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Abstract
The stochastically forced vorticity equation associated with the two-dimensional
incompressible Navier–Stokes equation on Dδ := [0, 2πδ] × [0, 2π ] is considered
for δ ≈ 1, periodic boundary conditions, and viscosity 0 < ν � 1. An explicit family
of quasi-stationary states of the deterministic vorticity equation is known to play an
important role in the long-time evolution of solutions both in the presence of and with-
out noise. Recent results show the parameter δ plays a central role in selectingwhich of
the quasi-stationary states is most important. In this paper, we aim to develop a finite-
dimensional model that captures this selection mechanism for the stochastic vorticity
equation. This is done by projecting the vorticity equation in Fourier space onto a cen-
ter manifold corresponding to the lowest eight Fourier modes. Through Monte Carlo
simulation, the vorticity equation and the model are shown to be in agreement regard-
ing key aspects of the long-time dynamics. Following this comparison, perturbation
analysis is performed on the model via averaging and homogenization techniques to
determine the leading order dynamics for statistics of interest for δ ≈ 1.
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1 Introduction

Consider the 2D incompressible Navier–Stokes equation,

∂u
∂t

= ν�u − (u · ∇)u − ∇ p

∇ · u = 0,
(1.1)

on the possibly asymmetric torus (x, y) ∈ Dδ := [0, 2πδ] × [0, 2π ] with δ ≈ 1,
periodic boundary conditions, and viscosity 0 < ν � 1. To obtain the equivalent
vorticity formulation of the equation, take the curl of the vector field u and set ω =
(0, 0, 1) · (∇ × u) to find

∂tω = ν�ω − u · ∇ω, u =
(

∂y(−�−1)

−∂x (−�−1)

)
ω. (1.2)

The relation between u andω is known as the Biot–Savart law. The periodic bound-
ary conditions insure

∫
Dδ

ω = 0, and therefore, �−1ω is well defined.
Adding random forcing to the system allows to account for stochasticity/genericity

in the system; see, for example, Novikov (1965), Bensoussan and Temam (1973) and
Glatt-Holtz et al. (2015). In particular, we add a stochastic forcing term to (1.2) to
obtain the stochastic 2D vorticity equation,

∂tω = ν�ω − u · ∇ω + ∂W
∂t

, u =
(

∂y(−�−1)

−∂x (−�−1)

)
ω. (1.3)

The noise is white in time, colored in space, and takes the form, for �k = (k1, k2) �=
(0, 0),

W(t, x, y) = √
2ν

∑
�k∈K⊂Z2\{(0,0)}

σ�ke
i(k1x/δ+k2 y)β�k(t), (1.4)

with spatial correlation σ�k and K to be commented on below. Here β(t) = {β�k(t)} is
a collection of i.i.d. Wiener processes.

Notice that with the noise (1.4), Eq. (1.3) is now stochastic. To insure the random
vorticity remains real valued for all times t ≥ 0, the following complex conjugacy
conditions are imposed, σ̄�k = σ−�k and β̄�k = β−�k . Additional assumptions are often
placed on the noise coefficients, σ�k , to insure certain smoothness properties of solu-
tions. In particular, we assume that there exist fixed positive constants C0 and α0 such
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that |σ�k | ≤ C0e−α0|�k|2 so that solutions will then be analytic in space (Mattingly 2002).
Since the boundary conditions force solutions of the deterministic equation to satisfy∫
Dδ

ω = 0, we choose σ(0,0) = 0; so, this property is preserved. Note that if σ�k = 0

for all �k ∈ Z
2, then (1.3) reduces to the deterministic vorticity equation.

Although an L2 energy estimate shows solutions of (1.2) have a time-asymptotic
rest state of zero, certain quasi-stationary states, known as bars and dipoles, rapidly
attract nearby solutions and correspond to transient structures that play a key role in
the long-time evolution of solutions (Beck et al. 2019; Beck andWayne 2013; Bouchet
and Simonnet 2009; Grenier et al. 2020; Ibrahim et al. 2019; Lin and Xu 2019; Wei
et al. 2020; Yin et al. 2003). These quasi-stationary states are members of an explicit
family of functions given by,

ω(x, y, t) = e− ν

δ2
t [a1 cos(x/δ) + a2 sin(x/δ)] + e−νt [a3 cos(y) + a4 sin(y)].

(1.5)

If δ = 1, then any member of this family is an exact solution to the deterministic
vorticity equation. If δ �= 1, then (1.5) remains a solution if and only if a1 = a2 = 0
or if a3 = a4 = 0. These members, which only depend on one spatial variable, are
called bar states, and they are also known as unidirectional or Kolmogorov flow. The
x- and y-bar states are members of this family given by

ωxbar(x, t) = e− ν

δ2
t sin(x/δ), ωybar(y, t) = e−νt sin y,

or similarly with sine replaced by cosine. The associated velocity fields are given by

uxbar(x, t) = −δe− ν

δ2
t
(

0
cos(x/δ)

)
, uybar(y, t) = e−νt

(
cos y
0

)
,

respectively. The dipoles are also members of the family (1.5) and are given by

ωdipole(x, y, t) = e− ν

δ2
t sin(x/δ) + e−νt sin y,

or similarly with sine replaced by cosine, with velocity field

udipole(x, y, t) =
(

e−νt cos y

−δe− ν

δ2
t cos(x/δ)

)
.

For illustration, contour plots for the bar and dipole states for fixed t = 0 on the
symmetric torus (δ = 1) are shown in Fig. 1.

When ν = 0, Eq. (1.1) becomes the Euler equation. It is reasonable to expect that
stationary solutions of the Euler equation could play an critical role in the evolution
of the Navier–Stokes equation for 0 < ν � 1. However, there are infinitely many sta-
tionary solutions, including the bars and dipoles, and so it is not immediately clear how
to determine which would be most important. In Yin et al. (2003), entropy arguments
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(a) x-bar: ωxbar = sin(x) (b) y-bar: ωybar = sin(y) (c) Dipole: ωdipole = sin(x) + sin(y)

Fig. 1 Contour plots of the three quasi-stationary states on the symmetric torus

and extensive numerical studies were conducted in the case δ = 1 and suggested that
the bars and dipoles should be the twomost important stationary solutions of the Euler
equations. Although both states were observed after initial transient periods in the evo-
lution of the Navier–Stokes equation, interestingly the dipole seemed to emerge for a
large class of initial data, whereas the bar states only emerged for a special class of
initial data. Subsequent work, again for the deterministic system, showed that indeed
the bar states attract nearby solutions at a rate much faster than the background global
decay rate, confirming their importance as quasi-stationary states. Results in the case
δ = 1 can be found in Beck and Wayne (2013), Ibrahim et al. (2019) and results for
more general values of δ are in Lin and Xu (2019) andWei et al. (2020). The stochastic
system (1.3) was numerically analyzed in Bouchet and Simonnet (2009) where, after
an initial transient period, metastable switching between the bars and dipoles was seen,
with the dipole being dominant for δ = 1 and the bar states being dominant for δ �= 1.

