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Abstract
We prove the global existence and uniqueness of smooth solutions to the one-
dimensional barotropic Navier–Stokes system with degenerate viscosity μ(ρ) = ρα .
We establish that the smooth solutions have possibly two different far-fields, and the
initial density remains positive globally in time, for the initial data satisfying the same
conditions. In addition, our result works for any α > 0, i.e., for a large class of
degenerate viscosities. In particular, our models include the viscous shallow water
equations. This extends the result of Constantin et al. (Ann Inst Henri Poincaré Anal
Non Linéaire 37:145–180, 2020, Theorem 1.6) (on the case of periodic domain) to
the case where smooth solutions connect possibly two different limits at the infinity
on the whole space.
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1 Introduction

We consider the one-dimensional barotropic Navier–Stokes system in the Eulerian
coordinates:
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{
ρt + (ρu)x = 0,
(ρu)t + (ρu2)x + p(ρ)x = (μ(ρ)ux )x ,

(1.1)

where the pressure p(ρ) follows the case of a polytropic perfect gas, i.e.,

p(ρ) = ργ , γ > 1, (1.2)

with γ the adiabatic constant. Here, μ denotes the viscosity coefficient given by

μ(ρ) = ρα. (1.3)

Notice that if α > 0, μ(ρ) degenerates near the vacuum, i.e., near ρ = 0. Very often,
the viscosity coefficient is assumed to be constant, i.e.,α = 0. However, in the physical
context the viscosity of a gas depends on the temperature (see Chapman and Cowling
1970). In the barotropic case, the viscosity depends directly on the density. In general,
the viscosity is expected to degenerate on the vacuum as a power of the density as
in (1.3).

There are many results on the existence of solutions to the compressible Navier–
Stokes equations with the constant viscosity for the one-dimensional case. The
existence of weak solutions was first established by Kazhikhov and Shelukhin (1977)
for smooth enough initial data close to the equilibrium bounded away from zero.
The case of discontinuous data but still bounded away from zero was addressed by
Shelukhin (1982, 1983, 1984) and then by Serre (1986) and Hoff (1987a). First result
for vanishing initial density was obtained by Shelukhin (1986). Hoff (1987b) proved
the existence of global weak solutions with large discontinuous initial data, possibly
having different limits at the infinity. There, he also proved that the vacuum cannot
form in finite time. The issues on regularity and uniqueness of solutions were first
studied by Solonnikov (1976) for smooth initial data and for small time. However, the
regularity may blow-up as the solution gets close to vacuum. Hoff and Smoller (2001)
show that any weak solution of the one-dimensional Navier–Stokes equations does
not have vacuum states for every time, provided that no vacuum states initially exist.

Concerning the 1D existence theory for the degenerate case (1.1), Mellet and
Vasseur (2007/08) proved the global existence and uniqueness of strong solutions
with large initial data having possibly different limits at the infinity without no vac-
uum states in the case of α < 1/2 and γ > 1. To control the L∞-norm of 1/ρ globally
in time, they used the relative entropy inequality based on the Bresch–Desjardins
entropy, which was derived in Bresch and Desjardins (2002) for the multi-dimensional
Korteweg system of equations (for the case of α = 1 and with an additional capillary
term) and later generalized in Bresch and Desjardins (2004). In the one-dimensional
case, a similar inequality was introduced earlier by Vaigant (1990) for flows with
constant viscosity.

The result of Mellet and Vasseur (2007/08) was extended by Haspot (2018) to the
case of α ∈ (1/2, 1]. Recently, Constantin et al. (2020, Theorem 1.6) extended it to
the case of α ≥ 0 and γ ∈ [α, α +1] with γ > 1, but they dealt with it on the periodic
domain, and with an additional technical condition [see (1.6)].
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In this article, we aim to extend the result (Constantin et al. 2020, Theorem 1.6) to
the case where smooth solutions have possibly different limits at the infinity on the
whole space. This extended result is motivated by the recent works (Kang and Vasseur
2017, 2019) of the authors on the contraction property, up to a time-dependent shift, for
large perturbations of viscous shocks (connecting two different end states at x = ±∞)
for the one-dimensional barotropic Navier–Stokes system with degenerate viscosity.
In Kang and Vasseur (2017, 2019), solutions of the Navier–Stokes system need to be
regular for existence of the time-dependent shift.

1.1 Main Results

We study global existence of smooth solutions to (1.1) with initial data having possibly
two different limits (ρ±, u±) at x = ±∞, where ρ± > 0. For that, we let ρ̄ and ū be
smooth monotone functions such that

ρ̄(x) = ρ± > 0 and ū(x) = u±, when ± x ≥ 1. (1.4)

Theorem 1.1 Assume γ > 1, α > 0, and γ ∈ [α, α + 1]. Let ρ0 and u0 be the initial
data such that

ρ0 − ρ̄ ∈ Hk(R), u0 − ū ∈ Hk(R), for some integer k ≥ 4,
0 < κ0 ≤ ρ0(x) ≤ κ0, ∀x ∈ R, for some constants κ0, κ0,

(1.5)

and
∂xu0(x) ≤ ρ0(x)

γ−α, ∀x ∈ R, (1.6)

where ρ̄ and ū are the smooth monotone functions satisfying (1.4).
Then, there exists a global-in-time unique smooth solution (ρ, u) of (1.1)–(1.3)

such that for any T > 0,

ρ − ρ̄ ∈ L∞(0, T ; Hk(R))

u − ū ∈ L∞(0, T ; Hk(R)) ∩ L2(0, T ; Hk+1(R)).

