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Abstract

This paper is concerned with the conditions of existence and nonexistence of traveling
wave solutions (TWS) for a class of discrete diffusive epidemic model. We find that
the existence of TWS is determined by the so-called basic reproduction number and
the critical wave speed: When the basic reproduction number Ry > 1, there exists a
critical wave speed ¢* > 0, such that for each ¢ > ¢* the system admits a nontrivial
TWS and for ¢ < ¢* there exists no nontrivial TWS for the system. In addition, the
boundary asymptotic behavior of TWS is obtained by constructing a suitable Lya-
punov functional and employing Lebesgue dominated convergence theorem. Finally,
we apply our results to two discrete diffusive epidemic models to verify the existence
and nonexistence of TWS.
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1 Introduction

In a pioneering work, the classical susceptible-infectious-recovered (SIR) epidemic
model was introduced by Kermack and McKendrick (1927) in 1927. Since then, epi-
demic modeling has become one of the most important tools to study spread of the
disease, we refer readers to a good survey (Hethcote 2000) on this topic. In order to
understand the geographic spread of infectious diseases, the spatial effect would give
insights into disease spread and control. Due to this fact, epidemic models with spatial
diffusion have been studied for decades. Considering spatial effects, Hosono and Ilyas
1995 proposed and studied the following SIR epidemic model with diffusion:

3S(x, t
WD) g AS( x) — BSGr. )] (x. 1), XeR, t>0,

aIlx 1) (1.1)
8t’ =dyAI(t,x) + BS(x, ) (x,t) —yIl(x,1), x €R, t >0,

with initial conditions
S(x,0) = So(x), I(x,0) = Ip(x) >0,

where S(x,t) and I(x,t) denote the densities of susceptible and infected individ-
uals at position x and time ¢, respectively; d; (i = 1, 2) are the diffusion rates of
each compartment; 8 denotes the transmission rate between susceptible and infected
individuals; y is the remove rate. All parameters in system (1.1) are assumed to be
positive. It was shown that the existence of traveling wave solutions of system (1.1)
with a constant speed. Reaction—diffusion epidemic models have been investigated
extensively, regarding the existence problem of traveling wave solutions, see (Bai and
Zhang 2015; Ducrot and Magal 2011; Fu 2016; He and Tsai 2019; Lam et al. 2018;
Liet al. 2017, 2014; Tian and Yuan 2017; Wang and Ma 2018; Zhang and Xu 2013;
Zhao et al. 2017) and references therein.

However, there are relatively few works on epidemic models with discrete spatial
structure. In contrast to continuous media, lattice dynamical systems are more realistic
in describing the discrete diffusion (for example, patch environment (San and Wang
2019)). Lattice dynamical systems are systems of ordinary differential equations with
a discrete spatial structure. Such systems arise from practical backgrounds, such as
biology (Fang et al. 2010; Guo and Wu 2012; Han and Kloeden 2019; Weng et al.
2003; Wu et al. 2015; Yang and Zhang 2018), chemical reaction (Erneux and Nicolis
1993; Kapral 1991) and material science (Bates and Chmaj 1999; Brucal-Hallare and
Vleck 2011). In a recent paper (Fu et al. 2016), Fu et al. studied the existence of
traveling wave solutions for a lattice dynamical system arising in a discrete diffusive
epidemic model:

ds,
df” — [Sut1 (D) 4 Suct () = 250 (D] = BS(VIn(1), 1 € Z, )
% — A1 () + Tt () = 200 (D] + BSa O I (1) — y 1o (0), 1 € Z,
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where S, (¢) and I, (¢) denote the populations densities of susceptible and infectious
individuals at niche n and time #, respectively; 1 and d denote the random migration
coefficients for susceptible and infectious individuals, respectively; S is the trans-
mission coefficient between susceptible and infectious individuals; y is the recovery
rate of infectious individuals. Note that system (1.2) is a spatially discrete version of
system (1.1). It was proved in Fu et al. (2016) that the conditions of existence and
nonexistence of traveling wave solution for system (1.2) are determined by a threshold
number and the critical wave speed c*. If the threshold number is greater than one,
then there exists a traveling wave solution for any ¢ > ¢* and there is no traveling
wave solutions for ¢ < ¢*. Also, the nonexistence of traveling wave solutions for the
threshold number less than 1 was derived. Furthermore, Wu 2017 studied the existence
of traveling wave solutions with critical speed ¢ = ¢* of system (1.2). Moreover, we
refer to Zhang and Wu 2019 and Zhou et al. 2020 for the existence and nonexistence
of traveling wave solutions with saturated incidence rate. By introducing the constant
recruitment, Chen et al. 2017 studied the traveling wave solutions for the following
discrete diffusive epidemic model:

dsS, (1)
= [Snt1(0) + Sn—1(t) = 28, (D] + 0 = BSp (O I (t) — nSp (1), n € Z,
dfly,
dt(t) =d[Iny1 (@) + i1 (0) = 21, (O] + BS, (D I (1) — (v + ) 1n (1), n € Z,

(1.3)

where p is the input rate of the susceptible population; meanwhile, the death rates
of susceptible and infectious individuals are also assumed to be w. In Chen et al.
(2017), the authors showed that the existence of traveling wave solutions connects the
disease-free equilibrium to the endemic equilibrium, but they do not prove that the
traveling wave solutions converge to the endemic equilibrium at +o00. As explained in
Chen et al. (2017), the main difficulties come from the fact that (1.3) is a system and is
nonlocal. In fact, the traveling wave solutions of (1.2) and (1.3) are totally different:
For the system like (1.2) without constant recruitment, it can be shown that / tends to
0 as & — Fo00, where § = n + ct is the wave profile, which will be introduced in the
next section; however, for the diffusive model with positive constant recruitment, it is
more likely to get that I (§) — Oas& — —ooand I(§) — [* as§ — +oo, where [*
is the positive endemic equilibrium (see Li et al. 2014 for nonlocal diffusive epidemic
model; Fu 2016 for random diffusive epidemic model). Therefore, it naturally raises
a question: For discrete diffusive systems, does the traveling wave solutions converge
to the endemic equilibrium as £ — +4-00? This constitutes our first motivation of the
present paper.

Our second motivation is the nonlinear incidence rate which plays a critical role in
the epidemic modeling (Anderson and May 1991). For the discrete diffusive systems
with nonlinear incidence rate, will the traveling wave solutions still converge to the
endemic equilibrium as £ — 4-00? Generally, the incidence rate of an infectious dis-
ease in most of the literature is assumed to be of mass action form 8S7 (Anderson and
May 1991). Yet the disease transmission process is generally unknown (Korobeinikov
and Maini 2005), some nonlinear incidence rates have been introduced and studied,

for example, the saturated incidence rate with f(I) = Hﬁ by Capasso and Serio
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(1978), the saturated nonlinear incidence rate with f (/) = ﬁ(o < p < 1)byLiu
etal. (1986), and so on. For more general cases, Capasso and Serio (1978) considered a
more general incidence rate with the form Sf (I), and the general nonlinear incidence
rate could bring nontrivial challenges in analysis. Therefore, it is of great significance
to study the convergence property of traveling wave solutions of the system with
nonlinear incidence rate.

In this paper, we consider a discrete diffusive SIR epidemic model with general
nonlinear incidence rate. The main model of this paper is formulated as the following
system:

) _ di[Sp+1() + Su—1(1) =28, (D)1 + A = BSu (1) f (Ln (1)) — p1 S, (1), n € Z,
dr, .
¥ = do[Ln+1(t) + Ln—1 (1) = 2L ()] + BS (1) fUn (1)) — v 1n(t) — 21y (1), n € Z,
dR,

dl(t) = d3[Rn+1(t) + Rn—l(t) - 2Rn(t)] + yln(t) - :u-an(t), n ez,

(1.4)

where S,(#), I,(t) and R,(t) denote the densities of susceptible, infectious and
removed individuals at niche n and time ¢, respectively; d; (i = 1,2, 3) is the ran-
dom migration coefficients for each compartment; A is the input rate of susceptible
individuals. The biological meaning of other parameters is the same as in model (1.3).

