference frame of the current flow. Without this connection, the current and
wave degrees of freedom would evolve separately. The result is a closed dynamical
theory whose wave–current dynamics can be made stochastic. To demonstrate the
applicability of this hybrid approach, we first verify that our Hamilton principle does
recover the deterministic GLM equations for an Euler–Boussinesq (EB) fluid. We
then add stochasticity and recover the stochastic version of the GLM equations for
EB fluid derived earlier in Holm (2019b) which also introduces stochasticity into the
GLM wave field.

Deterministic wave–current interaction for EB fluid flow. Upon expanding out the
Hamiltonian equations in (2.17), the dynamics of the EB fluid with these additional
wave variables is found to obey the following system of equations,1

∂tm + (uL · ∇)m + (∇uL)T · m + m divuL

= D∇π + Dgz∇b + k div
(δHW

δk

)
+ N∇ δHW

δN
,

1 Wewill derive the stochastic versions of equations (2.18) in proving Theorem 4.2. There, equations (2.18)
will re-emerge when the noise is absent.
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∂t D + div(DuL) = 0, D = 1, ∂t b + uL · ∇b = 0,

∂tφ + uL · ∇φ − δ HW

δN
= 0, ∂t N + div(NuL) − div

(δ HW

δk

)
= 0.

(2.18)

The Eulerian momentum density,m, and the Bernoulli function, π , in these equations
are defined by the following variational derivatives of the GLM Lagrangian in (2.13),

m := δ�

δuL
= D(uL + R(x)) − N∇φ, π := δ�

δD
= 1

2
|uL |2 + R · uL − gbz − p.

(2.19)

The motion equation for WCI in Eq. (2.18) implies the following Kelvin circulation
dynamics for the Eulerian momentum per unit mass,

d

dt

∮

c(uL )

1

D

δ�

δuL
· dx =

∮

c(uL )

(∂t + LL
u )

((
uL + R(x) − N

D
∇φ

)
· dx

)

=
∮

c(uL )

∇π · dx +
∮

c(uL )

gz∇b · dx
︸ ︷︷ ︸
Buoyancy

+
∮

c(uL )

1

D

(

k div
(δHW

δk

)
+ N∇ δHW

δN

)

︸ ︷︷ ︸
Wave Forcing

· dx.

(2.20)

Thus, the wave forcing terms in (2.20) could potentially generate circulation of the
total Eulerian momentum per unit mass,m/D, which is dual to the Lagrangian mean
velocity, uL . Equation (2.20) is Newton’s 2nd Law for the time rate of change of the
total Eulerian mean momentum m = δ�/δuL of a body whose mass is distributed
on a closed loop c(uL) moving with the Lagrangian mean velocity uL . According to
Eq. (2.20), the wave force in Newton’s Law for this model depends on the following
wave properties: wave action density N ; wave vector k; gradient of dispersion relation
∇ω(k); and group velocity vG(k) := ∂ω/∂k.

The solution algorithm for solving the Euler–Poincaré system (2.18) is, as fol-
lows. First, one solves the Euler-Poincaré motion equation to update the total Eulerian
momentum densitym(x, t). In parallel, one updates the solutions of the four auxiliary
equations for (φ, N ) and (b, D). Updating (φ, N ) also updates the GLM pseudomo-
mentum density, p := N∇φ. Next, one solves the linear Eq. (2.14) to update the
Lagrangian mean transport velocity in the rotating frame, uL = D−1(m + N∇φ) −
R(x). Finally, one updates the pressure p by solving a Poisson equation with Neu-
mann boundary conditions. After these steps, one may then take the next time step in
the motion equation and iterate the solution algorithm. The solution algorithm solves
for the total Eulerian momentum density,m(x, t), and the pseudomomentum density,
p := N∇φ, independently. This separation is crucial in solving for the Lagrangian
mean transport velocity, uL , which is a diagnostic variable in this solution algorithm.
We will see that the kinematic momentum, DuL , can be made prognostic instead of
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m by making a change of variables in the Hamiltonian formulation of the present
model. The resulting prognostic equation for uL turns out to be exactly the original
EB motion equation, which is as it should be. In addition, though, upon completing
the Hamiltonian formulation, one recovers the Poisson bracket for Landau’s 2-fluid
model for superfluid 4He. This places the present theory of WCI into the class of
complex fluids with dynamical order parameters (Holm 2002c).

Example 2.4 (TheWKBwaveHamiltonian)Closure of theWCI system (2.18) requires
one to model the wave Hamiltonian, HW (k, N ). A compelling choice of the wave
Hamiltonian can be recognised by defining the second line of Eq. (2.13) as

−
∫ t2

t1

∫

D
N (∂tφ + uL · ∇φ) d3x +

∫ t2

t1
HW (N ,k)

= −
∫ t2

t1

∫

D
N
(
∂tφ + uL · ∇φ + ω(k)

)
d3x . (2.21)

That is, the wave Hamiltonian is determined by regarding N in the phase-space
Lagrangian in (2.13) as a Lagrange multiplier which enforces the constraint that φ

satisfies the WKB wave phase Eq. (2.21) in the local reference frame of the moving
fluid. In this formulation, one may immediately interpret the physical meanings of the
various wave terms. Namely,

HW = −
∫

M
Nω(k) d3x, with

δHW

δN

∣
∣
∣
k

= −ω(k), and

δHW

δk

∣
∣
∣
N

= −N
∂ω(k)

∂k
=: − NvG(k), (2.22)

in which vG(k) := ∂ω(k)/∂k is the group velocity for the dispersion relation ω =
ω(k) between wave frequency, ω, and wave number, k. For the wave Hamiltonian
HW , the wave variables in Eq. (2.18) obey the following familiarWKB relations in the
frame of the fluid motion,2

∂tφ + uL · ∇φ = −ω(k), ∂t N + div
(
N (uL + vG(k)

)
= 0. (2.23)

Thewavedynamics in (2.23)may also bewritten in a suggestive canonicalHamiltonian
form in the reference frame of the fluid motion as

(∂t + LuL )

[
φ

Nd3x

]

=
[

0 1
−1 0

][
δHW
δφ

δHW
δN

]

, (2.24)

2 The gradient of the phase dynamics in Eq. (2.23) yields the following equation for the wave vector,
k = ∇φ, in the local reference frame of the fluid motion,

(
∂t + LuL+vG (k)

)
dφ = 0 =

(
∂tk + ∇(

ω(k) + k · uL )
)

· dx, since curl k = 0.
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where LuL denotes Lie derivative with respect to the transport vector field which in
GLM theory is the Lagrangian mean velocity uL . In this form, one may identify the
operation (∂t +LuL ) as the time derivative in the frame of the moving fluid. The wave
dynamics in Eqs. (2.23) and (2.24) provide further insight into wave propagation in
a fluid flow. For a constant transport velocity, uL , the equations in (2.23) may be
immediately recognised as the WKB equations for a wave packet with slowly varying
envelope propagating in a moving medium (Peregrine 1976; Whitham 2011; Bühler
2014).However, Eq. (2.20) for the total circulationdynamics raises the issue ofwhether
wave motions may affect the Eulerian momentum per unit mass of the fluid parcels.

The two equations in (2.23) imply that the fluid velocity uL transports the wave
propagation dynamics in the reference frame of the fluid flow. Combining these two
equations yields

− d

dt

∮

c(uL )

N

D
∇φ · dx =

∮

c(uL )

1

D

(

k div
(
NvG(k)

)
+ N∇ω(k)

)

· dx

=
∮

c(uL )

1

D

(

k div
(δHW

δk

)
+ N∇ δHW

δN

)

· dx.
(2.25)

That is, the two equations in (2.23) imply

−
(
∂t + LuL

)(N

D
∇φ · dx

)

= 1

D

(

k div
(
NvG(k)

)
+ N∇ω(k)

)

· dx. (2.26)

Now substituting Eq. (2.25) with waveHamiltonian (2.22) into the circulation theorem
in Eq. (2.20) produces a cancellation which recovers the Kelvin circulation theorem
in the same form as for the original EB equation

d

dt

∮

c(uL )

(
uL + R(x)

)
· dx =

∮

c(uL )

(∇π + gz∇b) · dx. (2.27)

Equations (2.20), (2.25) and (2.27) provide an additive decomposition the Kelvin
circulation theorem representation of WCI in the example of EB flow. This result
proves a dynamical version of the famous non-acceleration theorem forWMFI (Vallis
2017). That is, (2.27) implies a non-acceleration theorem for the present GLM WCI
model in the example of incompressible 3D EB flow with stratification and rotation,
in the sense that the equation for the mean flow velocity in this model does not change,
even when waves are present. In particular, the fluid potential vorticity (PV) will still
be conserved on Lagrangian mean particle paths. That is,

∂t Q + uL · ∇Q = 0, (2.28)

where PV is defined as Q := D−1∇b · curl(uL + R(x)) with D = 1.
Thus, after identifying the wave Hamiltonian in (2.22), the phase-space Lagrangian

in (2.21) has produced amodel of wave–current interaction in the EB fluid in which the
total circulation separates additively into wave and current components. In particular,
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the total momentum density in the model decomposes asm = D(uL +R(x))− N∇φ

into the sum of the momentum densities for the two degrees of freedom. However, in
the absence of dissipation no momentum exchange occurs between the two interpen-
etrating fluids, as also occurs for superfluid 4He (London (1950); Putterman (1974);
Holm (2001)). Next, we will discuss how this variational description of WCI fits into
the vast literature of wave mean flow interaction (Peregrine 1976; Whitham 2011;
Bühler 2014).

The next example will show that equations (2.18) with m given in (2.19) and
HW (N ,k) given in (2.22) provide a closure for theGLMdynamics of the EB stratified,
rotating, incompressible fluid.

Example 2.5 (ComparingWCI equations (2.18) with the Andrews andMcIntyre GLM
formulation Andrews and McIntyre 1978). For the choice of wave Hamiltonian (2.22)
of Example 2.4, one may quite easily identify the WCI terms in (2.20) which corre-
spond to the GLM formulation. In the GLM notation (Andrews and McIntyre 1978;
Holm 2019b), the wave variables involve the Eulerian time mean correlations denoted
as ( · ) among terms involving the fluctuation displacements ξ i (x, t) and the fluctua-
tion pressure pξ (x, t). These wave mean variables for GLM include the relative group

velocity v
j
G = (pξ K j

i ∂φξ i ) and an approximation of the kinematic fluctuation pres-

sure, −π� ≈ pξ
, j K

j
i ξ i . Here K j

i is the cofactor of the Jacobian for the fluctuating
flow

K j
k := J (J −1)

j
k with J k

j := ∂
(
xk + ξ k(x, t)

)

∂ x j
, whose determinant isJ .

The GLM fluctuation quantities are related to the GLM time-mean wave variables N
and p as

(�k∂φξ k) =: −N , (�k∇ξ k) = −Nk =: −p, (2.29)

where the co-vector � ∈ R
3 with components �k , k = 1, 2, 3, is the fluctuation

momentum variable. The same variables N and k = ∇φ also appear in the canonical
wave equations (2.23) for the present WCI theory.

Let usmake the change of variables for the variational partial derivatives of thewave
Hamiltonian in (2.22) from dependence HW (k, N ) to HW (p/N , N ). We then find
that the canonical Hamiltonian system for φ, N in (2.18), when rewritten in equations
(2.23) for the WKB wave Hamiltonian HW , transforms under k = ∇φ = p/N into a
Lie–Poisson Hamiltonian system which exactly recovers the standard GLM equations
for EB flow. The wave field’s semidirect-product Lie–Poisson Hamiltonian structure
is revealed in its matrix form as Holm (2019b)

∂t

[
p j

N

]

= −
[
pk∂ j + ∂k p j N∂ j

∂k N 0

]
⎡

⎣
δHW
δ pk

∣
∣
∣
N

= uL k + vkG(p/N )

δHW
δN

∣
∣
∣
p

= ω(p/N ) − N−1 pi
(
uL i + viG(p/N )

)

⎤

⎦ .

(2.30)
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This calculation proves the following proposition.

Proposition 2.6 When the wave Hamiltonian in (2.22) is rewritten in Lie–Poisson
dynamical variables in (2.30) as HW (p/N , N ) = − ∫

M N ω(p/N ) d3x, then the
Euler–Poincaré equations in (2.18) and the relationships in (2.22) for its variational
partial derivatives provide a closure for the standard equations for EB flow in the
GLM representation (Gjaja and Holm 1996; Holm 2019b).

