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Abstract
In this paper, we report a rigorous theory of the inverse scattering transforms (ISTs)
for the derivative nonlinear Schrödinger (DNLS) equation with both zero boundary
conditions (ZBCs) and nonzero boundary conditions (NZBCs) at infinity and dou-
ble zeros of analytical scattering coefficients. The scattering theories for both ZBCs
and NZBCs are addressed. The direct scattering problem establishes the analyticity,
symmetries, and asymptotic behaviors of the Jost solutions and scattering matrix,
and properties of discrete spectra. The inverse scattering problems are formulated
and solved with the aid of the matrix Riemann–Hilbert problems, and the reconstruc-
tion formulae, trace formulae and theta conditions are also posed. In particular, the
IST with NZBCs at infinity is proposed by a suitable uniformization variable, which
allows the scattering problem to be solved on a standard complex plane instead of a
two-sheeted Riemann surface. The reflectionless potentials with double poles for the
ZBCs and NZBCs are both carried out explicitly by means of determinants. Some
representative semi-rational bright–bright soliton, dark–bright soliton, and breather–
breather solutions are examined in detail. These results and idea can also be extended
to other types of DNLS equations such as the Chen–Lee–Liu-type DNLS equation,
Gerdjikov–Ivanov-type DNLS equation, and Kundu-type DNLS equation and will be
useful to further explore and apply the related nonlinear wave phenomena.
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1 Introduction

As a fundamental and important nonlinear physical model, the derivative nonlinear
Schrödinger (DNLS) equation (alias the DNLSI)

iqt + qxx + iσ(|q|2 q)x = 0, σ = ±1, (1)

where the subscripts denote the partial derivatives, admits some physical applications,
such as the wave propagation of circular polarized nonlinear Alfvén waves in plas-
mas (Rogister 1971; Mjølhus 1976; Mio et al. 1976; Mjølhus 1989; Mjølhus and Hada
1997), weak nonlinear electromagneticwaves in ferromagnetic (Nakata 1991), antifer-
romagnetic (Daniel and Veerakumar 2002) or dielectric (Nakata et al. 1993) systems
under external magnetic fields. Moreover, Eq. (1) was shown by Kaup and Newell
(1978) to be completely integrable. The parameter σ stands for the relative magnitude
of the derivative nonlinearity term. Without loss of generality, one can take σ = −1
(since the case σ = 1 can be transformed into σ = −1 by means of x → −x). Eq. (1)
can be transformed into the modified NLS equation (also called generalized DNLS
equation or NLS-KN equation) (Wadati et al. 1979)

iuτ + uξξ + g1|u|2u + ig2(|u|2u)ξ = 0, g1,2 ∈ R, g2 �= 0, (2)

in terms of the gauge transform (Ichikawa et al. 1980)

q(x, t) = u(τ, ξ)e−i(kx+k2t), x = g2
σ

ξ − 2g1
σ

τ, t = g22
σ 2 τ, k = σ g1

g22
, (3)

where the Kerr nonlinear coefficient λ and derivative nonlinear coefficient γ both
depend on nonlinear refractive index n2. The modified NLS equation (2) describes
transmission of femtosecond pulses in optical fibers (Tzoar and Jain 1981; Anderson
and Lisak 1983; Ohkuma et al. 1987).

To conveniently discuss the connections between Eq. (2) and other types of DNLS
equations, one can take g1 = ±β, g2 = ±α with α > 0, β ≥ 0 such that Eq. (2) can
be rewritten as

iuτ + uξξ ± β|u|2u ± iα(|u|2u)ξ = 0. (4)

Inspiring by the idea of the gauge transforms connecting various (integrable) non-
linear wave equations (see, e.g., Lamb 1976; Lakshmanan 1977; Wadati and Sogo
1983 and references therein), Kundu (1984) changed the generalized DNLS Eq. (4)
to the Kundu-type DNLS equation

iUτ +Uξξ ± β|U |2U ± iα(|U |2U )ξ + γ (4γ + β)|U |4U ± 4iγ (|U |2)ξU = 0,

(5)
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by means of the U(1)-gauge transform U (ξ, τ ) = u(ξ, τ )e2iϑ(ξ,τ ) with ϑ(ξ, τ ) satis-
fying

ϑξ = ∓γ |u|2, ϑτ = ±iγ (uu∗
ξ − u∗uξ ) + 3

2
αγ |u|4, γ ∈ R, (6)

which are called the ‘particle’ and ‘current’ densities of Eq. (4), respectively, and
consistent with the condition ϑξτ = ϑτξ due to the modified NLS Eq. (4) (Kundu
1984, 1987). The Kundu-type DNLS equation (5) has these special forms for the
distinguish parameters:

• For α = −4γ, β = 0, it reduces to the Chen–Lee–Liu-I (CLL-I) DNLS equation
(alias DNLSII) (Chen et al. 1979)

iUτ +Uξξ + iα|U |2Uξ = 0. (7)

• Forα = −4γ, β �= 0, it is theChen–Lee–Liu-II (CLL-II) DNLS equation (Kundu
1984)

iUτ +Uξξ ± β|U |2U + iα|U |2Uξ = 0. (8)

• For α = −2γ, β = 0, it becomes the Gerdjikov–Ivanov-I (GI-I) DNLS equation
(alias DNLSIII) (Gerdjikov and Ivanov 1983a)

iUτ +Uξξ + 1

2
α2|U |4U ∓ iαU 2U∗

ξ = 0. (9)

• Forα = −2γ, β �= 0, it becomes theGerdjikov–Ivanov-II (GI-II)DNLS equation
(Gerdjikov and Ivanov 1983b)

iUτ +Uξξ ± β|U |2U + 1

2
α2|U |4U ∓ iαU 2U∗

ξ = 0. (10)

• For γ = 0, it reduces to the modified NLS (or generalized DNLS) equation (4)
(Wadati et al. 1979).

• For αβ �= 0, it can reduce to the Painlevé integrable combination of the CLL-I
equation and GI-I equation (Clarkson and Cosgrove 1987)

iWτ + Wζ ζ + (γ0 − 1)(γ0 − 2)|W |4W ± 2iγ0|W |2Wζ ± 2i(γ0 − 1)W 2W ∗
ζ = 0

(11)

by the gauge transform (Kakei et al. 1995)

W (ζ, τ ) = U (ξ, τ )

√
α

2
exp

[
− iβ

α
(ξ + β/ατ)

]
,

ζ = ξ + 2β

α
τ, γ0 = 4γ

α
+ 2. (12)
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Remark 1 (i) Wadati and Sogo (1983) even established a gauge transform between
the DNLSI (1) and DNLSII (7);

(ii) If one takes U (ξ, τ ) = Û (ξ̂ , τ ), ξ̂ = ξ in Eq. (8), then the Chen–Lee–Liu-II
DNLS equation (8) can reduce to the Chen–Lee–Liu-II DNLS equation (7) in
terms of the gauge transform

U (ξ, τ ) = Û (ξ̂ , τ ) exp

(
∓ iβ

α
ξ − iβ2

α2 τ

)
, ξ̂ = ξ ± 2β

α
τ. (13)

(iii) If one chooses U (ξ, τ ) = Û (ξ̂ , τ ), ξ̂ = ξ in Eq. (10), then the Gerdjikov–
Ivanov-II DNLS equation (10) can reduce to the Gerdjikov–Ivanov-II DNLS
equation (9) in terms of the gauge transform

U (ξ, τ ) = Û (ξ̂ , τ ) exp

(
− iβ

α
ξ − iβ2

α2 τ

)
, ξ̂ = ξ + 2β

α
τ. (14)

(iv) Since there are equivalent relations: DNLSI (1) � modified NLS Eq. (2) (or
Eq. (4))� theKunduEq. (5) under somegauge transforms, and theKunduEq. (5)
can reduce to othermany types ofDNLSequations containing theDNLSII (7) and
DNLSIII (9), that is, all aforementioned other types of the DNLS equations can
be transformed into the DNLSI (1), thus, one only needs to study the properties
of the DNLSI (1), and corresponding ones of other types of DNLS equations can
be found via some transforms.

The solutions of nonlinear wave equations with ZBCs and NZBCs are always
physically interesting subjects. The inverse scattering transform (IST) due to Gardner
et al. (1967) provides a powerful approach to discover solutions and properties of
some integrable nonlinear partial differential equations with initial value problems.
The IST for the DNLS equation (1) with ZBCs was studied to find its one-soliton
solution (Kaup and Newell 1978) and N -soliton solutions (Zhou and Huang 2007).
The ISTs of the DNLS equation (1) with NZBCs at infinity were also developed
(Kawata and Inoue 1978; Chen and Lam 2004; Chen et al. 2006; Lashkin 2007; Zhou
2012). The long-time leading-order asymptotics of Eqs. (1) and (2) were studied in
Kitaev and Vartanian (1999); Xu et al. (2013) by the Deift–Zhou method (Deift and
Zhou 1993). Recently, the global existence was shown for the DNLS equation (1) via
the IST (Liu et al. 2016). Besides, the modified NLS equation (2) with NZBCs was
studied (Kawata et al. 1980). However, to the best of our knowledge, these IST works
on the DNLS equation (1) only focus on the case that all discrete spectra are simple.
A natural problem is whether the explicit double-pole solutions can be found for the
DNSL equation (1) with ZBCs/NZBCs by the approximate ISTs based on the matrix
Riemann–Hilbert problems (Prinari et al. 2006; Demontis et al. 2013, 2014; Biondini
and Kovačič 2014; Prinari 2015; Pichler and Biondini 2017).

In this paper, we present the ISTs of the DNLS equation (1) with ZBCs/NZBCs in
terms of the matrix Riemann–Hilbert problems (RHPs), and their double-pole solu-
tions by solving the correspondingRHPs. It should pointed out that theDNLS equation
(1) is associated with the modified Zakharov–Shabat eigenvalue problem (Kaup and
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Newell 1978), not the usual Zakharov–Shabat eigenvalue problem related to the NLS-
type equations (Shabat and Zakharov 1972; Ablowitz et al. 1973; Prinari et al. 2006;
Demontis et al. 2013, 2014; Biondini and Kovačič 2014; Prinari 2015; Pichler and
Biondini 2017; Zhang and Yan 2020a, b) such that the discrete spectrum and solving
Riemann–Hilbert problems are more complicated.