Since R, (¢) is decoupled from other equations and denote > = y + 1, then we
only need to study the following system:

dSn
i - d] [Sn+l([) + Sn—l (t) - 2Sn(t)] + A - ,BSn(t)f(In(t)) - MlSn([)a ne Za
dl,

dt(t) = do[Ln1(t) + Ln—1(t) = 21 (D)] + BSu (1) f (1n (1)) — p2ln(t), n € Z.

(1.5)

Our first goal in this paper is to study the existence and boundedness of the traveling
wave solutions of model (1.4). Adopting nonlinear incidence, random and nonlocal
diffusive SIR model is studied in Bai and Zhang (2015) and Zhou et al. (2018), respec-
tively. It was shown that the existence of traveling wave solutions for each model by
analyzing auxiliary system. Unlike in Bai and Zhang (2015); Zhou et al. (2018) where
there is no constant recruitment, here we allow constant recruitment in model (1.4)
and it is necessary to consider the boundedness of traveling wave solutions, which is
different from Bai and Zhang (2015); Zhou et al. (2018). In a recent paper (Zhang et al.
2018), Zhang et al. studied a time delay nonlocal diffusive SIR model with general
incidence, and they established the boundedness of the traveling wave solutions, but
with an additional assumption:

H) Sof o) — y1Ip <0 for some Iy > 0,
where Sy is the disease-free steady state. This assumption has also been used in a
recent literature (Zhou et al. 2020). However, we should point out here that (H) cannot
be applied for some incidence, such as bilinear incidence. Hence, it comes naturally
to consider the boundedness of traveling wave solution for system (1.4) without this
assumption. As a result, our model could cover more special cases.
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Our second goal in this paper is to study the convergence property of the traveling
wave solutions of model (1.4). In proving the convergence property of traveling wave
solutions for random diffusive epidemic model, the method combined with Lyapunov
functional and Lebesgue dominated convergence theorem played a crucial role, see
(Ducrot and Magal 2011; Fu 2016).

In general, there are two ways to construct Lyapunov functionals for the random
diffusive model: (i) rewriting the random diffusive model as a system of first-order
ODEs and constructing a Lyapunov function for ODE systems (Fu 2016); (ii) con-
structing a Lyapunov functional that contains a first derivative term (Li et al. 2015).
However, the above two methods are not applicable to discrete diffusive models (1.4),
and it is challenging to construct a suitable Lyapunov functional for the model with
lattice structure.

In the present paper, a new Lyapunov functional will be constructed, which con-
tains a specific functional to handle the lattice structure in the corresponding wave
profile system. Additionally, the well-posedness for the Lyapunov functional will be
also investigated. For the random diffusive epidemic model, the well-posedness of its
Lyapunov functional could be achieved via Harnack inequality (for instance, see Li
et al. 2015), but for discrete diffusive models, more deeper analysis is needed to verify
the permanence of traveling wave solutions, which plays a crucial role in proving the
well-posedness for the Lyapunov functional.

We make the following assumptions on function f:

(A1) f(I)>0and /(1) > Oforall I >0, f(I) =0ifand only if I = 0.

(A2) # is continuous and monotonously nonincreasing for all / > 0 and lim+ @
1—0
exists.

The conditions of Assumption (Al) and (A2) are satisfied in all the following
specific incidence rates:

(i) the bilinear incidence rate with f(I) = I (see Anderson and May 1991);

(i1) the saturated incidence rate with f(I) = 1+1T (see Capasso and Serio 1978);

(iii) the saturated nonlinear incidence rate with f (/) = Hﬁ’ where o« > 0 and
0 < p < 1 (aspecial case in Liu et al. (1986), see also Muroya et al. (2015));

. . L. . o 1

(iv) the nonlinear incidence rate with f(I) = TrrIT Vi (see Heesterbeek and
Metz 1993; Thieme 2011);

(v) the nonlinear incidence rate with f(I) = m, where €, o,y > 0 and

ay < 1 (see Thieme 2011);

(vi) the nonlinear incidence rate for pathogen transmission in infection of insects
with f(I) = k1In (1 4 %), which could be described by epidemic model (see
Briggs and Godfray 1995).

Hence, system (1.5) covers many models as special cases. Now, we introduce some
results on the system (1.5) without migration, which takes the form as:

ds()

——=A=-BSOfUQ) —u1SQ),

dfl(tt) (0
- = BS@®) fUI(t)) — ual(t).
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Itis well known that the global dynamics of (1.6) is completely determined by the basic
reproduction number g = %}O) (see Korobeinikov 2006): That is, if the number is
less than unity, then the disease-free equilibrium Eg = (Sp, 0) = (A/u1, 0)is globally
asymptotically stable, while if the number is greater than unity, then a positive endemic
equilibrium E* = (8%, I*) exists and it is globally asymptotically stable, where E*
satisfy
{A — S f(I) = m1S* =0, an
BS*fUI") — pal* = 0. '

The organization of this paper is as follows: In Sect. 2, we apply Schauder’s fixed
point theorem to construct a family of solutions of the truncated problem. In Sect. 3,
we show the existence and boundedness of traveling wave solutions. Further, we use
a Lyapunov functional to show that the convergence of traveling wave solutions at
+o00. In Sect. 4, we investigate the nonexistence of traveling wave solutions by using
two-sided Laplace transform. At last, there is an application for our general results
and a brief discussion.

2 Preliminaries

In this section, since system (1.5) does not enjoy the comparison principle, we will
construct a pair upper and lower solutions and apply Schauder’s fixed point theorem
to investigate the existence of traveling wave solutions of system (1.5). Consider
traveling wave solutions which can be expressed as bounded profiles of continuous
variable n + ct such that

Sy(t) = S(n +ct) and I,(t) = I(n + ct), 2.1)

where ¢ denotes the wave speed. Let £ = n + ct, then we can rewrite system (1.5) as
follows:

2.2)

{ cS'(&) = d1J[S1(E) + A — 1 S(E) — BSE) fU(E)),
cl'(€) = dy JUI1(E) + BSE) FT(E)) — 2l (§)

for all £ € R, where J[¢](§) ;= ¢p(E + 1) + d(§ — 1) — 2¢(£). We want to find
traveling wave solutions with the following asymptotic boundary conditions:

51111100(5(5), 1(&)) = (S0, 0), (2.3)
and
EETOO(S(E), 1(§)) = (8%, I7), 2.4

where (Sp, 0) is the disease-free equilibrium and (S*, I*) is the positive endemic
equilibrium, which is defined in Section 1. Linearizing the second equation of system
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(2.2) at disease-free equilibrium (Sp, 0), we have
cl'(§) = dyJ[11(E) — 2l () + BSo f (O (). (2.5)
Letting /(£) = ¢*¢ and substituting it in (2.5) yield
doe* + e =21 —cx+ BSof(0) — pa = 0.
Denote
A, ¢) = dale* + e = 2] — ch + BSo f'(0) — pa. (2.6)
By some calculations, we have

A©.0) = pSof'(0) = 2. lim AQh.¢) = —o0,

AL, _ AL,
¥Zd2[e)‘_e)‘]—c’ J:—)\,<O,
oA dac
ZA(, IA(N,
A0 =dfe* +e7 >0, 980, 0) =-c<0,
8}42 8)\ (O,C)

for A > 0 and ¢ > 0. Therefore, we have the following lemma.
Lemma 1 Let Rg > 1. There exist ¢* > 0 and \* > 0 such that

IA(A, c)

=0 and A\, ™) =0.

Furthermore,
(1) if c = c*, then A(A, ¢) = 0 has only one positive real root \*,
(i) if 0 < ¢ < ¢*, then A(X, ¢) > 0 forall A € (0, +00);
(iii) ifc > c*, then A(A, ¢) = 0 has two positive real roots Ay, Ay withh; < A* < Ajp.