Remark 2.7 (WCI relation to GLM) The result in proposition 2.6 that the WCI equa-
tions for the WKB Hamiltonian in (2.22) provide a closure for the standard GLM
equations for EB fluid motion reflects a certain equivalence among WKB, WCI and
GLM. These three approaches are all deeply connected with fast-slow decompositions
and the time averaging of variational principles at fixed Eulerian position. For a recent
discussion of these links and their history, see Burby and Ruiz (2019).

Thus, the phase-space Lagrangian (2.13) for the case HW (p/N , N ) in separated
form (2.22) provides a Hamiltonian closure for deterministic GLM. In turn, the dis-
covery here of the exact relation of the WCI equations (2.18) to the EB fluid GLM
equations for the choice ofWKBHamiltonian in (2.22)means that the order parameters
(φ, N ) introduced in the phase space Lagrangian (2.13) may be regarded as variables
obtained from the time average of a fast-slowWMFI decomposition forwhatever fluid
theory is under consideration. That is, we may regard the WCI equations with the
WKB Hamiltonian (2.22) for any Euler–Poincaré fluid theory as a shortcut approach
for deriving the form of the corresponding GLM equations from the linear dispersion
relation for that theory.Wewill see another example of this approach for shallowwater
waves in Sect. 6.

Remark 2.8 (Next steps: dynamics of uncertainty in WCI) The remainder of the main
text will discuss the dynamics of uncertainty in WCI, as represented by stochasticity
in this variational framework in hybrid wave–current variables for GLM. The investi-
gation of the effects of random waves on the dispersion of fluid particles is a feature
of modern research (Holmes-Cerfon et al. 2011). We hope that a hybrid variational
formulation of stochastic WCI associated with a Hamiltonian closure for GLM will
be interesting and useful, as well.

3 Variational Principles for Stochastic Fluid Dynamics (SALT)

The variational principles for stochastic fluid dynamics derived in Holm (2015) have
come to be known as stochastic advection by Lie transport, abbreviated as SALT
(Cotter et al. 2019a, b, c). In the SALT fluid equations, the Lagrangian parcels move
along Stratonovich stochastic paths, on which the Kelvin circulation theorem still
holds for closed material circulation loops.

The variational equations for stochastic fluids introduced in Holm (2015) showed
that such equations arise fromHamilton’s principle for the following action integral, in
which the advected quantities are constrained to move along the Stratonovich stochas-
tic paths: from a stochastically constrained variational principle δS = 0, with action,
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S, given by3

S(u, a, b) =
∫ t2

t1

(

�(u, a)dt + 〈
b, da + Ldxt a

〉
V

)

, (3.1)

where �(u, a) is the unperturbed deterministic fluid Lagrangian, written as a functional
of velocity vector field, u, and advected quantities, a. The stochastic dynamics of
the advected quantities imposes a constraint on the variations known as a driving
martingale relation in which the operation d in (3.1) may be regarded as a stochastic
differential. Formorediscussionof this notation and the concept of drivingmartingales,
see Street and Crisan (2020).

The angle brackets in

〈 b, a 〉V :=
∫

< b(x), a(x, t) > dx (3.2)

denote the spatial L2 integral over the domain of flow of the pairing< b, a > between
elements a ∈ V and their dual elements b ∈ V ∗. In (3.1), the quantity b ∈ V ∗ is a
Lagrange multiplier and Ldxt a is the Lie derivative of an advected quantity a ∈ V ,
along a vector field dxt ∈ X defined by the following sum of a drift velocity u(x, t)
and Stratonovich stochastic process with cylindrical noise parameterised by spatial
position x , Pardoux (2007); Schaumlöffel (1988)

dxt (x) = u(x, t) dt +
∑

i

ξi (x) ◦ dWi (t). (3.3)

Remark 3.1 The quantity dxt (x) in (3.3) may be regarded as a stochastic Eulerian
vector field parameterised by the spatial position x which generates a smooth invert-
ible map in space whose parameterisation in time is stochastic. In integral form, the
operation the expression dxt in Eq. (3.3) represents,4

xt = x0 +
∫ t

0
u(x, t) dt +

∑

i

ξi (x) ◦ dWi (t). (3.4)

We also will find it useful to define a map called the diamond operation � : V ∗ ×
V → X∗, as follows Holm et al. (1998).

Definition 3.2 (The diamond operation) Let X∗(M) denote the space of (smooth) 1-
form densities dual to the space of (smooth) vector fields,X(M), with respect to the L2

pairing on amanifoldM . On themanifoldM , the diamond operation� : V ∗×V → X∗

3 Sections 3 and 4 needn’t be restricted to considering onlyGLM.Consequently,wewill drop the superscript
L in these sections.
4 The usual superscript ω for pathwise stochastic quantities will be understood throughout. However, this
superscript will be suppressed for the sake of cleaner notation.
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is defined for a vector space V with (b, a) ∈ V ∗ × V and vector field ξ ∈ X is given
in terms of the Lie-derivative operation Lξ by

〈
b � a , ξ

〉

X
:=

〈
b , −Lξa

〉

V
(3.5)

for the L2 pairings 〈 ·, · 〉V : V ∗×V → R and 〈 ·, · 〉X : X∗×X → Rwith b�a ∈ X∗.

Theorem 3.3 (SALT dynamics via Hamilton’s principle δS = 0 for action integral
(3.1), Holm 2015) The SPDEs which result from the stochastically constrained varia-
tional principle δS = 0 for S defined in (3.1) were expressed in Stratonovich form in
terms of the Lie-derivative operation Ldxt as

d
δ�

δu
+ Ldxt

δ�

δu
= δ�

δa
� a dt, and da + Ldxt a = 0, (3.6)

in which dxt is the stochastic Eulerian vector field in Eq. (3.3) which generates the
Stratonovich stochastic Lagrangian fluid ‘trajectory’ (flow map).

All fluid theories advect mass, whose density D = ρ d3x satisfies the following
Stratonovich stochastic continuity equation,

(d + Ldxt )D = (
dρ + div(ρ dxt )

)
d3x = 0. (3.7)

The motion and advection equations in (3.6) and the continuity Eq. (3.7) imply the
following Kelvin circulation theorem.

Corollary 3.4 (Kelvin circulation theorem for SALT dynamics). The SALT dynamics
equations (3.6) imply

d
∮

c(dxt )

1

D

δ�

δu
=

∮

c(dxt )

(
d + Ldxt

)
(
1

D

δ�

δu

)

=
∮

c(dxt )

(
1

D

δ�

δa
� a

)

dt, (3.8)

Remark 3.5 (Creation of fluid circulation by advection) The first step in the proof
of the fluid circulation Eq. (3.8) invokes the Kunita-Itô-Wentzell theorem whose use
in the derivation of stochastic fluid dynamics is discussed in Bethencourt de Leon
et al. (2020). Equation (3.8) extends the familiar statement that fluid circulation can
be created by the dynamics of the advected fluid quantities into the realm of fluid
circulation on stochastically moving material loops.

Equations (3.3) and (3.6) have already been applied with good effect for uncertainty
quantification and data assimilation resulting in reduction of uncertainty by using
particle filtering in several exemplar problems (Cotter et al. 2019a, b, c). Future steps
will turn toward oceanic applications of SALT for stochastic upper ocean dynamics
(STUOD). However, the upper ocean dynamics has an added feature which cannot
be addressed with the present SALT theory. Namely, upper ocean dynamics depends
strongly onwave–current interaction (WCI).Historically,WCI has been a fundamental
issue in ocean physics itself, not to mention its effect on modelling uncertainty and
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its potential complications in data assimilation. Now, the outstanding problem for
STUOD is, “How to extend the SALT approach to accommodate WCI?”

Naturally, to face this issue, we must return to basics. The first question might be,
“How can we extend the stochastically constrained variational principle δS = 0 for
SALT, with action S given in Eq. (3.1) to accommodate WCI?” For this, one would
need to introduce a wave degree of freedom which would allow some of the fluid
variables to propagate relative to the fluid flow, rather than being simply advected.
Moreover, we must ask, “Would those wave variables have their own type of stochas-
ticity which would be independent of stochastic advection?” and ”Would one be able
to represent the uncertainty in wave dynamics through stochastic propagation?” For-
tunately, the derivation obtained by using the phase-space Lagrangian for the wave
dynamics discussed in Example 3.1 of the deterministic GLM equations for the EB
fluid has already revealed a potential pathway to a theory of stochastic WCI. Namely,
one may be able to extend the variational principle for SALT to include a stochastic
phase-space Lagrangian for the wave variables.

This extension will be the aim of much of the remainder of the paper. We know that
SALT will affect the wave motion, because the waves propagate in the frame of the
stochastic fluidmotion. Andwe know that the evolution of the waves will not affect the
circulation of the fluid. However, we would also like to know how uncertainty in the
wave propagation itself might affect the uncertainty of the fluid flow. The next section
lays out the general formulation. Then, in the last section, we conclude by rederiving
the stochastic GLM equations of Holm (2019b) for stratified EB fluids by using the
WCI approach of the previous section, augmented by allowing the Hamiltonian for
the wave variables in the phase-space Lagrangian to be stochastic.

4 Including Stochastic NonlinearWave Propagation (SNWP) for WCI

To extend the stochastically constrained variational principle (3.1) for SALT in order to
accommodate the effects of SNWPonWCI,wewill need additionalwave variables and
an additional constraint amongst them which will correspond to stochastic nonlinear
wave propagation. For this purpose, we shall work in the abstract framework sketched
in the introduction to introduce a set of canonically conjugate wave variables denoted
(q, p) and propose the following minimal coupling form of the wave action integral
to the SALT action integral for fluid flow in (3.1),

S(u, a, b, q, p) =
∫ t2

t1
�(u, a)dt
︸ ︷︷ ︸

Fluid Lagrangian

+
∫ t2

t1

〈
b , da + Ldxt a

〉

V︸ ︷︷ ︸
Advection Constraint

dt

−
∫ t2

t1

〈
p � q , dxt

〉

X︸ ︷︷ ︸
Minimal Coupling

dt +
∫ t2

t1

〈
p , dq

〉

V
− dJ (q, p)

︸ ︷︷ ︸
Phase-space Wave Lagrangian

dt .
(4.1)

Here, the angle brackets represent real L2 integral pairing, dxt is given in (3.3) and
the stochastic Hamiltonian functional dJ (q, p) for SNWP is given in Stratonovich
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form by

dJ (q, p) := H(q, p) dt + K(q, p) ◦ dBt , (4.2)

Remark 4.1 (Minimal coupling—an idea from quantummechanics) Both the minimal
coupling idea and the phase-space Lagrangian in the action integral (4.1) were intro-
duced by Paul Dirac in the early days of quantum mechanics. Minimal coupling is
sometimes called ‘jay-dot-ay’ (J ·A) coupling because of its interpretation in coupling
a solution ψ of the Schrödinger equation for a quantum charged particle such as an
electron with charge e and current density J = e�(ψ∗∇ψ) toMaxwell’s equations for
an electromagnetic field with vector potential A. This type of coupling is still invoked
universally in quantum problems today. For example, one may see J ·A used for cou-
pling classical nuclei to quantum electrons in the quantum hydrodynamic theory of
molecular chemistry, Foskett et al. (2019). Thus, it may be no surprise that minimal
coupling might arise here again, as a natural approach for coupling the Lagrangian
mean flow of fluid trajectories to the essentially Eulerian field properties of wave prop-
agation. In fact, as for the deterministic WCI case, the minimal coupling term will add
the wave momentum map p � q to the total momentum, m = δ�(u, a)/δu. As one
might expect, the minimal coupling term will also boost the wave dynamics into the
frame of the stochastic fluid flow.

Applying the definition of the diamond operation (�) in (3.5) to the minimal cou-
pling term in the action integral with the phase-space Lagrangian in (4.1) yields

−
〈
p � q , dxt

〉

X
:=

〈
p , Ldxt q

〉

V
(4.3)

for (p, q) ∈ T ∗V and the Stratonovich stochastic vector field dxt ∈ X given in (3.3)
and appearing in the Lie-derivative operation Ldxt for the advection constraint in the
action integral (4.1).

As a consequence of Eq. (4.3), the minimum coupling term in the action integral
(4.1) may be absorbed into the phase-space Lagrangian in (4.1), as

S(u, a, b, q, p) =
∫ t2

t1
�(u, a)dt
︸ ︷︷ ︸

Fluid Lagrangian

+
∫ t2

t1

〈
b , da + Ldxt a

〉

V︸ ︷︷ ︸
Advection Constraint

dt

+
∫ t2

t1

〈
p , dq + Ldxt q

〉

V
−

(
H(q, p) dt + K(q, p) ◦ dBt

)

︸ ︷︷ ︸
Stochastic Legendre Transformation in Fluid Frame

,

(4.4)

where its purpose now is to represent time derivatives along the flow of the Lagrangian
trajectories of the stochasticmeanflowmapφt generated by theStratonovich stochastic
vector field dxt ∈ X given in (3.3). This statement may be proved by recalling that
the pullback φ∗

t qt of a time dependent quantity (e.g. the state variable qt ) by the
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stochastic time-dependent map φt generated by the stochastic vector field dxt satisfies
the stochastic differential relation (Bethencourt de Leon et al. 2020)

d(φ∗
t qt ) = φ∗

t

(
dq + Ldxt q

)
. (4.5)

For more discussion of the mathematics of stochastic geometric mechanics, see
Bethencourt de Leon et al. (2020).