The DNLS equation (1) is completely integrable and associated with the following
modified Zakharov–Shabat eigenvalue problem (Kaup and Newell 1978):

Φx = XΦ, X = X(x, t; k) = k(ikσ3 + Q), (15)

Φt = TΦ, T = T (x, t; k) = −
(
2k2 + Q2

)
X − ikQxσ3, (16)

that is, Eq. (1) is as the compatibility condition (or zero-curvature condition) Xt −
Tx + [X , T ] = 0 of system (15, 16), where ψ = ψ(x, t; k) is a 2×2 matrix-valued
eigenfunction, k ∈ C is a spectral parameter, the potential matrix Q = Q(x, t) is
written as

Q(x, t) =
[

0 q(x, t)
σq∗(x, t) 0

]
, (17)

the asterisk (∗) denotes the complex conjugate, and σ3 is one of the Pauli’s spin
matrices given by

σ1 =
[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (18)

The rest of this paper is arranged as follows. In Sec. 2, the IST for the DNLS
equation (1) with ZBCs at infinity is introduced and solved for the double zeros of
analytically scattering coefficients by means of the matrix Riemann–Hilbert problem.
As a consequence,wepresent a formula of the explicit double-pole N -soliton solutions.
In Sec. 3, we give a detailed theory of the IST for the DNLS equation (1) with NZBCs
at infinity and the double zeros of analytically scattering coefficients, which is more
complicated than the case of ZBCs sincemore symmetries and a two-sheeted Riemann
surface are required. As a result, we present an explicit expression for the double-pole
N -solitons for the case of NZBCs. Particularly, we discuss the special double-pole
solitons. Finally, some conclusions and discussions are carried out in Sec. 4.

2 The IST with ZBCs and Double Poles

In this section, we will seek the solution q(x, t) for the DNLS equation (1) with
σ = −1 (without loss of generality) and ZBCs at infinity given by

lim
x→±∞ q(x, t) = 0. (19)

The IST for DNLS equation (1) with ZBCs (19) was first presented by Kaup and
Newell (1978), where the simple poles were required. In what follows, we will further
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present the IST and double-pole solitons for Eq. (1) with ZBCs by solving a matrix
Riemann–Hilbert problem.

2.1 The Direct Scattering with ZBCs

2.1.1 Jost Solutions, Analyticity, and Continuity

Considering the asymptotic scattering problem (x → ±∞) of themodified Zakharov–
Shabat eigenvalue problem (15, 16)

Φx = X0Φ, Φt = T0Φ, (20)

where X0 = ik2σ3 and T0 = −2ik4σ3 = −2k2X0, one can find that the fundamental
matrix solution Φbg(x, t; k) of system (20) as

Φbg(x, t; k) = eiθ(x,t;k)σ3 , θ(x, t; k) = k2(x − 2k2t).

Let � := R ∪ iR. Then, one can seek for the Jost solutions Φ±(x, t; k) such that

Φ±(x, t; k) = eiθ(x,t;k)σ3 + o (1) , k ∈ �, as x → ±∞. (21)

Consider the modified Jost solutions μ±(x, t; k) in the form

μ±(x, t; k) = Φ±(x, t; k) e−iθ(x,t;k)σ3 , (22)

which leads to μ±(x, t; k) → I as x → ±∞. Then, we know that μ±(x, t; k) satisfy
the Volterra integral equations

μ±(x, t; k) = I + k
∫ x

±∞
eik

2(x−y)̂σ3 (Q(y, t) μ±(y, t; k)) dy, (23)

where eασ̂3 A := eασ3 Ae−ασ3 with A being a 2 × 2 matrix. The Volterra inte-
gral equation (23) differs from one for the NLS equation with ZBCs related to the
Zakharov–Shabat eigenvalue problem.

Let D± := {k ∈ C | ± Re(k)Im(k) > 0} (see Fig. 1). One has the following Propo-
sition.

Proposition 1 Suppose that q(x, t) ∈ L1 (R) and Φ± j (x, t; k) is the j th column of
Φ±(x, t; k). Then, the Jost solutions Φ±(x, t; k) possess the properties:
• Eq. (15) has the unique Jost solutions Φ±(x, t; k) satisfying (21) on �;
• The column vectors Φ+1(x, t; k) and Φ−2(x, t; k) can be analytically extended to

D+ and continuously extended to D+ ∪ �;
• The column vectors Φ−1(x, t; k) and Φ+2(x, t; k) can be analytically extended to

D− and continuously extended to D− ∪ �.
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Fig. 1 Complex k-plane. Region
D+ (grey region), region D−
(white region), discrete
spectrum, and orientation of the
contours for the matrix
Riemann–Hilbert problem in the
inverse scattering problem

Proof The proposition was reported in Refs. Kaup and Newell (1978), Zhou and
Huang (2007). One can refer to Refs. Biondini and Kovačič (2014), Zhang and Yan
(2020a) for more details. Similarly, the analyticity and continuity for the modified Jost
solutions μ±(x, t; k) can be simply shown from ones of Φ±(x, t; k) and the relation
(22). 
�
Proposition 2 The Jost solutions Φ±(x, t; k) satisfy both parts of the modified
Zakharov–Shabat eigenvalue problem (15, 16) simultaneously.

Proof This Proposition can be easily shown via a direct calculation. The Liouville’s
formula leads to

detΦ±(x, t; k) = lim
x→±∞ detΦ±(x, t; k) = lim

x→±∞ detμ±(x, t; k) = 1,

that is, Φ±(x, t; k) are the fundamental matrix solutions on �. By the compatibility
condition, Xt−Tx+[X , T ] = 0, of themodifiedZakharov–Shabat eigenvalue problem
(15, 16), one can find thatΦ±t (x, t; k)−TΦ±(x, t; k) also solve the x-part (15). Thus,
there exist the two matrices G±(t; k) such that

Φ±t (x, t; k) − TΦ±(x, t; k) = Φ±(x, t; k)G±(t; k), as k ∈ �.

Multiplying both sides by e−iθ(x,t;k)σ3 and letting x → ±∞, one can find G±(t; k) =
0, that is, Φ±(x, t; k) also solve the t-part (16). This completes the proof. One can
refer to Ref. Zhang and Yan (2020a) for the technique of the proof. 
�
2.1.2 Scattering Matrix and Reflection Coefficients

As usual, since the fundamental matrix solutionsΦ±(x, t; k) solve the both parts of the
modified Zakharov–Shabat eigenvalue problem (15, 16), there is a constant scattering
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matrix S(k) = (
si j (k)

)
2×2 (not dependent on x and t) Ablowitz and Clarkson (1991)

such that

Φ+(x, t; k) = Φ−(x, t; k) S(k), k ∈ �, (24)

where si j (k)’s are called the scattering coefficients. It follows from Eq. (24) that
si j (k)′s have the Wronskian representations:

s11(k) = Wr(Φ+1(x, t; k),Φ−2(x, t; k)), s22(k) = Wr(Φ−1(x, t; k),Φ+2(x, t; k)),
s12(k) = Wr(Φ+2(x, t; k),Φ−2(x, t; k)), s21(k) = Wr(Φ−1(x, t; k),Φ+1(x, t; k)).

(25)

Proposition 3 Suppose that q(x, t) ∈ L1 (R). Then, s11(k) can be analytically
extended to D+ and continuously extended to D+ ∪ �, while s22(k) can be ana-
lytically extended to D− and continuously extended to D− ∪�. Moreover, both s12(k)
and s21(k) are continuous in �.

Proof The proposition can be directly deduced via Proposition 1 and the relations
given by Eq. (25) between si j (k) and Φ± j (x, t; k), i, j = 1, 2. 
�

Note that one cannot rule out the possible presence of zeros for s11(k) and s22(k)
along �. To study the Riemann–Hilbert problem in the inverse process, we focus
on the potential without spectral singularities (Zhou 1989). As usual, the reflection
coefficients ρ(k) and ρ̃(k) are defined in the form

ρ(k) = s21(k)

s11(k)
, ρ̃(k) = s12(k)

s22(k)
, k ∈ �. (26)

2.1.3 Symmetry Properties

Proposition 4 (Symmetry reduction) X(x, t; k), T (x, t; k), Jost solutions, scattering
matrix, and reflection coefficients have two symmetry reductions:

• The first symmetry reduction

X(x, t; k) = σ2 X(x, t; k∗)∗σ2, T (x, t; k) = σ2 T (x, t; k∗)∗σ2,
Φ±(x, t; k) = σ2 Φ±(x, t; k∗)∗ σ2, S(k) = σ2 S(k∗)∗ σ2, ρ(k) = −ρ̃(k∗)∗.

(27)

• The second symmetry reduction

X(x, t; k) = σ1X(x, t;−k∗)∗σ1, T (x, t; k) = σ1T (x, t;−k∗)∗σ1,
Φ±(x, t; k) = σ1 Φ±(x, t;−k∗)∗ σ1, S(k) = σ1 S(−k∗)∗ σ1, ρ(k) = ρ̃(−k∗)∗.

(28)
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Proof The similar properties were reported in Refs. Kaup and Newell (1978), Zhou
andHuang (2007). Besides, one can also refer to Refs. Demontis et al. (2013), Biondini
and Kovačič (2014), Zhang and Yan (2020a) for more details. 
�

2.1.4 Discrete Spectrumwith Double Zeros

The discrete spectrumof the studied scattering problem is the set of all values k ∈ C\�
such that the scattering problem possesses eigenfunctions in L2(R). As was shown
in Biondini and Kovačič (2014), there are exactly the values of k in D+ such that
s11(k) = 0 and those values in D− such that s22(k) = 0. Differing from the previous
results with simple poles (Kaup and Newell 1978; Zhou and Huang 2007), we here
suppose that s11(k) has N double zeros in K0 = {k ∈ C : Re k > 0, Im k > 0} denoted
by kn , n = 1, 2, · · · , N , that is, s11(kn) = s′

11(kn) = 0 and s′′
11(kn) �= 0. It follows

from the symmetries of the scattering matrix that

{
s11(kn) = s11(−kn) = s22(k∗

n) = s22(−k∗
n) = 0,

s′
11(kn) = s′

11(−kn) = s′
22(k

∗
n) = s′

22(−k∗
n) = 0.

(29)

Therefore, the corresponding discrete spectrum is defined by the set

K = {
kn, k

∗
n , −k∗

n , −kn
}N
n=1 , (30)

whose distributions are shown in Fig. 1. For a given k0 ∈ K ∩ D+, it follows from the
Wronskian representations (25) and s11(k0) = 0 that Φ+1(x, t; k0) and Φ−2(x, t; k0)
are linearly dependent. Similarly, for a given k0 ∈ K ∩ D−, it follows from the
Wronskian representations (25) and s22(k0) = 0 that Φ+2(x, t; k0) and Φ−1(x, t; k0)
are linearly dependent. For convenience, we introduce the norming constant b[k0]
such that

Φ+1(x, t; k0) = b[k0]Φ−2(x, t; k0), k0 ∈ K ∩ D+,

Φ+2(x, t; k0) = b[k0]Φ−1(x, t; k0), k0 ∈ K ∩ D−.
(31)

Given k0 ∈ K ∩ D+, it follows from the Wronskian representations (25) and
s′
11(k0) = 0 that Φ ′+1(x, t; k0) − b[k0] Φ ′−2(x, t; k0) and Φ−2(x, t; k0) are linearly
dependent, where Φ ′

j (x, t; k) = ∂Φ j (x, t; k)/(∂k), j = +1, −2. In the same man-
ner, as k0 ∈ K∩D−,Φ ′+2(x, t; k0)−b[k0] Φ ′−1(x, t; k0) andΦ−1(x, t; k0) are linearly
dependent. For convenience, we define another norming constant d[k0] such that

Φ ′+1(x, t; k0) − b[k0] Φ ′−2(x, t; k0) = d[k0]Φ−2(x, t; k0), k0 ∈ K ∩ D+,

Φ ′+2(x, t; k0) − b[k0] Φ ′−1(x, t; k0) = d[k0]Φ−1(x, t; k0), k0 ∈ K ∩ D−.
(32)

123



3098 Journal of Nonlinear Science (2020) 30:3089–3127

Moreover, let

A[k0] =

⎧⎪⎪⎨
⎪⎪⎩

2 b[k0]
s′′
11(k0)

, k0 ∈ K ∩ D+,

2 b[k0]
s′′
22(k0)

, k0 ∈ K ∩ D−,

B[k0] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d[k0]
b[k0] − s′′′

11(k0)

3 s′′
11(k0)

, k0 ∈ K ∩ D+,

d[k0]
b[k0] − s′′′

22(k0)

3 s′′
22(k0)

, k0 ∈ K ∩ D−.