From Lemma 1, we have

>0 for A <Ay,
A(r,c)3 <0 for A <A < Ao, 2.7
>0 for A > Ap.

In the following of this section, we always fix ¢ > ¢* and Ry > 1.

@ Springer
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2.1 Construction of Upper and Lower Solutions

Definition 1 (ST (£), IT(£)) and (S™(£), I~ (£)) are called a pair upper and lower
solutions of (2.2) if ST, I, S™, I~ satisfy

diJ[ST1E) —eST(E) + A — i STE) - BSTE FU () <0,
dJIT1E) — eI (€) + BSTE) fFUT () — 2l T (€) <0,
diJ[STIE) — ST (E) + A — 1 ST(E) — BST(E) FUT()) = 0,
o JIT1E) — eI () + BSTE) fFUT () — 2l ~(§) = 0.

Define the following functions:

{ S*E) = So. { S7(€) = max{So(1 — Mye"'%). 0}, 2.8)

I7(@&) =8, | 17 (&) = max{e!¥ (1 — Mpe™*), 0},

where M; and ¢; (i = 1, 2) are some positive constants to be determined in the follow-
ing lemmas. Now we show that (2.8) are a pair upper and lower solutions of (2.2).

Lemma 2 The function I (£) = eM'¢ satisfies
I (&) = dyJ[IT1(&) — 2l (€) + BSo f (O (&). (2.9)
Lemma 3 The function St(§) = S satisfies
ST (&) = diJSTIE) + A — 1 STE) — BSTE) FU (). (2.10)

The proof of the above two lemmas is straightforward, so we omit the details.

Lemma4 For each sufficiently small 0 < ¢1 < A1 and My > 0 is large enough, the
function S™(£) = max{So(1 — M%), 0} satisfies

eSTE) <A IISTIE) + A — ST (E) - BSTE) FUTE) (2.11)
with & # élnML] = X.

Proof 1If & > X1, then inequality (2.11) holds since ST (§) = S (£ + 1) = 0 and
ST(E—1)>0.If ¢ < Xy, then

ST(E) = So(1 — M1e”%), ST(€ —1) = So(1 — Mef1E™D)
and
ST(E+ 1) = So(1 — M &)y,
From the concavity of function f(I), we have

Fa©) < flOIE);
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thus,

diJ[STIE) + A —uS™(E) — BS™ @) fFUT(E) —cST(©)
1Sy [~Mi(die® +die™" —2dy — o —cer) — B f (¢115) 15 + BiMyer f (M1°)]
158 [~ M (die®! +die " —2dy — p — cey) — Br f1(0)eEe 15 ]

v

v

Select 0 < &1 < A1 small enough such that —d (2 — ¢! — e~ °1) — u — ce; < 0 and
note that e®*1—¢1%§ < 1 since & < X1 < 0. Hence, we need to choose

- pif (©
h= di(2—efl —e™ 1)+ u+ cep

large enough to make sure inequality (2.11) holds. This completes the proof. O

Lemma5 For each sufficiently small 0 < g2 < A1 and My > 0 is large enough, the
function I~ (&) = max{eMé (1 — M2e®2%), 0} satisfies

cl'(§) <daJU1E) + BS™ ) fU(E) — ual () (2.12)
with & # éln M% =X,

Proof If & > X;, then inequality (2.12) holds since I~ (§) = I~ (¢ — 1) = 0 and
I=(&E+1)>0.1If & < X, then

I7(€) = M5 (1 = Mye®™), 176 = 1) = 701 = Mpe2E7Y)
and
I (E+1)> AMETD (] — pppef2EFD)y,
Inequality (2.12) is equivalent to the following inequality:

BSof' (O™ () — BS™(E) fU(§))
< dyJI71E) — pal =€) — I (&) + BSof OV (&). (2.13)

Note that @ is nonincreasing on (0, co) in Assumption (A2). Then, for any € €

(0, f7(0)), there exists a small positive number § > 0 such that

fa)

TZf/(O)—G, 0<I <6

For 0 < I < §, we have

-
BSof' (O™ () —BS™ (&) fU(§) = <f350 - ﬁS(S)f(I_—((;)))) ()
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_[PS-BS @S 1 ®
- 2

<(BSo — BS™E)NF(0) —e) + 17 (§))°.
(2.14)

Recall that £ < X3, we can choose M large enough such that
O0< I (¢§) <é and S™(§) — So.
Since (2.14) is valid for any €, we have
BSof (O~ (&) — BS™ (&) U~ (€) < I~ (E)]I.

Furthermore, the right hand of (2.13) satisfies

drJ[171(E) — pal =€) — I~ (&) + BSof (0) I~ (£)
> MEA(L, €) — Mo T2 AL + €2, ©).

Using the definition of A(X, ¢) and [I(§)]* < 2ME, noticing that A(A; +¢&2,¢) <0
for small &2 > 0 by (2.7), then it is suffice to show that

eM—EE < _MOAG + €2, 0).

The above inequality holds for M> large enough, since the left-hand side vanishes and
the right-hand side tends to infinity as M> — +o00. This ends the proof. O

Hence, functions (2.8) are a pair upper and lower solutions of (2.2) by Definition 1.

2.2 Truncated Problem
Let X > max{—X1, —X3}. Define the following set:

576 ¢ = STE), ¢(=X) =5 (=X),
Ty :=1{@.¥)eCU-X, XL, R) |17 €) <y &) <ITE), v(~X)=1(=X), ¢.
VE e [-X, X].

It is clear that I'y is a nonempty bounded closed convex set in C([—X, X], R?). For
any (¢, ¥) € C([—X, X1, R?), extend it as

A ¢(X), for& > X, A v(X), foré > X,
¢@E) =1 ¢6), for§ e[-X,XI, (&) =qvE), for§e[-X, X],
ST(§), foré < —X, 1 (&), for§ < —X.
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Denote

{dm}(s + D+ dGE = D)+ A+ap®) — BHE f W E) = Hi($, ¥,
ol (€ + D)+ dor (& — 1) + BSE) FW () = Halg, V).

Consider the following truncated initial problem:

cl'(§) + 2dy + u2)1(§) = Ha(9, ¥), (2.15)

{ ¢S'(§) + Q2di + 1 + @) SE) = Hi(d, V),
S, D(=X) = (5. I")(=X),

where (¢, ¥) € I'y and « is a constant large enough such that H; (¢, ) is nonde-
creasing on ¢ (£). By the ordinary differential equation theory, system (2.15) has a
unique solution (Sx (£), Ix (£)) satisfying (Sx (£), Ix(§)) € C'([—X, X], R?). Then,
we define an operator

A= (A, Ay) :Tx — C! ([—X, X],R2>
by

Sx(€) = Ai(o, ¥)(&) and Ix(§) = Ax (@, ¥)(&).

Next we show the operator A = (A, Ay) has a fixed point in 'y by Schauder’s
fixed point theorem (see Chang 2005, Corollary 2.3.10).

Lemma 6 The operator A = (A1, Az) maps Uy into itself.

Proof Firstly, we show that ST(§) < Sx(§) forany § € [—X, X]. If & € (X1, X),
it follows that S (§) = 0 and it is a lower solution of the first equation of (2.15). If
£ € (=X, X)), then S (&) = So(1 — M;e?'%), from Lemma 4, we have

eST'E) 4+ Qdy 4 1 + @)ST(E) — di(pE + 1)
+dE = 1) — A —ad(E) + BPE) F(W(E))
<eSTE) —diIISTIE) — A+ m1STE) + BSTE) FUTE))

EO’

which implies that S (&) = So(1 — M;e18) is a lower solution of the first equation
of (2.15). Thus, ST (§) < Sx (&) for any £ € [ X, X].
Secondly, we show that Sy (£§) < ST(¢) = Sy for any £ € [—X, X]. In fact,

eSTE) + Qdy + 1 +a)STE) —digE +1)
—dipE — 1) — A —ad (&) + BoE) fF(W (&)
> BSof(I7(8))

> 0;
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thus, ST (&) = Sy is an upper solution to the first equation of (2.15), which gives us
Sx(§) < 8y forany & € [—X, X].

