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Abstract
We classify the extensions of n-body central configurations to (n + 1)-body central
configurations in R3, in both the collinear case and the non-collinear case. We com-
pletely solve the two open questions posed by Hampton (Nonlinearity 18: 2299-2304,
2005). This classification is related with study on co-circular and co-spherical central
configurations.We also obtain a general property of co-circular central configurations.

Keywords Newtonian n-body problem · Stacked central configurations · Co-circular
configurations · Co-spherical configurations · Pyramidal central configurations ·
Perverse solutions

1 Introduction

The classical n-body problems study themotion of n point bodies with positivemasses
m1, . . . ,mn , interacting under the Newton’s law of gravitation. Let qi be the position
of the i th point body, ri j = |qi − q j |, and let U be the force function

∑
j �=i

mim j
ri j

. A
configuration, denoted by (q1, . . . ,qn), is called a central configuration if it satisfies
the equations

∇iU = −λmi (qi − c), i = 1, . . . , n,
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where ∇i denotes the vector of partial derivatives with respect to the components of

qi and c =
∑n

i=1 miqi∑
i=1 mi

is the center of mass of the configuration. The quantity λ in the

above equation is called the multiplier of the central configuration. The total masses∑
mi are denoted by m.
Central configurations naturally arise in the study of the self-similar solutions, and

they are involved in the classification of the topology of integral manifolds (Smale
1970). In the collection of important open problems in celestial mechanics compiled
by Albouy et al. (2012), half of the list is on central configurations. Readers are
referred to Albouy (2003), Albouy et al. (2012), Albouy and Kaloshin (2012), Llibre
et al. (2015), Saari (1980) for introductions, recent advance and open questions.

The (n + k)-body central configurations extended from n-body central config-
urations by adding k bodies are called stacked central configurations. They were
introduced by Hampton in 2005 (Hampton 2005b). Following Fernandes and Mello
(2013a), such central configuration is called (n + k, k)-stacked. For instance, the
Lagrangian equilateral triangle central configuration is (3, 1)-stacked since any two-
body subconfiguration of it is central. It is also well known that a pyramidal central
configuration can be obtained by adding one mass to a co-circular central config-
uration (Albouy 2003; Fayçal 1996; Ouyang et al. 2004). Many other examples of
stacked central configurations were constructed, see (Corbera et al. 2014; Hampton
and Santoprete 2007; Oliveira and Cabral 2012). Hampton also raises two questions
regarding stacked central configuration (Hampton 2005b):

(1) In addition to symmetric collinear configurations1, the square or a regular tetra-
hedron with a mass at its center and the square pyramidal configuration are there
any five-body central configurations with a subset forming a four-body central
configuration?

(2) Are there any five-body non-collinear central configurations all of whose four-
body subsets form a central configuration?

There are some works devoted to these two questions. Assuming that a five-body
central configuration is coplanar and non-collinear, in 2013, Fernandes and Mello
(2013a, 2018) and Alvarez-Ramírez et al. (2013) announced independently that such
configuration must be a square with equal masses and one mass at the center of the
square. However, the two questions remain open.

In thiswork,we classify the (n+1, 1)-stacked central configurations of in R3, planar
central configurations and spatial ones included. With this classification, we solve the
two open questions completely.We also find one general property of co-circular central
configurations. It plays a crucial role in our study of the (n + 1, 1)-stacked central
configurations when the n-body subcentral configuration is co-circular.

There are two cases. Firstly, the extended (n + 1)-body central configuration is
collinear. In this case, we show that extensions happen only for n = 2. So the question
of collinear extensions has already been answered by Euler (1767). Secondly, the
extended (n + 1)-body central configuration is non-collinear. In this case, it has been
proved by Fernandes and Mello (2013b) that it is necessary that the n-body central

1 According to Theorem 1, there is no five-body collinear central configuration with a subset forming a
four-body central configuration.
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configuration lies on a common circle or sphere. Our approach is different from theirs.
Our results contain not only the necessary conditions, but sufficient conditions as well.
Thus, we can classify all the extensions.

Let r be the radius of the circle (sphere) and r0 = (m
λ
)
1
3 , the cube root of the ratio

of total mass m and the multiplier λ of the n-body configuration. We show that a co-
circular (co-spherical) n-body central configuration can extend to an (n+1, 1)-stacked
central configuration only in the following two cases: (1) Its center of mass equals its
geometric center; (2) r0 ≥ r for the co-circular central configurations, and r0 = r for
the co-spherical ones.

Thus, the measurement of r and r0 of the co-circular and co-spherical central
configurations is important. We obtain one general result on the comparison between
r0 and the sides and diagonals for the co-circular central configurations. Then,we prove
that r0 > r holds for all four-, five-, and six-body co-circular central configurations.
Together with the works of Hampton (2005a) and Cors and Roberts (2012) on the
co-circular four-body problem, we find all (5, 1)-stacked central configurations. And
we answer Hampton’s two questions completely.

The paper is organized as follows: In Sect. 2, we state themain results. In Sect. 3, we
prove the main results. In Sect. 4, we discuss the extensions of two-, three-, four-, and
five-body central configurations. In Sect. 5, we find several examples of co-spherical
central configurations whose center of mass equals the geometric center.

2 Main Results

Weare interested in the (n+1, 1)-stacked central configurations, i.e., (n+1)-body cen-
tral configurations extended from n-body central configurations by adding one mass.
If there is no confusion raised, the n masses are m1, . . . ,mn and the corresponding
configuration is q = (q1, . . . ,qn). We denote by m0 the added mass and by q0 its
position. We denote by q̄ = (q0,q1, . . . ,qn) the extended configuration. We will also
call the original n-body configuration q the subconfiguration. We use ri j to denote the
distance between any two of the n + 1 particles, i.e., ri j = |qi − q j |, 0 ≤ i < j ≤ n.
We denote by m the sum of the n masses, and by m̄ the sum of the n + 1 masses, i.e.,

m =
n∑

i=1

mi , m̄ =
n∑

i=0

mi = m0 + m.