(33)

Then, one has the compact form

L−2
k=k0

[
Φ+1(x, t; k)

s11(k)

]
= A[k0] Φ−2(x, t; k0), k0 ∈ K ∩ D+,

L−2
k=k0

[
Φ+2(x, t; k)

s22(k)

]
= A[k0] Φ−1(x, t; k0), k0 ∈ K ∩ D−,

Res
k=k0

[
Φ+1(x, t; k)

s11(k)

]
= A[k0]

[
Φ ′−2(x, t; k0) + B[k0] Φ−2(x, t; k0)

]
, k0 ∈ K ∩ D+,

Res
k=k0

[
Φ+2(x, t; k)

s22(k)

]
= A[k0]

[
Φ ′−1(x, t; k0) + B[k0] Φ−1(x, t; k0)

]
, k0 ∈ K ∩ D−,

(34)

where L−2
k=k0

[
f (x, t; k)] denotes the coefficient of O ((k − k0)−2) term in the Laurent

series expansion of f (x, t; k) at k = k0.

Proposition 5 Given k0 ∈ K, the two symmetry relations for A[k0] and B[k0] are
given as follows:

• The first symmetry relation A[k0] = −A[k∗
0 ]∗, B[k0] = B[k∗

0 ]∗.• The second symmetry relation A[k0] = A[−k∗
0 ]∗, B[k0] = −B[−k∗

0 ]∗.

Proof One can use two symmetry reductions of X and T , and one can derive the
two symmetries for the Jost solution and scattering matrix given in Proposition 4 and
combine with the definitions of A[k0] and B[k0] given by Eq. (33). As a result, the
symmetry relations in this Proposition can be verified. 
�

By the two symmetry relations in Proposition 5, one obtains the constraints of
discrete spectrum

A[kn] = A[−k∗
n ]∗ = −A[k∗

n ]∗ = −A[−kn],
B[kn] = −B[−k∗

n ]∗ = B[k∗
n ]∗ = −B[−kn], kn ∈ K0. (35)
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2.1.5 Asymptotic Behaviors

To propose and solve the matrix Riemann–Hilbert problem presented in the inverse
problem, one has to determine the asymptotic behaviors of the modified Jost solutions
and scattering matrix as k → ∞. The usual Wentzel–Kramers–Brillouin (WKB)
expansion can be used to derive the asymptotic behaviors of themodified Jost solutions.

Proposition 6 The asymptotic behaviors of the modified Jost solutions are

μ±(x, t; k) = eiv±(x,t)σ3 + O (1/k) , as k → ∞. (36)

Proof Weconsider the expansions of themodified Jost solutionsμ±(x, t; k) as k → ∞
as

μ±(x, t; k) =
n∑
j=0

μ
[ j]
± (x, t)

k j
+ O

(
1

kn+1

)
, as k → ∞, (37)

and substitute Φ±(x, t; k) = μ±(x, t; k) eiθ(x,t;k)σ3 with these expansions into Eq.

(15). Bymatching theO
(
k2
)
term, one obtains the off-diagonal parts

(
μ

[0]
± (x, t)

)off =
0. It follows by matching the O (k) term that

(
μ

[1]
± (x, t)

)off = i
2 σ3Q(x, t) μ

[0]
± (x, t).

By matching the O (1) term, one yields that μ[0]
± (x, t) = Cdiag eiv±(x,t)σ3 , where

v±(x, t) = 1

2

∫ x

±∞
|q(y, t)|2 dy. (38)

Combiningwith the asymptotic behaviors of themodified Jost solutionsμ±(x, t; k)
as x → ±∞, one deduces the asymptotic behavior as k → ∞. 
�
Proposition 7 The asymptotic behavior for the scattering matrix is given by

S(k) = e−ivσ3 + O (1/k) , as k → ∞, (39)

where the constant v reads as

v = 1

2

∫ +∞

−∞
|q(y, t)|2 dy. (40)

Proof From the definition or Wronskian presentations of scattering matrix given by
Eq. (25) and the asymptotic behaviors of the modified Jost solutions given by Eq. (36),
one can yield the asymptotic behaviors (39) of the scattering matrix.

Substituting Φ±(x, t; k) = μ±(x, t; k) eiθ(x,t;k)σ3 with these expansions into Eq.
(16) and matching the O

(
k4
)
, O

(
k3
)
, O

(
k2
)
, O (k) and O (1) in order can yield

vt = 0 as x → ∓∞. That is, v does not depend on the variable t . 
�

123



3100 Journal of Nonlinear Science (2020) 30:3089–3127

2.2 Inverse Problemwith ZBCs and Double Poles

2.2.1 The Matrix Riemann–Hilbert Pproblem

As usual (Ablowitz and Clarkson 1991), according to the relation (24) of two funda-
mental solutionsΦ±(x, t; k), we can study the inverse problem via a Riemann–Hilbert
problem. To pose and solve the Riemann–Hilbert problem conveniently, we define

ηn =
{

kn, n = 1, 2, · · · , N ,

−kn−N , n = N + 1, N + 2, · · · , 2N .
(41)

Then, a matrix Riemann–Hilbert problem is proposed as follows.

Proposition 8 Let the sectionally meromorphic matrix be

M(x, t; k) =

⎧⎪⎪⎨
⎪⎪⎩

(
μ+1(x, t; k)

s11(k)
, μ−2(x, t; k)

)
, k ∈ D+,

(
μ−1(x, t; k), μ+2(x, t; k)

s22(k)

)
, k ∈ D−,

(42)

and

M±(x, t; k) = lim
k′→k
k′∈D±

M(x, t; k′), k ∈ �. (43)

Then, the multiplicative matrix Riemann–Hilbert problem is given below:

• Analyticity: M(x, t; k) is analytic in (D+ ∪ D−) \K and has the double poles in
K , whose principal parts of the Laurent series at each double pole, ηn or η∗

n, are
determined as

L−2
k=ηn

M =
(
A[ηn] e−2iθ(x,t;ηn)μ−2(x, t; ηn), 0

)
,

L−2
k=η∗

n

M =
(
0, A[η∗

n] e2iθ(x,t;η∗
n)μ−1(x, t; η∗

n)
)

,

Res
k=ηn

M =
(
A[ηn] e−2iθ(x,t;ηn) {μ′−2(x, t; ηn)

+
[
B[ηn] − 2 i θ ′(x, t; ηn)

]
μ−2(x, t; ηn)

}
, 0
)

,

Res
k=η∗

n

M =
(
0, A[η∗

n] e2iθ(x,t;η∗
n)
{
μ′−1(x, t; η∗

n)

+
[
B[η∗

n] + 2 i θ ′(x, t; η∗
n)
]
μ−1(x, t; η∗

n)
})

,

(44)

where the prime denotes the partial derivative with respect to k.
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• Jump condition:

M−(x, t; k) = M+(x, t; k) (I − J (x, t; k)) , k ∈ �, (45)

where J (x, t; k) is given by

J (x, t; k) = eiθ(x,t;k )̂σ3
[

0 −ρ̃(k)
ρ(k) ρ(k) ρ̃(k)

]
. (46)

• Asymptotic behavior:

M(x, t; k) = eiv−(x,t)σ3 + O (1/k) , k → ∞. (47)

Proof The analyticity of M(x, t; k) can follow from the analyticity of the modified
Jost solutions and scattering data in Propositions 1 with Eq. (22) and Proposition 3. It
follows from Eqs. (22), (34), and (42) that for each double pole ηn ∈ D+ or η∗

n ∈ D−,
we have

L−2
k=ηn

[
μ+1(x, t; k)

s11(k)

]
= A[ηn] e−2iθ(x,t;ηn)μ−2(x, t; ηn),

L−2
k=η∗

n

[
μ+2(x, t; k)

s22(k)

]
= A[η∗

n] e2iθ(x,t;η∗
n)μ−1(x, t; η∗

n),

Res
k=ηn

[
μ+1(x, t; k)

s11(k)

]
= A[ηn] e−2iθ(x,t;ηn) {μ′−2(x, t; ηn).

+
[
B[ηn] − 2 i θ ′(x, t; ηn)

]
μ−2(x, t; ηn)

}
,

Res
k=η∗

n

[
μ+2(x, t; k)

s22(k)

]
= A[η∗

n] e2iθ(x,t;η∗
n)
{
μ′−1(x, t; η∗

n)

+
[
B[η∗

n] + 2 i θ ′(x, t; η∗
n)
]
μ−1(x, t; η∗

n)
}

,

(48)

which can generate the principal parts of the Laurent series of M(x, t; k) at each
double pole, that is, Eq. (44) holds. As usual, it follows from Eqs. (22) and (24) that

⎧⎪⎪⎨
⎪⎪⎩

Φ+1(x, t; k)
s11(k)

e−iθ(x,t;k)σ3 = Φ−1(x, t; k)e−iθ(x,t;k)σ3 + ρ(z) Φ−2(x, t; k)e−iθ(x,t;k)σ3 ,

Φ+2(x, t; k)
s22(k)

e−iθ(x,t;k)σ3 = ρ̃(k)Φ−1(x, t; k)e−iθ(x,t;k)σ3 + Φ−2(x, t; k)e−iθ(x,t;k)σ3 ,

(49)

which can easily generate

(
μ−1(x, t; k), μ+2(x, t; k)

s22(k)

)
=
(

μ+1(x, t; k)
s11(k)

, μ−2(x, t; k)
)

(I − J (x, t; k)),
(50)
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where J is given by Eq. (46). This completes the proof of the jump condition (45). The
asymptotic behaviors of the modified Jost solutions μ±(x, t; k) and scattering matrix
S(k) given in Propositions 6 and 7 can easily lead to that of M(x, t; k). 
�

By subtracting out the asymptotic values as k → ∞ and the singularity contri-
butions, one can regularize the Riemann–Hilbert problem as a standard form. Then,
combining with Cauchy projectors and Plemelj’s formulae (Biondini and Kovačič
2014), one can establish the solutions of the corresponding matrix Riemann–Hilbert
problem via an integral equation.