Similarly, we can show that 1~ (§) < Ix (&) < IT(£) for any £ € [—X, X]. This
completes the proof. O

Lemma 7 The operator A: I'x — I'x is completely continuous.

Proof Suppose (¢; (£), ¥;(§€)) € T'x, i = 1, 2. Denote
Sx.i(§) = A1(¢i(§), ¥i(§)) and Ix;(§) = Ax(i(§), i (§)).
We show that the operator A is continuous. By direct calculation, we have

1
c

2d)+pgta +[l.1 +ao

§ ]+/L]+Ot
Sx(€) = S™(=X)e~ €+ L / S0 () (0)d,
-X

and

_ _ 2dp+un 1 S 2dy+un
Ix(§) =1 (=X)e ¢ @+X>+; / e o T (¢, ¥)(1)dr,
-X

where H;(¢, ¥)(i = 1, 2) are defined in (2.15). For any (¢;, ¥;) € T'x,i = 1,2, we
have

[p1(E) f(W1(8)) — ¢2(8) f (¥2(8))]
= 101 f(W1(8) — d1(5) f (Y2 (NN + [d1(5) f (¥2(8)) — ¢2(8) f (¥2(8))]

< Sof’ 0, max Y1) = V() + f(0)eM* cmax 1618) = $2)l.

Since Sy and Iy are class of C!([—X, X]), note that

|c(S 1 (&) — Sk 2(§)) + Q2dy + 1) (Sx,1 () — Sx.2(6))]
< d@1E+1D) —GE+ )| +dil(d1(E — 1) — da(g — 1))
+ Bl1 () f (1 (§)) — ¢ (&) F(W2(6))]
= BSof' (), max (Y1) = ¥2(6)|

+(2d1+ﬂf(0)eMX) X (616) = $2(6).

Same arguments on Iy. Thus, it is easy to see that the operator .4 is continuous. Next,
it follows from (2.15), we can obtain that S 3( and [ ;( are bounded. Hence, the operator
A is compact and is completely continuous. This ends the proof. O

Applying Schauder’s fixed point theorem, we have the following lemma.
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Lemma 8 There exists (Sx, Ix) € I'x such that

(Sx(§), Ix(§)) = A(Sx, Ix) (&)

for& e [-X, X].

In the following, we show some prior estimates for (Sy, Ix). Define
Cl’l([—X, XD={uce Cl([—X, X1) | u, u'are Lipschitz continuous}

with the norm

|u'(x) —u' ()]

el e = max |u|+ max |u'|+ sup
CHEXXD ™ X x) xe[—X,X] x,ye[—X,X] lx — y|
xF#y

Lemma 9 There exists a constant C(Y) > 0 such that

ISxllcriqoy.yy < C(Y) and |[Ix|criq_y.y) < C(Y)

for0 <Y < X and X > max{—X, —X3}.

Proof Recall that (Sx, Iy) is the fixed point of the operator A4, then

{ S (&) = diSx(E + 1)+ diSx (& — 1) — Q2dy + 1) Sx (&) + A — BSx (&) fIx (£)),
el (&) = dalx (€ + 1) + dalx (& — 1) — Qda + 12) Ix (€) + BSx (&) f (Ix (£)),

(2.16)
where
. Sx(X), for§ > X, . Ix(X), for& > X,
Sx(&) =1 Sx(§), for§ € [-X, X], [Ix(§) = Ix(§), for& e [-X, X],
S7(%), foré < —X, I~ (&), foré < —X.

Since 0 < Sx(§) = Soand 0 < Ix(§) < ™" forall § € [V, Y], from (2.16) we
have
|S;(($)| = lflal&) =+ ? + 'BOTf()eMY’

and

@) < 202 ”2?””'(0)6”.

Thus, there exists some constant C;(Y) > 0 such that
ISxllct—y,yy = C1(Y) and |[Ix|lci_y,yp < C1(Y).
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For any &, n € [-Y, Y], it follows from Zhang and Wu (2019) that
1Sx&+ 1) — Sx(n + 1|
[Sx(Y) = Sx(Y)| =0, forE+1,n+1>7,
[Sx(¢ +1) = Sx(n+ D] < Ci(V)IE —nl, for§+1,n+1<Y,

SxE+1D=-Sx(M|=CiNF - -1 =Ci(V)|§ —n|, for§+1 <Y, n+1>7,
[Sx(X) =Sx(+ DI =CiNY —n—-D =Ci(M)g —nl|, for§+1>Y,n+1<Y.

Then, |§X(:§ +1)— S‘X(n + D] < Ci(Y)|&E —n|forall &, n € [-Y, Y]. Similarly, we
have

ISx (& — 1) — Sx(n — D] < C1(V)|E — 1|
for all £, n € [-Y, Y]. Furthermore,

|BSx () fUx (&) — BSx () f(Ix (m)]
= IBSx ) fUx &) — BSx (&) fUx ()| + |BSx (E) f(Ux () — BSx () f Ix ()]
< BFOCI(Y) (ISx(€) — Sx(m| + [Ix (&) — Ix(m))

forall &, n € [-Y, Y]. Hence, there exists some constant C(Y) > 0 such that
ISxllctigoy.ypy < CX).

Similarly,
Hxllctigoy,yy < C)

for any ¥ < X. This completes the proof. O

3 Existence of Traveling Wave Solutions

We first state the main results of this section as follows.

Theorem 1 For any wave speed ¢ > c*, system (1.5) admits a nontrivial traveling
wave solution (S(§), 1(§)) satisfying

ST <SE) <STand I <IE)<IT in R.
Furthermore,

SETOQ(S(E)’ 1(§)) = (S0, 0) and SEIEOO(S(E), 1(§) = (5", 1.

The proof of Theorem 1 is divided into the following several steps.
Step 1 We show that system (1.5) admits a nontrivial traveling wave solution

(S§(8), 1(§)) in R and satisfying limg_, _ o (S(&), 1(§)) = (So, 0).
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Let {Xn};f;xl’ be an increasing sequence such that X,, > —X», X, > Y and X,, —
+ooasn — +oo forall n € N, where Y is from Lemma 9. Denote (S,, I,) € I'x,
be the solution of system (2.15). For any N € N, since the function /T (£) is bounded
in [— Xy, Xn], then the sequences

{Sn}nZN and {/, }nzN
are uniformly bounded in [— X, Xn]. Then, by (2.15), we can obtain that
{Sy}n=n and {I,},>n

are also uniformly bounded in [ Xy, Xn]. Again with (2.15), we can express S,’[(E)
and 1,/ (§) in terms of S, (§), 1,(§), Sy(€ £ 1), I,(§ £ 1), Sy(§ £2) and I,,(§ £ 2),
which give us

{Sdn=n and {1/}n=n

are uniformly bounded in [—Xxy + 2, Xy — 2]. By the Arzela—Ascoli theorem (see
Rudin 1991, Theorem AS5), we can use a diagonal process to extract a subsequence,
denoted by {Sy, }ken and {1, }xen such that

Sup = S, Iy = 1, S, — S'and I, — I"ask — +00

uniformly in any compact subinterval of R, for some functions S and I in C!(R).
Thus, (S(§), 1(£)) is a solution of system (2.2) with

ST(E) < SE) <ST(E) and I7(§) < 1(§) <IT(§) in R.
Furthermore, by the definition of (2.8), it follows that

sErjloo(S(é), 1(§)) = (S0, 0).

Step 2 We claim that the functions S(§) and 7 (§) satisfy 0 < S(§) < Sp and 1(§) >
0 in R.