Moreover, there exists constants κ(T ) and κ(T ) such that

κ(T ) ≤ ρ(t, x) ≤ κ(T ), ∀(t, x) ∈ [0, T ] × R.

Remark 1.1 Note that the system (1.1) is equivalent to the one in the mass Lagrangian
coordinates for the regularity in Theorem 1.1. Therefore, the above result provides a
class of global-in-time solutions smooth enough, in which the authors proved the con-
traction property (Kang and Vasseur 2017, 2019) for viscous shocks of the barotropic
Navier–Stokes system in the mass Lagrangian coordinates, with any large initial data
satisfying (1.5) and (1.6).

Remark 1.2 Note from the assumption on α and γ that Theorem 1.1 also holds for
the viscous shallow water equations (i.e., γ = 2, α = 1). We refer to Gerbeau and
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Perthame (2018) for a derivation of the viscous shallow water equations from the
incompressible Navier–Stokes equations with free boundary.

Remark 1.3 The initial assumptions on (1.6) and k ≥ 4 in (1.5) are the same conditions
as in Constantin et al. (2020, Theorem 1.5), which is used to control the active potential
(2.9) defined by the density and the velocity (see Lemma 2.2).

Remark 1.4 In Kang and Vasseur (2019), the authors showed some stability property
of entropy shocks of the Euler system as the inviscid case ν = 0 of the Navier–Stokes
system:

{
ρν
t + (ρνuν)x = 0,

(ρνuν)t + (ρν(uν)2)x + p(ρν)x = ν(μ(ρν)uν
x )x .

(1.7)

There, the proof is based on stability for viscous shocks of (1.7), uniform with respect
to ν. This theory is to substitute the notion of inviscid limit of the Navier–Stokes
system for the notion of entropy solution of the Euler system. More specifically, for
any initial data (ρ0, u0) for the inviscid dynamics, considerF(ρ0,u0) the set of inviscid
limits (ν → 0) of solutions for (1.7) with suitable initial values (ρν

0 , uν
0) converging to

(ρ0, u0). This set can be seen as a generalization of the set of entropy solutions to the
Euler system with the initial data (ρ0, u0). In Kang and Vasseur (2019), it was proved
that the entropy shocks are stable in this class F(ρ0,u0). However, the existence of the
non-empty class F(ρ0,u0) is subject to the existence of solutions to the Navier–Stokes
system (1.7) for any fixed ν > 0. This requirement is achieved by Theorem 1.1. Note
that, for the initial value (ρν

0 , uν
0) of (1.7), the technical condition (1.6) corresponds

to ∂xuν
0(x) ≤ ν−1ρν

0 (x)γ−α , which is not restrictive in the limit process ν → 0.

2 Proof of Theorem 1.1

2.1 Idea of Proof

Sincewe are looking for solutions converging to possibly two different limits (ρ±, u±)

at x = ±∞, we do not expect that solutions are integrable. Thus, as a starting point, we
may take advantage of the existence result (Mellet and Vasseur 2007/08), for solutions
(ρ, u) to satisfy ρ − ρ̄, u − ū ∈ L∞(0, T ; L2(R)). However, since the result (Mellet
and Vasseur 2007/08) require the assumption α < 1/2 while we consider any α > 0,
we may perturb the viscosity coefficient (1.3) by adding ερ1/4 with small parameter
ε as in (2.4), under which we ensure the global existence of strong solution (ρε, uε)

satisfying the H1-spatial regularity and the positive lower bound of the density [see
(2.7) and (2.8)].

To remove the ε-dependence of the approximate viscosity με as in (2.21), we may
first show that the lower bound of the density ρε is independent of ε as in Proposition
2.2. For that, we basically use the idea in Constantin et al. (2020) on the analysis for
the time evolution of the active potential (see Lemma 2.2). To perform the analysis,
we need at least H4-spatial regularity of (ρε, uε), which requires the initial condition
(1.5).
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2.2 Approximate Viscosity

Asmentioned above,wefirst recall the existence result inMellet andVasseur (2007/08)
as follows:

Proposition 2.1 (Mellet and Vasseur 2007/08) Let ρ0 and u0 be the initial data such
that

0 < κ0 ≤ ρ0(x) ≤ κ0, ρ0 − ρ̄ ∈ H1(R), u0 − ū ∈ H1(R), (2.1)

for some constants κ0, κ0. Let ν:R+ → R+ be a function such that for some constants
C > 0 and q ∈ [0, 1/2),

ν(y) ≥
{
Cyq ∀y ≤ 1
C ∀y ≥ 1,

(2.2)

and
ν(y) ≤ C + Cyγ ∀y ≥ 0. (2.3)

Then, there exists a global-in-time unique strong solution (ρ, u) of (1.1)–(1.2) with
μ = ν such that the following holds:

For any T > 0, there exist positive constants β(T ) and β(T ) such that

ρ − ρ̄ ∈ L∞(0, T ; H1(R)),

u − ū ∈ L∞(0, T ; H1(R)) ∩ L2(0, T ; H2(R)),

β(T ) ≤ ρ(t, x) ≤ β(T ), ∀(t, x) ∈ [0, T ] × R.