In this paper, we develop a low-dimensional model that captures how the dominant
quasi-stationary state in the stochastically forced Navier–Stokes equation is selected
by the aspect ratio of the spatial domain, δ. Among the existing results, those that
most greatly motivate this paper can be found in Beck et al. (2019) and Bouchet and
Simonnet (2009). The results of the latter paper (Bouchet and Simonnet 2009), briefly
described above, to our knowledge were the first to suggest that δ could provide such
a selection mechanism. The former paper (Beck et al. 2019) was our previous work
focusing on the deterministic vorticity equation, (1.2), in which we derived a finite-
dimensional model that captured the selection mechanism via the parameter δ. We
now seek to use that same finite-dimensional model, but with the addition of noise,
to numerically investigate the selection mechanism for the stochastic equation (1.3).
Indeed, one can see from the sample paths of Fig. 6a that individual sample paths
exhibit transitions between x-bar and y-bar states, as it has also been observed in
Bouchet and Simonnet (2009).

The rest of the paper is organized as follows. In Sect. 2 we review the finite-
dimensional model originally derived in Beck et al. (2019) and the theoretical results
of that work regarding the selection mechanism in the deterministic setting. In addi-
tion, we also add noise to that model to obtain the stochastic differential equation
(SDE) model that is the focus of this current work. In Sect. 3, to determine the validity
of the SDE model, we compare statistics related to a direct simulation of the stochas-
tic vorticity equation (1.3) with those of the SDE. We demonstrate numerically that
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the statistics of the two equations agree in all cases, δ > 1, δ < 1 and δ = 1. In
particular, solutions to both systems evolve toward an x-bar, y-bar, and dipole in the
three respective cases. In Sect. 4, we further examine the SDE model by viewing it
as a perturbation in the limit as |δ2 − 1| and ν converge to zero. We show that, after
appropriate time-space rescalings, the system can be viewed as a slow–fast system
and classical averaging and homogenization techniques apply. Via the backward Kol-
mogorov equation, a system of PDEs that governs the leading order dynamics of a key
order parameter, E[Zred(t)], defined in (2.7), is derived. This gives us an additional
formal approximation to the expected value of the order parameter, which we can
use to show the selection of the quasi-stationary state. Numerically solving the PDEs
allows us to approximate the evolution of E[Zred(t)] for values of δ close to 1, at least
on some initial finite interval of time. Conclusions and future directions are then given
in Sect. 5.

2 Fourier Space Representation andModel Reduction

Due to the form of the family of solutions (1.5), it is most convenient to express the
stochastic vorticity equation in Fourier space. Hence, letting

ω(x, y) =
∑

�k �=(0,0)

ω̂�ke
i(k1x/δ+k2 y), ω̂�k = 1

4π2δ

∫
Dδ

ω(x, y)e−i(k1x/δ+k2 y)dxdy,

we obtain, for �j , �k and �l �= (0, 0), the following system of infinitely many coupled
SDEs,

˙̂ω�k = − ν

δ2
|�k|2δ ω̂�k − δ

∑
�l

〈�k⊥, �l〉
|�l|2δ

ω̂�k−�l ω̂�l + √
2νσ�k β̇�k

= − ν

δ2
|�k|2δ ω̂�k − δ

2

∑
�j+�l=�k

〈 �j⊥, �l〉
(

1

|�l|2δ
− 1

| �j |2δ

)
ω̂ �j ω̂�l + √

2νσ�k β̇�k,
(2.1)

where
|�k|2δ = k21 + δ2k22, �k⊥ = (k2,−k1). (2.2)

Viewing the system in Fourier space allows us to use the relative energy in certain
modes to measure the proximity of solutions to an x-bar, y-bar, or dipole state. The

x-bar states, e− ν

δ2
t cos(x/δ) and e− ν

δ2
t sin(x/δ), correspond to solutions with energy

only in the �k = (±1, 0) modes, and the y-bar states, e−νt cos(y) and e−νt sin(y),
correspond to solutions with energy only in the �k = (0,± 1) modes. Solutions with
energy in both the �k = (± 1, 0) and �k = (0,± 1) modes correspond to the dipole
state. These four modes are the lowest in the system and will be referred to as the “low
modes.” They correspond to modes with the lowest value of |�k|δ defined by (2.2). Any
mode ω̂�k with |�k| > max{1, δ2} will from here on be referred to as a “high mode.”
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To measure the relative energy in the low modes, we define the stochastic order
parameter,

Zvort(t) := |ω̂(1,0)(t)|2
|ω̂(1,0)(t)|2 + |ω̂(0,1)(t)|2 , (2.3)

where ω̂(1,0) and ω̂(0,1) solve (2.1). Due to the condition, ω̂(k1,k2) = ¯̂ω(−k1,−k2), the
relative energy in all of the low modes can be captured by Zvort(t). The value of
Zvort(t), bounded between 0 and 1, corresponds to the proximity of the solution to
an x-bar, y-bar or dipole state. If the dynamics drive Zvort(t) to increase to 1, there
is more energy in ω̂(1,0) relative to ω̂(0,1), indicating the system is in an x-bar state.
Conversely, if Zvort(t) falls toward 0, the system would be observed to be in a y-bar
state. If Zvort(t) instead stays near 1/2, the system is in a dipole state with relative
energy in the low modes comparable in magnitude.

The finite-dimensional system that we will use to model (2.1) will be defined in
terms of the lowest eight Fourier modes, which for notational convenience we denote
as

ω1 := ω̂(1,0), ω2 := ω̂(−1,0), ω3 := ω̂(0,1), ω4 := ω̂(0,−1),

ω5 := ω̂(1,1), ω6 := ω̂(−1,1), ω7 := ω̂(1,−1), ω8 := ω̂(−1,−1). (2.4)

The variablesω1,2,3,4 correspond to the lowmodes, whileω5,6,7,8 represent the role
of all the high modes. Since the solution ω(x, y) of (2.1) is real valued, the following
complex conjugacy relationship must still hold,

ω1 = ω̄2, ω3 = ω̄4, ω5 = ω̄8, ω7 = ω̄8. (2.5)

Thus, the reducedmodel will be an eight-dimensional approximation to the dynam-
ics of (2.1). To derive the model, we apply a center manifold reduction to (2.1) with
σ�k = 0 for all �k to obtain an eight-dimensional deterministic ODE, which is the model
studied in Beck et al. (2019), and then add noise back to that system to obtain the final
eight-dimensional SDE model we study here.

To carry out the center manifold reduction onto the lowest eight modes, assume for
ω̂�k with �k /∈ {(± 1, 0), (0,± 1), (± 1,± 1)} =: K0, that there exists a smooth function
H(ω1, . . . , ω8; �k) such that the eight-dimensional manifold defined by

M = {ω̂ : ω̂�k = H(ω1, . . . , ω8; �k), �k /∈ K0}

is invariant for the deterministic dynamics of (2.1) with σ�k = 0 for all �k. We refer
to this as a center manifold because it is defined in terms of the lowest eight modes,
which have the weakest linear decay rates. Based on this assumption, one can then in
principle compute the coefficients of the Taylor expansion of H(·, �k) to any order for
each �k by taking the derivative of each of the low modes in two ways (via the function
H and (2.1) with σ�k=0) and equating coefficients. See Beck et al. (2019) for the details
of the derivation.