We first show that S(¢§) > O for all £ € R. Assume reversely, that is, assume
that if there exists some real number & such that S(&)) = 0, then S’'(&§y) = 0 and
J[S1(&0) = 0. By the first equation of (2.2), we have

0=dJ[S1(50) + A >0,
which is a contradiction. Thus, S(§) > 0 forall £ € R.
Next, we show that /(£) > 0 for all £ € R. By way of contradiction, we assume
that if there exists & such that /(&1) = Oand I (¢) > Oforall ¢ < &;. From the second
equation of (2.2), we have

IE+D+1E -1 =0.
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Consequently, /(§1+1) = I(£1—1) = Osince /(§) > 0in R, which is a contradiction
to the definition of &;.

To show that S(&§) < Sy for all £ € R, we assume that if there exists & such that
S(&2) = So, it is easy to obtain

0=diJ[S1(&) = BS(E2) f(1(§2)) <O.

This contradiction leads to S(&§) < Sp forall £ € R.

Step 3 Boundedness of traveling wave solutions S(§) and 7(£) in R.

We need to consider two cases of the nonlinear incidence function f(x). In fact,
the function f(x) satisfying Assumptions (A1) and (A2) has two possibilities: (i)
xEI-Eoo f(x) exists; (ii)xgar_loo f(x) = 4o0. For example, the saturated incidence with

bx_—_ b and the bilinear incidence with

_ bx . P .
f(x) = = satisfies (i) since xlir-il:loo Trex c

I+cx
f(x) = bx satisfies (ii).
Casel. lim f(x)exists. Withoutlosing generality, we assume that lim f(x) =
xX——+00 xX—+400
A

Hi+B
an upper solution of 7(§). Then, we obtain

f < 400, then it is easy to verify that 7 is a lower solution of S(§) and %(;f is

A BSof
2 <5 Sop and 0 < I
M+ﬁf§(§)< o and 0 < I(§) < e

for all & € R. 3.1

Case 2. lim f(x) = +o0. In this case, we have the following lemmas.
x—+00

I¢£D

Lemma 10 The functions T® and % are bounded in R.

Proof From the second equation of (2.2), one has that
cl'€) + Qda+ ) 1) =dol (6 + 1) +dal (§ — 1) + BSE) fU(E)) > 0.
Denote U (£) = "6 1 (£), where v = (2d> + j12)/c. It follows that
cU'(§) =" (cI' (&) + dy + p2) 1 (£)) > 0,
thus U (£) is increasing on &. Then, U (£ — 1) < U (&), that is,

¢ -1

< e’ for all £ eR.
1(§) ;

Note that

/ 1
[e¥1)] = ;e“f [dod (& + 1)+ daI (€ — 1) + BSE) FT(E))]

- %evfz(s +1). (32)
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Integrating (3.2) over [, £ 4 1] and using the fact that e 1(&) is increasing, we have

d (5T s
fMEIE+1) > eI E) + _/ e I(s + 1ds

¢ Jg
dy [EF!

> 1) + 2 / "EDI(E 4 e ds
¢ Jg

. d»
=e 1(5)4-?1(54‘1) .
By (3.2), we obtain

2
[e1®)] > (%) AR (G (3.3)

Integrating (3.3) over [§ — %, &] yields

dr\? §
S I(E) > <—> e‘z"/ ] 6D I(s + 1)ds
¢ §

-2

B\ e ey !
- JE— 2] -1,
><c> 2 ¢ 53

1 2
I(E+2) _ 2(i> 3" for all & € R.
I1(§) dy

that is

Similarly, integrating (3.3) over [£, & + %], we have

I+ 1) 2(6

2

3
=L <2 —) 2" for all £€R.
1(E+1) dz)

Thus,

IE+) _1(E+3) 16+ <4(£

4
= 3 for all & € R.
1) 16) 1(E+1) dz) o forall &<

By the second equation of (2.2), it follows that

e 16+ IE-1) FUE)
— S — (2d-
“To = 1 TTie PTG T ehtm)
1 1 1€ —1
SJEED  TEZD L pg 110) - dy + o),

L¢3 1)
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which gives us % is bounded in R. The proof is end. O
Lemma 11 Let {ck, Sk, Ix} be a sequence of traveling wave solutions of (1.5) with
speed {cr} in a compact subinterval of (0, 00). If there is a sequence {&;} such that
1(&) — 400 as k — +o0, then S(&) — 0 as k — +oo.

Proof Assume that there is a subsequence of {&;}xen again denoted by &, such that
I (&) — +oo as k — 400 and S (&) > ¢ in R for all k € N with some positive
constant &. From the first equation of (2.2), we have

250+ A

Si(&) < =5 in R,

where ¢ is a positive lower bound of {c}. It follows that

SE) > g VE € [& — 8. &]

forall k € N, where § = %. By Lemma 10, we can assume that % < Co for some
Co > 0. Then,

I & /(s

AL {/ ﬁds} < e, VE € [& — 8, &]

Ik (§) e dk(s)

for all k € N. Thus,

min (&) > e 0L (&),
Ee€lér—0.6c] ©) (&)

which give us

min [ (§) - 400 as k — 400
EelEr—3,8]

since I (&x) — +o00 ask — +o00. Recalling we assumed that limy_ 40 f(x) = 400
in this case, one has that

Be
max S, (&) <8y — — f(wy) = —o0 as k — 4o0.
s o 5k (8) = 80 = = f (@)

where @y 1= I (§). Moreover, there exists some K > 0 such that

min
&€l&—3,6]

2.5
Sp(€) < —TO, Vk > K and £ € [& — 8, &].

Note that S; < Sp in R for each k € N. Hence, S; (&) < —Sp for all kK > K, which
reduces to a contradiction since Sk (&) > ¢ in R for all k € N with some positive
constant ¢. This completes the proof. O
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Lemma 12 Iflimsup /(§) = +o0, then lim (&) = +o0.
&§—+o0

§—>+00

The proof of Lemma 12 is similar to that of (Chen et al. 2017, Lemma 3.4), so we
omit the details.

Lemma 13 The function 1(§) is bounded in R.
Proof Assume that lim sup /(§) = +o00, then we have : lir4r_1 S()=0byLemma 11
— 400

E—+oo

and Lemma 12. Set 0(§) = %, from the second equation of (2.2), we have

E+1 E—1
) = daels OO 4 hels OO _ (24, 4 115) + B(E),

where

fae)

B(§) = pS(&) &)

Itis easy to have that lim B(&) = 0 since w < f/(0)and lim S(£) =0.By
§—>+o0 © &§—>+o0

using (Chen and Guo 2003, Lemma 3.4), 6 (£) has a finite limit w at +o00 and satisfies
the following equation:

hw,c) :=d> (e“’ +e7? — 2) —cw— pr =0.
By some calculations, we obtain

h(w, 2h(w,
ho. ) <0, M@l @)
dw?

>0 and lim h(w,c) = —o0.
ow w=0 w—+00

Thus, there exists a unique positive real root wg of h(w, ¢) = 0. Recall that A; is the
smaller real root of (2.6) and X, is the larger real root of (2.6). From Lemma 1, one
has

dy (7 +e772 —2) —chy — pa = —BSo f'(0) < 0;

thus, we have A, < wq. Since : lim 6(£) = wy, there exists some § large enough
—+00

such that

A2 + o
2

I(S)ZCexp{( )g} for all & > &

with some constant C. This is a contradiction since /(&) < eMEinRand A < wp.
This ends the proof. O
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By the above lemmas, we know that f (1 (£)) is bounded from the above since 7 (£)
is bounded, then Proposition (3.1) follows. Hence, we obtained that S(&) and (&)
are bounded from the above and S (&) has a strictly positive lower bound in R. In the
following, we will show I (¢) could not approach zero.