We denote by c the center of mass of the n-body subconfiguration and c̄ the center of
mass of the (n + 1)-body configuration, i.e.,

c =
∑n

i=1 miqi
m

, c̄ =
∑n

i=0 miqi
m̄

= mc + m0q0
m + m0

.
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Denote by U , I and Ū , Ī the force function and the momentum of inertia of the
sub-n-body system and the (n + 1)-body system, respectively, i.e.,

U =
∑

1≤i< j≤n

mim j

ri j
, I =

∑

1≤i< j≤n

mim j

m
|qi − q j |2 =

n∑

i=1

mi |qi − c|2;

Ū =
∑

0≤i< j≤n

mim j

ri j
= U +

n∑

i=1

m0mi

ri0
,

Ī =
∑

0≤i< j≤n

mim j

m̄
|qi − q j |2 =

n∑

i=0

mi |qi − c̄|2.

If the central configuration q̄ is (n + 1, 1)-stacked, then the configurations q̄ and q
satisfy the following two systems simultaneously:

∇U (q) + λ/2∇ I (q) = 0, ∇Ū (q̄) + λ̄/2∇ Ī (q̄) = 0, (1)

where λ = U/I and λ̄ = Ū/ Ī .

2.1 Classification of (n + 1, 1)-Stacked Central Configurations in R3

We separate our discussions into the collinear case and the non-collinear case.

Theorem 1 There exist no collinear (n + 1, 1)-stacked central configurations for n ≥
3.

This reduces study of collinear extensions to study of the well-known three-body
collinear central configurations, which has been considered by Euler (1767), see
Sect. 4.1.

In what follows, we mainly discuss the non-collinear case. In this case, Fernandes
andMello (2013b) have shown that the n-body subconfigurationmust lie on a common
circle or sphere and the added mass is at the geometric center. Their proof employed
the Laura–Andoyer equations. Our approach is different from theirs, see Sect. 3. Our
results contain more details, which enables us to provide a complete classification
of the non-collinear extensions. We divide our discussion into two cases: adding one
mass m0 at the center of mass of q, i.e., q0 = c, or adding one mass m0 not at the
center of mass of q, i.e., q0 �= c.

Theorem 2 Let q = (q1, . . . ,qn) be a central configuration with center of mass c.
Consider the (n + 1)-body configuration by adding m0 at c, i.e., q̄ = (c,q1, . . . ,qn).
Then, q̄ is an (n+1, 1)-stacked central configuration if and only if |q1−c| = |q2−c| =
· · · = |qn − c|.
Theorem 3 Let q = (q1, . . . ,qn) be a central configuration with center of mass c,
total mass m, and multiplier λ. Consider one (n + 1)-body configuration by adding
m0 not at c, i.e., q̄ = (q0,q1, . . . ,qn), q0 �= c. Then q̄ is an (n+1, 1)-stacked central
configuration if and only if 1

|qi−q0|3 = λ
m , i = 1, . . . , n.
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Corollary 4 Suppose that the q̄ is an (n + 1, 1)-stacked non-collinear central con-
figuration for the masses (m0,m1, . . . ,mn). Then, q̄ is also an (n + 1, 1)-stacked
non-collinear central configuration for the masses (m′

0,m1, . . . ,mn), where m′
0 is an

arbitrary mass.

We answer the second question of Hampton (2005b), see Sect. 1.

Theorem 5 In R3, there are only three types of (n+1)-body central configurations all
of whose n-body subsets form a central configuration, namely the three-body Eulerian
collinear central configurations, the Lagrangian equilateral triangle central configu-
rations and the regular tetrahedron central configurations.

Thus, whether the added mass is at the center of mass of q or not, there exists one
point a such that |a − q1| = · · · = |a − qn|. Restricted to central configurations
in R3, the subconfiguration q must lies on a common circle or sphere. These central
configurations are called co-circular central configurations, in the planar case and
co-spherical central configurations, in the spatial case. To make it precise, we use
the terminology “co-spherical configuration” to indicate that the configuration is not
planar. Denote by r the radius of the related circle (sphere). Denote by r0 the cube
root of the ratio of total mass and the multiplier of the subcentral configuration, i.e.,

r0 =
(m

λ

) 1
3 =

(
mI

U

) 1
3 =

( ∑
1≤i< j≤n mim jr2i j

∑
1≤i< j≤n mim j/ri j

) 1
3

.

An (n + 1)-body spatial central configuration of which n points lie in an affine plane
is called a pyramidal central configuration.

The classification of (n + 1, 1)-stacked central configurations in R3 is a direct
corollary of Theorems 2 and 3. We state the results separately for the planar case and
the spatial case.

Proposition 6 Let q = (q1, . . . ,qn) be a co-circular central configuration with center
of mass c, total mass m, and multiplier λ. Let r be the radius of the circle, and r0 =
(m

λ
)
1
3 . Then, q can be extended to an (n + 1, 1)-stacked planar central configuration

q̄ = (q0,q1, . . . ,qn) only in the following two cases:

• I: c is the geometric center of q, and q0 = c.
• II: r = r0, and q0 is at the geometric center of q.

Proposition 7 Let q = (q1, . . . ,qn) be a co-circular (resp. co-spherical) central
configuration with center of mass c, total mass m, and multiplier λ. Let r be the radius

of the circle (resp. sphere), and r0 = (m
λ
)
1
3 . Then, q can be extended to an (n + 1, 1)-

stacked spatial central configuration q̄ = (q0,q1, . . . ,qn) only in the following three
cases:

• I: q is co-circular, r < r0, and q0 is on the orthogonal axis passing through the
center of the circle such that r10 = r0;

• II: q is co-spherical, c is the geometric center of q, and q0 = c.
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• III: q is co-spherical, r = r0, and q0 is at the geometric center of q.