The reduction is local and will only be valid in a size O(ν) neighborhood of zero
due to the small spectral gaps for the operator ν�. Additionally, while the existence
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of a finite-dimensional (inertial) model of the system (2.1) that describes the global
dynamics cannot be expected (Zelik 2014), themodel still providesmeaningful insight
into the role δ plays in selecting the dominant quasi-stationary state for small initial
conditions. For additional examples in which similar reductions of the Navier–Stokes
equation to a finite-dimensional model have been used to understand global dynamics,
see Weinan and Mattingly (2001) and Mattingly and Pardoux (2014).

Adding independent (real) BrownianmotionsW1,3,5,7 to each equation of the result-
ing ODE model leads to our final SDE model

ω̇1 = − ν

δ2
ω1 + 1

δ(1 + δ2)
[ω3ω7 − ω̄3ω5]

+ 3δ6

2ν(4 + δ2)(1 + δ2)2
ω1(|ω5|2 + |ω7|2) + √

2νσ1Ẇ1

ω̇3 = −νω3 + δ3

(1 + δ2)
[ω̄1ω5 − ω1ω̄7]

+ 3δ2

2ν(1 + 4δ2)(1 + δ2)2
ω3(|ω5|2 + |ω7|2) + √

2νσ3Ẇ3

ω̇5 = −ν
1 + δ2

δ2
ω5 − δ2 − 1

δ
ω1ω3 − δ6(3 + δ2)

2ν(4 + δ2)(1 + δ2)
ω5|ω1|2

− 1 + 3δ2

2νδ2(1 + 4δ2)(1 + δ2)
ω5|ω3|2 + √

2νσ5Ẇ5

ω̇7 = −ν
1 + δ2

δ2
ω7 + δ2 − 1

δ
ω1ω̄3 − δ6(3 + δ2)

2ν(4 + δ2)(1 + δ2)
ω7|ω1|2

− 1 + 3δ2

2νδ2(1 + 4δ2)(1 + δ2)
ω7|ω3|2 + √

2νσ7Ẇ7.

(2.6)

Note that (2.6) with σ1,3,5,7 = 0 corresponds to the ODE model derived in Beck
et al. (2019). To compare the dynamics of this model to that of Zvort(t), defined in
(2.3), we define the analogous order parameter for the SDE model,

Zred(t) := |ω1(t)|2
|ω1(t)|2 + |ω3(t)|2 , (2.7)

which again is used to determine towardwhich quasi-stationary state the system trends.
Here, ω1(t) and ω3(t) are solutions to the reduced system (2.6). The Monte Carlo
simulation of the reducedmodel finds that the dominant quasi-stationary state depends
on the aspect ratio of Dδ in the same way as the deterministic model, studied in detail
in Beck et al. (2019). The main result there, which describes the selection of quasi-
stationary states in (2.6) with σ1,3,5,7 = 0, can be described by the following theorem.

Theorem 2.1 (Beck et al. 2019,Theorem3.4)For δ ∈
(√

2
3 ,

√
3
2

)
, under the dynamics

of (2.6) with σ1,3,5,7 = 0, if δ > 1, then Zred(t) → 1, indicating evolution to an x-
bar state. Conversely if δ < 1, then Zred(t) → 0, indicating evolution to a y-bar

123



1684 Journal of Nonlinear Science (2020) 30:1677–1702

state. For δ = 1, there exists a one-dimensional center manifold of fixed points in the
phase space that determines the asymptotic limit of Zred(t). This center manifold is
foliated with co-dimension one stable manifolds in which solutions converge to the
corresponding fixed point. Exactly one of these manifolds corresponds to each of the
limits Zred(t) → 1 and Zred(t) → 0. Thus, generic initial conditions are seen to
evolve to the dipole state.

Remark 2.2 The order parameter considered in Beck et al. (2019) was instead the
ratio R(t) = |ω1(t)|2/|ω3(t)|2. Theorem 2.1 frames the result in terms of the order
parameter Zred(t). The choice to now consider Zred(t) is for convenience with regard
to numerical simulation due to its being bounded between 0 and 1.

Remark 2.3 A straightforward computation shows that, for any δ, the set {Im(ω1) =
Im(ω3) = Im(ω5) = Im(ω7) = 0} is invariant under the dynamics of (2.6) with
σ1,3,5,7 = 0. Since the real subsystem is invariant in the deterministic setting, we
simulate the reducedmodel where themodes,ω1,3,5,7, as well as theWiener processes,
W1,3,5,7, are all real valued.

3 Numerical Simulation of the Vorticity Equation and ReducedModel

This section provides simulations of the vorticity equation (2.1) and of the reduced
model (2.6). ViaMonteCarlo simulation, the average evolution of the order parameters
Zvort(t) and Zred(t)will be plotted for several values of δ near 1. It will be seen that the
reduced model captures the selection of the quasi-stationary states via the parameter
δ. In particular, in both models, for a particular value of δ ≈ 1, the system’s selection
of its dominant quasi-stationary state is consistent with the motivating results, given
by Theorem 2.1. In particular, the system selects, as the dominant quasi-stationary
state, a dipole for δ = 1, an x-bar for δ > 1, and a y-bar for δ < 1.

The simulation of (2.1) is done via a spectral method which includes Fourier modes
ω̂�k with �k ∈ K := {�k = (k1, k2) ∈ Z

2 : 0 ≤ |k1|, |k2| ≤ 64 and (k1, k2) �= (0, 0)};
see Lord et al. (2014). A condition of exponential decay is imposed on the noise
coefficients σ�k seen in (1.4),

|σ�k | ≤ e−α0|�k|2 . (3.1)

Similar to Bouchet and Simonnet (2009), simulations are conducted with∑
{�k∈K} e−α0| �K |2 = 1. For our set K, this means α0 ≈ 0.349. Time was finely dis-

cretized, and a tamed semi-implicit Euler–Maruyama method was implemented to
simulate the stochastically forced reduced system.

We verify the selection of the dominant quasi-stationary state using Monte Carlo
simulation where the average path over N trials is plotted. Individual runs will be
denoted by Zi

vort(t) and Zi
red(t), for i = 1, . . . N , with corresponding averages given

by

Z̄vort(t) = 1

N

N∑
i=1

Zi
vort(t), Z̄red(t) = 1

N

N∑
i=1

Zi
red(t).
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Similarly, we define the empirical variances to be

Vvort(t) = 1

N − 1

N∑
i=1

(Zi
vort(t) − Z̄vort(t))

2,

Vred(t) = 1

N − 1

N∑
i=1

(Zi
red(t) − Z̄red(t))

2.

It will also be useful to plot the time averages of these Monte Carlo averages. To
produce a meaningful average, we introduce a “burn-in time,” tburn, and ignore the
initial period during which Z̄vort(t) and Z̄red(t) have not yet stabilized. Define this
time average for any function f (t) defined on tburn ≤ t ≤ T to be

A( f , tburn) := 1

T − tburn

∫ T

tburn
f (t) dt .

3.1 Vorticity Equation

Plotted in Figs. 2, 3 and 4 are Z̄vort(t), the time average A(Z̄vort, tburn) and the 95%
confidence intervals defined via

CI±(t) = Z̄vort(t) ± 1.96 ∗
√
Vvort(t)

N
.