Lemma 14 Let 0 < c1 < c¢3 be given and (S(§), I1(€)) be a solution of system (2.2)
with speed ¢ € [cy, c2] satisfying 0 < S(§) < Sp and I(§) > 0 in R. Then,
there exists some small enough constant gy > 0, such that I'(§) > 0 provided that
1(§) <egpforall§ € R.

Proof Assume by way of contradiction that there is no such &g, that is there exists
some sequence {&;}ren With speed ¢ € (c, ¢) such that 1(§;) — 0 as k — 400 and
I' (&) < 0, where ¢ and ¢ are two given positive real numbers. Denote

Sk(§) = S + &) and [ (§) := I (5 +§).

Thus, we have [;(0) — 0 as k — +oo and Ix(§) — 0 locally uniformly in R as
k — 4o00. As a consequence, there also holds that /;(§) — 0 locally uniformly in
R as k — 400 by the second equation of (2.2). From the proof of (Chen et al. 2017,
Lemma 3.8), we can obtain that See = So. Let Wy (€) := % In the view of

E  1E
= k>l g, (8),
O - e K@

W (£) =

we have that Wi (&) and \Il,/{ (&) are also locally uniformly in R as k — —+o0. Letting
k — +o00, thus

oo Wi (§) = drJ [Wool(€) + BSo f'(0)Weo (§) — 2 Woo (§).

We claim that W, (§) > 0 in R. In fact, if there exists some &y such that W, (&p) = 0,
we also have W/ (&) = 0 since Woo (§) > 0, then

0=d(Woo(o + 1) + Voo (b0 — ).

Thus, Weo (o + 1) = Woo(é9 — 1) = 0, and it follows that W, (&g + m) = O for
£
all m € Z. Recall that coo W, (§) > —u2Woo(£), then the map & — \I!oo(é)e% is

nondecreasing. Since it vanishes at & + m for all m € Z and e e is increasing, one
can concluded that W, = 0 in R, which is a contradicts with W4, (0) = 1.

Denoting Z(§) := %ﬁg, it is easy to verify that Z (&) satisfies

£+1 £-1 ,
CoZ(8) = daels ZO¥dy 4 drele FOay —2dy 4 BSy(0) — pan (34)

Thanks to (Chen and Guo 2003, Lemma 3.4), Z(£) has finite limits w1 as & — o0,
where w4+ are roots of

Coo0+ = dp (e“’i +e vt — 2) + BSo f(0) — us.
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By the analogous arguments in Lemma 1, we have w+ > 0. Thus, W/ (§) is positive
at £0o by the definition of Z(&). Moreover, W/ (§) > O forall § € R. Indeed, if there
exists some £* such that Z(¢*) = infg Z(&), then Z(£*) = 0. Differentiating (3.4)
gives us

W (k41 Wl — 1
B €)= EE + 1)~ ZEO) T LD 4 h(EE ) - 2E) o

it follows that
ZEN=ZE" + D) =2ZE" - 1).
Hence, Z(£*) = Z(&¢* + m) for all m € Z. Then, there is

iﬁf Z (&) = min{Z(+00), Z(—00)} > 0.

So W/ (&) > 0. From the definition of W (&), we have

0< W (0)= hm v (0) = L©
> k /Hm I (0)°
Thus, I'(¢;) = 1 ,i (0) > 0, which is a contradiction. This completes the proof. O

Step 4 Convergence of the traveling wave solutions as £ — +-o00. The key point is
to construct a suitable Lyapunov functional.

Letg(x) =x — 1 —Inx for x > 0, it is easy to check g(x) > 0 since g(x) has the
global minimum value 0 only at x = 1. Define the following Lyapunov functional:

L(S, D)) = Wi(S, D(E) + diS*Wa(S, D)(E) + daT*W3(S, (&),

where
1
Wi, 1)<s)=cS*g< (§)>+ clg (?)
I /SE-6 0 /SE-6
Wz(S,I)(5)=/ g(%)d@—/ g(%)d@
0 —1
and

L rreE—o0 0 /1¢E—9
W3<s,1)<s>=/ g(%)de—/ g(%)de
0 —1

Thanks to the boundedness of S(&) and /(&) (see Step 3), we have W (S, I)(§) and
W (S, I)(§) are well defined and bounded from below. Since limg— _o 1(§) = O,
we need to consider the process of & approaching negative infinity for W3 (S, I)(§).
For the gp in Lemma 14, define £* = min{é € R|I(§) = gy}, then I(§) is increasing
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in (—oo, £*]. By the properties of function g, we have W3(S, I)(§) > O for & €
(—00, £*]. Thus, the Lyapunov functional L(S, I)(&) is well defined and bounded
from below.

Next we show that the map & +— L(S, I)(£§) is nonincreasing. The derivative of
W1(S, I)(&) along the solution of (2.2) is calculated as follows:

dWi (S, 1)(5)‘ (1 B S* )CdS(g) N (1 B I* )Cdl(g)
2.2

Sé&) dé I1(§) d&
S*
=<1 - S(€)> (i J[S1E) + A —u1SE) — BSE) fU(E)))
I*
+ (1 — I(E)) (d2JI11(E) + BS(E) fU(E)) — nal(§))
S* I*
=|1- dJ[S 1-— drJ[1 O¢),
( S(g)) 1 [](§)+( I(E)) 2 JII1(E) + O(8)
where
POE)=(1- A —u1SE) - BS I
é) ( S($)>( u1SE) — BSE) fU($)))
I*
1-— S I — unl .
+< 1(5))(’3 &) fUE)) — u2l ()

Noticing that the endemic equilibrium (S*, I*) of system (1.5) satisfying (1.7) and
u1 = 1+ «. By some calculations, we obtain that

. G) . s* ”S@)fa@»>]
OE) =S (2- 2 —257) _gs I"SE) fuE)
@ =m ( SE) S*) P f(”[g<5(5))+g< 16)S* f(I%)

I 1
el () (8]

For W» (S, I)(&), one has that

dWﬂSIXQ‘ =ﬁg[/' (as m)de_/”g(as—m>d4
22 d -1 S§*
Iy S(E —6) Od [/SE-0)
= [ (e [ e () e
0 %_ S* _1 d& S*
Ld [/SE-0) Od [SE-0
B @g( 5 )d“fl@g( 5 )dg
&)
S*

0
<S ) <S(S—1)) (S(§+1)>
=2g -8 5 -8 5 .
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Similarly,

dws(S, 1)(“3)’ _» (1(5)) (1(5—1)) <I(€+1))
s 8\ —7x ) 8 " -8 " .
2.2) 1 1 1

It can be shown that

5* *dws 1) . <s<s— 1)) (s<s+1>)]
1- d\J[S SR DE s ,
( s<s>) HIS1E) ’@ ) @ [g s ) T\ Tse

and

I+ AWs(S. 1)(E) 16— 1) IE+1)
1— dr J[1 1*7 —dr I* .
( 1@)) 2@ + ‘az) 2 [g< 1@ )”( 1G] )]

Thus,

w‘a e [g (S(;;)l)) e (S(i(;l)ﬂ
—er [g <I(§<;>l)) e (I(i;)l)ﬂ
o ) (A 12 (42
+us* (2 - Sf; - S;i)) .

Since the arithmetic mean of nonnegative real numbers is greater than or equal to the
geometric mean of the same list, then we have

S 85® _
N

From Assumption (A2), we can conclude that

(1 ~ f(I*)) ( £ _L) 0
S fax I
Then, we have

<f(1(§))> <1(§))_f(1) 1 (If(l*))

8 - g = ——+In

fa» I* fax I I* f(I)
_f 1 Ifan
IVACAD R S AV A

2(1 ~ f(I*)) ( fay L)
OVAN GG

<0.
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Here, we use ;{}1(?) —1—1In <;{}1(?)) > 0. Hence, the map & +— L(S,I)(§) is

nonincreasing. Consider an increasing sequence {&}r>0 with & > O such that § —
+00 when k — 400 and denote

(k) = SE + &) =0, {I(&) =1 +&)}i=o0-

Since the functions S and / are bounded, the system (2.2) give us that the functions
S and [ have bounded derivatives. Then, by Arzela—Ascoli theorem, the functions
{Sk(&)} and {Ix(£)} converge in Clot)‘i,(R) as k — 400, and up to extraction of a
subsequence, one may assume that the sequences of {S;(£)} and {/;(§)} convergence
toward some nonnegative C° functions Sy, and /. Furthermore, since L(S, I)(&)
is nonincreasing on & and bounded from below, there exists a constant C and large k
such that

Co = L(Sk, )(§) = L(S, I)(§ + &) = L(S, D)(§).