Remark 8 Chenciner (2004) asked: Is the regular n-gon with equal masses the unique
co-circular central configuration that the center of mass equals the geometric center?
This question is listed as Problem 12 in a collection of open problems in celestial
mechanics compiled byAlbouy et al. (2012).Wemay ask one equivalent question: If an
n-body co-circular central configuration can extend to a coplanar central configuration
by adding one massm0 at the mass center, does the n-body central configuration have
to be the regular n-gon with equal masses? Until now, the question has only been
answered affirmatively for n = 4, by Hampton in 2003 Hampton (2005a).

Another corollary of Theorems 2 and 3 is as follows.

Corollary 9 In case II of Proposition 6 and case I and III of Proposition 7, let m̄ (resp.
λ̄) be the totalmass (resp. themultiplier) of the (n+1, 1)-stacked central configuration.
Let r̄0 = (m̄/λ̄)

1
3 . Then, r̄0 does not depend on the value of m0, and r̄0 = r0.

Remark 10 Fernandes–Mello announced that if q̄ = (q0,q1, . . . ,qn) is an (n+1, 1)-
stacked planar central configuration, then the center of mass c of the co-circular
configuration q = (q1, . . . ,qn) must coincide with the geometric center [Lemma
2.3 of Fernandes and Mello (2015)]. That is, case II of Proposition 6, does not exist.
This statement is not accurate. The well-known Lagrangian equilateral triangle cen-
tral configuration is a counterexample, see Remark 16 and Sect. 4.1. The flaw in their
proof is similar to the one described in Remark 21.

2.2 TheValue r0 of Co-circular Central Configurations

According to Propositions 6 and 7, the measurement of the radius r and r0 = (m/λ)
1
3

of the co-circular and co-spherical central configurations is crucial for the classification
of (n + 1, 1)-stacked central configurations. We obtain a general result for the co-
circular case, with which, we could prove that r0 > r holds for all four-, five-, and
six-body co-circular central configurations.

Some notations for the co-circular configurations: Edges are line segments con-
necting two different vertices of a polygon. For a co-circular configuration whose
vertices are ordered counterclockwise as (q1, . . . ,qn), the edges qiq j are called exte-
rior sides if |i − j | = 1 or n − 1, and diagonals otherwise. An edge and a vertex on
that edge are called incident.

Theorem 11 Assume that n ≥ 4. For any n-body co-circular central configuration,
all the exterior sides are less than r0. At each vertex, there is at least one incident
diagonal larger than r0.

Remark 12 For n = 2, 3, there is no diagonal. It is easy to see that r0 = r12 for
both of the two cases. For n ≥ 4, there are at least n/2 (n even) or (n + 1)/2 (n
odd) diagonals greater than r0. For n = 4, 5, these results have been proved for a
larger set of central configurations, namely the four- and five-body planar convex
central configurations, by MacMillan and Bartky (1932) and Chen and Hsiao (2018),

123



Journal of Nonlinear Science (2021) 31 :11 Page 7 of 21 11

respectively. Generally, for large n, there would be many diagonals smaller than r0,
see the examples in Sect. 5.1.

Corollary 13 Co-circular central configurations cannot lie entirely in a semi-circle.

Remark 14 As suggested by Cors and Roberts (2012), this fact also follows nicely
from the perpendicular bisector theorem Moeckel (1990).

Proposition 15 For all four-, five-, and six-body co-circular central configurations,
the radius of the circle containing the bodies is smaller than r0.

Remark 16 The two ends of a segment can be placed on a circle with radius equal or
greater than half of the segment. Thus, for n = 2, we have r0/2 ≤ r < ∞. For n = 3,
we have r0 = √

3r .

2.3 Applications to (n + 1, 1)-Stacked Central Configurations for n ≤ 6 and to
Pyramidal Central Configurations

We find all the (5, 1)-stacked central configurations, with which we answers Hamp-
ton’s first question (Hampton 2005b), see Sect. 1.

Theorem 17 There are only three types of (5, 1)-stacked central configurations:

• the square with equal masses and an arbitrary mass m0 at the center;
• any four-body co-circular central configuration and an arbitrary mass m0 on
the orthogonal axis passing through the center of the circle. The height of m0 is

h =
√
r20 − r2;

• the regular tetrahedron with equal masses and an arbitrary mass m0 at the center.

For (n, 1)-stacked central configurations with n = 6, 7, we have some partial
results.

Proposition 18 Let q be a five-body (resp. six-body) co-circular central configuration

with center of mass c, r0 = (m
λ
)
1
3 and radius of the circle r . Consider one six-body

(resp. seven-body) configuration by adding m0 at q0 to q. Then, q̄ is a (6, 1)-stacked
(resp. (7, 1)-stacked) central configuration only in the following two cases:

• To planar: c is the geometric center of q, and q0 = c.
• To pyramidal: The point q0 is on the orthogonal axis passing through the center
of the circle such that r10 = r0;

Our classification of the stacked central configurations also enables us to give a
complete characterization of the pyramidal central configurations.

Proposition 19 Let q̄ = (q0,q1, . . . ,qn) be an (n+1)-body pyramidal configuration
with masses m0,m1, . . . ,mn, where q0 is the top vertex which is off the affine plane
containing m1, . . . ,mn. Then, the pyramidal configuration is central if and only if the
following conditions are satisfied:

• The subconfiguration q = (q1, . . . ,qn) is central and co-circular;
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• r < r0, where r , r0 are values associated with the n-body co-circular central
configuration q;

• The top vertex q0 is on the orthogonal axis passing through the center of the circle.

The height of q0 is h =
√
r20 − r2.

The top mass m0 is arbitrary.