The stochastic dynamics associated with Hamilton’s principle for the action inte-
gral for the stochastic phase-space Hamiltonian in (4.7) may be encapsulated in the
following theorem.

Theorem 4.2 (SALT + SNWP dynamics via Hamilton’s principle δS = 0 for action
integral (4.7)) The extension of SALT to include SNWP is governed by the following
system of Euler–Poincaré equations.

d
δ�(u, a)

δu
+ Ldxt

δ�

δu
= δ�

δa
� a dt − δ dJ

δq
� q + p � δ dJ

δ p
, da + Ldxt a = 0,

dq + Ldxt q − δ dJ (q, p)

δ p
= 0, dp − LT

dxt p + δ dJ (q, p)

δq
= 0,

(4.6)

where dxt is given in (3.3) and dJ (q, p) is given in (4.2).

Remark 4.3 (The diffusion part K(q, p) ◦ dBt of the wave Hamiltonian dJ (q, p) in
(4.2)) For definiteness in applying Theorem 4.2, we shall take the diffusion part of the
semimartingale wave Hamiltonian K(q, p) ◦ dBt in Eq. (4.2) as a pairing of a vector
field martingale σ(x) ◦ dBt with the wave momentum map p � q,

K(q, p) ◦ dBt =
〈
p � q , σ (x)

〉

X
◦ dBt =

〈
p , −Lσ q

〉

V
◦ dBt =

〈
−Lσ p , q

〉

V
◦ dBt . (4.7)

The corresponding variational derivatives of K(q, p) =
〈
p � q , σ (x)

〉

X
are

δK(q, p) =
〈
δ p , −Lσq

〉

V
+

〈
−Lσ p , δq

〉

V
. (4.8)

Thus, the diffusion part of the wave Hamiltonian K(q, p) ◦ dBt in the phase-space
Lagrangian will induce an additional transport of wave properties by the vector field
martingale σ(x) ◦ dBt .

Corollary 4.4 (Kelvin circulation theorem for SALT and SNWP dynamics).

d
∮

c(dxt )

1

D

δ�

δu
=

∮

c(dxt )

1

D

(
δ�

δa
� a dt − δ dJ (q, p)

δq
� q + p � δ dJ (q, p)

δ p

)

.

(4.9)
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Remark 4.5 (Creation of fluid circulation by both advection and wave interaction)
The right-hand side of Kelvin’s theorem in Eq. (4.9) raises the issue of whether fluid
circulation can be created by the effects of both the advected fluid quantities on the
right side of Eq. (4.9) and also by the effects of the stochastic wave dynamics generated
by the wave Hamiltonian dJ (q, p) defined now as

dJ (q, p) := H(q, p) dt +
〈
p � q , σ (x)

〉

X
◦ dBt . (4.10)

As we shall see, the non-acceleration result for GLM in corollary 4.8 below precludes
generation of fluid circulation by wave effects.

Remark 4.6 (Compatibility of stochastic terms in the loop and in the integrand of
Kelvin’s theorem) The wave noise ◦ dBt in the wave Hamiltonian dJ (q, p) in Eq.
(4.10) is assumed to be independent of the fluid transport noise ◦ dWt in the velocity
vector field dxt (x) in (3.3). Hence, the stochasticity in the integrand of the right-hand
side of Eq. (4.9) will not interfere with the stochasticity in the loop velocity dxt defined
in Eq. (3.3).

Proof The first step of the proof of Theorem 4.2 is to take the elementary variational
derivatives of the action integral (4.1), to find

δu : δ�

δu
− b � a − p � q = 0, δb : da + Ldxt a = 0, δa : δ�

δa
dt − db + LT

dxt b = 0,

δ p : dq + Ldxt q − δ dJ (q, p)

δ p
= 0, δq : dp − LT

dxt p + δ dJ (q, p)

δq
= 0.

(4.11)

Using these relations and the two lemmas below will lead to the required motion
equation,

d
δ�

δu
+ ad∗

dxt

δ�

δu
− δ�

δa
� a dt = −δ dJ (q, p)

δq
� q + p � δ dJ (q, p)

δ p
, (4.12)

whose left-hand side recovers the SALT equations, and whose right-hand side reveals
the extension of SALT to include SNWP, along with the auxiliary equations for a, q
and p in (4.11). ��
Remark 4.7 (The total momentum is the sum of particle and wave components) Sup-
pose the kinetic energy density in the Lagrangian �(u, a) in (4.9) is proportional to
the square of the transport velocity, u. Then, the momentum density obtained from the
variational derivative result for δ�/δu above will comprise the sum of the particle and
wave momentum densities (δ�/δu = b � a + p � q). This means the total momen-
tum density comprises the sum of the particle momentum density (μ = b � a), whose
canonical Poisson bracket spatially translates both the advected variables (a) and their
conjugate dual variables (b) together, as well as the wave momentum (ν = p � q)
whose canonical Poisson bracket spatially translates both the phase of thewave (q) and
its canonically conjugate momentum, the wave action density (p). In other words, the
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sumof themomentumdensities acts via the Poisson bracket to translate the canonically
conjugate field variables for both degrees of freedom of the flow together. However,
the decomposition of the dynamics into separate equations for the two momentum
maps μ := b � a and ν := p � q in the proofs of the two lemmas 4.9 and 4.10 implies
the following non-acceleration theorem.

Corollary 4.8 (Non-acceleration result – ghost waves). The motion Eq. (4.12) for
δ�/δu = b � a + p � q decomposes into the sum of two separate equations. One
is a standard Euler–Poincaré fluid equation for the currents and the other one for the
wave degrees of freedom. These are:

For μ := b � a we have dμ + Ldxtμ = δ�

δq
� q dt

For ν := p � q we have dν + Ldxt ν = −δ dJ (q, p)

δq
� q + p � δ dJ (q, p)

δ p
.

(4.13)

Corollary 4.8 is a non-acceleration result for the wave and current momenta, in
the sense that the waves propagate in the local reference frame of the fluid flow and
the presence of waves has no net effect on the mean-flow equations in this model.
Note that equations (4.13) provide a non-acceleration theorem for any choice of wave
Hamiltonian.

Lemma 4.9 Together, the variational equations arising from varying b and a in the
first line of (4.11) imply the following useful identity first proved in Holm (2015).

Upon defining μ := b � a we have dμ − δ�

δa
� a dt = −Ldxtμ. (4.14)

Proof For an arbitrary vector field w ∈ X(M), one computes the following pairing.

〈

dμ − δ�

δa
� a dt, w

〉

X

=
〈

db � a + b � da − δ�

δa
� a dt, w

〉

X

By equation (4.11) =
〈
(LT

dxt b) � a − b � La, w
〉

X

= 〈
b, (−LdxtLw + LwLdxt )a

〉
V

= 〈
b, (addxtw) a

〉
V = − 〈

b � a, addxtw
〉
X

= − 〈
ad∗

dxt (b � a), w
〉
X

= −
〈
Ldxtμ, w

〉

X
.

(4.15)

Since w ∈ X was arbitrary, the last line completes the proof of the Lemma. In the
last step we have also used the coincidence that coadjoint action ad∗

vμ is identical to
Lie-derivative action Lvμ when a vector field v ∈ X acts on a 1-form density μ ∈ X∗,
where one denotes X∗ as the dual space of the vector fields X with respect to the L2

pairing defined in Eq. (3.5). ��
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Lemma 4.10 Likewise, the variational equations arising from varying p and q in the
second line of (4.11) satisfy a similar useful identity.

Upon defining ν := p � q we have dν = −Ldxt ν

− δ dJ (q, p)

δq
� q + p � δ dJ (q, p)

δ p
. (4.16)

Proof For an arbitrary vector field w ∈ X(M), one computes the following pairing.

〈
dν , w

〉
X

= 〈
dp � q + p � dq , w

〉
X

= 〈
dp , −Lwq

〉 + 〈
p , −Lwdq

〉

=
〈
LT
dxt p − δ dJ (q, p)

δq
, −Lwq

〉
+

〈
p , −Lw

(

−Ldxt q + δ dJ (q, p)

δ p

)〉

=
〈
LT
dxt p , −Lwq

〉
+

〈
p , LwLdxt q)

〉

+
〈δ dJ (q, p)

δq
, Lwq

〉
+

〈
p , −Lw

δ dJ (q, p)

δ p

〉

=
〈
p , −LdxtLwq

〉
+

〈
p , LwLdxt q)

〉
−

〈δ dJ (q, p)

δq
� q , w

〉

X

+
〈
p � δ dJ (q, p)

δ p
, w

〉

X

=
〈
p , −L[dxt ,w]q)

〉
+

〈
−δ dJ (q, p)

δq
� q + p � δ dJ (q, p)

δ p
, w

〉

X

=
〈
p � q , −addxtw

〉
+

〈
−δ dJ (q, p)

δq
� q + p � δ dJ (q, p)

δ p
, w

〉

X

〈
dν , w

〉
X

=
〈
−ad∗

dxt (p � q) − δ dJ (q, p)

δq
� q + p � δ dJ (q, p)

δ p
, w

〉

X

.

(4.17)

��

Remark 4.11 (Stochastic nonlinear wave propagation ignoring fluid flow) Let us focus
on the particular choice in (4.7) of the stochastic component of the wave Hamiltonian
K(q, p) = 〈

p � q , σ (x)
〉
X
in dJ (q, p) as inEq. (4.10). In the absence of fluidmotion,

the corresponding stochastic nonlinear wave dynamics in the second line of (4.11) are
obtained from the variational derivatives in (4.8) as

dq = δ dJ (q, p)

δ p
= δH(q, p)

δ p
dt − Lσq ◦ dBt ,

dp = −δ dJ (q, p)

δq
= −δH(q, p)

δq
dt + Lσ p ◦ dBt .

(4.18)
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We conclude that the role of the Lie transport operators in the last line of Eq. (4.11) is
simply to put the wave propagation into the frame of the stochastic fluid motion. That
is, the wave propagation is passive.

Thus, as the waves propagate in the frame of the fluid flow, they cannot transfer
momentum to the fluid flow, nor can they generate fluid circulation in Kelvin’s the-
orem. The result is stochastic wave–current non-acceleration. When the fluid flow is
added back into the wave dynamics, equations (4.18) with the choice (4.7) for the
semimartingale part of the wave Hamiltonian in Eq. (4.2) become

dq + Ldxt q + Lσq ◦ dBt = δH(q, p)

δ p
dt,

dp − LT
dxt p − LT

σ p ◦ dBt = −δH(q, p)

δq
dt .

(4.19)

in which we see that the wave properties are transported by both wave and fluid
vector fields in SWCI. These relations imply the following corollary, in which the
contributions of the choice of wave Hamiltonian in (4.8) can be seen explicitly.

Corollary 4.12 (Kelvin circulation theorem for SALT and SNWP dynamics).

d
∮

c(dxt )

1

D

δ�

δu
=

∮

c(dxt )

1

D

(
δ�

δa
� a − δH(q, p)

δq
� q + p � δH(q, p)

δ p

)

dt

+
∮

c(dxt )

1

D

(−(Lσ p
) � q + p � (Lσq

)) ◦ dBt .

(4.20)

where the material loop c(dxt ) follows the stochastic Lagrangian fluid path generated
by the vector field dxt given in Eq. (3.3) for a stochastic term dWt , which is not
correlated with dBt above.

By Corollary 4.12 the Kelvin circulation theorem (4.20) separates into two inde-
pendent Kelvin circulation theorems for the separate wave and current parts.

Corollary 4.13 (SeparateKelvin circulation theorems for SALTandSNWPdynamics).
The Kelvin circulation theorem (4.20) for SALT and SNWP dynamics splits into the
sum of two separate equations circulation theorems for interpenetrating fluids with
the same circulation loop. The summands are:

d
∮

c(dxt )

μ

D
=

∮

c(dxt )

1

D

(
δ�

δa
� a

)

dt

and

d
∮

c(dxt )

ν

D
=

∮

c(dxt )

1

D

(

−δH(q, p)

δq
� q + p � δH(q, p)

δ p

)

dt

+
∮

c(dxt )

1

D

(−(Lσ p
) � q + p � (Lσq

)) ◦ dBt .