Proposition 9 The solution of the above-mentioned matrix Riemann–Hilbert problem
can be expressed as

M(x, t; k) = eiv−(x,t)σ3 + 1

2π i

∫
�

(M+ J )(x, t; ζ )

ζ − k
dζ

+
2N∑
n=1

(
Cn(k)

[
μ′−2(ηn) +

(
Dn + 1

k − ηn

)
μ−2(ηn)

]
,

Ĉn(k)

[
μ′−1(η

∗
n) +

(
D̂n + 1

k − η∗
n

)
μ−1(η

∗
n)

])
,

(51)

where k ∈ C\�,
∫
�
an integral along the oriented contour exhibited in Fig. 1,

Cn(k) = A[ηn]
k − ηn

e−2iθ(x,t;ηn), Dn = B[ηn] − 2 i θ ′(x, t; ηn),

Ĉn(k) = A[η∗
n]

k − η∗
n
e2iθ(x,t;η∗

n), D̂n = B[η∗
n] + 2 i θ ′(x, t; η∗

n),

(52)

μ−s and μ′−s (s = 1, 2) satisfy

μ−1(η
∗
n) = eiv−σ3

[
1
0

]
+

2N∑
k=1

Ck(η
∗
n)

[
μ′−2(ηk) +

(
Dk + 1

η∗
n − ηk

)
μ−2(ηk)

]

+ 1

2π i

∫
�

(
M+ J

)
1 (ζ )

ζ − η∗
n

dζ,

μ′−1(η
∗
n) = −

2N∑
k=1

Ck(η
∗
n)

η∗
n − ηk

[
μ′−2(ηk) +

(
Dk + 2

η∗
n − ηk

)
μ−2(ηk)

]

+ 1

2π i

∫
�

(
M+ J

)
1 (ζ )(

ζ − η∗
n

)2 dζ,

μ−2(ηk) = eiv−σ3

[
0
1

]
+

2N∑
j=1

Ĉ j (ηk)

[
μ′−1(η

∗
j ) +

(
D̂ j + 1

ηk − η∗
j

)
μ−1(η

∗
j )

]

+ 1

2π i

∫
�

(
M+ J

)
2 (ζ )

ζ − ηk
dζ,
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μ′−2(ηk) = −
2N∑
j=1

Ĉ j (ηk)

ηk − η∗
j

[
μ′−1(η

∗
j ) +

(
D̂ j + 2

ηk − η∗
j

)
μ−1(η

∗
j )

]

+ 1

2π i

∫
�

(
M+ J

)
2 (ζ )

(ζ − ηk)
2 dζ.

Proof To regularize the Riemann–Hilbert problem, one has to subtract out the asymp-
totic values as k → ∞ given by Eq. (47) and the singularity contributions. Then, the
jump condition becomes

M− − eiv−σ3 −
2N∑
n=1

⎡
⎢⎣

L−2
k=ηn

[M]

(k − ηn)
2 +

Res
k=ηn

[M]
k − ηn

+
L−2
k=η∗

n

[M]
(
k − η∗

n

)2 +
Res
k=η∗

n

[M]
k − η∗

n

⎤
⎥⎦

= M+ − eiv−σ3 −
2N∑
n=1

⎡
⎢⎣

L−2
k=ηn

[M]

(k − ηn)
2 +

Res
k=ηn

[M]
k − ηn

+
L−2
k=η∗

n

[M]
(
k − η∗

n

)2 +
Res
k=η∗

n

[M]
k − η∗

n

⎤
⎥⎦− M+ J ,

(53)

where

L−2
k=ηn

[M] =
(
L−2
k=ηn

[
μ+1(x, t; k)

s11(k)

]
, 0

)
, Res

k=ηn
[M] =

(
Res
z=ηn

[
μ+1(x, t; k)

s11(k)

]
, 0

)
,

L−2
k=η∗

n

[M] =
(
0, L−2

k=η∗
n

[
μ+2(x, t; k)

s22(k)

])
, Res

k=η∗
n

[M] =
(
0, Res

k=η∗
n

[
μ+2(x, t; k)

s22(k)

])
,

which are given by Eq. (44). By the Cauchy projectors defined by

P± [ f ] (z) = 1

2π i

∫
�

f (ζ )

ζ − (z ± i0)
dζ, (54)

where the notation z±i0 represents the limit taken from the left/right of z, the Plemelj’s
formulae (see, e.g., Biondini and Kovačič 2014) to Eq. (53), one can show the propo-
sition. The technique of the proof is fairly standard and one can also refer to Refs.
Pichler and Biondini (2017), Zhang and Yan (2020a) for more details. 
�

2.2.2 Reconstruction Formula of the Potential

It follows from the solution of the matrix Riemann–Hilbert problem that one can
obtain

M(x, t; k) = eiv−(x,t)σ3 + M [1](x, t)
k

+ O

(
1

k2

)
, as k → ∞, (55)
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where

M [1](x, t) = − 1

2π i

∫
�

M+(x, t; ζ ) J (x, t; ζ ) dζ

+
2N∑
n=1

[
A[ηn] e−2iθ(ηn)

(
μ′−2(ηn) + Dnμ−2(ηn)

)
,

A[η∗
n] e2iθ(η∗

n)
(
μ′−1(η

∗
n) + D̂nμ−1(η

∗
n)
)]

.

Substituting Φ(x, t; k) = M(x, t; k) eiθ(x,t;k)σ3 into Eq. (15) and matching O (k)
term, one can find the reconstruction formula of the solution (potential) of the DNLS
equation with ZBCs and double poles as

q(x, t) = −2 i eiv−(x,t)σ3αTγ, (56)

where the column vectors α = (α(1), α(2))T and γ = (γ (1), γ (2))T are given by

α(1) =
(
A[η∗

n] e2iθ(η∗
n) D̂n

)
1×2N

, α(2) =
(
A[η∗

n] e2iθ(η∗
n)
)
1×2N

,

γ (1) = (
μ−11(η

∗
n)
)
1×2N , γ (2) = (

μ′−11(η
∗
n)
)
1×2N .

(57)

2.2.3 Trace Formulae

The so-called trace formulae are that the scattering coefficients s11(k) and s22(k) are
formulated in terms of the discrete spectrum K and reflection coefficients ρ(k) and
ρ̃(k). Recall that s11(k) is analytic in D+ and s22(k) is analytic in D−. The discrete
spectral points ηn’s are the double zeros of s11(k), while η∗

n’s are the double zeros of
s22(k). Define

β+(k) = s11(k)
2N∏
n=1

(
k − η∗

n

k − ηn

)2

eiv, β−(k) = s22(k)
2N∏
n=1

(
k − ηn

k − η∗
n

)2

e−iv.

(58)

Then, β+(k) and β−(k) are analytic and have no zero in D+ and D−, respectively.
Moreover, β±(k) → 1 as k → ∞. Besides, one has − logβ+(k) − logβ−(k) =
log
[
1 − ρ(k) ρ̃(k)

]
, which is employed by the Cauchy projectors and Plemelj’s for-

mulae Biondini and Kovačič (2014) such that one has

logβ±(k) = ∓ 1

2π i

∫
�

log
[
1 − ρ(ζ ) ρ̃(ζ )

]
ζ − k

dζ, k ∈ D±. (59)
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Therefore, it follows from Eqs. (58) and (59) that the trace formulae are derived as

s11(k) = exp

(
− 1

2π i

∫
�

log
[
1 − ρ̃(ζ ) ρ(ζ )

]
ζ − k

dζ

)
2N∏
n=1

(
k − ηn

k − η∗
n

)2

e−iv,

s22(k) = exp

(
1

2π i

∫
�

log
[
1 − ρ̃(ζ ) ρ(ζ )

]
ζ − k

dζ

)
2N∏
n=1

(
k − η∗

n

k − ηn

)2

eiv.

(60)

2.2.4 Reflectionless Potential: Double-Pole Solitons

We consider a special kind of solution with ρ(k) = ρ̃(k) = 0: reflectionless potential.
From the Volterra integral equation (23), one obtains Φ±(x, t; 0) = μ±(x, t; 0) = I .
Thus, s11(0) = 1. Combining the trace formula, one obtains that there exists an integer

j ∈ Z such that v = 8
N∑

n=1

arg(kn) + 2 j π.

Theorem 1 The explicit formula for the double-pole solution of the DNLS equation
(1) with ZBCs is given by

q(x, t) = 2i

(
det
(
Ĝ
)

det
(
I − Ĥ

)
)2

det (I − H)

det (G)
, (61)

where

G =
[
I − H β

αT 0

]
, Ĝ =

[
I − Ĥ β

αT 0

]
, β =

[
β(1)

β(2)

]
,

β(1) = (1)2N×1 , β(2) = (0)2N×1 , (62)

the 4N × 4N matrix H =
[
H (1,1) H (1,2)

H (2,1) H (2,2)

]
with H (i,m) =

(
H (i,m)
n, j

)
2N×2N

(i,m =
1, 2) given by

H (1,1)
n, j =

2N∑
k=1

Ck(η
∗
n) Ĉ j (ηk)

[
− 1

ηk − η∗
j

(
D̂ j + 2

ηk − η∗
j

)

+
(
Dk + 1

η∗
n − ηk

)(
D̂ j + 1

ηk − η∗
j

)]
,

H (1,2)
n, j =

2N∑
k=1

Ck(η
∗
n) Ĉ j (ηk)

[
− 1

ηk − η∗
j

+
(
Dk + 1

η∗
n − ηk

)]
,

H (2,1)
n, j =

2N∑
k=1

Ck(η
∗
n) Ĉ j (ηk)

[
1

ηk − η∗
j

(
D̂ j + 2

ηk − η∗
j

)
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−
(
Dk + 2

η∗
n − ηk

)(
D̂ j + 1

ηk − η∗
j

)]
,

H (2,2)
n, j =

2N∑
k=1

Ck(η
∗
n) Ĉ j (ηk)

[
1

ηk − η∗
j

−
(
Dk + 2

η∗
n − ηk

)]
,

and the4N×4N matrix Ĥ =
[
Ĥ (1,1) Ĥ (1,2)

Ĥ (2,1) Ĥ (2,2)

]
with Ĥ (i,m) =

(
Ĥ (i,m)
n, j

)
2N×2N

(i,m =
1, 2) given by

Ĥ (1,1)
n, j = η∗

n

2N∑
k=1

Ck(η
∗
n) Ĉ j (ηk)

ηk

[
− 1

ηk − η∗
j

(
D̂ j + 2

ηk − η∗
j

)

+ηk

η∗
j

(
Dk + 1

η∗
n − ηk

− 1

ηk

)(
D̂ j + 1

ηk − η∗
j

− 1

η∗
j

)]
,

Ĥ (1,2)
n, j = η∗

n

2N∑
k=1

Ck(η
∗
n) Ĉ j (ηk)

ηk

[
− 1

ηk − η∗
j

+ ηk

η∗
j

(
Dk + 1

η∗
n − ηk

− 1

ηk

)]
,

Ĥ (2,1)
n, j =

2N∑
k=1

Ck(η
∗
n) Ĉ j (ηk)

η∗
n − ηk

[
1

ηk − η∗
j

(
D̂ j + 2

ηk − η∗
j

)

−ηk

η∗
j

(
Dk + 2

η∗
n − ηk

)(
D̂ j + 1

ηk − η∗
j

− 1

η∗
j

)]
,

Ĥ (2,2)
n, j =

2N∑
k=1

Ck(η
∗
n) Ĉ j (ηk)

η∗
n − ηk

[
1

ηk − η∗
j

− ηk

η∗
j

(
Dk + 2

η∗
n − ηk

)]
.