Therefore, there exists some § € R such that klim L(Sk, Ix)(§) = 6 for any & € R.
—00

By Lebesgue’s dominated convergence theorem (see (Rudin 1976, Theorem 11.32)),
we have

kETOOL(Sk, I)(€) = L(Seo, 1o0)(§), § € R.
Thus,
L(Se0, I0)(§) = 6.
Note that ‘j—]g =0 if and only if S(¢§) = $* and I(§) = I*, it follows that
(Soo, Ioo) = (S*, I).

Hence, we complete the proof of Theorem 1. Next, we give the following theorem
on the critical traveling wave solution.

Theorem 2 For the wave speed ¢ = c*, system (1.5) admits a nontrivial traveling
wave solution (S(§), 1(§)) satisfying

ST <S(E)<St and I <I(E)<IT in R.
where & = n + c¢*t. Furthermore,

SEYPOO(S(E), 1(§)) = (80,0) and SETOO(S(E), 1(§) = (5", 19).

Proof This theorem could be obtained by an approximation technique used in (Chen
et al. 2017, Section 4), and we will give key sketch for the sake of completeness.
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Consider a sequence {cx} such that ¢; € (¢*, ¢* 4 1] for each k € N, and ¢y — ¢* as
k — +oo. Let (S, Ix) be a traveling wave solution with wave speed c.
We first show that %{im inf || Ix || Loo(r) > 0. On the contrary, up to extraction of a sub-
—+00

sequence, assuming ||/ || ®) — 0 as k — +o0. Since I is bounded, then I} (+00)
exists. Thanks to (Chenetal. 2017, Lemma 3.9), we can obtain that I}, (+00) = I* > 0,
which is a contradiction.

Secondly, we prove that lim sup ||/ || Lo r) < +00. By way of contradiction, up to
k—+00
extraction of a subsequence, we assume that || /|| L ®) — “+00 as k — +400. There

exists & € R such that

1
1, > 1 — —— ) W ellpeery.-
[1¢33) _< k+1> 17k |l Loo (R)

It follows from the second equation of (2.2) that

d 2d
K© = 2ne+n- e

for all £ € R and k € N. Hence, I"I(fi;)l) is bounded by Lemma 10. Define

Vi€ + &)

Dp(§) := Sk(E +&) and Wi(§) =
Yk

By Lemma 11, we can conclude that ®;(§) — 0 as k — 400 locally uniformly in
R since Iy (§ + &) — +o00 as k — +o00. According to Chen et al. (2017), we can
obtain that Wy (£) is locally bounded and W converges in C 110 +(R) to Woo. Moreover,
W, satisfies

C*q"oo/ =drJ[Vool — 2¥eo (3.5)

inR. The proof of Lemma 14 give us W, is nonnegative and W, (0) = . lim Y (0) =
— 400

1. It follows from Chen et al. (2017) that ¥.,’(0) = 0 and J[W](0) = 0. Hence,
there is a contradiction with Eq. (3.5) since uy > 0.

Finally, with the help of the above priori bound, passing the limit as k — +o00 (see
(Chen et al. 2017, page 2350-2351), we can obtain the existence of critical traveling
wave solution for ¢ = ¢*, which satisfying asymptotic boundary conditions (2.3).
Recalling that the Lyapunov functional is independent on ¢, we can also have that
(S(n + c*t), I(n 4+ c*t)) satisfying the asymptotic boundary conditions (2.4). The
proof is completed. O
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4 Nonexistence of Traveling Wave Solutions

In this section, we study the nonexistence of traveling wave solutions. Firstly, we show
that ¢ > O if there exists a nontrivial positive solution (S(§), I(§)) of system (2.2)
satisfying the asymptotic boundary conditions (2.3) and (2.4).

Lemma 15 Assume that Rg > 1 and there exists a nontrivial solution (S(&), I(§))
of system (1.5) satisfying the asymptotic boundary conditions (2.3) and (2.4). Then,
¢ > 0, where c is defined in (2.1).

Proof Assume that ¢ < 0. Since S(§) — Sy and I(§) — 0 as & — —oo, there
exists a £* < 0 such that

cI'®) 2 d[IE+D +1E—1) —=21(8)]

BSuS' O + s, .
e, 0= 01E) — @), @1

here, we used the condition 91y > 1. Note that inequality (4.1) is valid for any € €
(0, £(0)), and then, for & < £*, we have

BSof'(0) —

'@ = drIE+D+1E -1 —21E)]+ > 216). @42

Denote o = w and Q(§) = f_goo I(y)dy for & € R, note that w > 0 since
Nop > 1. Integrating inequality (4.1) from —oo to & and using /(—oo) = 0, one has
that

cl@) =d[0E+1D+0E -1 —20 )]+ wQ(®) for § <&".  (43)
Again, integrating inequality (4.1) from —oo to & yields
§+1 § §
0@ za([ omar- [ owar)+o [ 0w for s <
S o h 4.4)

Since Q(&) is strictly increasing in R and ¢ < 0, we can conclude that

£+ § §
0=cQ() =d ( Q(r)dr — f Q(r)dr> +w/ Q(r)dr >0,
§ §-1 —00

which is a contradiction. Hence, ¢ > 0. The proof is finished. O

Now, we are in position to show the nonexistence of traveling wave solutions, and
we will use two-sided Laplace to prove it (see Bai and Zhang 2015; Yang et al. 2013;
Zhou et al. 2020)
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Theorem 3 Assume that Rog > 1 and ¢ < c*. Then, there is no nontrivial solution
(S(&), 1(§)) of system (1.5) satisfying the asymptotic boundary conditions (2.3) and
(2.4).

Proof By way of contradiction, assume that there exists a nontrivial positive solution
(S(&), 1(§)) of system (1.5) satisfying the asymptotic boundary condition (2.3) and
(2.4). Then, ¢ > 0 by Lemma 15 and

SE)— Sy and I(§) > 0 as & > —o0.

Letw = w and Q(¢) = ffoo I(y)dy for & € R. It follows from the proof
of Lemma 15, there exists a £* < 0 such that

£+1 § §
cQ) = dy ( Q(r)dr —/ Q(r)dr) +w/ Q(r)dr for & <&™
§ g1 o0

Recalling that Q(£) is strictly increasing in R, one has that

E+1 §
dy < QO(r)dr — / Q(r)dr) > 0.
& &—1

Thus,

&
cQ(§) > a)/ Q(t)dr for & < &*. 4.5)
—0oQ
Hence, there exists some constant § > 0 such that

w3Q (€ —8) < cQ(§) for & <&™. (4.6)

Moreover, there exists a v > 0 is large enough and €y € (0, 1) such that
0 —v) <€Q(&) for & <&". 4.7)
Set
no:=—In— and V(&) := Q(&)e H05,
Vo€
We have

V(E —v) = QE —v)e ME™) < 40(&)e ) = V(£) for & < £,

which implies that V (§) is bounded as § — —oo. Since ffooo 1(§)dé < oo, we obtain
that

g1im V() =€um O(&)e M5 = (.