Also included are average contour plots for the vorticity. We use N = 200 and for
each trial use zero initial conditions and ν = 0.001. For δ = 1, Fig. 2a shows Z̄vort(t)
remains near 1/2 for the duration of the simulation. We use a burn-in time of tburn = 0
when computing the time average since on the symmetric domain it is clear there is
no transient initial period. In Fig. 2b, the average contour plot for each individual trial
is themselves averaged over the N = 200 trials, reflecting a dipole.

The simulations exhibited in Fig. 3a and b show that, for δ = 1.1, the order param-
eter increases initially and the average contour plot looks like that of an x-bar state.
In Fig. 3a, tburn = 100 is used when computing the time average.

Lastly for δ < 1 the simulations exhibited in Fig. 4a and b show that, for δ = 0.9,
the order parameter decreases over an initial period of time and the average contour
plot looks like that of a y-bar state. Here we again set tburn = 100.

Provided in Fig. 5 are plots of Z̄vort(t) for δ = 1.10, δ = 1.0 and δ = 0.90 averaged
over N = 1000 trials. This is to show that as the number of trials increase, the variance
is decreasing without changing the mean behavior. The variances all remain generally
between 0.06-0.08. While the variance does decrease, the limiting value of Z̄vort(t)
remains relatively unchanged compared to what is seen when averaging over N = 200
trials.

For completeness, see also the discussion in Sect. 5, we also include in Fig. 6 a
simulation with ν = 0.001 that represents a single sample path for δ = 1.04, the value
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(a) Z̄vort(t) with 95% confidence interval. (b) Average contour plot of vorticity.

Fig. 2 Vorticity aligns on average as a dipole for δ = 1
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(a) Z̄vort(t) with 95% confidence interval. (b) Contour plot of vorticity.

Fig. 3 Vorticity aligns on average as an x-bar for δ = 1.1
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(a) Z̄vort(t) with 95% confidence interval. (b) Average contour plot of vorticity.

Fig. 4 Vorticity aligns on average as a y-bar for δ = 0.9
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(a) δ = 1.10 (b) δ = 1.0
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(c) δ = 0.90

Fig. 5 Plot of Z̄vort(t) and of 95% confidence level error bars with N = 1000 trials and ν = 0.001
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(a) An individual trajectory transitions
among quasi-stationary states.
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(b) On average, the system is close
to an x-bar state.

Fig. 6 A single trajectory and the Monte Carlo average Z̄vort(t) for δ = 1.04

of δ for which transitions among the quasi-stationary states were observed in Bouchet
and Simonnet (2009).

Figure 6a shows that individual trajectories exhibit transitions between quasi-
stationary states, visiting the dipole and both bar states, as also observed in Bouchet
and Simonnet (2009) for the same value of δ. However, Fig. 6b shows that E[Zvort(t)]
picks the dominant state. We now compute the time average of a randomly selected
individual trial, given by A(Zvort, tburn), to confirm that it tracks the Monte Carlo
average, Z̄vort(t). Figure 7 shows two things. First, for the given values of δ, a sample
path may experience many transitions among the quasi-stationary states. Second, the
time average of the sample path does eventually track the Monte Carlo average.

3.2 ReducedModel

We now turn our attention to the reduced model (2.6). We confirm numerically that
the reduced model captures the qualitative dynamics of the full vorticity equation with
regard to the dominant quasi-stationary state.

As we mentioned in Remark 2.3, we will be working with the real system in which
ω1,3,5,7, as well as the Wiener processes, W1,3,5,7, are all real valued. This leads
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Fig. 7 Comparing individual time average of a sample path with Monte Carlo average

to the following system which serves as the acting reduced model in the upcoming
simulations.

ω̇1 = − ν

δ2
ω1 + 1

δ(1 + δ2)
[ω3ω7 − ω3ω5]

+ 3δ6

2ν(4 + δ2)(1 + δ2)2
ω1(ω

2
5 + ω2

7) + √
2νσ1Ẇ1

ω̇3 = −νω3 + δ3

(1 + δ2)
[ω1ω5 − ω1ω7]

+ 3δ2

2ν(1 + 4δ2)(1 + δ2)2
ω3(ω

2
5 + ω2

7) + √
2νσ3Ẇ3

ω̇5 = −ν
1 + δ2

δ2
ω5 − δ2 − 1

δ
ω1ω3

− δ6(3 + δ2)

2ν(4 + δ2)(1 + δ2)
ω5ω

2
1 − 1 + 3δ2

2νδ2(1 + 4δ2)(1 + δ2)
ω5ω

2
3 + √

2νσ5Ẇ5

ω̇7 = −ν
1 + δ2

δ2
ω7 + δ2 − 1

δ
ω1ω3

− δ6(3 + δ2)

2ν(4 + δ2)(1 + δ2)
ω7ω

2
1 − 1 + 3δ2

2νδ2(1 + 4δ2)(1 + δ2)
ω7ω

2
3 + √

2νσ7Ẇ7.

(3.2)
To be consistent with the spatial decay of the noise in the simulations of the stochas-

tically forced vorticity equation (2.1), given by (3.1), we choose

σ1,3 = e−α0 and σ5,7 = e−2α0 .

First, we aim to establish that the reduced model (3.2) can serve as a good approx-
imation to the vorticity equation with noise, (2.1), for δ ≈ 1. Second, it will be
established that the selection of the bar or dipole state that dominates is consistent
with the results of Beck et al. (2019) for the deterministic equation: x-bar for δ > 1,
y-bar for δ < 1, and dipole for δ = 1.
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Fig. 8 Simulation of Z̄red(t) with noise for ν = 0.001

Figure 8 showsnumerical evidence supporting that the dynamics of the order param-
eter, governed by the reduced system (3.2), follows the same trend as when the full
vorticity equation is simulated.

The plots of these Monte Carlo simulations (averaged over N = 200 trials) show
that the trend toward the appropriate quasi-stationary state is captured by the reduced
model. Starting with zero initial conditions, when the noise is added, the simulations
show that for δ > 1, the order parameter increases toward 1, indicating evolution
to an x-bar state. Conversely, for δ < 1, the order parameter decreases toward a
value corresponding to a y-bar state. Finally, when δ = 1, Z̄red(t) remains near 1/2
indicating the system is in a dipole state. Figure 9a–e compares the evolution of Z̄vort(t)
and Z̄red(t) taken over N = 200 trials, for values of δ close to 1. The bars denote the
error for the 95% confidence intervals for Z̄vort (bold) and Z̄red (thin).

One can see that Z̄vort(t) and Z̄red(t) both trend in the same direction, with similar
variances (typically between 0.06 and 0.08 for 0 ≤ t ≤ 2000). Furthermore, their
respective confidence intervals begin to converge until they overlap. Indeed, the model
can be used to determine toward which quasi-stationary state the system evolves for a
given value of δ.