Proof From the reconstruction formula (56), the reflectionless potential is deduced by
determinants:

q(x, t) = 2i
det (G)

det (I − H)
e2iv−(x,t). (63)

However, this formula (63) is implicit since v−(x, t) is included. One needs to derive
an explicit form for the reflectionless potential. From the trace formulae (60) and
Volterra integral equation (23), one derives that

M = I + k
2N∑
n=1

⎛
⎜⎝
L−2
k=ηn

[M/k]

(k − ηn)
2 +

Res
k=ηn

[M/k]

k − ηn
+

L−2
k=η∗

n

[M/k]

(
k − η∗

n

)2 +
Res
k=η∗

n

[M/k]

k − η∗
n

⎞
⎟⎠ ,(64)
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which can yield the γ given byEq. (57) explicitly. Then, substituting γ into the formula
of the potential, one yields

q(x, t) = 2i
det
(
Ĝ
)

det(I − Ĥ)
eiv−(x,t). (65)

Combining Eq. (63) with Eq. (65), we can complete the proof. 
�
For example, it follows from Eq. (61) that we have the single double-pole solution

of Eq. (1) with ZBCs for parameters N = 1, k1 = 1
2 (1 + i) , A[k1] = 1, B[k1] = 1

as q(x, t) = P1(x, t)/P2(x, t), where

P1(x, t) = i

4

{
[4(i − 1)t3 + [1 − 2i − 2(1 + i)x]t2 + [(13i − 11)/8

+ (i − 1)x2 + (2 − i)x]t + (10 − i)/32

− (1 + i)x3/2 + (3 + 2i)x2/4 − (7 + i)x/16]e4x
+ [(1 + i)t3 + ((1 − i)x − 3)t2/4

+ [(1 + i)x2/4 + i x/4 + (11 + 5i)/32]t + (1 − i)x3/8

− x2/16 − (1 + i)x/64 − 7i/128]e2x
+ [(1 − i)x/2 − (1 + i)t + (2i − 1)/4]e6x + (1 − i)t/64

− [1 + 2(1 + i)x]/256
}2
ex+i t ,

P2(x, t) =
{
[t4 − t3/2 + (2x2 − x + 2)t2/4 − (2x2 − x + 7)t/16

+ (x2 − x/2 + 5/8)(x2 − x/2 + 1/8)/16]e4x

+ (1 − 8t)e2x/512 + (8t − 1)e6x/32 + e8x/16 + 1/4096
}

{
[4(i − 1)t3 + (5 + 2i − 2(1 + i)x)t2

+ [(i − 1)x2 + i x − (3 + 11i)/8]t + (2 + 7i)/32 − (1 + i)x3/2

+ (3 + 2i)x2/4 − (7 + 9i)x/16]e4x
+ [(1 + i)t3 + (1 − 4i + 2(1 − i)x)t2/4 + (5(i − 1) + 8(1 + i)x2

− 8(2 + i)x)t/32 + i/128

+ (1 − i)x3/8 − x2/16 + (7 − i)x/64]e2x + [(1 + i)t

+ (i − 1)x/2 + (1 − 2i)/4]e6x

+ (i − 1)t/64 + [1 + 2(1 + i)x]/256
}
.

Figure 2a, b exhibits the dynamical structures of the exact double-pole soliton of
the DNLS equation with ZBCs, which is equivalent to the elastic collisions of two
bright–bright solitons. Figure 2c displays the distinct profiles of the exact double-pole
soliton for t = ±2, 0.
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Fig. 2 Double-pole soliton solution of DNLS equation (1) with ZBCs and N = 1, k1 = (1+ i)/2, A[k1] =
B[k1] = 1. (a) 3D profile; (b) intensity profile; (c) profiles for t = −2 (solid line), t = 0 (dashed line), and
t = 2 (dash-dot line)

Notice that the general expression of the single double-pole solution for N = 1
from Eq. (61) is very complicated and is not given explicitly. However, with the aid of
computer softwares such as Maple and Matlab, one can easily get the corresponding
double-pole solution for different parameters by using Eq. (61).

3 The IST with NZBCs and Double Poles

Recently, the ISTs of integrable nonlinear systems with NZBCs have attracted more
and more attention (Prinari et al. 2006; Demontis et al. 2013, 2014; Biondini and
Kovačič 2014; Prinari 2015; Pichler and Biondini 2017; Zhang and Yan 2020a, b). In
this section, we will find a double-pole solution q(x, t) for the DNLS equation (1)
with σ = −1 and the NZBCs

lim
x→±∞ q(x, t) = q±, |q±| = q0 > 0, (66)

with the aid of the IST. The ISTs for DNLS equation (1) with NZBCs (66) were also
studied (Kawata and Inoue 1978; Chen and Lam 2004; Chen et al. 2006; Lashkin
2007), but they only considered the case of simple poles by solving the corresponding
Gel’fand–Levitan–Marchenko integral equations. In what follows, we try to present
the IST of the DNLS equation (1) with NZBCs (66) and double poles based on another
approach, that is, the Riemann–Hilbert problem.

3.1 Direct Scattering with NZBCs and Double Poles

3.1.1 Jost Solutions, Analyticity, and Continuity

As x → ±∞, we consider the asymptotic scattering problem of the modified
Zakharov–Shabat eigenvalue problem (15, 16):
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Fig. 3 Complex z-plane,
exhibiting the region D+ (grey
region), the region D− (white
region), the discrete spectrum,
and the orientation of the
contours for the matrix
Riemann–Hilbert problem in the
inverse scattering problem

Φx = X±Φ, Φt = T±Φ, X± = k (ikσ3 + Q±) ,

T± = −
(
2k2 − q20

)
X±, Q± =

[
0 q±

−q∗± 0

]
.

(67)

such that the fundamental matrix solution of Eq. (67) is given as

Φ
bg
± (x, t; k) =

{
E±(k) eiθ(x,t;k)σ3 , k �= ±iq0,
I + (

x + 3 q20 t
)
X±(k), k = ±iq0,

(68)

where

E±(k) =
⎡
⎢⎣

1
iq±

k + λ(k)
iq∗±

k + λ(k)
1

⎤
⎥⎦ ,

θ(x, t; k) = kλ(k)
[
x −

(
2k2 − q20

)
t
]
, λ2(k) = k2 + q20 . (69)

Since λ(k) stands for a two-sheeted Riemann surface, for convenience, taking a new
variable: z = k + λ, which was first introduced in Faddeev and Takhtajan (1987), we
will illustrate the scattering problem on a standard z-plane instead of the two-sheeted
Riemann surface by the inverse mapping:

k = 1

2

(
z − q20

z

)
, λ = 1

2

(
z + q20

z

)
.

Define � and D± on the z-plane as � := R ∪ iR\ {0} , D± := {z ∈ C | ± (Re z)
(Im z) > 0} . From the mapping relation between the k-plane and z-plane under
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the uniformization variable, one finds that Im (kλ) = 0when z ∈ �; Im (kλ) >

0when z ∈ D+; Im (kλ) < 0when z ∈ D−.According to the IST technique (Demon-
tis et al. 2013, 2014; Biondini and Kovačič 2014; Pichler and Biondini 2017), one
needs to define the Jost solutions Φ±(x, t; z) with

Φ±(x, t; z) = E±(z) eiθ(x,t;z)σ3 + o (1) , z ∈ �0, as x → ±∞, (70)

and the modified Jost solutions μ±(x, t; z) via dividing by the transform

μ±(x, t; z) = Φ±(x, t; z) e−iθ(x,t;z)σ3 , (71)

such that limx→±∞ μ±(x, t; z) = E±(z). It follows from Eq. (15) that the modified
Jost solutions μ±(x, t; z) satisfy the Volterra integral equations

μ±(x, t; z) = E±(z)

+
{
k(z)

∫ x
±∞ E±(z) eik(z)λ(z)(x−y)̂σ3

[
E−1± (z)�Q±(y, t) μ±(y, t; z)

]
dy, z �= 0, ±iq0,

k(z)
∫ x
±∞

[
I + (x − y) X±(z)

]
�Q±(y, t) μ±(y, t; z) dy, z = ±iq0,

(72)

which are used to deduce the following analyticity of the (modified) Jost solution.

Proposition 10 Suppose (1 + |x |) (q(x, t) − q±) ∈ L1
(
R

±). Then, Φ±(x, t; z) have
the following properties:

• Eq. (15) has the unique solution Φ±(x, t; z) satisfying Eq. (70) on �;
• Φ+1,−2(x, t; z) can be analytically extended to D+ and continuously extended to

D+ ∪ �;
• Φ−1,+2(x, t; z) can be analytically extended to D− and continuously extended to

D− ∪ �.

Proof The proposition is reported in Refs. Kawata and Inoue (1978), Chen and Lam
(2004); Chen et al. (2006), Lashkin (2007). Besides, one can refer to Refs. Demontis
et al. (2013), Biondini and Kovačič (2014), Zhang and Yan (2020a) for the standard
technique of the proof. The analyticity and continuity for μ±(x, t; z) can be deduced
from those of Φ±(x, t; z). 
�

Similarly to the case of ZBCs in Sec. 2, one can also confirm that the Jost solutions
Φ±(x, t; z) are the simultaneous solutions for both parts of the modified Zakharov–
Shabat eigenvalue problem (15, 16).

3.1.2 Scattering Matrix, Analyticity, and Continuity

Liouville’s formula implies Φ± are the fundamental matrix solutions in z ∈ �0 =
�\ {±iq0}, so one can define the constant scattering matrix S(z) = (si j (z))2×2 such
that

Φ+(x, t; z) = Φ−(x, t; z) S(z), z ∈ �0. (73)
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Then, one has the scattering coefficients as

s11(z) = Wr(Φ+1(x, t; z),Φ−2(x, t; z))
s(z)

, s22(z) = Wr(Φ−1(x, t; z), Φ+2(x, t; z))
s(z)

,

s12(z) = Wr(Φ+2(x, t; z), Φ−2(x, t; z))
s(z)

, s21(z) = Wr(Φ−1(x, t; z), Φ+1(x, t; z))
s(z)

,

(74)

whereWr(·, ·) denotes theWronskian determinant and s(z) := 1+q20/z
2. From these

Wronskian representations, one can extend the analytical regions of s11(z) and s22(z).

Proposition 11 Suppose q(x, t) − q± ∈ L1
(
R

±). Then, s11(z) can be analytically
extended to D+ and continuously extended to D+∪�0, while s22(z) can be analytically
extended to D− and continuously extended to D− ∪ �0. Moreover, both s12(z) and
s21(z) are continuous in z ∈ �0.

Proof The proposition can be verified by using Proposition 10 and Eq. (74). 
�
Proposition 12 Suppose (1 + |x |) (q − q±) ∈ L1

(
R

±). Then, λ(z) s11(z) can be ana-
lytically extended to D+ and continuously extended to D+ ∪�, while λ(z) s22(z) can
be analytically extended to D− and continuously extended to D− ∪�. Moreover, both
λ(z) s12(z) and λ(z) s21(z) are continuous in �.