(4.21)

123



4 Page 30 of 59 Journal of Nonlinear Science (2021) 31 :4

5 Application #1: SALT and SNWP for GLM in Stratified EB Fluids

The deterministic case. In Eq. (2.13), we have augmented the known deterministic
Lagrangian for EBfluids (Holm et al. 1998) by coupling it to a phase-space Lagrangian
for wave dynamics, as follows,

�(uL , D, b, N , φ : p) =
∫

D

[
D

2

∣
∣uL

∣
∣2 + DuL · R(x) − gDbz − p(D − 1)

− N (∂tφ + uL · ∇φ) d3x + HW (N ,k).

(5.1)

The first line of the Lagrangian in (5.1) is the fluid Lagrangian for EB fluids in standard
form (Holm et al. 1998). The second line is the phase-space Lagrangian for the wave
degrees of freedom. The term − ∫

D N∇φ · uL d3x in the second line has both wave
and fluid components. This term serves to couple the EB Lagrangian for the fluid
variables with the phase-space Lagrangian for the wave variables by pairing the wave
momentum with the fluid velocity.

To proceed, let us rewrite the deterministic equations (2.18) for the stratified EB
fluid dynamics in a more geometric form so we will be able to see how they lead to
the stochastic Kelvin circulation theorem more easily,

(∂t + LuL )
(
m · dx ⊗ d3x

) =
(

Ddπ + Dgzdb + div
( δHW

δk

)
dφ + Nd

( δHW

δN

))

⊗ d3x,

(∂t + LuL )(D d3x) = 0, D = 1, (∂t + LuL )b = 0,

(∂t + LuL )φ − δ HW

δN
= 0, (∂t + LuL )(N d3x) − Lδ HW /δk d

3x = 0,

(5.2)

where theEulerianmomentumdensitym and pressureπ in these equations are recalled
from (2.19) as,

m := δ�

δuL
= D(uL + R(x)) − N∇φ,

π := δ�

δD
= 1

2
|uL |2 + R(x) · uL − gbz − p. (5.3)

From the first two equations, one obtains the form needed for the Kelvin theorem,

(∂t + LuL )
( 1

D
m · dx

)
= dπ + gzdb + 1

D
div

(δHW

δk

)
dφ + N

D
d
(δHW

δN

)
(5.4)

Next, we recall the WKB wave Hamiltonian which leads to the GLM equations,

HW = −
∫

M
Nω(k) d3x, with

δHW

δN

∣
∣
∣
k

= −ω(k), and

δHW

δk

∣
∣
∣
N

= −N
∂ω(k)

∂k
=: − NvG(k), (5.5)
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in which vG(k) := ∂ω(k)/∂k is the group velocity for the dispersion relation ω =
ω(k) between wave frequency, ω, and wave number, k, given for internal waves at
leading order by Gjaja and Holm (1996) as

ω2(k) = (2� · k)2

k2
+

(
δ jl − k j kl

k2

) ∂2 p

∂x j∂xl
with 2� = curlR(x). (5.6)

The motion equation for WCI in Eq. (5.2) implies the following Kelvin circulation
dynamics

d

dt

∮

c(uL )

1

D
m · dx =

∮

c(uL )

(∂t + LuL )
( 1

D
m · dx

)

=
∮

c(uL )

(∇π + gz∇b
) · dx

−
∮

c(uL )

1

D

(

k div
(
NvG(k)

)
+ N∇ω(k)

)

︸ ︷︷ ︸
GLM Wave Forcing

· dx,
(5.7)

where c(uL) is amaterial loopmovingwith the flow at velocityuL (x, t). The quantities
m and π in (5.7) are defined in Eq. (5.3).

Remark 5.1 (Non-acceleration is broken for non-constant D) The presence of D in
the last term in (5.7) links the wave and fluid components of the flow when D is not
constant. Thus, as we shall see in the next section, the non-acceleration result does not
hold when D is a dynamical variable.

The SALT and SNWP stochastic cases. To recover the SALT GLM equations derived
in Holm (2019b) and extend them to SNWP GLM equations by following the general
case in the previous section,wemake two replacements. One is in the transport velocity
and the other is in the wave Hamiltonian, as

LuL → Ldxt with dxt in (3.3) and HW → dhW := HWdt + KW (N , φ) ◦ dBt .

(5.8)

For GLM we choose the diffusion part of the wave Hamiltonian to be KW (N , φ) =∫
N∇φ · σ (x) d3x , as in Eq. (4.10) of Remark 4.11. Thus, Eq. (5.4) becomes

(d + Ldxt )
( 1

D
m · dx

)
= (dπ + gzdb)dt − 1

D

(
k div

(
NvG(k)

)
+ N∇ω(k)

)
· dx dt

− 1

D

(
k div

(
Nσ (x)

) − N∇(
k · σ (x)

)) ◦ dBt .

(5.9)

Here, the Bernoulli quantity π as

π := δ�

δD
= 1

2
|uL |2 + R(x) · uL − gbz − p, (5.10)
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which is required in order to impose preservation of volumewhen the transport velocity
dt is stochastic, as discussed in Street and Crisan (2020).

The motion equation for WCI in Eq. (5.2) implies the following Kelvin circulation
dynamics

d
∮

c(dxt )

1

D
m · dx =

∮

c(dxt )
(d + Ldxt )

( 1

D
m · dx

)

=
∮

c(dxt )
(∇π + gz∇b) · dx dt −

∮

c(dxt )

1

D

(

k div
(
NvG(k)

)
+ N∇ω(k)

)

· dx dt

−
∮

c(dxt )

1

D

(
k div

(
Nσ (x)

)

− N∇(
k · σ (x)

)) · dx ◦ dBt ,

(5.11)

where c(dxt ) is a material loop moving with the stochastic flow velocity dxt in (3.3).
Thus, the SALT and SNWPaugmentations ofGLMhave been derived. Future research
will investigate the combination of stochastic processes appearing in these dynamics.

Corollary 5.2 (Non-acceleration result – ghost waves). The Kelvin circulation dynam-
ics in (5.11) for m/D := (uL + R(x)) − D−1N∇φ decomposes into the sum of two
separate equations for the currents and wave degrees of freedom. These are:

d
∮

c(dxt )
(uL + R(x)) · dx =

∮

c(dxt )
(∇π + gz∇b) · dx dt (SALT),

d
∮

c(dxt )
D−1N∇φ · dx =

∮

c(dxt )

1

D

(

k div
(
NvG(k)

)
+ N∇ω(k)

)

· dx dt

(SALT & SNWP) +
∮

c(dxt )

1

D

(
k div

(
Nσ (x)

)

− N∇(
k · σ (x)

)) · dx ◦ dBt ,

(5.12)

where c(dxt ) is a material loop moving with the stochastic flow velocity dxt in (3.3).

Corollary 5.2 is a non-acceleration result for the wave and current momenta, in the
sense that the waves propagate in the local reference frame of the fluid flow and the
presence of waves has no net effect on the mean-flow equations in this model.

6 Application #2: SALT and SNWP for ShallowWater Waves

Phase-space Lagrangian derivation of the Shallow water waves in 1D (SWW1D)
Following the pattern set in (2.13), we augment the known deterministic Lagrangian
for SWW1D (Holm et al. 1998) by appending to it a phase-space Lagrangian for wave
dynamics. We may then write the WCI action integral for Hamilton’s principle as
follows,

S =
∫ t2

t1
�(u, D, N , φ) dt =

∫ t2

t1

∫

D

[
D

2
u2 − g

2
(D − b(x))2
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− Nuφx − Nφt

]

dx dt + HW (N , φx )dt . (6.1)

Hamilton’s principle gives

0 = δS =
∫ t2

t1

∫

D

[

δD
(u2

2
− g(D − b)

)
+ δu

(
Du − Nφx

)

+ δN
(

− φt − uφx + δHW

δN

)
+ δφ

(
Nt + (Nu)x − ∂x

δHW

δφx

) ]

dx dt .

(6.2)

As before, we choose the wave Hamiltonian to be

HW (N , φx ) = −
∫

D
Nω(k)dx with k = φx

δHW (N , φx ) = −
∫

D
(δN )ω(k) − (δφ) ∂x (NvG(k))dx .

(6.3)

The canonical equations for (φ, N ) are then

φt + uφx + ω(k) = 0 and Nt + ∂x (N (u + vG(k))) = 0. (6.4)

The corresponding equations for the fluid variables

Momentum:
δ�

δu
=: m = Du − Nφx and Depth: D (6.5)

are the Euler–Poincaré equations (Holm et al. 1998)

mt + (m∂x + m∂xm)u = D∂x

(u2

2
− g(D − b)

)
,

Dt + ∂x (Du) = 0.
(6.6)

Hamiltonian derivation of the SWW1D To pass to the Hamiltonian side, we complete
the Legendre transform in the reduced fluid variables (m, u) to find

H(m, D, φ, N ) = 〈
m , u

〉 − �(u, D, N , φ) (6.7)

whose variational derivatives are found from

δH = 〈
δm , u

〉 +
〈
m − δ�

δu
, δu

〉
+

〈
− δ�

δD
, δD

〉
. (6.8)

Thus, wemaywrite the Euler–Poincaré equations in (6.6) as Lie–Poisson Hamiltonian
equations for the variables (m, D),

∂t

[
m
D

]

= −
[
∂xm + m∂x D∂x

∂x D 0

] [
δH/δm = u

δH/δD = g(D − b) − u2/2

]

. (6.9)
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Likewise, we write canonical Hamiltonian equations for the wave variables (φ, N ),

∂t

[
φ

N

]

=
[
0 1

−1 0

] [
δH/δφ = ∂x (N (u + vG(k)))

δH/δN = −ω(k) − uφx

]

. (6.10)

Thus, in the variables (m, D, φ, N ) the Poisson matrix operator is block diagonal.
That is, we may write Eqs. (6.9) and (6.10) in Hamiltonian form as

∂t

⎡

⎢
⎢
⎣

m
D
φ

N

⎤

⎥
⎥
⎦ = −

⎡

⎢
⎢
⎣

∂xm + m∂x D∂x 0 0
∂x D 0 0 0
0 0 0 −1
0 0 1 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

δH/δm = u
δH/δD = g(D − b) − u2/2
δH/δφ = ∂x (N (u + vG(k)))

δH/δN = −ω(k) − uφx

⎤

⎥
⎥
⎦ . (6.11)

However, because the particle momentum m = Du − Nφx in Eq. (6.5) is an
unfamiliar fluid variable for SWW, it may be easier to understand the equations for
the total momentum M = Du, in the usual language of fluid velocity. Therefore,
we will transform the block diagonal Poisson matrix in (6.11) into the kinematic
momentum M = m + N∂xφ = Du as well as (D, φ, N )). After this transformation
to the kinematic momentum variable we find the following Poisson matrix in a class of
Lie-Poisson operators whose fundamental properties in finite dimensions have already
been discussed by Krishnaprasad andMarsden in Krishnaprasad andMarsden (1987),
for the Hamiltonian dynamics of rigid bodies with flexible attachments,

∂t

⎡

⎢
⎢
⎣

M
D
φ

N

⎤

⎥
⎥
⎦ = −

⎡

⎢
⎢
⎣

∂x M + M∂x D∂x −φx N∂x
∂x D 0 0 0
φx 0 0 −1

∂x N 0 1 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

δH/δM = u
δH/δD = g(D − b) − u2/2

δH/δφ = ∂x
(
NvG(k)

)

δH/δN = −ω(k)

⎤

⎥
⎥
⎦ .

(6.12)

Remark 6.1 (Transforming the system (6.12) to the variables (M, D, k = φx , N ))
Under the transformation of variables (M, D, φ, N ) → (M, D, k = φx , N ) the sys-
tem (6.12) becomes

∂t

⎡

⎢
⎢
⎣

M
D
k
N

⎤

⎥
⎥
⎦ = −

⎡

⎢
⎢
⎣

∂x M + M∂x D∂x k∂x N∂x
∂x D 0 0 0
∂xk 0 0 −∂x
∂x N 0 −∂x 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

δH/δM = u
δH/δD = g(D − b) − u2/2

δH/δk = −NvG(k)
δH/δN = −ω(k)

⎤

⎥
⎥
⎦ .