4 Perturbation Analysis

Motivated by the numerics fromSect. 3, this section investigates the expected behavior
of Zred(t) as δ → 1 while viewing the problem as a perturbation from the δ = 1 and
ν = 0 case. Using the backward Kolmogorov equation associated with (3.2), the goal
is to derive a system of PDE that will provide insight on how the expected value of
Zred(t), to leading order, depends on values of δ close to 1. To do this, we pose the
problem as a perturbation of the spatial domain, setting δ2 = 1+ε0ε. Here, 0 < ε � 1
acts as the small perturbation parameter and ε0 = ±1 determines which dimension
of the torus is longer. Following known homogenization techniques, see, for example,
Pavliotis and Stuart (2008), we scale (3.2) in a way that reveals a slow–fast system of
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Fig. 9 Comparing Z̄vort(t) and Z̄red(t) averaged over N = 200 trials with ν = 0.001. Corresponding 95%
confidence error bars are also included

SDE. Then, we write the backward Kolmogorov equation to reach the ultimate goal of
determining equations that govern the limiting evolution of E[Zred(t)] as ε → 0 once
the fast variables are averaged out. First, for ease of notation, rename the dependent
variables as follows,

p̃ := Re(ω1), q̃ := Re(ω3), r̃ := Re(ω5), s̃ := Re(ω7).

Now (3.2) can be expressed as

˙̃p = − ν

δ2
p̃ + 1

δ(1 + δ2)
q̃(s̃ − r̃) + 3δ6

2ν(4 + δ2)(1 + δ2)2
p̃(|r̃ |2 + |s̃|2) + √

2νσ1Ẇ1

˙̃q = −νq̃ + δ3

(1 + δ2)
p̃(r̃ − s̃) + 3δ2

2ν(1 + 4δ2)(1 + δ2)2
q̃(|r̃ |2 + |s̃|2) + √

2νσ3Ẇ3

˙̃r = −ν
1 + δ2

δ2
r̃ − δ2 − 1

δ
p̃q̃ − δ6(3 + δ2)

2ν(4 + δ2)(1 + δ2)
r̃ | p̃|2

− 1 + 3δ2

2νδ2(1 + 4δ2)(1 + δ2)
r̃ |ỹ|2 + √

2νσ5Ẇ5

˙̃s = −ν
1 + δ2

δ2
s̃ + δ2 − 1

δ
p̃q̃ − δ6(3 + δ2)

2ν(4 + δ2)(1 + δ2)
s̃| p̃|2

− 1 + 3δ2

2νδ2(1 + 4δ2)(1 + δ2)
s̃|q̃|2 + √

2νσ7Ẇ7. (4.1)
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Before inserting the Taylor expansions in ε for the coefficients with δ2 = 1 + ε0ε,
we first scale (4.1) appropriately to obtain a clear slow–fast system. As in Beck et al.
(2019), the low modes represented by p̃ and q̃ correspond to the slow variables while
the high modes, r̃ and s̃, represent the fast variables. Below, we give a more general
version of the scaled equations for just the p̃ (analogous to q̃) and r̃ (analogous to
s̃) equations. We use the following space-time and parameter scalings: ν = εμν0,
p̃ = εξ p, q̃ = εξq, r̃ = εηr , s̃ = εηs, and τ = εγ t . To simplify the scaled equations,
we will relate μ, ξ , η and γ to put the resulting system in a more desirable form. We
neglect the ε dependence of p, q, r and s for readability. Below, the “prime” notation
denotes differentiation with respect to the scaled time variable, τ .

p′ = εμ−γ
(
−ν0

δ2
p
)

+ εη−γ 1

δ(1 + δ2)
q(s − r) + ε2η−μ−γ

× 3δ6

2ν0(4 + δ2)(1 + δ2)2
p(r2 + s2) + ε

μ−γ
2 −ξ

√
2ν0σ1W

′
5(τ )

r ′ = εμ−γ

(
−ν0

1 + δ2

δ2
r

)
− ε2ξ−γ−η δ2 − 1

δ
(pq) − ε2ξ−μ−γ

× 1

ν0

(
δ6(3 + δ2)

2(4 + δ2)(1 + δ2)
rp2 + 1 + 3δ2

2(1 + 4δ2)(1 + δ2)
rq2

)

+ ε
μ−γ
2 −η

√
2ν0σ5W

′(τ )

Now set 2η = μ+γ , 2ξ = μ−γ ⇒ γ = μ−2ξ , with 0 < γ < ξ <
μ
2 < η < μ.

Then the fully scaled system (still neglecting Taylor expansions of δ in ε for now)
becomes

p′ = ε2ξ
(
−ν0

δ2
p
)

+ εξ 1

δ(1 + δ2)
q(s − r) + 3δ6

2ν0(4 + δ2)(1 + δ2)2
p(|s|2 + |s|2)

+√
2ν0σ1W

′
1(τ )

q ′ = ε2ξ (−ν0q) + εξ δ3

(1 + δ2)
p(r − s) + 3δ2

2ν0(1 + 4δ2)(1 + δ2)2
q(|r |2 + |s|2)

+√
2ν0σ3W

′
3(τ )

r ′ = ε2ξ
(

−ν0
1 + δ2

δ2
r

)
− ε3ξ−2η δ2 − 1

δ
pq

−ε2(ξ−η)

(
δ6(3 + δ2)

2ν0(4 + δ2)(1 + δ2)
r |p|2 + 1 + 3δ2

2ν0δ2(1 + 4δ2)(1 + δ2)
r |q|2

)

+εξ−η
√
2ν0σ5W

′
5(τ )

s′ = ε2ξ
(

−ν0
1 + δ2

δ2
s

)
+ ε3ξ−2η δ2 − 1

δ
pq

−ε2(ξ−η)

(
δ6(3 + δ2)

2ν0(4 + δ2)(1 + δ2)
s|p|2 − 1 + 3δ2

2ν0δ2(1 + 4δ2)(1 + δ2)
s|q|2

)

+εξ−η
√
2ν0σ7W

′
7(τ ). (4.2)
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For the scaled SDE (4.2), let bε = (bε
p, b

ε
q , b

ε
r , b

ε
s ) denote the drift vector and

�ε(p, q, r , s; σ1, σ3, σ5, σ7)denote the diffusionmatrix so that (4.2) can be expressed,

for X ε = (p, q, r , s) and dW
dτ =

(
dW1
dτ , dW3

dτ ,
dW5
dτ , dW7

dτ

)
, as

dX ε

dτ
= bε + �ε dW

dτ
. (4.3)

Now replacing the δ coefficients appearing in (4.2) with their Taylor expansions for
δ2 = 1+ ε0ε up toO(ε3), the drift vector is given by (still suppressing ε dependence
of p, q, r , s),

bε
p = 1

ν0

(
3

40
+ εε0

27

200
+ ε2

117

4000
− ε0ε

3 123

5000

)
p(r2 + s2)

+εξ

(
1

2
− ε0

2
ε + 7

16
ε2 − 3ε0

8
ε3

)
q(s − r) − ε2ξ ν0(1 − ε0ε + ε2 − ε0ε

3)p

bε
q = 1

ν0

(
3

40
− 3

50
ε0ε + 117

4000
ε2 − 93

20000
ε0ε

3
)
q(r2 + s2)