Proof The proposition can be verified by using Proposition 10 and Eq. (74). 
�
To further solve thematrix Riemann–Hilbert problem established in the inverse pro-

cess, we focus on the potential without spectral singularities (Zhou 1989). Besides, we
suppose si j (z) (i, j = 1, 2) are continuous in the branch points {±iq0}. The reflection
coefficients ρ(z) and ρ̃(z) are defined as

ρ(z) = s21(z)

s11(z)
, ρ̃(z) = s12(z)

s22(z)
, z ∈ �, (75)

which will be used in the inverse scattering problem.

3.1.3 Symmetry Structures

The symmetries of X(x, t; z),T (x, t; z), Jost solutions, scatteringmatrix and reflection
coefficients in the case of NZBCs are more complicated than ones in the ZBCs.

Proposition 13 (Symmetry reductions) For the case of NZBCs, X(x, t; z) and
T (x, t; z) in the modified Zakharov–Shabat eigenvalue problem (15, 16), Jost solu-
tions, scattering matrix and reflection coefficients admit three reduction conditions on
the z-plane:

• The first symmetry reduction

X(x, t; z) = σ2 X(x, t; z∗)∗ σ2, T (x, t; z) = σ2 T (x, t; z∗)∗ σ2,

Φ±(x, t; z) = σ2 Φ±(x, t; z∗)∗ σ2, S(z) = σ2 S(z∗)∗ σ2, ρ(z) = −ρ̃(z∗)∗.
(76)
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• The second symmetry reduction

X(x, t; z) = σ1 X(x, t;−z∗)∗ σ1, T (x, t; z) = σ1 T (x, t;−z∗)∗ σ1,

Φ±(x, t; z) = σ1 Φ±(x, t;−z∗)∗σ1, S(z) = σ1 S(−z∗)∗σ1, ρ(z) = ρ̃(−z∗)∗.
(77)

• The third symmetry reduction

X(x, t; z) = X

(
x, t; −q20

z

)
, T (x, t; z) = T

(
x, t; −q20

z

)
,

Φ±(x, t; z) = i

z
Φ±

(
x, t; −q20

z

)
σ3Q±, S(z) = (σ3Q−)−1 S

(
−q20

z

)
σ3Q+,

ρ(z) = q∗−
q−

ρ̃

(
−q20

z

)
.

(78)

Proof The similar properties are reported in Refs. Kawata and Inoue (1978), Chen and
Lam (2004); Chen et al. (2006), Lashkin (2007), Zhou (2012). Besides, one can also
refer to Refs. Demontis et al. (2013), Biondini and Kovačič (2014), Zhang and Yan
(2020a) for more details of the standard technique of the proof. 
�

3.1.4 Discrete Spectrumwith Double Zeros

Thepreviousworks on theDNLSequation (1)withNZBCs focused on the simple zeros
of the scattering coefficients (Kawata and Inoue 1978; Chen and Lam 2004; Chen et al.
2006; Lashkin 2007). Here, we consider the case of s11(z) with double zeros and sup-
pose that s11(z) has N1 double zeros in Z0 = {z ∈ C |Re z > 0, Im z > 0, |z| > q0}
denotedby zn , and N2 double zeros inW0 = {

z ∈ C | z = q0 eiφ, 0 < φ < π
2

}
denoted

by wm , that is, s11(z0) = s′
11(z0) = 0 and s′′

11(z0) �= 0 if z0 is a double zero of s11(z).
From the symmetries of the scattering matrix presented in Proposition 13, the discrete
spectrum is the set

Z =
{

±zn, ±z∗n, ±q20
zn

, ±q20
z∗n

}N1

n=1

⋃{
± wm, ±w∗

m

}N2

m=1
, (79)

whose distributions are displayed in Fig. 3.
For convenience, we introduce the norming constants b[z0] and d[z0] such that

Φ+1(x, t; z0) = b[z0]Φ−2(x, t; z0), z0 ∈ Z ∩ D+,

Φ+2(x, t; z0) = b[z0]Φ−1(x, t; z0), z0 ∈ Z ∩ D−,

Φ ′+1(x, t; z0) − b[z0] Φ ′−2(x, t; z0) = d[z0]Φ−2(x, t; z0), z0 ∈ Z ∩ D+,

Φ ′+2(x, t; z0) − b[z0] Φ ′−1(x, t; z0) = d[z0]Φ−1(x, t; z0), z0 ∈ Z ∩ D−,

(80)
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and define A[z0] and B[z0] as

A[z0] =

⎧⎪⎪⎨
⎪⎪⎩

2 b[z0]
s′′
11(z0)

, z0 ∈ Z ∩ D+,

2 b[z0]
s′′
22(z0)

, z0 ∈ Z ∩ D−,

B[z0] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d[z0]
b[z0] − s′′′

11(z0)

3 s′′
11(z0)

, z0 ∈ Z ∩ D+,

d[z0]
b[z0] − s′′′

22(z0)

3 s′′
22(z0)

, z0 ∈ Z ∩ D−.

(81)

Then, one can pose the compact forms:

L−2
z=z0

[
Φ+1(x, t; z)

s11(z)

]
= A[z0] Φ−2(x, t; z0), z0 ∈ Z ∩ D+,

L−2
z=z0

[
Φ+2(x, t; z)

s22(z)

]
= A[z0] Φ−1(x, t; z0), z0 ∈ Z ∩ D−,

Res
z=z0

[
Φ+1(x, t; z)

s11(z)

]
= A[z0]

[
Φ ′−2(x, t; z0) + B[z0] Φ−2(x, t; z0)

]
, z0 ∈ Z ∩ D+,

Res
z=z0

[
Φ+2(x, t; z)

s22(z)

]
= A[z0]

[
Φ ′−1(x, t; z0) + B[z0] Φ−1(x, t; z0)

]
, z0 ∈ Z ∩ D−,

(82)

where L−2
z=z0

[ f (x, t; z)] stands for the coefficient of O ((z − z0)−2) term in the Laurent

series expansion of f (x, t; z) at z = z0.

Proposition 14 Given z0 ∈ Z, the three symmetry relations for A[z0] and B[z0] are
given as

• The first symmetry relation A[z0] = −A[z∗0]∗, B[z0] = B[z∗0]∗.• The second symmetry relation A[z0] = A[−z∗0]∗, B[z0] = −B[−z∗0]∗.
• The third symmetry relation A[z0] = z40 q

∗−
q40 q−

A

[
−q20
z0

]
, B[z0] = q20

z20
B

[
−q20
z0

]
+

2

z0
.

Proof According to the symmetries in the Proposition 13 and the definition for A[z0]
and B[z0] given by Eq. (81) with Eq. (80), one can show that this Proposition holds.


�
Proposition 15 For n = 1, 2, · · · , N1 and m = 1, 2, · · · , N2, one derives

A[zn] = −A[z∗n]∗ = A[−z∗n]∗ = −A[−zn]

= z4nq
∗−

q40q−
A

[
−q20
zn

]
= z4nq

∗−
q40q−

A

[
q20
z∗n

]∗
= − z4nq

∗−
q40q−

A

[
−q20
z∗n

]∗
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= − z4nq
∗−

q40q−
A

[
q20
zn

]
, zn ∈ Z0, (83)

A[wm] = −A[w∗
m]∗ = A[−w∗

m]∗ = −A[−wm] = w4
mq

∗−
q40q−

A[wm]∗, wm ∈ W0,

B[zn] = B[z∗n]∗ = −B[−z∗n] = −B[−zn] = q20
z2n

B

[
−q20
zn

]
+ 2

zn

= q20
z2n

B

[
−q20
z∗n

]∗
+ 2

zn

= −q20
z2n

B

[
q20
z∗n

]∗
+ 2

zn
= −q20

z2n
B

[
q20
zn

]
+ 2

zn
, zn ∈ Z0, (84)

B[wm] = B[w∗
m]∗ = −B[−w∗

m]∗ = −B[−wm] = − q20
w2
m
B[wm]∗ + 2

wm
, wm ∈ W0.

Proof The proposition can be directly verified by the symmetry reductions in Propo-
sitions 13 and 14. 
�

3.1.5 Asymptotic Behaviors

To propose and solve the matrix Riemann–Hilbert problem in the following inverse
problem, one needs to give the asymptotic behaviors of the modified Jost solutions
and scattering matrix as z → ∞ and z → 0, which differ from the case of ZBCs.
The usual Wentzel–Kramers–Brillouin (WKB) expansions are used to deduce the
asymptotic behaviors of the modified Jost solutions.

Proposition 16 The asymptotic behaviors for the modified Jost solutions are given as

μ±(x, t; z) =
⎧⎨
⎩
eiv±(x,t)σ3 + O (1/z) , z → ∞,
i

z
eiv±(x,t)σ3σ3 Q± + O (1) , z → 0,

(85)

where

v±(x, t) = 1

2

∫ x

±∞

(
|q(y, t)|2 − q20

)
dy. (86)

Proof The following expansions of the modified Jost solutions μ±(x, t; z) as z → ∞
and z → 0 are considered

μ±(x, t; z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
j=0

μ
[ j]
± (x, t)

z j
+ O

(
1/zn+1

)
, as z → ∞,

n∑
j=−1

μ
[ j]
± (x, t) z j + O

(
zn+1

)
, as z → 0.

(87)
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We substitute Φ±(x, t; z) = μ±(x, t; z) eiθ(x,t;z)σ3 with these expansions into Eq.
(15). By matching the O

(
z2
)
, O (z) and O (1) terms as z → ∞, and O

(
z−3

)
,

O
(
z−2

)
and O

(
z−1

)
terms as z → 0, and combining with the asymptotic behaviors

of the modified Jost solutions μ±(x, t; z) as x → ±∞, one deduces the asymptotic
behaviors as z → ∞ and z → 0. 
�

The asymptotic behaviors of the scattering matrix can be yielded by theWronskian
representations of the scattering matrix and the asymptotic behaviors of the modified
Jost solutions.

