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Abstract
In this paper, we prove a Liouville type theorem for non-Newtonian fluid equations in
R
3, having the diffusion term Ap(u) = ∇ · (|D(u)|p−2D(u)) with D(u) = 1

2 (∇u +
(∇u)�), 3/2 < p < 3. In the case 3/2 < p ≤ 9/5, we show that a suitable weak
solution u ∈ W 1,p(R3) satisfying lim inf R→∞ |uB(R)| = 0 is trivial, i.e., u ≡ 0. On
the other hand, for 9/5 < p < 3 we prove the following Liouville type theorem:
if there exists a matrix valued function V = {Vi j } such that ∂ j Vi j = ui (summation

convention), whose L
3p

2p−3 mean oscillation has the following growth condition at
infinity,

∫
−
B(r)

|V − V B(r)|
3p

2p−3 dx ≤ Cr
9−4p
2p−3 ∀1 < r < +∞,

then u ≡ 0.

Keywords Non-Newtonian fluid equations · Liouville type theorem

Mathematics Subject Classification 35Q30 · 76D05 · 76D03

Communicated by Anthony Bloch.

B Dongho Chae
dchae@cau.ac.kr

Jörg Wolf
jwolf2603@cau.ac.kr

1 Department of Mathematics, Chung-Ang University, Dongjak-gu, Heukseok-ro 84, Seoul 06974,
Republic of Korea

2 School of Mathematics, Korea Institute for Advanced Study, Dongdaemun-gu, Hoegi-ro 85,
Seoul 02455, Republic of Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-020-09615-y&domain=pdf


1504 Journal of Nonlinear Science (2020) 30:1503–1517

1 Introduction

We consider the following stationary non-Newtonian fluid equations in R
3

− Ap(u) + (u · ∇)u = −∇π in R
3, (1.1)

∇ · u = 0, (1.2)

where u = (u1, u2, u3) = u(x) is the velocity field, π = π(x) is the scalar pressure
and

Ap(u) = ∇ · (|D(u)|p−2D(u)), 1 < p < +∞

with D(u) = D = 1
2 (∇u + (∇u)�) representing the symmetric gradient. Here,

|D|p−2D = σ (D) stands for the deviatoric stress tensor. System (1.1), (1.2) is popular
among engineers, known as a power law model of non-Newtonian fluid, where the
viscosity depends on the shear rate |D(u)|. For p = 2, it reduces to the usual stationary
Navier-Stokes equations, as pioneered by Leray (1933). For 1 < p < 2, the fluid is
called shear thinning, while in case 2 < p < +∞ the fluid is called shear thickening.
For more details on the continuum mechanical background of the above equations,
we refer to Wilkinson (1960). Concerning the existence and regularity of solutions to
(1.1), we refer to Pokorný (1996), Frehse et al. (2003).

The Liouville type problem for the Navier–Stokes equations, as stated in Galdi’s
book (Galdi 2011, Remark X. 9.4, pp. 729), is a challenging open problem in the
mathematical fluid mechanics. We refer Chae (2014), Chae and Yoneda (2013), Chae
and Wolf (2016), Chamorro et al. (2019), Gilbarg and Weinberger (1978), Koch et al.
(2009), Korobkov et al. (2015), Kozono et al. (2017), Seregin (2016, 2018), Seregin
and Wang (2019) and the references therein for partial progresses for the problem.
In those literatures, authors provided sufficient conditions for velocities to guarantee
the triviality of solutions. Our aim is to study Liouville type theorems for more gen-
eral equations than the Navier–Stokes equation, namely equations for non-Newtonian
fluids modeling such as power law fluids.

We mention that similarly to the case of the Navier–Stokes equations our main
theorem has no implications for further regularity properties of weak solutions of
equations modeling power law fluids.

Let u ∈ L1
loc(R

n) be a vector function, and let V = {Vi j } ∈ L1
loc(R

n;Rn×n) be
defined such that ∂ j Vi j = ui , where the derivative is in the sense of distribution.
Clearly, such V exists, although it is not unique. For instance, we may set {Vi j }

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Vii (x) =
xi∫

0

ui (x1, . . . , ξi , . . . , xn)dξi if 1 ≤ i ≤ n

Vi j (x) ≡ 0 if i 
= j .

In Seregin (2016, 2018), Seregin proved Liouville type theorem for the Navier–
Stokes equations under hypothesis on the function V with restriction Vi j = −εi jkψk
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with εi jk being the standard alternating tensor. In particular in Seregin (2018), it is
shown that if V ∈ BMO(R3), then u = 0. In this paper, we would like to generalize
this result for system (1.1), (1.2).