@ Springer



10 Page 28 0of 33 Journal of Nonlinear Science (2021) 31:10

From the second equation of (2.2), we have

cI'€) = [IE+ D +1E =D =21E]+BSof OIE) — pal (€);

integrating over (—oo, &) gives us

@) <d[QE+D+0E -1 —20E)]+BSof (0)0(E) — n20(8).
Hence, we can obtain that

sup {I1(£)e "%} < +oo and sup {I'(§)e ™} < +o0.
§€R £eR

For A € C with 0 < ReA < p, define the following two-sided Laplace transform of
I(-) by

L) = foo e M I(€)dE.

—00

Note that
f eEIE + 1) + 15 — 1)]d

_ /<oo e—)‘@“)l(é 4 1)dE 4 e /00 e_)\(é—l)l(s — 1)d&

= (e)‘ + e_)‘) L)

and

/ Y e )de = ems)’ - / T @de =L,

—00 —0o0

From the second equation of (2.2), we have

I 1) + BSof' OV (§) — pual (§) — cI'(§)
= BSof (O (&) — BSE) FU(E)). (4.8)

Taking two-sided Laplace transform on (4.8) gives us

Ak, ) L) =[ e [BSof OV (&) — BSE) f(1(§))] dE. (4.9)

—00

It follows from the proof in Lemma 5, as £ — —oo, we have
[BSof'(O)(€) — BSE) fU(E))] e 05 < IP(E)e 05
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2
(sup {115 })

<
£eR
< 4 oo.
Thus, we can obtain that
sup [BSo f ()1 (§) — BS(E) f(I(§))] e 25 < +o0. (4.10)

EeR

By the property of Laplace transform (Widder 1941), either there exist a real number
o such that £(1) is analytic for A € C with 0 < ReA < po and A = g is singular
point of £(1), or L(A) is well defined for A € C with ReA > 0. Furthermore, the two
Laplace integrals can be analytically continued to the whole right half line; otherwise,
the integral on the left of (4.9) has singularity at A = ¢ and it is analytic for all
A < po. However, it follows from (4.10) that the integral on the right of (4.9) is
actually analytic for all A < 20, a contradiction. Thus, (4.9) holds for all ReA > 0.
From Lemma 1, A(, ¢) > 0 for all A > 0 and by the definition of A(X, ¢) in (2.6),
we know that A(A, ¢) — 0o as A — 00, which is a contradiction with Eq. (4.9). This
ends the proof. O

5 Application and Discussion

As an application, we consider the following two discrete diffusive epidemic models.
The first one is a model with saturated incidence rate which has been wildly used in
epidemic modeling (see, for example, (Li et al. 2014; Zhang and Wu 2019; Xu and
Ma 2009; Zhang et al. 2018; Xu and Guo 2019)).

Example 1 Discrete diffusive epidemic model with saturated incidence rate:

ds, () BSu ()1, (1)
0 - di[Sns1(t) + Sp1 (1) =25, ()] + A — Tral, () 118, (1),
drz, (1) ﬂSn(t)In(t)

=d[ L1 (1) + I (1) = 21,(1)] + v1,(@) — nil, (1),

S.D

dt 1 +al,(t)

1

Tral, () Measures the inhibition effect which

where B1,(t) is the force of infection and
is dependent on the infected individuals.

Setting f(1,,(t)) = lfi"]fl'()t) in the original system (1.5), we can easily see that (5.1)
is a special case of (1.5). In fact, it is obvious that f (I, (¢)) satisfies Assumptions (A1)
and (A2). The disease-free equilibrium of system (5.1) is similar to the original one,
which is Eg = (Sp, 0). Moreover, we obtain the basic reproduction number of system

S.1)ashy = y’isli] and there exists a positive equilibrium E* = (§*, I*)if Ry > 1,
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where

o AN+ Y+ =~ AB— iy + 1)
S = and = .
B +oau (y + n)(B +auy)

Hence, from Theorems 1, 2 and 3, we obtain the following corollary.

Corollary 1 Assume that R > 1. Then, there exists some c* > 0 such that for any
¢ > c¢*, system (5.1) admits a traveling wave solution (S(&), 1(§)) satisfying

Jim (). 16) = (50,0 and_lim (5€). 1) =" 1). (52

Furthermore, system (5.1) admits no traveling wave solutions satisfying (5.2) when
c<c*.

The next example was studied in Chen et al. (2017), and our results will solve the
open problem proposed in Chen et al. (2017), which is the traveling wave solutions
converging to the endemic equilibrium as £ — -+oo for discrete diffusive system
(1.3).

Example 2 Discrete diffusive epidemic model with mass action infection mechanism:

dS(;zt(t) — dl [Sn+1(t) + Sn—l(t) — ZSn([)] + A — ,BSn(t)In([) _ MlSn(t),
dr,
dt(t) =d[ L1 (t) + Li_1(t) = 2L,(O)] + BS, (D), (t) — y I, (t) — 1L, (¢).

(5.3)

Setting f(1,(t)) = B1,(t) in the original system (1.5), we can easily see that (5.3)
is a special case of (1.5) and this model has been studied in Chen et al. (2017). The
disease-free equilibrium of system (5.3) is Eg = (Sp, 0). Moreover, we obtain the

basic reproduction number of system (5.3) the same with (5.1) as )i} = yffﬁl , and

there exists a positive equilibrium E* = (§*, I*) if t; > 1, where

S*=y~|—,u1 and I* =

A—M]S*
B

Then, from Theorems 1, 2 and 3, we obtain the following corollary.

Corollary 2 Assume that R\ > 1. Then, there exists some ¢* > 0 such that for any
¢ > c*, system (5.3) admits a traveling wave solution (S(§), I1(§)) satisfying

: lim (S(), 1(§)) = (S, 0) and : ggloow(s),l(s)):(ﬁ*,i*). (5.4)

Furthermore, system (5.3) admits no traveling wave solutions satisfying (5.4) when
*
c<c*
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Note that Corollary 2 could answer the open problem proposed in Chen et al. (2017),
that is, the traveling wave solutions for system (1.4) converges to the endemic equi-
librium at +o0.

Next, we show that how the parameters affect wave speed. Suppose (A, &) be a zero
root of A(A, ¢) which defined in (2.6), a direct calculation yields

dé  Sof'(0) 0 dée e +e -2 dé o
—_— = — > . _—— - =
dp A dd> A dfy A

that is, ¢ is an increasing function on 8, d» and Np. Biologically, this means that
the diffusion and infection ability of infected individuals can accelerate the speed of
disease spreading.

Now, we are in a position to make the following summary:

In this paper, a discrete diffusive epidemic model with nonlinear incidence rate
has been investigated. When the basic reproduction number ¢ > 1, we proved that
there exists a critical wave speed ¢* > 0, such that for each ¢ > ¢* the system (1.5)
admits a nontrivial traveling wave solution. Moreover, we used a Lyapunov functional
to establish the convergence of traveling wave solutions at +00. We also showed
the nonexistence nontrivial traveling wave solutions when Ry > 1 and ¢ < ¢*. As
special example of the model (1.5), we considered two different discrete diffusive
epidemic model and apply our general results to show the conditions of existence and
nonexistence of traveling wave solutions for the model (5.1). One of the example is
studied in Chen et al. (2017), and our result solved the open problem proposed in
Chen et al. (2017), which is the traveling wave solutions converge to the endemic
equilibrium as & — 400 for discrete diffusive system (1.3).

Here, we mention some functions f (/) considered in the literature that do not sat-
isfy Assumptions (A1) and (A2). For example, the incidence rates with media impact

f(I) = Ie~™ in Cui et al. (2008); the specific incidence rate f(I) = 1_:‘0{12 in Xiao
kI

and Ruan (2007); and the nonmonotone incidence rate f (/) = TTpIral® in Xiao and
Zhou (2006). In a recent paper, Shu et al. (2019) studied a SIR model with nonmono-
tone incidence rates and without constant recruitment, and they investigated the exis-
tence and nonexistence of traveling wave solutions. What is the condition of existence
and nonexistence of traveling wave solution for our model (1.5) with nonmonotone
incidence rates will be an interesting question, and we leave this for future work.
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