(6.13)

This transformation takes the Poisson matrix to a class of Lie-Poisson operators in
infinite dimensions whose fundamental properties have already been discussed by
Holm and Kupershmidt in Holm and Kupershmidt (1982, 1987), for the Hamiltonian
dynamics of superfluid 4He without vortices. This class of Lie–Poisson brackets was
also derived for complex fluids such as liquid crystals, as well as for superfluid 4He
both with and without vortices in Holm (2001), Holm (2002c).
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These other appearances of the same class of Hamiltonian structure as for WCI
help to interpret the wave physics we are dealing with in the present paper. Namely,
all of the other theories associated with this class of Lie–Poisson brackets refer to the
additional physics described in terms of order parameters whose dynamics can be
regarded as occurring internally in the frame of the moving fluid. That is, the order-
parameter dynamics can be regarded as subscale physics taking place relative to the
frame of reference of the primary fluid motion. This is quite well-known for the case
for the 2-fluid model of superfluids with vortices, for example (Holm 2001). Actually,
it is also well-known for GLM, when one considers the fluid interpretation of the
GLM pseudomomentum and wave action density as a pair of momentummaps for the
actions of translations and phase shifts of a complex wave amplitude, as one does for
the famous Madelung transformation of quantum mechanics (Madelung 1927).

The order-parameter interpretation of the present formulation of WCI stemming
from its Hamiltonian structure makes it seem natural to introduce a stochastic version
of WCI in this formulation, in order to describe the uncertainty which may arise due
to unresolved effects of the wave–current interaction.

Remark 6.2 (The variational derivatives of the Hamiltonian in (6.12)) The com-
putation of the required variational derivatives in (6.12) is accomplished by first
passing to the Hamiltonian side via the Legendre transform in the fluid and wave
variables (m, D, φ, N ) then rearranging to identify the Hamiltonian dependence in
(M, D, φ, N ) variables, as follows

H(m, D, φ, N ) = 〈
m , u

〉 − 〈
N , φt

〉 − �(u, D, N , φ)

=
∫

D
(mu − Nφt ) dx −

∫

D

(D

2
u2 − g

2
(D − b(x))2 − Nuφx − Nφt

)
dx

− HW (N , φx ),

H(M, D, φ, N ) =
∫

D

[
M2

2D
+ g

2

(
D − b(x)

)2
]

dx − HW (N , φx ). (6.14)

The variational derivatives in (M, D, φ, N ) are found from (6.14) as

δH =
∫

D

[
M

D
δM +

(
− M2

2D2 + g(D − b)
)
δD − (δφ)∂x

(
NvG(k)

) + (δN )ω(k)

]

dx,

(6.15)

where we have used Eq. (6.3) for the variations of the wave Hamiltonian HW (N , φx ).

After a bit of manipulation, one may write equations (6.12) a formwhich is familiar
in fluid dynamics,

ut + uux = −g∂x
(
D − b(x)

) + 1

D
∂x

(
NkvG(k)

)
,

Dt + ∂x (Du) = 0,

φt + uφx + ω(k) = 0,

Nt + ∂x
(
N (u + vG(k))

) = 0,

(6.16)

123



4 Page 36 of 59 Journal of Nonlinear Science (2021) 31 :4

where k = φx is the 1D wave vector and vG(k) = ∂ω/∂k is the group velocity. One
may regard the additional force in the 1Dmotion equation which depends on the wave
variables as a nonhydrostatic ‘ponderomotive’ pressure force due to the presence of
the wave degree of freedom which propagates in the local frame of reference of the
fluid flow.

In particular, surface gravity waves in shallow water of mean depth h satisfy the
well-known dispersion relation, Vallis (2017)

ω2(k) = gk tanh hk, (6.17)

which admits both leftward and rightward travelling waves with group velocity vG =
∂ω/∂k. Substitution of the shallow water dispersion relation (6.17) into equation set
(6.16) yields the final equation set for WCI in 1D shallow water.

In 2D, the SWWCI equations can be read off the Lie-Poisson form of the equations
in (6.13) as

∂t

⎡

⎢
⎢
⎣

Mi

D
ki
N

⎤

⎥
⎥
⎦ = −

⎡

⎢
⎢
⎣

∂ j Mi + Mj∂i D∂i −k j,i + ∂ j ki N∂i
∂ j D 0 0 0

ki, j + k j∂i 0 0 −∂i
∂ j N 0 −∂ j 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

δH/δMj = u j

δH/δD = g(D − b) − |u|2/2
δH/δk j = −Nv

j
G(k)

δH/δN = −ω(k)

⎤

⎥
⎥
⎦ .

(6.18)

The corresponding SWWCI 2D equations are

∂tu − u × curl u = −g∇(
D − b(x)

) + 1

D
∂ j

(
Nkv

j
G(k)

)
,

∂t D + div(Du) = 0,

∂tk + ∇(ω(k) + u · k) = 0,

Nt + div
(
N (u + vG(k))

) = 0,

(6.19)

The SALT and SNWP stochastic cases for the Hamiltonian version of SWW1D. We
propose an extension to stochastic SWW1Dflowon theHamiltonian side bymodifying
the Hamiltonian function in Eq. (6.14) to make it stochastic, following Eq. (4.10) for
the diffusion part of the wave Hamiltonian, as

dh(M, D, φ, N ) =
∫

D

[
M2

2D
+ g

2

(
D − b(x)

)2
]

dx dt +
∫

D
M

∑

i

ξi (x)dx ◦ dWi
t

− HW (N , φx )dt +
∫

D
(Nφx )

∑

i

σi (x)dx ◦ dBi
t .

(6.20)
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Then, the stochastic version of the SWW1D motion equations in (6.12) becomes

d

⎡

⎢
⎢
⎣

M
D
φ

N

⎤

⎥
⎥
⎦ = −

⎡

⎢
⎢
⎣

∂x M + M∂x D∂x −φx N∂x
∂x D 0 0 0
φx 0 0 −1

∂x N 0 1 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

δ(dh)/δM = dxt
δ(dh)/δD = πdt

δ(dh)/δφ = ∂x
(
N ṽG

)

δ(dh)/δN = − ω̃

⎤

⎥
⎥
⎦ (6.21)

where one defines the hydrostatic pressure (π) and stochastic transport vector field
(dxt ) as,

π := g(D − b) − u2/2 and dxt := u dt +
∑

i

ξi (x) ◦ dWi
t , (6.22)

and one introduces notation for the stochastic versions of group velocity (̃vG) and
frequency (ω̃) as

ṽG := vG(k)dt +
∑

i

σ i (x) ◦ dBi
t and ω̃ := ω(k)dt + k ·

∑

i

σ i (x) ◦ dBi
t ,

(6.23)

written here in vector form for clarity when generalising to higher dimensions. Note
that ṽG = ∂ω̃/∂k. Physically, the noise introduced into the diffusion part of the wave
Hamiltonian in Eq. (6.20) produces in (6.23) a stochastic shift in the group velocity,
accompanied by the corresponding stochastic Doppler shift in the wave frequency.

Remark 6.3 (Determining the noise eigenvectors ξ i (x) and σ i (x). The vector fields
ξ i (x) and σ i (x) would need to be specified, or obtained, from another source, such
as observation data for the velocity-velocity correlation tensor for the currents, and
the effective group velocity and wave frequency of the wave field. Determining these
functions will comprise the fundamental crux of applying this class of stochastic
GLMequations for uncertainty quantification anddata assimilation. Further discussion
of this challenge is beyond the scope of the present work. However, previous work
indicates that viable procedures can be developed to meet this challenge, as done
already for related problems in Cotter et al. (2019a), Cotter et al. (2019b), Cotter et al.
(2019c) and Cotter et al. (2020).

The 1D fluid dynamical form of these stochastic SW-WCI equations is

du + dxt ux + u∂x

(∑

i

ξi (x) ◦ dWi
t

)
= −g∂x

(
D − b(x)

)
dt+ k

D

(
N ṽG(k)

) + N

D
∂x ω̃,

dD + ∂x (Ddxt ) = 0,

dφ + dxtφx + ω̃(k) = 0,

dN + ∂x
(
N (dxt + ṽG)

) = 0.

(6.24)
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In 2D, these stochastic Hamiltonian equations would be written in fluid dynamical
form as

(
d + Ldxt

)
(u · dx) = −dπ dt + 1

D

(
div(N ṽG) dφ + Ndω̃

)
,

(
d + Ldxt

)
(Dd2x) = 0,

(
d + Ldxt

)
φ = − ω̃(k),

(
d + Ldxt

)
(Nd2x) = 0.

(6.25)

Note that the non-acceleration result in corollary 5.2 for incompressible GLM flow
does not hold when D is a dynamical variable. This is clear from the following Kelvin
circulation theorem for SW-WCI in 2D.

Theorem 6.4 The stochastic Kelvin circulation theorem corresponding to the stochas-
tic SW-WCI motion equation in 2D is given by

d
∮

c(dxt )
u · dx =

∮

c(dxt )
− dπ dt + 1

D

(
div(N ṽG) dφ + Ndω̃

)
, (6.26)

in which the wave sources of flow circulation are evident and the two sources of
circulation cannot be separated.

Remark 6.5 For a contrasting approach to deriving stochastic shallow water models,
which combines asymptotic expansions and vertical averaging with the stochastic
variational framework discussed here for the formulation of new stochastic parametri-
sation schemes for the nonlinear wave fields, see Holm and Luesink (2019).

7 Deterministic Comparison of the Craik–LeibovichModel with GLM

Among the many processes which occur in the oceanic surface boundary layer, Lang-
muir circulations (LCs) attract much of the attention because they are believed to affect
the air-sea exchanges of heat and gases through an enhancement of turbulent mixing
(Thorpe 2004). In the formation of LCs, the interaction between surface waves and
the mean flow is believed to play a central role. Craik and Leibovich (1976) derived an
expression for the wave–current interaction for wind-driven waves in the oceanic mix
layer called the Stokes vortex force (SVF) and showed that the SVF induces roll struc-
tures similar to the observed LCs. Today, the SVF representation of the wave–current
interaction in the momentum equation is in general use for numerically modelling
the effects of LCs in mixed layer turbulence by using large-eddy simulations (LES),
although the theoretical issues are by no means settled (Fujiwara et al. 2018, 2019;
Mellor 2019; Tejada-Martínez et al. 2020).

A quick derivation of the CL motion equation obtained by time averaging Kelvin’s
theorem. One may derive the CL model by considering how averaging applies to
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the Kelvin circulation theorem for the EB model,

d

dt

∮

c(u)

(
u(x, t) + R(x)

) · dx =
∮

c(u)

(
. . .

)
· dx (7.1)

In Kelvin’s theorem, the loopmoves with the flow, so the loop is a Lagrangian quantity.
The integrand is fixed in space, so the integrand is Eulerian. Thus, after taking averages,
the loop velocity will be the Lagrangian mean velocity, uL , and the integrand velocity
will be the Eulerian mean velocity, u = uL −uS , when defined in terms of the Stokes
mean drift velocity, uS(x). 5 (For the sake of simplicity, we drop the bar notation for
mean quantities.) Thus, the mean Kelvin theorem will read

d

dt

∮

c(uL )

(
uL(x, t) − uS(x) + R(x)

) · dx =
∮

c(uL )

(
. . .

)
· dx (7.2)

Taking the time derivative of the loop integral then yields the motion equation in the
loop-integral form,

∮

c(uL )

(
∂t + LuL

)((
uL(x, t) − uS(x) + R(x)

) · dx
)

=
∮

c(uL )

(
. . .

)
· dx, (7.3)

where the coordinate notation for the Lie derivative LuL (v · dx) for a 1-form v · dx
may be written out conveniently in two equivalent vector forms which are familiar in
fluid dynamics,

LuL (v · dx) = (
uL · ∇)v + v j∇uL j ) · dx = ( − uL × curlv + ∇(uL · v)) · dx.

(7.4)

These familiar vector forms of the Lie derivative of a 1-form in (7.4) then express the
CL SVF in the motion equation for Euler–Boussinesq (EB) flow in its standard vector
form in Eq. (7.14) below.

Another derivation of the CLmotion equation using Hamilton’s principle. The ideal
CL equations arise from stationarity of a constrained Hamilton’s principle δS = 0,
under variations of the fluid variables at constant Eulerian position. The constrained
Hamilton’s principle for the implementation of the CL model in the EB equations is
given in terms of the action (Holm 1996),

S =
∫ ∫

dt

[
1

2
D|uL |2 − bDgz − DuL · uS(x) + DuL · R(x) − p(D − 1)

]

d3x dt . (7.5)

Here uL(x, t) is the Lagrangian mean fluid velocity, as before, and the “Stokes drift
velocity”uS(x) is a prescribed time-independent function of position,which represents
the mean drift velocity caused by oscillating winds near the surface (Thorpe 2004).