+εξ

(
1

2
+ ε0

2
− 1

8
ε2

)
p(r − s) − ε2ξ ν0q

bε
r = ε2(ξ−η) 1

ν0

[
−1

5
r(p2 + q2) − ε0ε

1

100
r(51p2 − 31q2) − ε2

373

1000
r(p2 + q2)

−ε0ε
3 1

10000
r
(
379p2 − 4109q2

)]

−ε2ξ ν0(2 − ε0ε + ε2 − ε0ε
3)r − ε3ξ−2η

(
ε0ε − 1

2
ε2 + 3

8
ε0ε

3
)
pq

bε
s = ε2(ξ−η) 1

ν0

[
−1

5
s(p2 + q2) − ε0ε

1

100
s(51p2 − 31q2) − ε2

373

1000
s(p2 + q2)

−ε0ε
3 1

10000
s
(
379p2 − 4109q2

)]

−ε2ξ ν0(2 − ε0ε + ε2 − ε0ε
3)s + ε3ξ−2η

(
ε0ε − 1

2
ε2 + 3

8
ε0ε

3
)
pq (4.4)

and the diffusion matrix by

�ε(p, q, r , s; σ1, σ3, σ5, σ7) =

⎛
⎜⎜⎝

√
2ν0σ1 0 0 0
0

√
2ν0σ3 0 0

0 0 εξ−η
√
2ν0σ5 0

0 0 0 εξ−η
√
2ν0σ7

⎞
⎟⎟⎠ .

(4.5)

With H(uε) denoting the Hessian matrix of uε , we now write the backward Kol-
mogorov equation for (4.3), which is defined as
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∂uε

∂τ
= bε · ∇uε + 1

2
Tr[(�ε)2H(uε)], in R4 × [0, T ]

uε(p, q, r , s, 0) = φ(p, q), on R
4 × {0}.

(4.6)

The backward Kolmogorov equation has the useful property that the evolution of
uε(X ε, τ ) gives

uε(p, q, r , s, τ ) = E
[
φ(pτ , qτ )

∣∣ pτ (0) = p, qτ (0) = q, rτ (0) = r , sτ (0) = s
]
.

Thus, one ultimately is interested in initializing (4.6)withφ(p, q) = Zred = p2

p2+q2
,

but for now we proceed with a general initial condition, φ. We seek a solution to (4.6)
that takes the form

uε(p, q, r , s, τ ) = u0(p, q, r , s, τ ) + εu1(p, q, r , s, τ ) + ε2u2(p, q, r , s, τ ) + . . .

(4.7)
and wish to find the limiting dynamics, uε as ε → 0. As the goal is to identify the
leading order expansion for uε , we determine a system of PDEs for u0, u1, and u2.
We present now the calculations that lead to the characterization of u0, u1, and u2, see
(4.16).

Define Lε to be the operator acting on the right-hand side of (4.6), so that ∂uε

∂τ
=

Lεuε . Decomposing Lε by powers of ε using the expressions for bε and �ε given in
(4.4) and (4.5), we write

Lεuε = ε2(ξ−η)L0u
ε + ε2(ξ−η)+1L1u

ε + ε2(ξ−η)+2L2u
ε + ε2(ξ−η)+3L3u

ε

+L4u
ε + εL5u

ε + ε2L6 + ε3L7u
ε

+εξL8u
ε + εξ+1L9u

ε + εξ+2L10u
ε + εξ+3L11u

ε

+ε2ξL12u
ε + ε2ξ+1L13u

ε + ε2ξ+2L14u
ε + ε2ξ+3L15u

ε

+ε3ξ−2η+1L16u
ε + ε3ξ−2η+2L17u

ε + ε3ξ−2η+3L18u
ε .

A select few of the operators,Li , i = 1, . . . , 19, that are most important in comput-
ing the leading order equations is provided in (4.8). A complete list of the expressions
of the 19 operators can be found in “Appendix.”

L0u = − 1

5ν0
(p2 + q2)

(
r
∂u

∂r
+ s

∂u

∂s

)
+ 2ν0

(
σ 2
5

∂2u

∂r2
+ σ 2

7
∂2u

∂s2

)

L1u = − ε0

100ν0
(51p2 − 31q2)

(
r
∂u

∂r
+ s

∂u

∂s

)

L4u = 3

40ν0
(r2 + s2)

(
p

∂u

∂ p
+ q

∂u

∂q

)
+ 2ν0

(
σ 2
1

∂2

∂ p2
+ σ 2

3
∂2

∂q2

)

L5u = ε0

ν0
(r2 + s2)

(
27

200
p

∂u

∂ p
− 3

50
q

∂u

∂q

)

L8u = −1

2
(r − s)

(
q

∂u

∂ p
− p

∂u

∂q

)
(4.8)
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Nowwe choose explicit values for ξ and η to obtain a simpler, but still representative
system: η = 2, ξ = 1, hence μ = 3 (ν = εμν0 = ε3ν0). Note that this choice of
parameters is not unique. Our goal is to make a choice that makes the computations
that follow tractable, preserves a clear slow–fast system in the scaled equations (4.2)
and results in a system that exhibits qualitatively the same behavior as the original
system in terms of the selectionmechanism to x-bar, y-bar and dipole states depending
on the values of δ. With this choice, the generator Lε of the PDE becomes

Lεuε = ε−2L0u
ε + ε−1L1u

ε + (L2 + L4 + L16) u
ε

+ε (L3 + L5 + L8 + L8) u
ε

+ε2 (L6 + L9 + L12 + L18) u
ε + ε3 (L7 + L10 + L13) u

ε

+ε4 (L11 + L14) u
ε + ε5L15u

ε . (4.9)

The ansatz given in (4.7) can now be inserted into the backward Kolmogorov
equation (4.6) using the expression of Lε given above in (4.9). Matching coefficients
on both sides of the equation yields the following leading order equations,

O(ε−2) : −L0u0 = 0 (4.10a)

O(ε−1) : −L0u1 = L1u0 (4.10b)

O(1) : −L0u2 = −∂u0
∂τ

+ L1u1 + (L2 + L4 + L16) u0 (4.10c)

O(ε) : −L0u3 = −∂u1
∂τ

+ L1u2 + (L2 + L4 + L16)u1

+ (L3 + L5 + L8 + L17) u0. (4.10d)

Equation (4.10a) implies u0 lies in the kernel of L0, which elliptic PDE theory tells
us contains only functions constant in r and s. Since L1 is also a differential operator
in r and s only, (4.10b) implies that u1 is constant in r and s as well. One can also
see that u0 and u1 are in the kernel of each of L2,3,16,17 (see “Appendix”). Hence, the
leading order system given by (4.10a)-(4.10d) can be reduced to

O(ε−2) : −L0u0 = 0 ⇒ u0 = u0(p, q, τ ) (4.11a)

O(ε−1) : −L0u1 = L1u0 ⇒ u1 = u1(p, q, τ ) (4.11b)

O(1) : −L0u2 = −∂u0
∂τ

+ L4u0 (4.11c)

O(ε) : −L0u3 = −∂u1
∂τ

+ L1u2 + L4u1 + (L5 + L8) u0, (4.11d)

whereL0,L1,L4,L5 andL8 are presented in (4.8). Letρ∞(r , s; p, q) be the stationary
density that satisfies the adjoint problem

L∗
0ρ

∞(r , s; p, q) = 0.
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Once ρ∞ is known, we can integrate against the invariant measure to obtain the
solvability conditions for Eqs. (4.11c) and (4.11d)

∂u0
∂τ

=
∫
R2

L4u0ρ
∞(r , s; p, q)drds

∂u1
∂τ

=
∫
R2

(L1u2 + L4u1 + (L5 + L8) u0) ρ∞(r , s; p, q)drds. (4.12)

Before we consider the integrals in (4.12), ρ∞ must be identified. The operator,

L0 =
(

− 1

5ν0
r(p2 + q2),− 1

5ν0
s(p2 + q2)

)
·
(

∂

∂r
,

∂

∂s

)
+ 1

2

(
4ν0σ 2

5 0
0 4ν0σ 2

7

) (
∂2

∂r2
∂2

∂s2

)
,

corresponds to the backward Kolmogorov equation for the following system, param-
eterized by the fixed (slow) variables p and q.