Proposition 17 The asymptotic behaviors of the scattering matrix are

S(z) =
⎧⎨
⎩
e−iv(t)σ3 + O (1/z) , z → ∞,

diag

(
q−
q+

,
q+
q−

)
eivσ3 + O (z) , z → 0,

(88)

where v(t) is dependent on the variable t and given by

v(t) = 1

2

∫ +∞

−∞

(
|q(y, t)|2 − q20

)
dy. (89)

Proof From the definition or Wronskian presentations of scattering matrix given by
Eq. (74) and the asymptotic behaviors of the modified Jost solutions given by Eq. (87)
in Proposition 16, one can yield the asymptotic behaviors (88) of the scattering matrix.
Substituting Φ±(x, t; z) = μ±(x, t; z) eiθ(x,t;z)σ3 with these expansions into Eq. (16)
and matching the O

(
z4
)
, O

(
z3
)
, O

(
z2
)
, O (z) and O (1) in order, one can yield

vt �= 0 as x → ∓∞. That is, v(t) is dependent on the variable t . 
�

3.2 Inverse Scattering Problemwith NZBCs and Double Poles

3.2.1 The Matrix Riemann–Hilbert Problemwith NZBCs and Double Poles

The matrix Riemann–Hilbert problem for the case of NZBCs can also be established
similarly to one of ZBCs in Sec. 2 (see, e.g., Refs. Shabat andZakharov 1972;Ablowitz
et al. 1973; Prinari et al. 2006;Demontis et al. 2013, 2014; Biondini andKovačič 2014;
Prinari 2015; Pichler and Biondini 2017; Zhang and Yan 2020a, b). To pose and solve

the Riemann–Hilbert problem conveniently, we define η̂n = − q20
ηn

with
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ηn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn, n = 1, 2, · · · , N1,

−zn−N1, n = N1 + 1, N1 + 2, · · · , 2N1,

q20
z∗n−2N1

, n = 2N1 + 1, 2N1 + 2, · · · , 3N1,

− q20
z∗n−3N1

, n = 3N1 + 1, 3N1 + 2, · · · , 4N1,

wn−4N1, n = 4N1 + 1, 4N1 + 2, · · · , 4N1 + N2,

−wn−4N1−N2 , n = 4N1 + N2 + 1, 4N1 + N2 + 2, · · · , 4N1 + 2N2.

(90)

Then, a matrix Riemann–Hilbert problem can be proposed as follows.

Proposition 18 Let the sectionally meromorphic matrix be

M(x, t; z) =

⎧⎪⎪⎨
⎪⎪⎩

(
μ+1(x, t; z)

s11(z)
, μ−2(x, t; z)

)
, z ∈ D+,

(
μ−1(x, t; z), μ+2(x, t; z)

s22(z)

)
, z ∈ D−,

(91)

and

M±(x, t; z) = lim
z′→z
z′∈D±

M(x, t; z′), z ∈ �. (92)

Then, a multiplicative matrix Riemann–Hilbert problem is proposed:

• Analyticity: M(x, t; z) is analytic in (D+ ∪ D−) \Z and has the double poles in Z.
The principal parts of the Laurent series of M at each double pole are determined
as

L−2
z=ηn

M =
(
A[ηn] e−2iθ(x,t;ηn)μ−2(x, t; ηn), 0

)
,

L−2
z=η̂n

M =
(
0, A[̂ηn] e2iθ(x,t ;̂ηn)μ−1(x, t; η̂n)

)
,

Res
z=ηn

M =
(
A[ηn] e−2iθ(x,t;ηn) {μ′−2(x, t; ηn)

+
[
B[ηn] − 2iθ ′(x, t; ηn)

]
μ−2(x, t; ηn)

}
, 0
)

,

Res
z=η̂n

M =
(
0, A[̂ηn] e2iθ(x,t ;̂ηn) {μ′−1(x, t; η̂n)

+
[
B [̂ηn] + 2iθ ′(x, t; η̂n)

]
μ−1(x, t; η̂n)

})
,

(93)

where the prime denotes the partial derivative with respect to z.

123



Journal of Nonlinear Science (2020) 30:3089–3127 3117

• Jump condition:

M−(x, t; z) = M+(x, t; z) (I − J (x, t; z)) , z ∈ �, (94)

where

J (x, t; z) = eiθ(x,t;z)̂σ3
[

0 −ρ̃(z)
ρ(z) ρ(z) ρ̃(z)

]
. (95)

• Asymptotic behaviors:

M(x, t; z) =
⎧⎨
⎩
eiv−(x,t)σ3 + O (1/z) , z → ∞,
i

z
eiv−(x,t)σ3σ3 Q− + O (1) , z → 0.

(96)

Proof The analyticity ofM(x, t; z) can be verified from the analyticity of themodified
Jost solutions and scattering data in Propositions 10 with Eq. (71) and Proposition 11.
It follows from Eqs. (71), (82), and (91) that

L−2
z=ηn

[
μ+1(x, t; z)

s11(z)

]
= A[ηn] e−2iθ(x,t;ηn)μ−2(x, t; ηn),

L−2
z=η̂n

[
μ+2(x, t; z)

s22(z)

]
= A[̂ηn] e2iθ(x,t ;̂ηn)μ−1(x, t; η̂n),

Res
z=ηn

[
μ+1(x, t; z)

s11(z)

]
= A[ηn] e−2iθ(x,t;ηn) {μ′−2(x, t; ηn)

+
[
B[ηn] − 2iθ ′(x, t; ηn)

]
μ−2(x, t; ηn)

}
,

Res
z=η̂n

[
μ+2(x, t; z)

s22(z)

]
= A[̂ηn] e2iθ(x,t ;̂ηn) {μ′−1(x, t; η̂n)

+
[
B [̂ηn] + 2iθ ′(x, t; η̂n)

]
μ−1(x, t; η̂n)

}
,

(97)

fromwhich we determine the principal parts of the Laurent series of M(x, t; z) at each
double pole, that is, Eq. (93) holds. Similarly to theRiemann–Hilbert problem of ZBCs
in Proposition 8 of Sec. 2, the proof of the jump condition (94) can also be completed.
The asymptotic behaviors (96) of M(x, t; z) can be found from Propositions 16 and
17 for the asymptotic behaviors of modified Jost solutions and scattering matrix. 
�
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Proposition 19 The solution of thematrix Riemann–Hilbert problemwith double poles
in Proposition 18 can be expressed as

M(x, t; z) = eiv−(x,t)σ3

(
I + i

z
σ3 Q−

)
+ 1

2π i

∫
�

(M+ J )(x, t; ζ )

ζ − z
dζ

+
4N1+2N2∑

n=1

(
Cn(z)

[
μ′−2(ηn) +

(
Dn + 1

z − ηn

)
μ−2(ηn)

]
,

Ĉn(z)

[
μ′−1(̂ηn) +

(
D̂n + 1

z − η̂n

)
μ−1(̂ηn)

])
,

(98)

where
∫
�
stands for an integral along the oriented contour displayed in Fig. 3,

Cn(z) = A[ηn]
z − ηn

e−2iθ(ηn), Dn = B[ηn] − 2 i θ ′(ηn), Ĉn(z) = A[̂ηn]
z − η̂n

e2iθ (̂ηn),

D̂n = B [̂ηn] + 2 i θ ′(̂ηn), (99)

μ−2(ηn) and μ′−2(ηn) are determined by μ−1(̂ηn) and μ′−1(̂ηn) as

μ−2(ηn) = iq−
ηn

μ−1 (̂ηn) , μ′−2(ηn) = − iq−
η2n

μ−1(̂ηn) + iq−q20
η3n

μ′−1(̂ηn), (100)

and μ−1(̂ηn) and μ′−1(̂ηn) satisfy the linear system of 8N1 + 4N2 equations

4N1+2N2∑
n=1

Ĉn(ηk) μ′−1(̂ηn) +
[
Ĉn(ηk)

(
D̂n + 1

ηk − η̂n

)
− iq−

ηk
δk,n

]
μ−1(̂ηn)

= −eiv−(x,t)σ3

⎡
⎣ iq−

ηk
1

⎤
⎦− 1

2π i

∫
�

(
M+ J

)
2 (ζ )

ζ − ηk
dζ,

4N1+2N2∑
n=1

(
Ĉn(ηk)

ηk − η̂n
+ iq−q20

η3k
δk,n

)
μ′−1(̂ηn)

+
[
Ĉn(ηk)

ηk − η̂n

(
D̂n + 2

ηk − η̂n

)
− iq−

η2k
δk,n

]
μ−1(̂ηn)

= −eiv−(x,t)σ3

⎡
⎣
iq−
η2k
0

⎤
⎦+ 1

2π i

∫
�

(
M+ J

)
2 (ζ )

(ζ − ηk)
2 dζ

with k = 1, 2, · · · , 4N1 + 2N2 and δk,n being the Kronecker δ-symbol.

Proof Similarly to the proof of Proposition 9 for the case of ZBCs, to regularize the
Riemann–Hilbert problem established in Proposition 18 for the case of NZBCs, one
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has to subtract out the asymptotic values as z → ∞ and z → 0 given by Eq. (96) and
the singular contributions. Then, the jump condition (94) becomes

M− − eiv−σ3 − i

z
eiv−σ3σ3 Q−

−
4N1+2N2∑

n=1

⎡
⎣

L−2
z=ηn

[M]
(z − ηn)

2 +
Res
z=ηn

[M]
z − ηn

+
L−2
z=η̂n

[M]

(z − η̂n)
2 +

Res
z=η̂n

[M]
z − η̂n

⎤
⎦

= M+ − eiv−σ3 − i

z
eiv−σ3σ3 Q−

−
4N1+2N2∑

n=1

⎡
⎣

L−2
z=ηn

[M]
(z − ηn)

2 +
Res
z=ηn

[M]
z − ηn

+
L−2
z=η̂n

[M]

(z − η̂n)
2 +

Res
z=η̂n

[M]
z − η̂n

⎤
⎦− M+ J ,

where

L−2
z=ηn

[M] =
(
L−2
z=ηn

[
μ+1(x, t; z)

s11(z)

]
, 0

)
, Res

z=ηn
[M] =

(
Res
z=ηn

[
μ+1(x, t; z)

s11(z)

]
, 0

)
,

L−2
z=η̂n

[M] =
(
0, L−2

z=η̂n

[
μ+2(x, t; z)

s22(z)

])
, Res

z=η̂n
[M] =

(
0, Res

z=η̂n

[
μ+2(x, t; z)

s22(z)

])
,

which are given by Eq. (93). By the Cauchy projectors (54) and Plemelj’s formulae
(Biondini and Kovačič 2014), the proof follows. The technique of the proof is fairly
standard and one can also refer to Refs. Pichler and Biondini (2017), Zhang and Yan
(2020a) for more details. 
�

3.2.2 Reconstruction Formula for the Potential

Proposition 20 The reconstruction formula for the potential of the DNLS equation (1)
with NZBCs is deduced by

q(x, t) = eiv−(x,t)
(
q− eiv−(x,t) − i αTγ

)
, (101)

where the column vectors α = (α(1), α(2))T and γ = (γ (1), γ (2))T are given by

α(1) = (
A[̂ηn] e2iθ (̂ηn) D̂n

)
1×(4N1+2N2)

, α(2) = (
A[̂ηn] e2iθ (̂ηn)

)
1×(4N1+2N2)

,

γ (1) = (
μ−11(η

∗
n)
)
1×(4N1+2N2)

, γ (2) = (
μ′−11(̂ηn)

)
1×(4N1+2N2)

.

(102)

Proof It follows from the solution of the matrix Riemann–Hilbert problem in Propo-
sition 19 that one can find the asymptotic behavior of M(x, t; z):

M(x, t; z) = eiv−(x,t)σ3 + M [1](x, t)
z

+ O

(
1

z2

)
, z → ∞, (103)
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where

M [1](x, t) = i eiv−(x,t)σ3σ3 Q− − 1

2π i

∫
�

(
M+ J

)
(x, t; ζ ) dζ

+
4N1+2N2∑

n=1

[
A[ηn] e−2iθ(ηn)

(
μ′−2(ηn) + Dnμ−2(ηn)

)
, A[̂ηn] e2iθ (̂ηn)

(
μ′−1(̂ηn)

+D̂nμ−1(̂ηn)
)]

.