To use Proposition 2.1, we consider an approximate viscosity coefficientμε defined
by perturbing the viscosity μ in (1.3) as follows: For any 0 < ε < 1,

με(ρ) := max
(
μ(ρ), ερα∗) , ∀ρ ≥ 0, where α∗ := 1

2
min

(
α,

1

2

)
. (2.4)

Since

με(ρ) ≥
{

ερ1/4 ∀ρ ≤ 1
ε ∀ρ ≥ 1,

and it follows from γ ≥ α that

με(ρ) ≤ 1 + ργ ∀ρ ≥ 0, (2.5)

με satisfies the assumptions (2.2) and (2.3). Therefore, for the initial datum (ρ0, u0)
satisfying (1.5), Proposition 2.1 implies that there exists a global-in-time unique strong
solution (ρε, uε) of (1.1)–(1.2) with μ = με, i.e.,

⎧⎨
⎩

∂tρε + ∂x (ρεuε) = 0
∂t (ρεuε) + ∂x (ρεu2ε) + ∂x p(ρε) = ∂x (με(ρε)∂xuε)

(ρε, uε)|t=0 = (ρ0, u0),
(2.6)
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such that the following holds: for any T > 0, there exist positive constants κε(T ),
κε(T ) and C = C(T , ε, κ0, κ0) such that

‖ρε − ρ̄‖L∞(0,T ;H1(R)) + ‖uε − ū‖L∞(0,T ;H1(R)) + ‖uε − ū‖L2(0,T ;H2(R)) ≤ C,

(2.7)

and
κε(T ) ≤ ρε(t, x) ≤ κε(T ), ∀(t, x) ∈ (0, T ) × R. (2.8)

2.3 Higher Sobolev Regularity

For the system (2.6), we consider the active potential

wε := −p(ρε) + με(ρε)∂xuε. (2.9)

This is the potential in the momentum equation of (2.6). Indeed, its gradient is the
force:

ρε(∂t uε + uε∂xuε) = ∂xwε.

Then, it follows fromConstantin et al. (2020, Proposition 3.1) thatwε satisfies a forced
quadratic heat equation with linear drift:

∂twε = με(ρε)

ρε
∂2xwε −

(
uε + με(ρε)

∂xρε

ρ2ε

)
∂xwε

+
(

ρε
p′(ρε)

με(ρε)
− 2p(ρε)

ρεμ
′
ε(ρε) + με(ρε)

με(ρε)2

)
wε

− ρεμ
′
ε(ρε) + με(ρε)

με(ρε)2
w2

ε +
(

ρε
p′(ρε)

με(ρε)
− p(ρε)

ρεμ
′
ε(ρε) + με(ρε)

με(ρε)2

)
p(ρε).

(2.10)

Note that the new viscosity coefficient με(ρε)/ρε of the parabolic Eq. (2.10) on wε

is less degenerate than the viscosity coefficient με(ρε) of the momentum equation in
(2.6). Through the coupled system of (2.10) and the continuity equation (2.6)1, we
obtain the higher Sobolev regularity of ρε and wε as long as ρε is positive [that is
guaranteed by (2.8)] as follows:

Lemma 2.1 Let γ, α be any real numbers. Assume that the initial data ρ0 and u0
satisfy

ρ0 − ρ̄ ∈ Hk(R), u0 − ū ∈ Hk(R), for some integer k ≥ 2,
0 < κ0 ≤ ρ0(x) ≤ κ0, ∀x ∈ R,

(2.11)

for some constants κ0, κ0. Then, there exists a global-in-time unique smooth solution
(ρε, uε) of (2.6) such that the following holds: For any T > 0, there exists positive
constants κε(T ), κε(T ) and C = C(T , γ, α, k, ε, κ0, κ0) such that (2.7), (2.8) and
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‖∂kxρε‖L∞(0,T ;L2(R)) + ‖∂k−1
x wε‖L∞(0,T ;L2(R)) + ‖∂kxwε‖L2(0,T ;L2(R))

+ ‖∂kx uε‖L∞(0,T ;L2(R)) + ‖∂k+1
x uε‖L2(0,T ;L2(R)) ≤ C .

This follows straightforwardly from Constantin et al. (2020, Lemma 4.2 and 4.3)
when ‖wε‖L∞(0,T ;L2(R)) is bounded. However, for the density having two different
limits at the infinity, we do not have a L2-bound on wε(t, x) for each t . Therefore, we
may prove Lemma 2.1 without using a L2-bound on wε. Although we need a slight
modification of the proof in Constantin et al. (2020), we present details of the proof
in “Appendix A” for the sake of completeness and the justification on uniformity of
the high Sobolev norms in Proposition 2.4.

2.4 Uniform Lower Bound for the Density

Lemma 2.2 Assume the same hypotheses as in Theorem 1.1. Then, for any T > 0,
there exist positive constants Cγ and εγ such that

wε(t, x) ≤ Cγ εθ , ∀ε ≤ εγ , ∀t ≤ T , ∀x ∈ R,

where θ is the positive constant as follows:

θ := γ

α − α∗
, where α∗ is the constant as in (2.4). (2.12)

Proof First of all, using Lemma 2.1 with k ≥ 4, together with (2.6) and (2.9), we have

ρε, uε, wε ∈ C1([0, T ] × R).

Then, note from (2.9), (2.4), (1.2), (1.3) and the initial condition (1.6) that

wε(0, x) = −p(ρ0) + max
(
μ(ρ0), ερ

α∗
0

)
∂xu0 ≤ −ρ

γ
0 + max

(
ρα
0 , ερ

α∗
0

)
ρ

γ−α
0 .