5 For convenience, the Stokes mean drift velocity, uS(x), is usually taken to be time independent and
divergence-free. However, these two assumptions remain controversial in the CL literature.
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The action integral (7.5) contains the difference of the kinetic and potential energies,
plus a “J ·A” coupling of the mass current J = DuL(x, t) to two constant, spatially-
dependent velocity fields A1(x) and A2(x). The first of these is A1(x) = −uS(x),
representing the spatially-dependent boost of the inertial frame into a frame moving
with minus the Stokes drift velocity in WCI, from which −DuL × curluS(x) arises
as the CL vortex force in the fluid motion equation. The other constant velocity field
isA2(x) = R(x), representing the rotation velocity relative to the inertial frame, from
which DuL × curlR = DuL × (2�) arises as the Coriolis force in the fluid motion
equation. The action integral (7.5) also contains the incompressibility constraint D = 1
imposed by the pressure p as a Lagrange multiplier.

Passing to theHamiltonian side. Thevariation of theLagrangian in (7.5)with respect
to the transport velocity uL(x, t) produces the total Eulerian momentum density for
GLM in the presence of the Stokes drift, cf. Eq. (2.14),

m(x, t) := δ�

δuL
= D

(
uL − uS(x) + R(x)

)
, (7.6)

in which uS(x) is the prescribed Stokes drift velocity. One may also compare the
momentum density shifts in Eq. (7.6) with the angular momentum shift due to fixed
rotation of the reference frame for a rigid body in Eq. (A.16).

Next, we will show that the Hamiltonian dynamics for the momentum density in
Eq. (7.6) recovers the CLmotion equation for the Lagrangian mean transport velocity,
uL(x, t).

The Hamiltonian corresponding to the Lagrangian in (7.5) is given by the Legendre
transform, cf. Eq. (2.15),

H(m, D, b)) =
∫

D
m · uL d3x − �(uL , D, b, N , φ : p)

=
∫

D

[
1

2D

∣
∣m + DuS(x) − DR

∣
∣2 + gDbz + p(D − 1)

]

d3x .
(7.7)

The Hamiltonian in (7.7) is the sum of the kinetic and potential energies of the fluid.
The variational derivatives are given by

δH(m, D, b)) =
∫

D
uL · δm + δD

(
gbz + p − 1

2
|uL |2 + uL · uS(x)

− uL · R(x)
)

+ (gDz)δb d3x . (7.8)

Wemay nowwrite the CL equations in Hamiltonian form by using a block-diagonal
Poisson matrix operator, cf. Eq. (2.17),

∂t

⎡

⎣
mi

D
b

⎤

⎦ = −
⎡

⎣
∂ jmi + m j∂i D∂i −b,i

∂ j D 0 0
b, j 0 0

⎤

⎦

⎡

⎣
δH/δm j

δH/δD
δH/δb

⎤

⎦ . (7.9)
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Deterministic CL equations for EB fluid flow. Upon expanding out the Hamiltonian
equations in (7.9), the dynamics of the EB fluid with these additional wave variables
is found to obey the following system of equations, cf. equation set (2.17),

∂tm + (uL · ∇)m + (∇uL)T · m + m divuL = D∇πCL + Dgz∇b,

∂t D + div(DuL) = 0, D = 1, ∂t b + uL · ∇b = 0.
(7.10)

The Eulerian momentum density,m, and the Bernoulli function, π , in these equations
are defined by the following variational derivatives of the CL Lagrangian in (7.5), cf.
Eq. (2.19),

m := δ�

δuL
= D(uL − uS(x) + R(x)),

piCL := δ�

δD
= 1

2
|uL |2 − uL · uS + uL · R − gbz − p. (7.11)

The motion equation for WCI in Eq. (7.10) implies the following Kelvin circulation
dynamics for the Eulerian momentum per unit mass, compared with the GLM Eq.
(2.20),

d

dt

∮

c(uL )

1

D

δ�

δuL
· dx =

∮

c(uL )

(∂t + LuL )

((
uL − uS(x) + R(x)

)
· dx

)

=
∮

c(uL )

∇π · dx +
∮

c(uL )

gz∇b · dx
︸ ︷︷ ︸
Buoyancy

.
(7.12)

Equation (7.12) is Newton’s 2nd Law for the time rate of change of the total Eulerian
mean momentum per unit massm/D of a body whose mass is distributed on a closed
loop c(uL) moving with the Lagrangian mean velocity uL . According to Eq. (7.12),
the Stokes drift velocity in Newton’s Law for this model appears as an addendum
to the Coriolis force. The Stokes drift velocity appears in the usual form of the fluid
equations as

∂tuL − uL × curl
(
uL − uS(x) + R(x)

) = − 1

D
∇
(
p − 1

2
|uL |2

)
− gbẑ ,

∂t D + div(DuL) = 0 , with D = 1 ,

∂t b + uL · ∇b = 0

(7.13)

Upon defining the Coriolis parameter as 2� = curlR(x)), the motion equation
becomes

∂tuL − uL × curluL − uL × 2� = − 1

D
∇
(
p − 1

2
|uL |2

)
−uL × curluS(x)
︸ ︷︷ ︸

CL Stokes force

−gbẑ.

(7.14)
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To see the potential vorticity (PV) conservation for CL, we rewrite the dissipative CL
motionEq. (7.14) in terms of theEulerianmean velocity defined to beu := uL−uS(x),

∂tu − uL × � + ∇(p − 1

2
|uL |2) = − gbẑ. (7.15)

where we have set D = 1 and defined� = curl (u+R(x)) as the total Eulerian mean
vorticity. It follows that

∂t� − curl(uL × � ) = − gẑ × ∇b. (7.16)

Consequently, theCraik–Leibovich theory conserves Eulerianmean potential vorticity
(PV) on Lagrangian particles. Namely,

∂t Q + uL · ∇Q = 0, (7.17)

where PV is defined as Q := ∇b · � .

Remark 7.1 Apparently, the difference betweenCLandGLMfluid dynamics resides in
how themodelling choice between Eulerian and Lagrangian velocity averaging affects
theKelvin circulation theorem. Eulerian averaging affects the Eulerian velocity 1-form
in the circulation integrand in Kelvin’s theorem, while Lagrangian averaging affects
the material velocity of the circulation loop. This means that the implementation of
stochasticity for the CL equations will differ in the same way. In fact, there may be
a related modelling choice to be made between Itô and Stratonovich stochasticity,
in choosing between Eulerian and Lagrangian implementations of stochasticity, for
example, in the pursuit of uncertainty quantification (Holm 2020).

Remark 7.2 (Comparing the GLM and CL models for 3D EB flow) Compared to the
action integral for the corresponding GLM theory in (2.13), the Lagrangian in the
action integral (7.5) for the CL theory replaces the current-boosted wave dynamics
in the phase-space Lagrangian in the second line of (2.13) by the time-independent,
prescribed boost of velocity of the inertial frame by A1(x) = −uS(x). That is, the
action integral (7.5) for the CL theory places the Stokes drift velocity −uS(x) and the
velocity of the rotating frameR(x) onto the same footing. Namely, these two quantities
are both regarded as velocity boosts into amoving reference frame relative towhich the
velocity of the current will be defined. As we have seen, in the GLM formulation the
waves propagate in the frame of the Lagrangian mean current velocity, which itself
flows relative to the rotating frame. However, in the Craik–Leibovich (CL) model,
the current flows in the reference frame of the sum of the rotation velocity minus the
prescribed Stokes drift velocitywhich is designed tomodel the effects of the generation
of wave fluctuations on the sea surface due to the external wind. Thus, to compare
the deterministic GLM and CL models one should modify the GLM action integral
in (2.13) to include the Stokes drift velocity −uS(x) boost. In this case, the action
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integral for the deterministic Stokes-boosted GLM model of the 3D flow of EB fluid
will be

S =
∫ t2

t1
�(uL , D, b, N , φ : p) dt =

∫ t2

t1

∫

D

[
D

2

∣
∣uL

∣
∣2

+ DuL · R(x) − DuL · uS(x) − gDbz − p(D − 1)

]

d3x

−
∫ t2

t1

∫

D
N (∂tφ + uL · ∇φ) d3x +

∫ t2

t1
HW (N ,k).

(7.18)

Then, because of the non-acceleration result in corollary 4.8 for GLM with incom-
pressible flow, one can expect that the results of the CL model and the GLM model
when Stokes drift velocity is included will largely coincide for the 3D flow of EB
fluid.

8 Deriving the OU Craik–Leibovich (OU CL) Equations

We have seen that the CL model obtains the Eulerian mean fluid momentum density
in the rotating frame by subtracting the prescribed Stokes velocity uS(x) from the
Lagrangian mean transport velocity u and adding the velocity of the rotating frame,
R(x). This defines the relative Eulerian momentum density of the fluid as

m(x, t) := δ�

δu
= D

(
u − uS(x) + R(x)

)
. (8.1)

There are several likely sources of uncertainty in the CLmodel. First is the effect of the
unsteady wind forcing typical of natural conditions. Second is the delay of the drift
velocity in response to changes in the wind conditions (Thorpe 2004). Yet another
another likely source of uncertainty in the CL model lies in errors in the observational
determination of the Stokes drift velocity, uS(x), Klein et al. (2019), Van Den Bremer
and Breivik (2018). The goal of this section is to introduce a theoretical framework for
quantifying the uncertainty in the solution of the CL equations due to the uncertainty
in the Stokes drift, uS . For this, we introduce a probabilistic aspect into the Stokes
drift frame velocity in the action integral for Hamilton’s principle for fluid dynamics
in (7.5). In exploring this probabilistic aspect, we will neglect the effects of rotation,
R(x); so, we can focus on the effects of uncertainty in the Stokes drift velocity. We
will also generally ignore the effects of stochasticity in the transport velocity u (SALT)
except for taking one passing opportunity to include it in Remark 8.3.

In particular, we consider ideal incompressible 3D fluid motion in the frame
of motion with velocity −uS(x)Nt , where uS(x) is the prescribed deterministic
divergence-free Stokes mean drift velocity and Nt is obtained as the solution path
of the Ornstein–Uhlenbeck (OU) stochastic process (Gardiner 1985)

dNt = θ(N − Nt )dt + σdWt , (8.2)
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with long-term mean N , and real-valued constants θ and σ . The solution path of the
stationary Gaussian-Markov OU process is known to be an ordinary scalar function
of time Nt defined by

Nt = e−θ t N0 + (1 − e−θ t )N + e−θ tσ

∫ t

0
eθsdWs, (8.3)

in which one may assume an initially normal distribution, N (0) ≈ N (N , σ 2/(2θ)),
with mean N and variance σ 2/(2θ). Thus, we model uncertainty in the prescribed
mean drift velocity by multiplying −uS(x) by the OU process in −uS(x)Nt .

The corresponding extension of theCLmodel for the 3DflowofEBfluid is obtained
as an Euler–Poincaré equation for Hamilton’s principle δS = 0 with action integral
given by, cf. Eq. (7.5),

S =
∫ t2

t1

∫ [
1

2
D|u|2 − Du · uS(x)Nt − gbDz − p(D − 1)

]

d3x dt . (8.4)

Here, the Euler–Poincaré equations are obtained from varying the action as

0 = δS =
∫ [ 〈

D(u − uS(x)Nt , δu
〉
+

〈
1

2
|u|2 − u · uS(x)Nt − gbz − p, δD

〉

− gDz δb + 〈1 − D, δ p〉
]

dt,

(8.5)

where the variations are given in terms of a smooth vector field w by Holm et al.
(1998)

δu = ∂tw − aduw, δD = −LwD, δb = −Lwb. (8.6)

Now, the momentum 1-form density is defined by

m := δ�

δu
= m · dx ⊗ d3x := D

(
u−uS(x)Nt

) · dx ⊗ d3x =: Dv · dx ⊗ d3x . (8.7)

Thus, we havem = D(u−uS(x)Nt ), so the term involving the Stokes velocity uS(x)
is to be regarded as a component of the total Eulerian momentum, m(x, t). The last
term in (8.7) defines a counterpart to the deterministic Craik–Leibovich notation, as
follows:

v = u − uS(x)Nt ⇐⇒ uE (x, t) = uL(x, t) − uS(x). (8.8)
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The Euler–Poincaré motion equation resulting from Hamilton’s principle (8.5) with
variations given in (8.6) is

dm + £um dt + d

(

p + u · uS(x)Nt − 1

2
|u|2

)

⊗ Dd3x dt − gbdz ⊗ Dd3x dt = 0.