Remark 20 When studying five-body pyramidal configurations, Fayçal (1996) showed
that the base must be co-circular and that the top mass is arbitrary. She also gave
a formula for the distance between the top vertex and the base vertices. Ouyang
et al. (2004) generalized Fayçal’s result to n-body pyramidal configurations. Their
characterization is almost the same as ours. They did not compare explicitly the two
values r and r0.Albouy (2003) obtained a general proposition on central configurations
in RN . Restricted in R3, it immediately implies the base of any pyramidal central
configuration is central and co-circular.

The (n+1, 1)-stacked central configurations are also relatedwith perverse solutions
introduced by Chenciner (2004). A solution q(t) = q1(t), . . . ,qn(t) of the n-body
problem with masses m1,m2, . . . ,mn is called a perverse solution if there exists
another system of masses, m′

1,m
′
2, . . . ,m′

n , for which q(t) is still a solution. Note
that any (n+1, 1)-stacked non-collinear central configuration obtained by adding one
mass at the center of mass of the n-body configuration, i.e., in case I of Proposition 6
and case I of Proposition 7„ would provide perverse solutions, namely the relative
equilibrium and the total collision solution for the planar case, and the total collision
solution for the spatial case, see also Sect. 5.2.

3 Proofs of theMain Results

We first simplify the central configuration Eq. (1).
Note that there is a simple but important fact: The three points c, c̄, and q0 are

collinear. In fact, c̄ can also be seen as the center of mass of the two material points
c,q0 with masses m,m0. Thus, c̄ equals q0 if and only if c equals q0. The collinearity
of the three points is also revealed in the following equalities:

m̄(c̄ − q0) = m(c − q0), A − c̄ = (A − c) − m0

m̄
(q0 − c), (2)

where A is an arbitrary point.
Assume that q̄ = (q0,q1, . . . ,qn) is an (n + 1, 1)-stacked central configuration.

The central configuration Eq. (1) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

∑n
j �=i, j=1 mim j

q j−qi
|q j−qi |3 = −λmi (qi − c), i = 1, . . . , n,

∑n
i=1

mim0(qi−q0)
r3i0

= −λ̄m0(q0 − c̄),
∑n

j �=i, j=1 mim j
q j−qi

|q j−qi |3 + mim0(q0−qi )
r3i0

= −λ̄mi (qi − c̄), i = 1, . . . , n,

(3)
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where λ = U/I and λ̄ = Ū/ Ī .
Note that the third part of system (3) can be written as

λmi (qi − c) + m0mi (qi − q0)

r3i0
= λ̄mi (qi − c̄), i = 1, . . . , n. (4)

Summing up all the n equations gives the second part of system (3). Furthermore, by
(2), the n equations are equivalent to

(

λ − λ̄ + m0

r3i0

)

(qi − c) =
(
m0

r3i0
− λ̄m0

m̄

)

(q0 − c), i = 1, . . . , n. (5)

Therefore, system (1) is equivalent to the following system:

⎧
⎨

⎩

∑n
j �=i, j=1 mim j

q j−qi
|q j−qi |3 = −λmi (qi − c), i = 1, . . . , n,

(λ − λ̄ + m0
r3i0

)(qi − c) = (m0
r3i0

− λ̄m0
m̄ )(q0 − c), i = 1, . . . , n,

(6)

where λ = U/I and λ̄ = Ū/ Ī .

Proof of Theorem 1 Note that Eq. (5) can be written as

(λ − λ̄)(qi − q0) + m0(qi − q0)

r3i0
+

(

λ − λ̄

m̄
m

)

(q0 − c) = 0, i = 1, . . . , n.

Assume that all the particles are on the x-axis, and use xi to denote the position ofmi .
The equations become

(λ − λ̄)(xi − x0) + m0(xi − x0)

|xi − x0|3 +
(

λ − λ̄

m̄
m

)

(x0 − c) = 0, i = 1, . . . , n. (7)

Let yi = xi − x0, α = (λ − λ̄
m̄ m)(x0 − c), and β = λ − λ̄. Note that α and β are

constant with respect to i = 1, . . . , n. Fix the values of α and β. Let us consider the
algebraic equation β y + m0 y

|y|3 + α = 0. Then, the n Eq. (7) implies that it has at least
n distinct real nonzero solutions. Let us prove it is impossible for n ≥ 3 by reduction
to absurdity.

Assume that there are k particles on the left side of m0 and n − k particles on the
right, 0 ≤ k ≤ n.

Then, the cubic equation

− m0z
3 + αz + β = 0, (8)

has at least k distinct negative roots, and the cubic equation

m0z
3 + αz + β = 0 (9)
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has at least n − k distinct positive roots.
Assume that z1, z2, z3 are the roots of Eq. (8) and z4, z5, z6 are the roots of Eq. (9).

We are going to finish the proof by showing that the sum of the number of negative
roots of Eq. (8) and the number of positive roots of Eq. (9) is not greater than 2. This
is obviously true if α = 0 or β = 0. So we assume that α �= 0 and β �= 0.

Recall that a generic cubic equation az3 + bz2 + cz + d = 0, a �= 0 has only one
real root and two conjugate imaginary roots if and only if

� = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2 < 0.

For our two cubic equations, we have

�1 = 4m0α
3 − 27m2

0β
2, �2 = −4m0α

3 − 27m2
0β

2.

Obviously, at least one of�1 and�2 is negative.Without loss of generality, we assume
that�1 < 0; then, only one of z1, z2, z3 is real, say, z1, and the other two are conjugate
imaginary numbers.

By Vieta’s formulas, z4 + z5 + z6 = 0, which implies that at most two of the
roots of Eq. (9) are positive. Thus, we assume that z1 < 0. By Vieta’s formulas,
z4z5z6 = −z1z2z3 > 0, z4 + z5 + z6 = 0, which implies that Eq. (9) has only one
positive root. In words, the sum of the number of negative roots of Eq. (8) and the
number of positive roots of Eq. (9) is not greater than 2. This completes the proof. 	