Since, for all x ∈ R,

wε(0, x) ≤
(
−ρ

γ
0 + ρα

0 ρ
γ−α
0

)
1{ρα

0 >ερ
α∗
0 } +

(
−ρ

γ
0 + ερ

α∗
0 ρ

γ−α
0

)
1{ρα

0 ≤ερ
α∗
0 }

≤ ερ
γ−(α−α∗)
0 1{ρα

0 ≤ερ
α∗
0 } ≤ ε

γ
α−α∗ ,

we have

wε(0, x) ≤ εθ , ∀x ∈ R.

Since wε ∈ C([0, T ] × R), if there exists a point (t0, x0) ∈ (0, T ] × R such that
wε(t0, x0) > εθ , then there exists t1 ≥ 0 such that

sup
x∈R

wε(t, x) ≤ εθ ∀t ∈ [0, t1], (2.13)
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and

sup
x∈R

wε(t, x) > εθ ∀t ∈ (t1, t0].

Let

t2 := sup

{
t ∈ (t1, T ] | sup

x∈R
wε(t, x) > εθ

}
.

Then,

sup
x∈R

wε(t, x) ≥ εθ ∀t ∈ [t1, t2].

Thus, using the fact that for each t ≤ T ,

wε(t, x) → −p(ρ±) ≤ 0 as x → ±∞,

we can define the function

wM (t) := max
x∈R wε(t, x),

which is Lipschitz continuous, and differentiable almost everywhere on [t1, t2] thanks
to the regularity wε ∈ C1([0, T ] × R). Moreover, for each t ∈ [t1, t2], there exists xt
such that

wM (t) = wε(t, xt ).

Then, w′
M (t) = (∂twε)(t, xt ) for a.e. t ∈ (t1, t2), since

w′
M (t) = lim

h→0+
wε(t + h, xt+h) − wε(t, xt )

h

≥ lim
h→0+

wε(t + h, xt ) − wε(t, xt )

h
= ∂twε(t, xt ),

w′
M (t) = lim

h→0+
wε(t, xt ) − wε(t − h, xt−h)

h

≤ lim
h→0+

wε(t, xt ) − wε(t − h, xt )

h
= ∂twε(t, xt ).

Using this together with ∂2xwε(t, xt ) ≤ 0, ∂xwε(t, xt ) = 0 and ρεμ
′
ε(ρε) ≥ 0, we

have from (2.10) that

w′
M (t) ≤ J1(t)wM (t) + J2(t), t ∈ (t1, t2),

123



Journal of Nonlinear Science (2020) 30:1703–1721 1711

where (putting ρM (t) := ρε(t, xt ))

J1(t) := ρ
γ

M

με(ρM )2

(
γμε(ρM ) − 2

(
ρMμ′

ε(ρM ) + με(ρM )
))

,

J2(t) := ρ
2γ
M

με(ρM )2

(
γμε(ρM ) − (

ρMμ′
ε(ρM ) + με(ρM )

))
.

Since γ ≤ α + 1, we have

J1(t) = ρ
γ

M

με(ρM )2

(
(γ−2(α + 1))ρα

M1{ρα
M>ερ

α∗
M }+ε (γ − 2(α∗ + 1)) ρ

α∗
M 1{ρα

M≤ερ
α∗
M }

)

≤ ρ
γ

M

με(ρM )2
ε |γ − 2(α∗ + 1)| ρα∗

M 1{ρα
M≤ερ

α∗
M }.

Moreover, using με(ρM ) ≥ ερ
α∗
M and με(ρM ) ≥ ρα

M by the definition, we have

J1(t) ≤ |γ − 2(α∗ + 1)| ργ−α

M 1{ρα
M≤ερ

α∗
M } ≤ |γ − 2(α∗ + 1)| ε γ−α

α−α∗ .

Likewise, we have

J2(t) = ρ
2γ
M

με(ρM )2

(
(γ − (α + 1))ρα

M1{ρα
M>ερ

α∗
M } + ε (γ − (α∗ + 1)) ρ

α∗
M 1{ρα

M≤ερ
α∗
M }

)

≤ ρ
2γ
M

με(ρM )2
ε |γ − (α∗ + 1)| ρα∗

M 1{ρα
M≤ερ

α∗
M }

≤ |γ − (α∗ + 1)| ε 2γ−α
α−α∗ .

The above estimates and (2.13) imply that for any t ∈ [t1, t2] and ε ∈ (0, 1),

wM (t) ≤ wM (t1) exp

(∫ t

t1
J1(s)ds

)
+

∫ t

t1
J2(s) exp

(∫ t

s
J1(τ )dτ

)
ds

≤ exp (T |γ − 2(α∗ + 1)|)
(
εθ + ε

2γ−α
α−α∗ T |γ − (α∗ + 1)|

)
, (2.14)

If γ > α, it follows from (2.14) that for all ε satisfying

ε ≤
(

1

1 + T |γ − (α∗ + 1)|
) α−α∗

γ−α

,

the following holds:

wM (t) ≤ 2 exp (T |γ − 2(α∗ + 1)|) εθ , ∀t ∈ [t1, t2].
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If γ = α, since θ = 2γ−α
α−α∗ , it follows from (2.14) that

wM (t) ≤ 2 (1 + T |γ − (α∗ + 1)|) exp (T |γ − 2(α∗ + 1)|) εθ ,

∀ε ≤ 1, ∀t ∈ [t1, t2].