(8.9)

Thus, by applying the definitions ofm in Eq. (8.7) and of the OU process in (8.2), the
co-vector quantity v := m/D in (8.8) is found from (8.9) to satisfy

(
d + £u dt

)
(v · dx) + d

(

p + u · uS(x)Nt − 1

2
|u|2

)

dt − gbdz dt = 0. (8.10)

Equation (8.10) may also be written equivalently as the following OU PDE,

dv +
(

− u × curlv + ∇
(
p + 1

2
|u|2

)
+ gb∇z

)

dt = 0, (8.11)

where we have used the continuity equation for the volume element, D,

dD + div(Du)dt = 0, (8.12)

which implies divu = 0 when the constraint D − 1 = 0 is enforced by the variation
of the Lagrange multiplier p, the pressure, in (8.5). Now from (8.8) we have

dv = du − uS(x)dNt . (8.13)

Consequently, for divuS(x) = 0, the pressure, p, may be found by imposing div(du) =
0 at each time step, which by Eqs. (8.11) and (8.13) implies

div
(

− u × curlv + ∇
(
p + 1

2
|u|2

)
+ gb∇z

)
= 0. (8.14)

These calculations may be summarised in the following theorem.

Theorem 8.1 (OU CL wave dynamics via Hamilton’s principle δS = 0 for action
integral (7.5)) The probabilistic CL model with OU wave dynamics is governed by the
following Euler–Poincaré motion equation obtained from Hamilton’s principle with
the action integral (7.5),

dv +
(

− u × curlv + ∇
(
p + 1

2
|u|2

)
+ gb∇z

)

dt = 0, (8.15)

for v = u−uS(x)Nt defined in (8.8), solution Nt of the OU process (8.2), and
divergence-free velocities of Lagrangian mean transport velocity u and Stokes mean
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drift uS(x). The auxiliary advection equations for the volume element, D, and buoy-
ancy b are

dD + div(Du) dt = 0 and db + u · ∇b dt = 0. (8.16)

Remark 8.2 (Determining the pressure, p) In the motion Eq. (8.15), Nt is the solution
(8.3) of the OU process (8.2), and the prescribed Stokes mean drift velocity uS(x) is
divergence-free. Hence, the Lagrangianmean transport velocityu remains divergence-
free,∇ ·u = 0, as a result of the constraint D = 1 imposed by the Lagrange multiplier
p, the pressure, in Hamilton’s principle (7.5) in combination with the auxiliary conti-
nuity equation in (8.16) for the volume element, D. The equation for the pressure, p,
arises from the divergence of the motion Eq. (8.15), as the Poisson equation,

−�
(
p + 1

2
|u|2

)
= div

(
u × curlv − gb∇z

)
, (8.17)

with Neumann boundary conditions obtained by evaluating the normal component
of the motion Eq. (8.15) at the boundary of the flow domain. Then, since v = u −
uS(x)Nt by (8.8), in principle, the pressure should be written as p = p0 dt + p1Nt

and the quantities p0 and p1 should be determined separately in the Poisson equation,
(8.17). However, we shall forgo this technical feature in favour of keeping the notation
transparent. For a full explanation of semimartingale-driven variational principles, see
Street and Crisan (2020).

Three equivalent forms of the OU CL equations. We will write the motion Eq.
(8.9) in three equivalent vector forms and discuss each form separately to extract the
information it presents most conveniently. A different parsing of the information in
the deterministic version of the CL motion Eq. (8.9) has been proposed in Suzuki and
Fox-Kemper (2016) by regarding the Stokes terms as components of forces rather than
contributions to the momentum and the circulation, as done here.

(1) The first of these three equivalent forms of the motion Eq. (8.9) is already in
Eq. (8.15) in Theorem 8.1. This form is

dv − u × curl v dt + ∇
(

p + 1

2
|u|2

)

dt = − gb∇z dt, (8.18)

written in terms of the pressure p and the Lagrangian mean transport velocity u and
the Eulerianmean velocity v = u−uS(x)Nt in a reference framemoving with velocity
−uS(x)Nt . The form (8.18) expresses the Kelvin circulation theorem for OUCLwave
dynamics as

d
∮

c(u)

v · dx = −
∮

c(u)

gbdz dt, (8.19)

with transport (Lagrangian) velocity u and transported (Eulerian) velocity v =
u − uS(x)Nt . Equation (8.19) recovers the Kelvin circulation theorem for the Craik–
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Leibovich theory, upon identifying u = uL as the Lagrangian mean velocity and
v = uE as the Eulerian mean velocity.

Alternatively, one may take the curl of Eq. (8.18), to write the pathwise equation
for total vorticity ω := curlv as

dω + (u · ∇ω − ω · ∇u) dt = − g∇b × ∇z dt, (8.20)

aswell as the conservation of potential vorticity (PV) onLagrangian particles. Namely,

dQ + u · ∇Q dt = 0, (8.21)

where PV is defined as Q := ∇b · ω.

Remark 8.3 (OUCLwith SALT) This first form of the OUCL equations (8.18) admits
stochastic advection by Lie transport (SALT), as well as the OU process. Namely, by
following Holm (2015) we find a modification of the Kelvin circulation theorem in
(8.19) given by

d
∮

c(̃u)

v · dx = −
∮

c(̃u)

gbdz dt, (8.22)

with stochastic transport velocity in the SALT form (Holm 2015),

ũ := u(x, t)dt +
∑

ξ(x) ◦ dWt .

The corresponding SALT CL motion equation is given by

dv − ũ × curl v + ∇
(

dp−1

2
|u|2dt + u · ũ

)

= − g∇b × ∇z dt, (8.23)

in which now the pressure dp is a semimartingale, see Street and Crisan (2020). The
corresponding vorticity equation keeps its form, as in (8.20),

dω + ũ · ∇ω − ω · ∇ũ = 0 = − g∇b × ∇z dt, (8.24)

aswell as the conservation of potential vorticity (PV) onLagrangian particles. Namely,

dQ + ũ · ∇Q dt = 0, (8.25)

where PV is still defined as Q := ∇b · ω.
The introduction of SALT in (8.23) yields the same equations as for the Richardson

triple discussed in Holm (2019a). Consequently, we may refer to Holm (2019a) for
more discussion and further analysis of OU CL dynamics with SALT.

(2) The second of the three equivalent forms of the motion Eq. (8.9) we consider is
reminiscent of an OU version of the electromagnetic Lorentz force on a fluid plasma,
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in the “hydrodynamic” gauge, φ+u ·A = 0, which is the Coulomb gauge in the frame
comoving with the fluid. Namely,

(
E + u × B

) · dx =
(

− dA + u × curlA − ∇(u · A)
)

· dx = −
(
d + Lu

)
(A · dx)

(8.26)

with A = −uS(x)Nt and dA = −uS(x)dNt . Consequently,

(
d + Lu dt

)
(u · dx) + (∇ p + gb∇z

) · dx dt =
(
d + Lu

)(
uS(x)Nt · dx), (8.27)

which is written only in terms of velocity u and the OU frame velocity uS(x)Nt =
u − v. Here, it is not necessary for the pressure to be a semimartingale, because the
semimartingale term on the right side of Eq. (8.27) vanishes when the divergence is
taken, since divuS(x) = 0.

Remark 8.4 (OU CL non-acceleration theorem) Vanishing of the right-hand side of
theOUCLmotion Eq. (8.27) would correspond to the non-acceleration theorem (2.27)
for GLM. The condition corresponding to Eq. (2.26) for GLM for non-acceleration to
occur in the case of OU CL, is that

(
d + Lu

)(
uS(x)Nt · ddx) = 0. (8.28)

Thus, enforcing the non-acceleration condition (8.28) on the Craik–Leibovich model
would impose conservation of circulation of the Stokes mean drift velocity around a
material loop moving the flow of the Lagrangian mean velocity, u. That is,

d
∮

c(u)

uS(x)Nt · dx = 0.

On the other hand, the CL model has been derived as an external ponderomotive force
exerted on the flow as a result of averaging over rapid oscillations imposed near the
upper boundary. In contrast, as discussed at the beginning of Sect. 2, the GLM model
has been derived by seeking an internal ponderomotive force, which is generated
by a fluctuating component of the Lagrangian trajectory in Eq. (2.1). Thus, the non-
acceleration result for GLM would not be expected to apply either to the CL model,
or to its probabilistic counterpart, the OU CL model.

(3) The third of the three equivalent forms of the motion Eq. (8.9) discussed here
introduces an OU version of the usual expression for the Craik–Leibovich ‘vortex
force’ given by

dv − v × curl v dt + ∇
(

p + 1

2
|v − uS(x)Nt |2

)

dt = −uS(x)Nt × curl v dt,

(8.29)
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written only in terms of the Eulerian mean velocity v and the OU frame velocity,
−uS(x)Nt .

Remark 8.5 (Potential caveat) The square of theOrnstein–Uhlenbeck process in (8.29)
is the solution to the following pathwise differential equation

1

2
dN 2

t = NtdNt + σ 2 dt

= (
θNt (N − Nt ) + σ 2)dt + σNt dWt .

(8.30)

The Stokes drift velocity uS(x)Nt in the third equivalent form of the OUCL equations
(8.29) satisfies a Bernouilli type ODE, which has finite time blow up, when either N is
negative, or if N is positive, and the initial datum is sufficiently negative. To avoid this
issue, one can consider replacing the OU process by a time-integrated OU process.
This option will be investigated elsewhere.

Remark 8.6 (Physical interpretation) From the viewpoint of Kelvin’s theorem, fluid
parcels are transported by a Lagrangian mean velocity, which is an average of the
fluid parcel velocity taken at fixed Lagrangian label. Kelvin’s theorem in (8.19) for the
OU CL model states that the circulation integral of the total Eulerian mean velocity
v = u − uS(x)Nt around material loops moving with the Lagrangian mean velocity
is generated only by non-vertical buoyancy gradients.

In the proposed formulation of the OU CL model considered here for modelling
uncertainty in the Stokes mean drift velocity on the CL solution, we have replaced
the standard CL Stokes mean drift velocity uS(x) by an OU process in the integrand
of the Kelvin circulation. In future work, we will explore this direction farther, since
uncertainty in the Stokes mean drift velocity is bound to be an issue in the calibration
and assimilation of ocean data observed from space (Klein et al. 2019).

9 Conclusion

In this paper, we have modelled multiscale, multi-physics uncertainty in wave–current
interaction (WCI), by introducing stochasticity into the wave dynamics of two classic
models of WCI; namely, the Generalised Lagrangian Mean (GLM) model and the
Craik–Leibovich (CL) model. The two models acquire different types of stochasticity
through their respective derivations from Hamilton’s principle for different types of
Lagrangians.

One main result of the present work is the derivation via Hamilton’s principle of a
closed dynamicalmodel ofwave–current interaction (WCI)which applies toGLMand
can be extended into stochastic wave–current dynamics. The closure is governed by
the choice of waveHamiltonian in the phase-space Lagrangian. ThewaveHamiltonian
is chosen to match the WKB dynamics of the phase and wave action density in the
local reference frame of the moving fluid. The model is flexible enough to include a
variety of different wave fields, and for the waves and currents to be made stochastic
in different ways for testing various causes of uncertainty. The model would apply, for
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example, as an efficient way of adding nonlinear wave physics which may not have
been considered, needed or resolved in a previous model, or in a different regime of
operation.

Many open questions for future research have arisen in developing the stochastic
Hamilton’s principle framework, which was created primarily for uncertainty quantifi-
cation in the hybrid wave–current interaction. On the Hamiltonian side, for example,
the framework developed here for GLM leads to a type of non-canonical Lie–Poisson
bracket discovered for superfluid 4He and 3He in Holm and Kupershmidt (1982)
which was also observed by Krishnaprasad and Marsden in Krishnaprasad and Mars-
den (1987) for the motion of a rigid body with a flexible attachment. The KM87 theory
formulated a Lie group structure which had already been the basis for several useful
theories of hybrid plasma-fluid interaction dynamics on the Hamiltonian side (Tronci
2010) and its formulation on the Hamilton’s principle side has been accomplished in
Close (2019), Close et al. (2018) andHolm and Tronci (2012). Thus, KM87 is a natural
Hamiltonian partner for the stochastic WCI hybrid theory which has been developed
here on the Lagrangian, or Hamilton’s principle, side. Conversely, one may consider
passing from the known KM87 Hamiltonian descriptions of hybrid kinetic theory and
fluid plasma systems, either to the corresponding derivation on the Hamilton’s prin-
ciple side for additional modelling purposes, or directly to a stochastic Hamiltonian
model as in Sect. 6.