Proof of Theorem 2 The proof of the necessary conditions: If the configuration q̄ is
central, we have q0 = c = c̄, so qi �= c, i = 1, . . . , n. Then, the second part of
system (6) implies that 1

|qi−q0|3 = λ̄−λ
m0

for i = 1, . . . , n. So we obtain that |q1−q0| =
|q2 − q0| = · · · = |qn − q0|, i.e., |q1 − c| = · · · = |qn − c|.

The proof of the sufficient conditions: The first part of system (6) obviously holds.
Since q0 = c = c̄ and r10 = · · · = rn0, we have

Ī =
n∑

i=0

mi |qi − c̄|2 =
n∑

i=1

mi |qi − c|2 = I = mr210,

λ̄ = U + ∑n
i=1

mim0
ri0

Ī
= λ + m0

m

Ir10
= λ + m0

1

r310
,

which implies that 1
|qi−q0|3 = λ̄−λ

m0
for i = 1, . . . , n. Thus, the second part of system

(6) holds and the proof is completed. 	

Proof of Theorem 3 The proof of the necessary conditions: Assume that the configu-
ration q̄ is central. There exists some body not on the line cq0 since the configuration
q̄ is non-collinear. Suppose that qk /∈ cq0. Note that the kth equation of the second
part of system (6) holds only if

1

|qk − q0|3 = λ̄ − λ

m0
= λ̄

m̄
.
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Note that |qk − q0| = |q j − q0| also holds if qk /∈ cq0,q j ∈ cq0. By (4), we have

λ(qi − c) + m0(qi − q0)

r3i0
= λ̄(qi − c̄), i = k, j .

Subtracting the two equations, we obtain

λ(qk − q j ) + m0(qk − q0)

r3k0
− m0(q j − q0)

r3j0
= λ̄(qk − q j ),

(qk − q0)

r3k0
− (q j − q0)

r3j0
= λ̄ − λ

m0
(qk − q j ) = (qk − q0) − (q j − q0)

r3k0
,

which implies that |qk − q0| = |q j − q0|. Thus, we obtain

1

|qi − q0|3 = λ̄ − λ

m0
= λ̄

m̄
, i = 1, . . . , n.

The equality λ̄−λ
m0

= λ̄
m̄ implies that λ

m = λ̄
m̄ , so we have

1
|qi−q0|3 = λ

m for i = 1, . . . , n.
The proof of the sufficient conditions: The first part of system (6) obviously holds.

With the condition 1
|qi−q0|3 = λ

m , i = 1, . . . , n, we obtain

λ̄

m̄
= Ū/(m̄ Ī ) = U + ∑n

i=1
m0mi
ri0∑

0≤i< j≤n mim jr2i j
= U + ∑n

i=1
m0mi
r10

mI + ∑n
i=1 m0mir2i0

= λI + m0λr310
r10

mI + m0mr210
= λ

m
.

The equality λ
m = λ̄

m̄ implies that λ
m = λ̄−λ

m0
= λ̄

m̄ , so we have

1

|qi − q0|3 = λ̄ − λ

m0
= λ̄

m̄
, i = 1, . . . , n.

Thus, the second part of system (6) holds and the proof is completed. 	

Proof of Theorem 5 In the collinear case, Theorem 1 implies that it is possible if and
only if n = 2. For the non-collinear case, Theorems 2 and 3 implies that r01 = · · · =
r0n = r12 · · · = r1n · · · = rn−1,n, which happens only if the n + 1 bodies form a
regular polytope. In R3, that is, the equilateral triangle and the regular tetrahedron.
On the other hand, it is well known that these configurations with arbitrary masses are
central. This completes the proof. 	

Proof of Propositions 6 and 7 It is clear from Theorems 2 and 3. 	

Proof of Corollary 9 It is clear from the proof of Theorem 3. 	
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Fig. 1 Co-circular configuration with r12 ≥ r0, rn1 ≥ r0, left, and r12 ≥ r0, rn1 < r0, right

Proof of Theorem 11 Assume that qi = (cos θi , sin θi ) and 0 = θ1 < θ2 < · · · < θn <

2π . The configuration is central if and only if

∑

k �= j

mk

(
1

r3k j
− λ

m

)

(qk − q j ) =
∑

k �= j

mk Sk j (qk − q j ) = 0, (10)

for j = 1, . . . , n, where Skj = 1
r3k j

− 1
r30
. Here, we use the fact that (m/λ)

1
3 = r0.

We first show that the two exterior sides incident with q1 are smaller than r0 by
contradiction. Note that the sequence {r12, r13, . . . , r1n} is either monotonic or at first
increasing and then decreasing.

Case I: r12 ≥ r0, rn1 ≥ r0. Then, we have

rk1 > min{r12, rn1} ≥ r0,
1

r3k1
− 1

r30
< 0, k = 3, . . . , n − 1.

That is, Sk1 ≤ 0 for k = 2, . . . , n. Denote by l the line perpendicular with the tangent
of the circle atq1 ( the dashed line), see Fig. 1, left, and by Plu the orthogonal projection
of vector u along the line l. Then, it is easy to see that

Pl

⎛

⎝
∑

k �=1

mkSk1(qk − q1)

⎞

⎠ =
∑

k �=1

mkSk1Pl(qk − q1) �= 0.

Therefore, the first equation of system (10), 0 = ∑
k �=1 mkSk1(qk − q1), cannot hold.

This is a contradiction.
Case II: Only one of the incident exterior sides is smaller than r0, say, r12 ≥

r0, rn1 < r0. Suppose that θ2 < θk < · · · < θL < θL+1 < · · · < θn < 2π and that

r1L ≥ r0, r1,L+1 < r0.
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Fig. 2 An example of a
co-circular configuration. The
center of the circumscribing
circle is marked with O

That is, Sk1 ≤ 0 for k = 2, . . . , L , and Sk1 > 0 for k = L + 1, . . . , n. Connect q1 and
one point between qL and qL+1 on the circle by the dashed line, and denote by l the
line perpendicular with the dashed line, see Fig. 1, right. Then, it is easy to see that

Pl

(
L∑

k=2

mkSk1(qk − q1) +
n∑

k=L+1

−mkSk1(q1 − qk)

)

�= 0.