Therefore, the above estimates together with (2.13) yield that

sup
x∈R

wε(t, x) ≤ Cγ εθ , ∀ε ≤ εγ , ∀t ∈ [0, t2],

where Cγ is the constants as in (2.12).
If t2 < T , then the definition of t2 implies

sup
x∈R

wε(t, x) ≤ εθ , ∀t ∈ (t2, T ].

Hence, we complete the proof. �
Proposition 2.2 Assume the same hypotheses as in Theorem 1.1. Then, for any
T > 0, there exist positive constants κ(T ) = κ(T )(γ, α, κ0) and δ1 =
δ1(T , γ, α, κ0) (independent of ε) such that

ρε(t, x) ≥ κ(T ), ∀t ≤ T , ∀x ∈ R, ∀ε ≤ δ1.

Proof Let

q(γ ) :=
{

θ if γ > α,

1 if γ = α,
where θ = γ

α − α∗
as in Lemma 2.2.

We first choose a constant δ1 > 0 such that

δ1 :=

⎧⎪⎪⎨
⎪⎪⎩
min

(
εγ ,

( κ0
4

)α−α∗
,
(

2α−1
α(2γ +Cγ )T

) γ
q(γ )(γ−α)

)
if γ > α,

min

(
εγ ,

( κ0
4

)α
,
(
C−1

γ (2α − 1)e−αT
) α−α∗

α∗
)

if γ = α,

(2.15)

where κ0 is the constant as in (1.5), and εγ ,Cγ are the constants as in Lemma 2.2.
Then, since

δ1 ≤
{( κ0

4

)α−α∗ if γ > α,( κ0
4

)α
if γ = α,

we have 2δq(γ )/γ
1 < κ0 for any γ ≥ α.

Therefore, it follows from the initial condition of (1.5) that

inf
x∈R ρ0(x) ≥ 2δq(γ )/γ

1 .
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For any fixed ε ≤ δ1, since ρε ∈ C([0, T ] × R), if there exists a point (t0, x0) ∈
(0, T ] × R such that ρε(t0, x0) < 2δq(γ )/γ

1 , then there exists t1 ≥ 0 such that

inf
x∈R ρε(t, x) ≥ 2δq(γ )/γ

1 ∀t ∈ [0, t1],
inf
x∈R ρε(t, x) < 2δq(γ )/γ

1 ∀t ∈ (t1, t0]. (2.16)

Then,
inf
x∈R ρε(t, x) ≤ 2δq(γ )/γ

1 ∀t ∈ [t1, t2], (2.17)

where

t2 := sup

{
t ∈ (t1, T ] | inf

x∈R ρε(t, x) < 2δq(γ )/γ
1

}
.

Thus, using 2δq(γ )/γ
1 < κ0 ≤ min(ρ−, ρ+) together with the fact that for each t ≤ T ,

ρε(t, x) → ρ± as x → ±∞,

we define the function

ρm(t) := min
x∈R ρε(t, x),

which is Lipschitz continuous, and differentiable almost everywhere on [t1, t2] thanks
to the regularity ρε ∈ C1([0, T ]×R). So, let yt be a minimizer for ρm(t) = ρε(t, yt ).
Since ρ′

m(t) = (∂tρε)(t, yt ) for a.e. t ∈ (t1, t2), and ∂xρε(t, yt ) = 0, we have from
the continuity equation of (2.6) that

ρ′
m(t) = −ρm(t)∂xuε(yt ), t ∈ (t1, t2).

Then, using (2.9), Lemma 2.2 with ε ≤ δ1 ≤ εγ , and με(ρm) ≥ ρα
m , we have

ρ′
m(t) = −ρm(t)

p(ρm) + wε(yt )

με(ρm)
≥ −ρ

1+γ−α
m − Cγ δθ

1ρ
1−α
m , t ∈ (t1, t2). (2.18)

Case of γ > α) Using (2.17) together with q(γ ) = θ , we have

ρ′
m ≥ −(2γ + Cγ )δθ

1ρ
1−α
m ,

which yields

(ρα
m)′ ≥ −α(2γ + Cγ )δθ

1 , t ∈ (t1, t2).

Thus, using (2.16), we have

ρα
m(t) ≥ ρα

m(t1) − α(2γ + Cγ )δθ
1T ≥

(
2δq(γ )/γ

1

)α − α(2γ + Cγ )δθ
1T , ∀t ∈ [t1, t2].
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Since q(γ ) = θ when γ > α, and

δ1 ≤
(

2α − 1

α(2γ + Cγ )T

) γ
q(γ )(γ−α)

,

we have

ρα
m(t) ≥

(
δ
q(γ )/γ
1

)α

, ∀t ∈ [t1, t2].

Therefore, this together with (2.16) and the definition of t2 implies

inf
x∈R ρε(t, x) ≥ δ

q(γ )/γ
1 ∀t ∈ [0, T ].

Case of γ = α First, it follows from (2.18) with γ = α that

ρ′
m ≥ −ρm − Cγ δθ

1ρ
1−α
m , t ∈ (t1, t2).

Then, since

(ρα
m)′ ≥ −αρα

m − αCγ δθ
1 , t ∈ (t1, t2),

we have

ρα
m(t) ≥ ρα

m(t1)e
−α(t−t1) − αCγ δθ

1

∫ t

t1
e−α(t−s)ds,

which together with (2.16) yields

ρα
m(t) ≥

(
2δq(γ )/γ

1

)α

e−αT − Cγ δθ
1 , ∀t ∈ [t1, t2].