Regarding specific topics for further research, one may consider testing the effec-
tiveness of the model in different situations by investigating other types of WCI for
a variety different types of wave physics. For example, one could develop a self-
consistent WCI theory for Kelvin waves propagating on superfluid vortices which are
being transported by the surrounding flow. AWCI theory of Alfvénwaves propagating
on dynamics of magnetic field lines in magnetohydrodynamics (MHD) could also be
developed, perhaps by following ideas for time-mean oscillation centre dynamics for
MHD in Similon et al. (1986). One may also consider introducing this approach for
probing the effects of submesoscale physics in oceanography.

As we have stressed, the main geometric mechanics ideas for our approach to WCI
for GLM (including the phase-space Lagrangian approach, of course) were already
developed and in effective use in particle-fluid plasma physics at least forty years ago
(Dewar 1973; Littlejohn 1981; Kaufman and Holm 1984; Similon et al. 1986). For
additional background in this matter, see, e.g., Brizard (2009) and Burby and Ruiz
(2019). However, the connection of these mainstream geometric mechanics ideas to
stochastic methods for uncertainty quantification in WCI for GLM with potential
applications in oceanography, for example, has been waiting until now to be made.

In contrast, theHamilton’s principle for addressing stochasticWCI for theCLmodel
has no wave contribution. However, a change of frame is possible to model the effects
of Stokes drift which can be probabilistic with an OU process. The CL model also
admits stochastic advection by Lie transport (SALT). In the case of incompressible
3D EB fluid dynamics, the two theories can be made to converge because of the
non-acceleration result for the GLM case.
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A Dynamical Systems Analogues of WCI

A.1 Gyrostat: Rigid Body with Flywheel

As we will see, the rigid body with flywheel along the intermediate principle axis in
the body seems to be a closer analogue to deterministic WCI than the swinging spring
does. Just as for the isolated rigid body, the energy is purely kinetic; so one may define
the kinetic energy Lagrangian for this system L : T SO(3)/SO(3) × T S1 → R

3 as

L(�, φ̇) = 1

2
λ1�

2
1 + 1

2
I2�

2
2 + 1

2
λ3�

2
3 + 1

2
J2(φ̇ + �2)

2, (A.1)

where � = (�1,�2,�3) is the angular velocity vector of the rigid body, φ̇ is the
rotational frequency of the flywheel about the intermediate principal axis of the rigid
body„ and λ1, I2, J2, λ3 are positive constants corresponding to the principal moments
of inertia, including the presence of the flywheel. Because the Lagrangian is indepen-
dent of the angle φ, its canonically conjugate angular momentum N := ∂L/∂φ̇ will
be conserved. This suggests a move into the Hamiltonian picture, where the conserved
N will become a constant parameter.

• If we perform a partial Legendre transform in the flywheel variables (φ, φ̇) ∈
T SO(2), we will obtain

L(�, φ̇) = 1

2
λ1�

2
1 + 1

2
I2�

2
2 + 1

2
λ3�

2
3 + N

(

φ̇ + �2 − N

2J2

)

, (A.2)

which is analogous to the phase space Lagrangians in Eqs. (2.13) and (2.21).
• Legendre-transforming this Lagrangian allows us to express its Hamiltonian in
terms of the angular momenta � = ∂L/∂� ∈ R

3 and N = ∂L/∂φ̇ ∈ R
1 of the

rigid body and flywheel, respectively,

H(�, N ) = � · � + N φ̇ − L(�, φ̇)
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= �2
1

2λ1
+ �2

3

2λ3
+ 1

2I2

(
�2 − N

)2

︸ ︷︷ ︸
offset along�2

+ N 2

2

( 1

I2
+ 1

J2

)
. (A.3)

This Hamiltonian is an ellipsoid in coordinates � ∈ R
3, whose centre is offset in

the �2-direction by an amount equal to the conserved angular momentum N of
the flywheel.
The offset of the energy ellipsoid by N along the �2-axis radically alters its
intersections with the angular momentum sphere |�| = const . Its dynamical
behaviour, given bymotion along these altered intersections is quite different from
that of the rigid body, which has no offset of its energy ellipsoid. In particular, the
offset due to presence of the flywheel induces an intricate sequence of bifurcations
of the equilibrium solutionswhich do not occur for the rigid body, for N = 0 (Elipe
et al. 1997).

• The Poisson bracket in the variables �, N , φ ∈ so(3)∗ × T ∗S1 is a direct sum
of the rigid-body bracket for � ∈ so(3)∗ � R

3 and the canonical bracket for the
flywheel phase-space coordinates (N , φ) ∈ T ∗S1:

{F, H} = −� ·
(

∂F

∂�
× ∂H

∂�

)

+ ∂F

∂φ

∂H

∂N
− ∂H

∂φ

∂F

∂N
. (A.4)

The corresponding Hamiltonian equations may be written in a block-diagonal
Poisson matrix form which is similar to that in Eq. (2.17) for WCI in Euler–
Boussinesq equations and in (6.11) for WCI in 1D shallow water,

d

dt

⎡

⎣
�

φ

N

⎤

⎦ = −
⎡

⎣
�× 0 0
0 0 −1
0 1 0

⎤

⎦

⎡

⎣
∂H/∂� = �

∂H/∂φ = 0
∂H/∂N = J2−1N − I2−1

(
�2 − N

)

⎤

⎦ . (A.5)

A.2 The Deterministic Swinging Spring

A dynamical systems analogue of WCI arises in the oscillation-rotation interaction
(ORI) seen in the elastic spherical pendulum, or swinging spring (Holm and Lynch
2002). In this system, onemay see regular exchanges between springingmotion (oscil-
lation) and swinging motion (rotation). The Lagrangian for the swinging spring is

L(x, ẋ; ê3) = m

2
|ẋ|2 − mg ê3 · x − k

2

(|x|2 − |x0|2
)
, (A.6)

with notation (x, ẋ) ∈ TR3, vertical unit vector ê3 and constants of gravity (g), mass
of the bob (m), isotropic spring constant (k) and initial position x0 ∈ R

3.
The time dependent solution path for the Euler–Lagrange equations which follow

from Hamilton’s principle for the Lagrangian (A.6) is denoted as x(t) ∈ R
3. One may

lift the solution path x(t) ∈ R
3 into the Lie groupR+ × SO(3) of scaling and rotation

of vectors in R3 by specifying its direct-product action on an initial position x0 ∈ R
3
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as

x(t) = R(t)O(t)x0 for
(
R(t), O(t)

) ∈ R+ × SO(3). (A.7)

Under the scaling and rotation action in (A.7), the terms in the Lagrangian (A.6)
transform as

|x|2 = |O(Rx0)|2 = |Rx0|2
|ẋ|2 = |Ṙx0 + � × Rx0|2 = |Ṙx0|2 + |� × Rx0|2

ê3 · x = (O−1(t)ê3) · R(t)x0 =: �(t) · Rx0.
(A.8)

Here O−1 Ȯ =: �̂ =: �×, where �̂i j = −εi jk�
k is the hat map isomorphism which

represents the angular frequency of rotation as induced by either the skew symmetric
3× 3 matrix Lie algebra so(3), or the cross product of vectors in 3D Euclidean space
R
3. From its definition �(t) := O−1ê3 ∈ R

3, one finds the evolution equation

�̇ + � × � = 0, (A.9)

and one notes that |�|2 = |ê3|2 = 1.
Under the scaling and rotation action in (A.7) the Lagrangian (A.6) with S :=

R(t)x0 transforms as

L(�,�; S, Ṡ) = m

2
|Ṡ + � × S|2 − mg � · S − k

2

(|S|2 − |x0|2
)

= m

2
|Ṡ|2 + m

2
|� × S|2 − mg � · S − k

2

(|S|2 − |x0|2
)

L(�,�; S, P) = m

2
|� × S|2 − mg � · S

︸ ︷︷ ︸
Rotations & Gravity

+
(
� · S × P

)

︸ ︷︷ ︸
Coupling term

+ P · Ṡ −
( 1

2m
|P |2 + k

2

(
|S|2 − |x0|2

))

︸ ︷︷ ︸
Oscillation phase-space Lagrangian

, (A.10)

where P := ∂L/∂ Ṡ = m Ṡ from the second line. The cross term in the square of the
total velocity in the first line has vanished, because the swinging velocity � × S and
springing velocity Ṡ are orthogonal. That is, 2Ṡ · � × S = 2Ṙx0 · � × Rx0 = 0. We
see that the coupling term which boosts the spatial oscillations into the rotating frame
also vanishes, i.e., the total angular momentum is given by

� := ∂L

∂�
= mS × (� × S) + S × P = mS × (� × S) since S × P = 0.

(A.11)

With the vanishing of the coupling term, these manipulations have separated the orig-
inal Lagrangian into an SO(3)-reduced Lagrangian for rotations (�) and translations
(�) in the body frame, plus an (S, P) phase-space Lagrangian for oscillations in the
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spatial frame. This is consistent with our intuition that the springing motion could
occur even if the spherical pendulum were not swinging. In this system, the springing
oscillations are the analogues of the waves in WCI dynamics. Likewise, the swinging
motion due to exchange of kinetic and gravitational energies in the rotating frame are
the analogues of the currents interacting via exchanges in physics and energetics with
their advected quantities in WCI.

From their definitions, O−1 Ȯ =: �̂ =: �× and �(t) := O−1ê3, a manipulation
using the hat map delivers the variations of � and � arising from variations of O(t) ∈
SO(3) in R3 vector form as

δ� = 	̇ + � × 	 and δ� = −	 × � for 	× = O−1δO. (A.12)

Upon substituting these variational formulas into Hamilton’s principle, δS = 0, with
action integral S = ∫ b

a L(�,�; S, P) dt , we have

0 = δS =
∫ b

a

( − �̇ − � × � + mg� × S
) · 	 + δP · (Ṡ − P/m

)

+ ( − Ṗ − kS − mg� − m� × (� × S)
) · δS dt + [

� · 	
]b
a + [

P · δS
]b
a .

(A.13)

Hamilton’s principle now implies the dynamics for the elastic spherical pendulum,
provided the variations 	 and δS vanish at the endpoints in time. These dynamics
comprise two Euler–Poincaré equations for the rotations and librations,

�̇ + � × � = mg� × S and �̇ + � × � = 0, for � := mS × (� × S),

(A.14)

and two canonical Hamiltonian equations for the springing degree of freedom,

Ṡ = P/m and Ṗ = m S̈ = −kS − mg� − m� × (� × S). (A.15)

The first set of these equations has the form of a heavy top whose vector S from
the support to the centre of mass has its own dynamics. The second set reveals the
S dynamics to be Newtonian with a sum of three forces, the spring restoring force,
gravity and the centrifugal force. Clearly, the oscillations in S will drive rotational
motion in � and �, which will feed back to S, provided the initial condition is not
oriented vertically.6 The discussion here of the swinging spring dynamics in which
oscillations can drive rotations supports the analogous conclusions in the text (such
as Corollary 4.4) that waves could drive currents.

6 A vertical initial condition x0 would make the initial gravitational torque vanish (�(0)× S(0) = 0), since
�(0) = ê3. This would allow purely vertical oscillations which would not induce rotation starting from a
stationary initial condition.
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A.3 The Stochastic Swinging Spring

We might hope to use the same methods as in the text for stochastic WCI to include
SALT noise in the swinging rotations of the elastic spherical pendulum. However, the
analogy is not complete. In fact, the condition S × P = 0 precludes introducing the
analog of SNWP noise into the springing motions of the elastic spherical pendulum
in the same way as we have done for the wave propagation in the EB fluid case in the
text. The lesser task of including SALT noise only in the swinging rotations of the
elastic spherical pendulumwill not be pursued here, though, because the results would
be too similar to the case of SALT noise for the rigid heavy top which has already
been investigated in Arnaudon et al. (2018).

A.4 Gyroscopic Analogy of Non-inertial Reference Frames

The Lagrangian for the free rotation of a rigid body at body angular frequency �

relative to a frame which is already rotating about the same origin at a fixed angular
frequency ϒ is given by

�(�;ϒ) = 1

2
� · I� + � · Iϒ,

where I is the moment of inertia of the body. Hence, the total body angular momentum
in the rotating frame is given by

∂�(�;ϒ)

∂�
=: I (� + ϒ). (A.16)

The corresponding Hamilton’s principle

0 = δS(�;ϒ) = δ

∫ t2

t1

1

2
� · I� + � · Iϒ dt,

yields

d�

dt
+ � × � = 0 with � := I (� + ϒ). (A.17)

Thus, moving into a rotating frame preserves the form of the rigid body equations
in (A.17). Consequently, this frame change preserves the conservation of |�|2 =
|I (� + ϒ)|2. However, transforming into a rotating frame changes the definition of
the angular momentum � to include the momentum associated with the additional
angular velocity of the rotating frame, ϒ.
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