Substituting M(x, t; z)e−iθ(x,t;z)σ3 into Eq. (15) and matching the O (z) term, the
proposition follows. 
�

3.2.3 Trace Formulae and Theta Condition

The so-called trace formulae are that the scattering coefficients s11(z) and s22(z) are
formulated in terms of the discrete spectrum Z and reflection coefficients ρ(z) and
ρ̃(z). Recall that s11(z) is analytic in D+ and s22(z) is analytic in D−. The discrete
spectral points ηn’s are the double zeros of s11(z), while η̂n’s are the double zeros of
s22(z). Define

β+(z) = s11(z)
4N1+2N2∏

n=1

(
z − η̂n

z − ηn

)2

eiv, β−(z) = s22(z)
4N1+2N2∏

n=1

(
z − ηn

z − η̂n

)2

e−iv.

(104)

Then, one can know thatβ+(z) and β−(z) are analytic and have no zero in D+ and D−,
respectively. Moreover, β±(z) → 1 as z → ∞. Besides, − logβ+(z) − logβ−(z) =
log
[
1 − ρ(z) ρ̃(z)

]
. Applying theCauchyprojectors andPlemelj’s formulae (Biondini

and Kovačič 2014), one has

logβ±(z) = ∓ 1

2π i

∫
�

log
[
1 − ρ(ζ ) ρ̃(ζ )

]
ζ − z

dζ, z ∈ D±. (105)

The trace formulae are given by

s11(z) = exp

(
i

2π

∫
�

log
[
1 − ρ̃(ζ ) ρ(ζ )

]
ζ − z

dζ

) 4N1+2N2∏
n=1

(
z − ηn

z − η̂n

)2

e−iv,

s22(z) = exp

(
− i

2π

∫
�

log
[
1 − ρ̃(ζ ) ρ(ζ )

]
ζ − z

dζ

) 4N1+2N2∏
n=1

(
z − η̂n

z − ηn

)2

eiv.

(106)
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As z → 0, the theta condition is obtained. That is to say, there exists j ∈ Z such that

arg

(
q−
q+

)
+ 2v = 16

N1∑
n=1

arg(zn) + 8
N2∑
m=1

arg(wm) + 2 jπ

+ 1

2π

∫
�

log (1 − ρ(ζ )ρ̃(ζ ))

ζ
dζ. (107)

3.2.4 Reflectionless Potential: Double-Pole Soliton Solutions

We consider the case of the reflectionless potential: ρ(z) = ρ̂(z) = 0, in which the
part jump matrix J in Eq. (95) is simplified as J = 02×2. From the Volterra integral
equation (72), one can derive Φ±(x, t; q0) = E±(q0). Combining with the definition
of scattering matrix, one has S(q0) = I and q+ = q−. From the theta condition, there
exists j ∈ Z such that

v = 8
N1∑
n=1

arg(zn) + 4
N2∑
m=1

arg(wm) + jπ. (108)

Theorem 2 The explicit formula for the double-pole solution of the DNLS Eq. (1) with
NZBCs is found by

q(x, t) =
(
det
(
Ĝ
)

det
(
Ĥ
)
)2

det (H)

det (G)

(
1 + det (H)

det (G)

)
q−, (109)

where

G =
[
H β

αT 0

]
, Ĝ =

[
Ĥ β

αT 0

]
, β =

[
β(1)

β(2)

]
,

β(1) =
(

1

η j

)
(4N1+2N2)×1

, β(2) =
(

1

η2j

)

(4N1+2N2)×1

,

the (8N1 + 4N2) × (8N1 + 4N2) matrix H is defined as

H =
[
H (1,1) H (1,2)

H (2,1) H (2,2)

]
, H (m, j) =

(
h(m, j)
s,n

)
(4N1+2N2)×(4N1+2N2)

, m, j = 1, 2,

h(1,1)
s,n = Ĉn(ηs)

(
D̂n + 1

ηs − η̂n

)
− iq−

ηs
δs,n, h(1,2)

s,n = Ĉn(ηs),

h(2,1)
s,n = Ĉn(ηs)

ηs − η̂n

(
D̂n + 2

ηs − η̂n

)
− iq−

η2s
δs,n, h(2,2)

s,n = Ĉn(ηs)

ηs − η̂n
+ iq−q20

η3s
δs,n,
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and the (8N1 + 4N2) × (8N1 + 4N2) matrix Ĥ is defined as

Ĥ =
[
Ĥ (1,1) Ĥ (1,2)

Ĥ (2,1) Ĥ (2,2)

]
, Ĥ (m, j) =

(
ĥ(m, j)
s,n

)
(4N1+2N2)×(4N1+2N2)

, m, j = 1, 2,

ĥ(1,1)
s,n = k(ηs)

k (̂ηn)
Ĉn(ηs)

(
D̂n + 1

ηs − η̂n
− k′(̂ηn)

k (̂ηn)

)
− iq−

ηs
δs,n, ĥ(1,2)

s,n = k(ηs)

k (̂ηn)
Ĉn(ηs),

ĥ(2,1)
s,n = Ĉn(ηs)

k (̂ηn)

[
k(ηs)

ηs − η̂n

(
D̂n + 2

ηs − η̂n
− k′(ηs)

k (̂ηn)

)

−k′(ηs)
(
D̂n + 1

ηs − η̂n
− k′(̂ηn)

k (̂ηn)

)]
− iq−

η2s
δs,n,

ĥ(2,2)
s,n = Ĉn(ηi )

k (̂ηn)

(
k(ηs)

ηs − η̂n
− k′(ηs)

)
+ iq−q20

η3s
δs,n .

Proof From the reconstruction formula (101), one can deduce the implicit formula

q(x, t) =
(
1 + det (G)

det (H)

)
q− e2iv−(x,t). (110)

From the Volterra integral equation (72) and trace formula (106), one has

M = E− + k(z)
4N1+2N2∑

n=1

⎛
⎜⎝
L−2
z=ηn

[M/k(z)]

(z − ηn)
2 +

Res
z=ηn

[M/k(z)]

z − ηn
+

L−2
z=η̂n

[M/k(z)]

(z − η̂n)
2

+
Res
z=η̂n

[M/k(z)]

z − η̂n

⎞
⎠ , (111)

with which one can solve the γ defined by Eq. (102) explicitly. Substituting γ into the
formula for the reflectionless potential, we yield another implicit formula

q(x, t) =
(
eiv−(x,t) + det

(
Ĝ
)

det
(
Ĥ
)
)
q− eiv−(x,t). (112)

From Eqs. (110) and (112), the explicit formula of the double-pole solution is derived.
Then, we complete the proof. 
�

For example,we have the double-pole solutions of theDNLS equationwithNZBCs:

• When N1 = 0, N2 = 1, q± = 1, w1 = e
π
4 i, A[w1] = i, B[w1] =

1 +
(
1 − √

2
)
i, we have the double-pole dark–bright solitons q(x, t) =

P11(x, t)/P12(x, t) with

P11(x, t) =
{
2[1 + i − √

2(1 + (1 + i)t)]e4t+2x

+ 2i[t2 + t + 1 + √
2(t + 1/2)]e2t+x
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Fig. 4 Double-pole bright–dark soliton solutions of the DNLS equation with NZBCs and N1 = 0, N2 =
1, q± = 1, w1 = e

π
4 i, A[w1] = i, B[w1] = 1 +

(
1 − √

2
)
i. (a) 3D profile; (b) intensity profile; (c)

profiles for t = 0, ±2

+ 2[1 − i + √
2(i + (i − 1)t)]

}2
{
[√2(1 − 2i + 2t) + 2(i − t2) + 2(2i − 1)t]e4t+2x

+ (i
√
2t − i + √

2)e6t+3x + (e8t+4x + 1)/2

+ [√2(i t + 1 + i) − i]e2t+x
}
,

P12(x, t) =
{
[√2((1 + i)t + 1) − 1 − i]e4t+2x + [2√2(1 − i + 2t)

− 2 + 2i − 4t2 + 4(i − 1)t]e2t+x

+ √
2(i + (i − 1)t) + 1 − i

}2{[t2 + t + 1 − √
2(t + 1/2)]e4t+2x

+ (1 − √
2t)/2e6t+3x

+ (e8t+4x + 1)/4 + [√2(t + 1) − 1]/2e2t+x
}
,

which is a semi-rational soliton that differs from the simple-pole solutions usually
expressed by the exponential functions even if the double-pole soliton displays
the interaction of dark and bright solitons (see Fig. 4a-c). Figure 4c displays the
Gaussian-like profile with NZBCs when t = 0, and the combinations of Gaussian-
like and dark soliton profiles when t �= 0 (e.g., t = ±2).

• As N1 = 1, N2 = 0, q± = 1, z1 = 2e
π
6 i, A[w1] = B[w1] = i, we have the

interaction of two breathers, which is complicated and omitted here (see Fig. 5).

Remark The obtained N double-pole solitons (109) of the DNLS equation (1) with
NZBCs can be applied to the modified NLS equation (2) by the gauge transformation
(Ichikawa et al. 1980).
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Fig. 5 Double-pole breather–breather solutions of the DNLS equation with NZBCs and N1 = 1, N2 =
0, q± = 1, z1 = 2e

π
6 i, A[w1] = B[w1] = i. (a) 3D profile; (b) intensity profile; (c) profiles for t =

−2, 0, 4

4 Conclusions and Discussions

In conclusion, we have presented the inverse scattering transforms for the DNLS equa-
tion with double zeros of analytical scattering coefficients under ZBCs and NZBCs at
infinity. A rigorous theory for direct and inverse problems was proposed. The direct
scattering illustrates the analyticity, symmetries, discrete spectrum, and asymptotic
behaviors. The inverse problem can be solvedwith the aid of amatrixRiemann–Hilbert
problem, which can derive the trace formula and reflectionless potential. Moreover,
the reflectionless potential with double poles is deduced explicitly by the determi-
nants. Some representative semi-rational bright–bright solitons, dark–bright solitons,
and breather–breather solutions are examined in detail. Though there exists a gauge
transform (Wadati and Sogo 1983) between the NLS equation and DNLS equation
(1), but it is not a trivial problem from the IST of focusing NLS equation with NZBCs
to one of the DNLS equation with NZBCs by comparing Refs. Biondini and Kovačič
(2014), Pichler and Biondini (2017) for the NLS equation and this paper about the
DNLS equation (1).

The used idea and results for the DNLS equation (1) with ZBCs/NZBCs can also
be extended to other types of DNLS equations with ZBCs/NZBCS such as the Chen–
Lee–Liu equation, Gerdjikov–Ivanov equation, and Kundu equation (see them are
listed in the Introduction) since they all belong to the modified Zakharov–Shabat
eigenvalue problem (15,16) (Kundu 1984, 1987). Moreover, we will study the long-
time asymptotic behaviors for theDNLS equationwithNZBCs via themodifiedDeift–
Zhou method (Biondini and Mantzavinos 2017) in another literature.
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