Since q(γ )/γ = 1/α and θ = α/(α − α∗) when γ = α, if needed, taking δ1 again
such that

δ1 ≤
(
C−1

γ (2α − 1)e−αT
) α−α∗

α∗
,

we have

ρα
m(t) ≥ e−αT δ1, ∀t ∈ [t1, t2].

Therefore, this together with (2.16) and the definition of t2 implies

inf
x∈R ρε(t, x) ≥ e−T δ

1/α
1 = e−T δ

q(γ )/γ
1 ∀t ∈ [0, T ].

Hence, we complete the proof. �
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2.5 Uniform Bounds for the Solutions (�", u")

Thanks to Proposition 2.2, we first have the uniform upper bound for the density as
follows:

Proposition 2.3 Under the same hypotheses as in Theorem 1.1, there exists a positive
constant κ(T ) (independent of ε) such that

ρε(t, x) ≤ κ(T ), ∀t ≤ T , ∀x ∈ R, ∀ε ≤ δ1,

where δ1 is the constant as in Proposition 2.2.

For the proof of Proposition 2.3, we refer to the proof of Mellet and Vasseur
(2007/08, Proposition 4.5), in which the uniform estimates (2.19) and (2.20) are cru-
cially used to get the uniform upper bound κ(T ) of the density: One estimate is on the
uniform lower bound of the viscosity με as

με(ρε) ≥ ρα
ε ≥ κ(T )α, ∀t ≤ T , ∀x ∈ R, ∀ε ≤ δ1. (2.19)

The others are the estimates (Mellet and Vasseur 2007/08, Lemmas 3.1 and 3.2) on the
relative entropy related to the Bresch–Desjardins entropy (see Bresch and Desjardins
2002, 2003, 2004) as follows:

sup
0≤t≤T

∫
R

(
ρε |uε − ū|2 + p(ρε|ρ̄)

)
dx +

∫ T

0

∫
R

με(ρε)|∂xuε|2dxdt ≤ K ,

sup
0≤t≤T

∫
R

(
ρε |(uε − ū) + ∂x (ϕ(ρε))|2 + p(ρε|ρ̄)

)
dx ≤ K , (2.20)

where ϕ′(ρε) := με(ρε)/ρ
2
ε , and the above constant K is independent of ε thanks to

(2.5). Indeed, it follows from Mellet and Vasseur (2007/08, Lemmas 3.1 and 3.2) that
the constant K depends only on T , γ, (ρ̄, ū), (ρ0, u0), and the constants appearing in
(2.3).

Propositions 2.2 and 2.3 together with the above estimates (2.19)–(2.20) imply the
following uniform estimates on the Sobolev norms of the solutions (ρε, uε):

Proposition 2.4 Under the same hypotheses as in Theorem 1.1, there exists a constant
C (independent of ε) such that

‖ρε − ρ̄‖L∞(0,T ;Hk (R)) + ‖uε − ū‖L∞(0,T ;Hk (R)) + ‖uε − ū‖L2(0,T ;Hk+1(R)) ≤ C .

For the proof of proposition 2.4, we first refer to the proof of Mellet and Vasseur
(2007/08, Proposition 4.6 and 4.7), from which the constant in (2.7) does not depend
on ε anymore. Then, from the proof of Lemma 2.1, we deduce that the constant C in
Lemma 2.1 is independent of ε. Therefore, we have Proposition 2.4
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2.6 Conclusion

We have shown that for any ε ≤ δ1, the system (2.6) has the unique smooth solution
(ρε, uε) such that Propositions 2.2–2.4 hold.

We now take δT as

δT = min
(
κ(T )α−α∗ , δ1

)
,

where the constants κ(T ) and δ1 are as in Proposition 2.2.
Then, since Proposition 2.2 implies that for all ε < δT ,

ερα∗
ε < δT ρα∗

ε ≤ κ(T )α−α∗ρα∗
ε ≤ ρα

ε , ∀t ≤ T , ∀x ∈ R,

it follows from the definition (1.3) that

με(ρε) = μ(ρε), ∀ε < δT , ∀t ≤ T , ∀x ∈ R. (2.21)

Recall that the approximate system (2.6) represents the system (1.1) with με instead
of μ.

Therefore, for any T > 0, and any ε with ε < δT , (ρε, uε) is the unique smooth
solution of (1.1) with the initial datum (ρ0, u0) such that Propositions 2.2–2.4 hold.

Hence, we complete the proof.
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Appendix A: Proof of Lemma 2.1

Let (ρε, uε) be the global strong solution to (2.6) such that (2.7) and (2.8) hold.
Once the desired estimates for k = 2 are obtained, the remaining part proceeds

by induction in k, which follows the same proof of Constantin et al. (2020, Lemma
4.3). Therefore, we here present the proof only when k = 2, based on the proof of
Constantin et al. (2020, Lemma 4.2).