Therefore, the first equation of system (10), 0 = ∑
k �=1 mkSk1(qk − q1), cannot hold.

This is a contradiction.
We conclude that the two exterior sides incident with q1 are smaller than r0, i.e.,

S12 > 0, S1n > 0. If the values S12, S13, . . . , S1n are all positive, the equation 0 =∑
k �=1 mkSk1(qk − q1) cannot hold neither, see Figure 1, left. Thus, there is at least a

negative one that must correspond to a diagonal. Hence, there is at least one diagonal
incident with q1 that is larger than r0.

By symmetry, the statement made for the edges incident with q1 also holds for the
edges incident with any other vertex. Therefore, we have proved that all the exterior
sides are less than r0 and that there is at least one incident diagonal larger than r0 at
each vertex. 	


Proof of Corollary 13 If a co-circular configuration lies entirely in a semi-circle, then
there is one exterior side longer than all the diagonals. By Theorem 11, it is not central.

	


Proof of Corollary 15 We only prove for the six-body case. The other cases are similar.
Order the six masses sequentially on the circle as in Fig. 2. First note that the center
of the circle, O , must be in the convex hull of the six masses since the masses are not
in a semi-circle. Assume that r ≥ r0. Then, Theorem 11 implies that

r12, r23, r34, r45, r56, r61 < r .
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This implies that each of the six angles ∠q1Oq2,∠q2Oq3,∠q3Oq4, ∠q4Oq5,
∠q5Oq6, ∠q6Oq1, is strictly less than π/3. It is a contradiction since the sum has to
be 2π . 	


Theorem 17 and Proposition 18 will be proved in Sect. 4.

Proof of Proposition 19 The proof of the necessary conditions: By Albouy (2003),
Ouyang et al. (2004), the subconfiguration q must be central. Thus, both the pyra-
midal configuration and the subconfiguration are central and q0 �= c. Then, the other
conditions follow easily from Theorem 3.

The proof of the sufficient conditions: By Theorem 3, if these conditions are satis-
fied, the pyramidal configuration q̄ must be central. 	


4 The Extensions of Two-, Three-, Four-, andMore-Body Central
Configurations

In this section, we discuss the (n + 1, 1)-stacked central configurations for small n. If
n ≤ 4, we understand thoroughly the extensions. For each n, we discuss the extensions
to planar central configurations and spatial ones separately.

4.1 Two Bodies to Three

There is only one two-body central configuration, namely a segment with two arbitrary

masses at the ends. The multiplier is λ = U/I = m/r312, so r0 = (m
λ
)
1
3 = r12. It is

obviously co-circular, and the circumscribed circle is not unique. The radius is in the
range [ r122 ,∞).

• To planar: It is easy to see that the center of mass coincides with the geometric
center if and only if the two masses are equal. In this case, we could extend it
by adding an arbitrary mass m0 at the center, which is a symmetric three-body
collinear central configuration.
Since r0 = r12, the range of radius of the circumscribed circle is [ r02 ,∞). It is easy
to see that we can extend it by adding one arbitrary mass m0 on the orthogonal
bisector of q1q2 such that r01 = r02 = r = r0 = r12. The three masses are all
arbitrary and the triangle is equilateral. In other words, we have provided another
proof of thewell-known fact that the equilateral trianglewith three arbitrarymasses
is central (Lagrange 1772).

• To spatial: Not exist.

Except the symmetric three-body collinear ones, there are other (3, 1)-stacked
collinear central configurations. Assume that the central configuration is on the x-
axis, with positions x1, x2, x1 < x2. For any given mass m0, it is easy to show that
there is a unique position x0 in each of the three intervals, (−∞, x1), (x1, x2), and
(x2,∞), such that the configuration (x1, x2, x3) is central, which is the well-known
three-body collinear Eulerian central configurations (Euler 1767).

For n ≥ 3, by Theorem 1, an (n + 1, 1)-stacked central configuration must be non-
collinear. Recall that an n-body collinear configuration cannot extend to an (n+1, 1)-
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stacked non-collinear central configuration by the perpendicular bisector theorem
(Moeckel 1990). Therefore, we only need to consider the extension of n-body non-
collinear central configurations.

4.2 Three Bodies to Four

This has been considered by Hampton (2005b). In the three-body case, the only non-
collinear central configuration is the equilateral triangle with three arbitrary masses,

which is co-circular. It is easy to see that r0 = (m
λ
)
1
3 = r12 = r13 = r23 = √

3r .

• To planar: It is easy to see that the center of mass coincides with the geometric
center if and only if the three masses are equal. In this case, we could extend it by
adding an arbitrary mass m0 at the center.
There is no other (4, 1)-stacked planar central configurations since r0 > r .

• To spatial: Asmentioned above, r0 = √
3r holds for any equilateral triangle central

configuration. Thus, any equilateral triangle central configuration can extend to a
pyramidal central configuration by adding one arbitrary mass m0 such that r10 =
r20 = r30 = r0 = r12. In other words, we have provided another proof of the
well-known fact that the regular tetrahedron with four arbitrary masses is a central
configuration.
There is no other (4, 1)-stacked spatial central configurations since the three-body
central configurations are not co-spherical.

4.3 Four Bodies to Five

In the four-body case, the only spatial central configuration is the regular tetrahedron
with arbitrary masses, which is co-spherical. On the other hand, the co-circular central
configurations are very rich, and it has been studied thoroughly by Cors and Roberts
(2012).