˙̂r = − 1

5ν0
(p2 + q2)r̂ + σ5

√
2ν0Ẇ5

˙̂s = − 1

5ν0
(p2 + q2)ŝ + σ7

√
2ν0Ẇ7.

These processes are independent Ornstein–Uhlenbeck processes and are therefore
Gaussian. The equilibrium (stationary) density which corresponds to ρ∞(r , s; p, q)

is that of the bivariate Gaussian distribution with

r ∼ N

(
0,

5ν20σ
2
5

p2 + q2

)
, s ∼ N

(
0,

5ν20σ
2
7

p2 + q2

)
.

Therefore, the invariant joint density is

ρ∞(r , s, p, q) = p2 + q2

10πν20σ5σ7
e
− p2+q2

10ν20
( r2

σ25
+ s2

σ27
)

.

To aid in the computations of the integrals given in (4.12), the following integral
evaluations will be useful and can be simply obtained through the mean and variance
of the stationary distribution.

∫
R2

(r2 + s2)ρ∞(r , s; p, q)drds = 5ν20
p2 + q2

(σ 2
5 + σ 2

7 ) (4.13a)
∫
R2

(r − s)ρ∞(r , s; p, q)drds = 0. (4.13b)
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Next consider the solvability conditions (4.12) one at a time. From the u0 equation
and the integral (4.13a),

∂u0
∂τ

=
∫
R2

L4u0ρ
∞drds

= 2ν0

(
σ 2
1

∂2u0
∂ p2

+ σ 2
3

∂2u0
∂q2

)
+ 3

40ν0

(
p

∂u0
∂ p

+ q
∂u0
∂q

)

×
∫
R2

(r2 + s2)ρ∞(r , s; p, q)drds

= 2ν0

(
σ 2
1

∂2u0
∂ p2

+ σ 2
3

∂2u0
∂q2

)
+ 3ν0

8
(σ 2

5 + σ 2
7 )

(
p

p2 + q2
∂u0
∂ p

+ q

p2 + q2
∂u0
∂q

)
.

From this, we obtain the effective equations for p and q for small ε after the fast
variables r and s are averaged out. The slow motion can hence be approximated, for
0 < ε � 1, by p̄ and q̄ governed by,

p̄′ = 3ν0
8

(σ 2
5 + σ 2

7 )
p̄

p̄2 + q̄2
+ σ1

√
2ν0W

′
1

q̄ ′ = 3ν0
8

(σ 2
5 + σ 2

7 )
q̄

p̄2 + q̄2
+ σ3

√
2ν0W

′
3. (4.14)

Since ε0 dependence does not appear in the first-order equations, we will need to
determine u1 to see its effects. Consider the solvability condition for u1 in (4.12).
Computing this integral requires us to evaluate the following integrals.

I0 =
∫
R2

L5u0ρ
∞drds

I0′ =
∫
R2

L8u0ρ
∞drds

I1 =
∫
R2

L4u1ρ
∞drds

I2 =
∫
R2

L1u2ρ
∞drds.

In evaluating these, we see

I0 =
∫
R2

ε0

ν0

(
27

200
p
∂u0
∂ p

− q
∂u0
∂q

)
(r2 + s2)ρ∞(r , s; p, q)drds =

= 5ε0ν0(σ
2
5 + σ 2

7 )

(
27

200

p

p2 + q2
∂u0
∂ p

− q

p2 + q2
∂u0
∂q

)

I0′ =
∫
R2

−1

2

(
q

∂u0
∂ p

− p
∂u0
∂q

)
(r − s)ρ∞(r , s; p, q)drds = 0

I1 = 2ν0

(
σ 2
1

∂2u1
∂ p2

+ σ 2
3

∂2u1
∂q2

)

+3ν0
8

(σ 2
5 + σ 2

7 )

(
p

p2 + q2
∂u1
∂ p

+ q

p2 + q2
∂u1
∂q

)
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I2 = −ε0
1

100ν0
(51p2 − 31q2)

∫
R2

(
r
∂u2
∂r

+ s
∂u2
∂s

)

×ρ∞(r , s; p, q)drds. (4.15)

Since u2 depends on the fast variables, this final integral cannot yet be computed.
It will eventually be handled numerically. Thus, formally, we have uε = u0 + εu1 +
ε2u2 + · · · satisfying,

∂u0
∂τ

= 3ν0
8

(σ 2
5 + σ 2

7 )

(
p

p2 + q2
∂u0
∂ p

+ q

p2 + q2
∂u0
∂q

)
+ 2ν0

(
σ 2
1

∂2u0
∂ p2

+ σ 2
3

∂2u0
∂q2

)

∂u1
∂τ

= 3ν0
8

(σ 2
5 + σ 2

7 )

(
p

p2 + q2
∂u1
∂ p

+ q

p2 + q2
∂u1
∂q

)
+ 2ν0

(
σ 2
1

∂2u1
∂ p2

+ σ 2
3

∂2u1
∂q2

)

+5ε0ν0(σ
2
5 + σ 2

7 )

(
27

200

p

p2 + q2
∂u0
∂ p

− q

p2 + q2
∂u0
∂q

)

− ε0

100ν0
(51p2 − 31q2)

∫
R2

(
r
∂u2
∂r

+ s
∂u2
∂s

)
dρ∞

−L0u2 = ∂u0
∂τ

− L4u0 (4.16)

We shall consider the system (4.16) together with the initial conditions

u0(p, q, 0) = φ(p, q), u1(p, q, 0) = 0, and u2(p, q, r , s, 0) = 0.

The PDE for u0 immediately stands out as the backward Kolmogorov equation
corresponding to the system given in (4.14). Despite its simple looking form, the
regularity at the origin of the coefficients on the first derivative terms turns out to be a
borderline case with regard to well-posedness; see, for example, Chapter III, Section
1 of Ladyzenskaja et al. (1968). Nevertheless, we proceed formally and solve for u0,
u1, and u2 numerically after providing the initial condition

φ(p, q, 0) = p2

p2 + q2

so that uε(p, q, r , s, τ ) = E[Zred(τ )|p0 = p, q0 = q, r0 = r , s0 = s]. The
simulations of the system (4.16) provide an approximation to the deterministic evolu-
tion of E[Zred(τ )] after averaging out the fast motion. The simulations of the system
(4.16) provided in this section were conducted via finite differences on the domain
(p, q, r , s, τ ) ∈ [−5, 5]4 × [0, T ] with Neumann boundary conditions.