First of all, since ∂xuε ∈ L2(0, T ; L∞(R)) by (2.7), using (2.7) and (2.8), we have

wε ∈ L2(0, T ; L∞(R)),

∂xwε = −p′(ρε)∂xρε + μ′
ε(ρε)∂xρε∂xuε + με(ρε)∂

2
x uε ∈ L2(0, T ; L2(R)). (A.1)

Step 1Differentiating the equation (2.10) in space, multiplying the resulting equation
by ∂xwε and integrating by parts, we have

d

dt

∫
R

|∂xwε|2
2

dx = −
∫
R

με(ρε)

ρε
|∂2xwε|2dx +

∫
R

(
uε + με(ρε)

ρ2ε
∂xρε

)
∂xwε∂

2
xwεdx

+
∫
R

f1(ρε)|∂xwε|2dx +
∫
R

f ′
1(ρε)∂xρεwε∂xwεdx
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− 2
∫
R

f2(ρε)wε|∂xwε|2dx

−
∫
R

f ′
2(ρε)∂xρεw

2
ε ∂xwεdx +

∫
R

f ′
3(ρε)∂xρε∂xwεdx

=: −
∫
R

με(ρε)

ρε
|∂2xwε|2dx +

6∑
j=1

I j .

where

f1(ρ) := ρ
p′(ρ)

με(ρ)
− 2p(ρ)

ρμ′
ε(ρ) + με(ρ)

με(ρ)2
,

f2(ρ) := ρμ′
ε(ρ) + με(ρ)

με(ρ)2
,

f3(ρ) :=
(

ρ
p′(ρ)

με(ρ)
− p(ρ)

ρμ′
ε(ρ) + με(ρ)

με(ρ)2

)
p(ρ).

Since, thanks to (2.8), L∞([0, T ] × R)-norms of ρε to some power are all bounded,
there exists a positive constant C1 = C1(κε(T ), κε(T )) such that

−
∫
R

με(ρε)

ρε

|∂2xwε|2dx ≤ −C1

∫
R

|∂2xwε|2dx,

and

∥∥∥∥με(ρε)

ρ2
ε

∥∥∥∥
L∞([0,T ]×R)

+
3∑
j=1

(
‖ f j (ρε)‖L∞([0,T ]×R) + ‖ f ′

j (ρε)‖L∞([0,T ]×R)

)
≤ C1.

Thus, the above terms I j can be controlled as follows:

|I1| ≤ ‖uε‖L∞(R)‖∂xwε‖L2(R)‖∂2xwε‖L2(R)

+ C1‖∂xρε‖L∞(R)‖∂xwε‖L2(R)‖∂2xwε‖L2(R) ≤ C1

2
‖∂2xwε‖2L2(R)

+ C
(
‖uε‖2L∞(R) + ‖∂xρε‖2L2(R)

+ ‖∂2xρε‖2L2(R)

)
‖∂xwε‖2L2(R)

,

|I2| ≤ C1‖∂xwε‖2L2(R)
,

|I3| ≤ C1‖∂xρε‖L2(R)‖wε‖L∞(R)‖∂xwε‖L2(R)

≤ C1‖∂xρε‖L2(R)

(
‖wε‖2L∞(R) + ‖∂xwε‖2L2(R)

)
,

|I4| ≤ 2C1‖wε‖L∞(R)‖∂xwε‖2L2(R)
,

|I5| ≤ C1‖∂xρε‖L2(R)‖wε‖2L∞(R)‖∂xwε‖L2(R)

≤ C1‖∂xρε‖L2(R)

(
‖wε‖2L∞(R) + ‖wε‖2L∞(R)‖∂xwε‖2L2(R)

)
,

|I6| ≤ C1‖∂xρε‖2L2(R)
+ C1‖∂xwε‖2L2(R)

.
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Moreover, since it follows from (2.7) and ρ̄ ∈ L∞(R) that

∂xρε ∈ L∞(0, T ; L2(R)) and uε ∈ L∞(0, T ; L∞(R)), (A.2)

we have

d

dt
‖∂xwε‖2L2(R)

+ C1‖∂2xwε‖2L2(R)

≤ C
(
1 + ‖∂2xρε‖2L2(R)

+ ‖wε‖2L∞(R)

)
‖∂xwε‖2L2(R)

+ F, (A.3)

where

F = C
(
1 + ‖wε‖2L∞(R)

)
.

Note from (A.1) that F ∈ L1((0, T )).
Step 2We next estimate ‖∂2xρε‖L2(R), to control ‖∂2xρε‖2L2(R)

in (A.3).
Differentiating the continuity equation of (2.6) twice in space, and multiplying the

resulting equation by ∂2xρε, we have

d

dt

∫
R

|∂2xρε|2
2

dx= −
∫
R

∂2x (uε∂xρε)∂
2
xρεdx−

∫
R

∂2x (ρε∂xuε)∂
2
xρεdx

= −
∫
R

uε∂x

( |∂2xρε|2
2

)
dx −

∫
R

(
∂2x (uε∂xρε) − uε∂

2
x ∂xρε

)
︸ ︷︷ ︸

=:J1

∂2xρεdx

−
∫
R

ρε∂
3
x uε∂

2
xρεdx −

∫
R

(
∂2x (ρε∂xuε) − ρε∂

3
x uε

)
︸ ︷︷ ︸

=:J2

∂2xρεdx .

Using the commutator estimates (Majda and Bertozzi 2002, Lemma 3.4) and the
Sobolev embedding, we have

‖J1‖L2(R) ≤ C‖∂2x uε‖L2(R)‖∂xρε‖L∞(R) + C‖∂xuε‖L∞(R)‖∂2xρε‖L2(R)

≤ C‖∂2x uε‖L2(R)‖∂xρε‖H1(R) + C‖∂xuε‖H1(R)‖∂2xρε‖L2(R),

‖J2‖L2(R) ≤ C‖∂2xρε‖L2(R)‖∂xuε‖L∞(R) + C‖∂xρε‖L∞(R)‖∂2x uε‖L2(R)

≤ C‖∂2xρε‖L2(R)‖∂xuε‖H1(R) + C‖∂xρε‖H1(R)‖∂2x uε‖L2(R).