• To planar: By Hampton (2005a), the only one four-body co-circular central con-
figuration with center of mass at the geometric center is the square with equal
masses, which leads to a (5, 1)-stacked planar central configuration by adding an
arbitrary mass m0 at the center.
There is no other (5, 1)-stacked planar central configurations since r0 > r by
Corollary 15.

• To spatial: Any four-body co-circular central configuration (Cors and Roberts
2012) could extend to a five-body pyramidal central configuration.
It is easy to see that the center of mass of the regular tetrahedron central configu-
ration coincides with the geometric center if and only if the four masses are equal.
In this case, we could extend it by adding an arbitrary mass m0 at the center.
There is no other (5, 1)-stacked spatial central configurations since that r0 = r12 =
2
√
6

3 r for any regular tetrahedron central configuration.

This discussion proves Theorem 17.
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Remark 21 Fernandes–Mello in 2013 Fernandes and Mello (2013a) also announced
that the four-body central configuration of a (5, 1)-stacked central configuration must
be the square with equal masses. However, their original proof contains a flaw, which
is fixed in Fernandes andMello (2018). On page 302 of Fernandes andMello (2013a),
where the authors claim that the equation r3 = m̄/λ̄, (with our notations), leads to a
quadratic polynomial inm0. But from the proof of Theorem 3, we see that if r3 = m/λ,
in which no m0 is involved, then r3 = m̄/λ̄ is just an identity for any m0. Chen-Hsiao
pointed out this flaw in 2018 Chen and Hsiao (2018).

Cors and Roberts (2012) showed that the four-body co-circular central configura-
tions form a two-dimensional surface parameterized by two of the edge lengths. Thus,
the five-body pyramidal central configurations also form a two-dimensional surface.
A direct corollary is as follows.

Proposition 22 Not all choices of five positive masses lead to a five-body pyramidal
central configuration.

The property of the five-body pyramidal central configurations is really rich. We
state some properties about them. They are straightforward corollaries of the results
in Cors and Roberts (2012).

Proposition 23 For a five-body pyramidal central configuration, let m1,m2,m3,m4
be the four masses of the co-circular base. If just two of the four masses are equal,
then the base configuration is symmetric, either a kite or an isosceles trapezoid. If any
three of the four masses are equal, then the base configuration is a square and all four
masses are necessarily equal.

4.4 Five andMore Bodies

In the five- and more-body case, both the co-circular and co-spherical central config-
urations are rich, but much less research has been done in this direction. We only state
some results known to us.

• To planar: Obviously, the regular n-gon (n ≥ 5) with equal masses leads to (n +
1, 1)-stacked central configurations by adding one mass at the center. However,
until now, we do not know any other co-circular central configuration whose center
ofmass is at the geometric center, since the question ofChenciner remains unsolved
for n ≥ 5, see the comment after Proposition 7.
There is no other (6, 1)-stacked ((7, 1)-stacked) planar central configurations since
r0 > r by Corollary 15. For more bodies, we have not found any general example
yet.

• To spatial: Any five-body (six-body) co-circular central configuration could extend
to a six-body (seven-body) pyramidal central configuration. For more bodies, we
have no general result, see Sect. 5.1.
For the five to ten-body cases, We have some examples of co-spherical central
configurations whose center of mass equals the geometric center, see Sect. 5.2. In
those cases, we could extend it by adding an arbitrary mass m0 at the center.

123



Journal of Nonlinear Science (2021) 31 :11 Page 17 of 21 11

For n ≥ 5, we do not know that whether there exist n-body co-spherical central
configurations with r = r0 or not.

This discussion proves Proposition 18.

5 Regular Polygons and Some Examples of Co-spherical Central
Configurations

In this section, we discuss the regular polygonal central configurations and construct
some co-spherical central configurations. Some of them have center of mass at the
sphere center. Thus, they can extend by adding one mass at the center.

5.1 Regular Polygons

Consider the regular n-gon with equal masses. Obviously, they can extend to planar
central configurations by adding one mass at the center. Whether they can extend
to pyramidal central configurations depends on the measurement of r0 and r . The
following result was first shown by Ouyang et al. (2004).

Proposition 24 The regular n-gon with equal masses can extend to pyramidal central
configurations if and only if n ≤ 472.

We repeat the idea of their proof here. For the regular n-gon with equal masses,
assume that the radius of the circle is 1. Direct computation leads to r30 = n

A(n)
, with

A(n) = 1
4

∑n−1
k=1 csc(

kπ
n ). It has been found by Moeckel and Simó (1995) that n

A(n)
is

decreasing, and n
A(n)

≥ 1 if and only if n ≤ 472.

5.2 Co-spherical Central Configurations

There are much less research on co-spherical central configurations, compared with
the co-circular ones. Corbera et al. (2014) constructed three families of central con-
figurations, each consisting of a regular polyhedron and its dual. In each family, there
is a co-spherical one, and the center of mass equals its geometric center.

We construct some co-spherical central configurations by adding some bodies to
some co-circular ones. Let us introduce some notations that will be used only in
this subsection. For distinction, we denote by r , r0 (resp. R, R0) the radius of the
circumscribing circle and the cube root of the ratio of total mass and the multi-
plier, respectively, for co-circular (resp. co-spherical)central configurations. In other
words, R3

0 = (m
λ
), but only for co-spherical central configurations. In this subsection,

the mass at the top vertex of an (n + 1)-body pyramidal configuration is denoted by
mn+1 and the position by qn+1.

We want to construct co-spherical central configurations that can extend as in case
II and III of Proposition 7. That is, we want the center of mass to be at the sphere
center, or, R0 = R.
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Fig. 3 Slice of a pyramidal central configuration. The center of the circumscribing sphere is marked with
O

5.2.1 Pyramidal Central Configurations

Recall that an (n+1)-body pyramidal central configuration is obtained by adding one
arbitrary mass mn+1 to a co-circular central configuration with the property r0 > r .
The top vertex qn+1 is on the orthogonal axis passing through the center of the circle,

and the height is h =
√
r20 − r2. Obviously, pyramidal configurations are co-spherical.