When ε = 0, which implies δ = 1, the system is unperturbed and u0(p, q, t) =
E[Zred(τ )|p0 = p, q0 = q]. In this case, the results of the simulation show that the
expected value of the order parameter Zred(τ ) converges to 1/2 for any initial values
p0 = p and q0 = q of (2.6), independent of r and s. This indicates that the unperturbed
system evolves to a dipole state, even if the initial state is close to an x- or y-bar state.
Figure 10 illustrates the evolution to a dipole for ε = 0 for several initial conditions
(p, q) chosen within the domain.
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Fig. 10 For ε = 0, E[Zred(τ )] → 1/2

We conclude this section by comparing the numerical approximation toE[Zred(τ )],
given by uε(τ ) to the average path of the order parameter Zred(t), i.e., Z̄red(t), as
computed via Monte Carlo simulation in Sect. 3. Since the two models evolve on
different timescales, we rescale τ so that our averaged PDE model is evolving on
the original timescale. As such, suppressing the spatial (p, q, r , s) dependency, let
ûε(t) := u0(t/ε) + εu1(t/ε) = u0(τ ) + εu1(τ ) denote theO(ε) approximation to uε

in the original timescale, and let Z̄red(t) denote the Monte Carlo average path of the
order parameter under the dynamics of (2.6) obtained via theMonte Carlo simulations
described in Sect. 3.

Since the Monte Carlo simulation of (2.6) used zero initial conditions, we plot
the approximation ûε(p, q, t) for (p, q) = (0.1, 0.1), close to the origin. With this
choice, Fig. 11a and b shows that in the perturbed system, theO(ε) approximation to
uε(τ ) = E[Zred(τ )] evolves toward 0 or 1 depending on the sign of ε̂ := ε0ε.

Using these simulations with ν scaled, we now explore how the intervals on which
ûε serves as a good approximation to Z̄red(t) depend on the perturbation parameter.
Figure 12 shows the relative error (RE) given by

RE = |ûε(t) − Z̄red(t)|
Z̄red(t)

.

On some initial interval of time, the PDE approximation, ûε indeed serves as a
close approximation to Z̄red(t). Furthermore, as expected, the smaller the perturbation
parameter ε, the longer the approximation is valid.

5 Concluding Remarks and Future Directions

In this paper, we developed a finite-dimensional SDE model that can be used to elu-
cidate the dynamics of the 2D Navier–Stokes vorticity equation with noise. Monte

123



Journal of Nonlinear Science (2020) 30:1677–1702 1699

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Approximation evolves to an y-bar
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Fig. 11 Approximation follows the evolution of the Zred(t) for small ε
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Fig. 12 Relative error |ûε (t)−Z̄red(t)|
Z̄red(t)

Carlo simulation of the reduced model showed that the major qualitative property
of the system, i.e., the dominant quasi-stationary state, can be determined from the
model. In particular, as has been observed numerically and rigorously, the existence
and attracting nature of these quasi-stationary states play an important role in the
evolution of the stochastic Navier–Stokes vorticity equation. Specifically, the aspect
ratio of the periodic domain, Dδ = [0, 2πδ] × [0, 2π ], determines whether generic
solutions evolve toward an x-bar state (δ > 1), a y-bar state (δ < 1), or a dipole state
(δ = 1).

Perturbation analysis then shows that the proposed reduced model can be viewed
as a slow–fast system, Subsequent averaging and homogenization methods show the
leading order behavior as the perturbation parameter δ ≈ 1 goes to δ = 1, in relation
to how the viscosity parameter ν vanishes.

The numerical studies in Sect. 3 show that, on average, the system prefers the trend
toward the appropriate quasi-stationary state as determined by δ; see Fig. 6b. However,
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one can see from the sample path plotted in Fig. 6a, individual sample paths do exhibit
transitions between x-bar and y-bar states, as it has also been observed in Bouchet
and Simonnet (2009).

In regard to future directions, there are a number of interesting questions that one
can ask and hope to answer. To begin with, the perturbation analysis of Sect. 4 is
formal and one would like to prove both well-posedness of (4.16) and validity of the
perturbation expansion.

In addition, the numerical studies of Sect. 3 suggest that while there are transitions
at the individual sample path level, the system tends to converge to the preferred state
depending on whether δ < 1 or δ > 1. One would like to make this mathematically
rigorous. Furthermore, one could potentially use the reduced model of § 2 to build
a related large deviations theory describing probabilities of the system being in, and
exit times for leaving, one of the quasi-stationary states.

Furthermore, the form of the noise used in (1.4) and (4.1), with scaling factor√
ν, is common in the literature; see, for example, Glatt-Holtz et al. (2015) and the

references therein. One of the important questions in the literature is the investigation
of the convergence of the corresponding invariant measure as ν → 0 to that of the
2D Euler equation, see Kuksin and Shirikyan (2012). The support of the limiting
invariant measure (i.e., as ν → 0) is in general still an open question, see Glatt-Holtz
et al. (2015), and it has been resolved in special cases in Bedrossian and Coti Zelati
(2017) and Bedrossian et al. (2016). In our work, we study the long-time behavior
of the vorticity equation as ν → 0 and in particular the selection mechanism for
the dominant quasi-stationary states. It is reasonable to expect that there is a relation
between the selection mechanism and the support of the limiting invariant measure.
This is an intriguing question that is left for future work, and it is beyond the scope of
this work.

6 Appendix

The complete list of operators in the Kolmogorov equation (4.6) is given by

L0u = − 1

5ν0
(p2 + q2)

(
r
∂u

∂r
+ s

∂u

∂s

)
+ 2ν0

(
σ 2
5

∂2u

∂r2
+ σ 2

7
∂2u

∂s2

)

L1u = − ε0

100ν0
(51p2 − 31q2)

(
r
∂u

∂r
+ s

∂u

∂s

)

L2u = − 373

1000ν0
(p2 + q2)

(
r
∂u

∂r
+ s

∂u

∂s

)

L3u = − ε0

1000ν0
(379p2 − 4109q2)

(
r
∂u

∂r
+ s

∂u

∂s

)

L4u = 3

40ν0
(r2 + s2)

(
p

∂u

∂ p
+ q

∂u

∂q

)
+ 2ν0

(
σ 2
1

∂2

∂ p2
+ σ 2

3
∂2

∂q2

)

L5u = ε0

ν0
(r2 + s2)

(
27

200
p

∂u

∂ p
− 3

50
q

∂u

∂q

)
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L6u = 117

4000ν0
(r2 + s2)

(
p

∂u

∂ p
+ q

∂u

∂q

)

L7u = − ε0

ν0
(r2 + s2)

(
123
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p

∂u

∂ p
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20000
q

∂u
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)
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∂ p
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∂u
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(
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∂ p
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∂u

∂q

)

L10u = 1

8
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(
7

2
q
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∂ p
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(6.1)
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