Therefore, we have

d

dt

∫
R

|∂2xρε|2
2

dx≤1

2
‖∂xuε‖L∞(R)‖∂2xρε‖2L2(R)

+‖ρε‖L∞(R)‖∂3x uε‖L2(R)‖∂2xρε‖L2(R)

+ C
(
‖∂2x uε‖L2(R)‖∂xρε‖L2(R) + ‖∂xuε‖H1(R)‖∂2xρε‖L2(R)

)
‖∂2xρε‖L2(R).
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Moreover, using (2.8), (A.2) and the Sobolev embedding, we have

d

dt
‖∂2xρε‖2L2(R)

≤ C
(
‖∂xuε‖H1(R) + ‖∂2x uε‖2L2(R)

)
‖∂2xρε‖2L2(R)

+ C‖∂3x uε‖L2(R)‖∂2xρε‖L2(R) + C . (A.4)

To estimate ‖∂3x uε‖L2(R) in (A.4), we use the definition (2.9) of wε as follows:

∂xuε = g(ρε)wε + h(ρε), where g(ρε) := 1

με(ρε)
, h(ρε) := p(ρε)

με(ρε)
. (A.5)

Since

∂3x uε = g′′(ρε)|∂xρε|2wε + g′(ρε)∂
2
xρεwε + 2g′(ρε)∂xρε∂xwε + g(ρε)∂

2
xwε

+ h′′(ρε)|∂xρε|2 + h′(ρε)∂
2
xρε,

we use (2.8) to have

‖∂3x uε‖L2(R) ≤ C
((‖wε‖L∞(R) + 1

)‖∂xρε‖L∞(R)‖∂xρε‖L2(R)

+ ‖wε‖L∞(R)‖∂2xρε‖L2(R)

+ ‖∂xρε‖L∞(R)‖∂xwε‖L2(R) + ‖∂2xwε‖L2(R) + ‖∂2xρε‖L2(R)

)
.

(A.6)

Combining this with (A.4), and using (A.2) and the Sobolev embedding, we have

d

dt
‖∂2xρε‖2L2(R)

≤ C1

2
‖∂2xwε‖2L2(R)

+ G1‖∂2xρε‖2L2(R)
+ G2, (A.7)

where

G1 := C
(
‖∂xuε‖H1(R) + ‖∂2x uε‖2L2(R)

+ ‖wε‖L∞(R) + ‖∂xwε‖L2(R) + 1
)

,

G2 := C
(
‖wε‖2L∞(R) + ‖∂xwε‖2L2(R)

+ 1
)

.

Note that G1,G2 ∈ L1((0, T )) by (2.7) and (A.1).
Step 3 Adding (A.3)–(A.7), we have

d

dt

(
‖∂xwε‖2L2(R)

+ ‖∂2xρε‖2L2(R)

)
+ C1

2
‖∂2xwε‖2L2(R)

≤ H
(
‖∂xwε‖2L2(R)

+ ‖∂2xρε‖2L2(R)

)
+ F + G2,

where

H := C
(
1 + ‖∂xwε‖2L2(R)

+ ‖wε‖2L∞(R) + ‖∂xuε‖H1(R) + ‖∂2x uε‖2L2(R)

)
.
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Since H , F,G2 ∈ L1((0, T )), and it follows from (2.9) and (2.11) that

‖∂xwε(0)‖L2(R)

≤ C(κ0, κ0)
(
‖∂xρ0‖L2(R) + ‖∂xρ0‖L2(R)‖∂xu0‖L2(R) + ‖∂2x u0‖L2(R)

)
,

Grönwall lemma implies that

‖∂2xρε‖L∞(0,T ;L2(R)) + ‖∂xwε‖L∞(0,T ;L2(R)) + ‖∂2xwε‖L2(0,T ;L2(R)) ≤ C, (A.8)

where the constant C > 0 depends on T and the bounds of (2.7), (2.8) and (2.11).
This now together with (A.1), (A.2) and (A.6) imply the bound for ∂3x uε:

‖∂3x uε‖L2(0,T ;L2(R)) ≤ C .

Moreover, differentiating the both sides of (A.5) in x , and using (2.8), we have

‖∂2x uε‖L2(R) ≤ C
(
‖∂xρε‖L2(R)‖wε‖L∞(R) + ‖∂xwε‖L2(R) + ‖∂xρε‖L2(R)

)
.

Therefore, we use (2.7), (2.8) and (A.8) to have

‖∂2x uε‖L∞(0,T ;L2(R)) ≤ C .

Indeed, since it follows from (2.7) and (2.8) that

wε = −p(ρε) + με(ρε)∂xuε ∈ L∞((0, T ) × R) + L∞(0, T ; L2(R)),

we use (A.8) to have

|wε(x)| ≤ 1

2

∫ x+1

x−1
(|p(ρε)| + |με(ρε)∂xuε|)dy + 1

2

∫ x+1

x−1

∫ x

y
|∂zwε|dzdy

≤ ‖p(ρε)‖L∞((0,T )×R) + 1√
2
‖με(ρε)∂xuε‖L∞(0,T ;L2(R))

+ √
2‖∂xwε‖L∞(0,T ;L2(R)),

which gives ‖wε‖L∞((0,T )×R) ≤ C .
Hence, we complete the proof.
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