Proposition 25 Let q be an (n+1)-body pyramidal central configuration. Assume that
the center of mass of the co-circular base is at the center of the circumscribing circle.
We can choosemn+1 such that the center ofmass of the pyramidal central configuration
coincides with the circumscribing sphere center if and only if r0 >

√
2r .

Proof Obviously, the sphere center O is between the base and mn+1 if and only if

h =
√
r20 − r2 > r , see Fig. 3, left. That is, r0 >

√
2r . The center of mass is always

between the base andmn+1. Thus, to make the center of mass equals the sphere center,
we must have r0 >

√
2r .

On the other hand, if r0 >
√
2r , it is easy to find mn+1 such that the two centers

equal. 	

Proposition 26 Let q be an (n + 1, 1)-stacked pyramidal central configuration
extended from an n-body co-circular central configuration. Then R0 = R if and
only if r0 = 2√

3
r .

Proof By Corollary 9, we see that R0 = r0. Note that r0 = R if and only if that

α = 60◦, or, sin α = r
r0

=
√
3
2 , see Fig. 3, right. 	


Examples: Consider the central configurations of regular n-gon with equal masses.
Suppose that the m1 = 1, the radius of the circle is 1, and that the positions are

qk = e
√−1θk , θk = 2kπ

n , k = 1, . . . , n.Recall that r0r = ( n
A(n)

)
1
3 , and it is decreasing

with respect to n.
Computation by MATLAB shows

(
8

A(8)

) 1
3

>
√
2,

(
9

A(9)

) 1
3

<
√
2,

(
52

A(52)

) 1
3

>
2√
3
,

(
53

A(53)

) 1
3

<
2√
3
.
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Fig. 4 Examples of co-spherical central configuration generated from the equilateral triangle configuration

We can draw two conclusions about the (n + 1, 1)-stacked pyramidal central con-
figurations extended from the regular n-gon central configurations (n ≤ 472), see
Fig. 4, left.

(1) R0 �= R;
(2) Only for n = 3, 4, 5, 6, 7, 8, we can choose a proper top mass to make that the

center of mass of the pyramidal central configuration coincides with the sphere
center. They lead to (n + 2, 1)-stacked central configuration by adding one arbi-
trary mass at the center. As commented after Proposition 19, the total collision
solutions associated with them are perverse solutions of the (n+2)-body problem
(Chenciner 2004). This was noticed first by Ouyang et al. (2004).

5.2.2 Bipyramidal Central Configurations

By bipyramidal configurations, we mean configurations of n + 2 bodies of which n
bodies are coplanar and the other two being off the plane and in opposite directions.
The regular n-gon with equal masses also generates (n + 2)-body bipyramidal co-
spherical central configurations. Similar construction has been considered by Zhang
and Zhou (2001).

Place the n-gon with equal masses on the equator, and two equal masses at the
north and south pole, see Fig. 4, right. Assume that the masses arem1 = 1, . . . ,mn =
1,mn+1 = mn+2 = a, and the positions are qk = (cos θk, sin θk, 0), θk = 2kπ

n , k =
1, . . . , n, qn+1 = (0, 0, 1), qn+2 = (0, 0,−1).

The center of mass is at the origin. The symmetry reduces the central configuration
equations to the following system:

− λq1 =
n∑

i=2

qk − q1
r3k1

+ a
qn+1 − q1
r3n+1,1

+ a
qn+2 − q1
r3n+1,1

= −
(

A(n) + a√
2

)

q1,
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− λqn+1 =
n∑

i=1

qk − qn+1

r3n+1,k

+ a
qn+2 − qn+1

r3n+1,n+2

= −
(

n

2
√
2

+ a

4

)

qn+1.

Here we use the fact that rn+1,1 = · · · = rn+1,n = √
2, rn+1,n+2 = 2 and that the

subconfiguration on the equator is central:

n∑

i=2

qk − q1
r3k1

= − 1

r30

(
n∑

i=1

mi

)

q1 = − A(n)

n
nq1.

The system holds for positive a = mn+1 if and only if n
A(n)

> 2
√
2. We have shown

that this happens if and only if 3 ≤ n ≤ 8.

Proposition 27 The bipyramidal (n + 2)-body configurations constructed above are
central with positive masses if and only if 3 ≤ n ≤ 8.

For all of them, the center of mass equals the sphere center. Thus, they extend to
(n + 3, 1)-stacked configurations by adding one arbitrary mass at the center. Direct

computation shows R0 = (m
λ
)
1
3 > R = 1 for all of them.

6 Conclusions

Wehave classified the extensions of n-body central configurations to (n+1)-body cen-
tral configurations in R3. For the collinear case, the extensions happen only if n = 2,
so it is well understood. For the non-collinear case, the n-body central configurations
must be co-circular or co-spherical. The co-circular (co-spherical) central configura-
tions can extend if the center of mass equals the geometric center, or r0 ≥ r (r0 = r
for the co-spherical case). We also obtain a property on the value of r0 for co-circular
central configurations. This enables us to prove the inequality r0 > r for all four-,
five-, and six-body co-circular central configurations. We solve the two questions of
Hampton completely. It might be worth noting that most of our proof remains valid
for more general potentials and higher dimensional spaces.

There exist many research works on co-circular central configurations. We hope

that this workmay spark similar interest to the co-spherical ones. The value r0 = (m
λ
)
1
3

has shown its importance in the study of four- and five-body planar convex central
configurations (Chen and Hsiao 2018;MacMillan and Bartky 1932). Our work reveals
its another role in the study of central configurations. Many questions arise for the
value r0. For example, except from the trivial case n = 2, do there exist co-circular
or co-spherical central configurations with the property r0 = r? Can one obtain some
general property of r0 for the co-spherical central configurations? We hope to explore
some of these questions in future work.
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