For a measurable set � ⊂ R
n , we denote by |�| the n-dimensional Lebesgue

measure of �, and for f ∈ L1(�) we use the notation

f� :=
∫
−
�

f dx := 1

|�|
∫

�

f dx .

In contrast to the case p = 2, it is still open whether any weak solution to system
(1.1), (1.2) is regular or not. Therefore, in the present paper we only work with weak
solutions satisfying the local energy inequality the solution of which are called suitable
weak solution.

Definition 1.1 Let 3
2 ≤ p < +∞.

1. We say u ∈ W 1, p
loc (R3) is a weak solution to (1.1), (1.2) if the following identity

is fulfilled
∫

R3

(
|D(u)|p−2D(u) − u ⊗ u

)
: D(ϕ)dx = 0 (1.3)

for all vector fields ϕ ∈ C∞
c (R3) with ∇ · ϕ = 0.

2. A pair (u, π) ∈ W 1, p
loc (R3)× L

3
2
loc(R

3) is called a suitable weak solution to (1.1),
(1.2) if besides (1.3) the following local energy inequality holds

∫

R3

|D(u)|pφdx

≤ −
∫
R3

|D(u)|p−2D(u) : u ⊗ ∇φdx +
∫

R3

(1
2
|u|2 + π

)
u · ∇φdx (1.4)

for all nonnegative φ ∈ C∞
c (R3).

Remark 1.2 In case 9
5 ≤ p < +∞ any weak solution to (1.1), (1.2) is a suitable weak

solution. Indeed, by Sobolev’s embedding theorem we have u ∈ L
9
2
loc(R

3), which
yields |u|2|∇u| ∈ L1

loc(R
3). In addition, as we will see below in Sect. 2 from (1.3) we

get π ∈ L
9
4
loc(R

3) such that for all ϕ ∈ W 1, 9
5 (R3) with compact support

∫

R3

(
|D(u)|p−2D(u) : D(ϕ) + u ⊗ u : D(ϕ)

)
dx =

∫

R3

π∇ · ϕdx . (1.5)

Thus, inserting ϕ = uφ into (1.5), where φ ∈ C∞
c (R3), and applying integration by

parts, we get (1.4) where the inequality is replaced by equality.
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Our aim in this paper is to prove the following.

Theorem 1.3

(i) Let 3
2 ≤ p ≤ 9

5 . We suppose (u, π) ∈ W 1, p
loc (R3) × L

3
2
loc(R

3) is a suitable weak
solution of (1.1), (1.2). If

∫

R3

|∇u|pdx < +∞, lim inf
R→∞ |uB(R)| = 0 (1.6)

then u ≡ 0.

(ii) Let 9
5 < p < 3. We suppose (u, π) ∈ W 1, p

loc (R3) × L
3
2
loc(R

3) is a weak solution

of (1.1), (1.2). Assume there exists V = {Vi j } ∈ W 2,p
loc (R3;R3×3) such that

∂ j Vi j = ui , and

∫
−
B(r)

|V − V B(r)|
3p

2p−3 dx ≤ Cr
9−4p
2p−3 ∀1 < r < +∞. (1.7)

Then, u ≡ 0.

Remark 1.4 In the case 6
5 < p < 3

2 , our method does not work, since it requires
u ∈ L3

loc(R
3) in order to satisfy the local energy inequality. Indeed, by Sobolev’s

embedding theorem it follows W 1, p
loc (R3) ↪→ L

3p
3−p
loc (R3) and 3p

3−p ≥ 3 if and only if

p ≥ 3
2 .

Remark 1.5 Obviously V ∈ BMO(R3) implies condition (1.7). In fact, (1.7) is guar-
anteed by V ∈ C0,α(R3) wih α = 9−4p

3p > 0 thanks to the Campanato theorem
(Giaquinta 1983).
Choosing p = 2 in (ii) of the above theorem, we immediate obtain the following
corollary on the Navier–Stokes equations, coinciding with a special case of Chae and
Wolf (2019).

Corollary 1.6 Let (u, π) be a smooth solution of the stationary Navier–Stokes equa-
tions on R

3. Suppose there exists V ∈ C∞(R3;R3×3) such that ∇ · V = u, and

∫
−
B(r)

|V − V B(r)|6dx ≤ Cr ∀1 < r < +∞. (1.8)

Then, u ≡ 0.

Remark 1.7 (1) A similar result as Corollary1.6 has been obtained by Seregin in Sere-
gin (2018). Instead of (1.8), he imposed

(∫
−
B(r)

|V − V B(r)|sdx
) 1

s

≤ Crα(s) ∀1 < r < +∞ (1.9)
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with 0 < α(s) < s−3
6(s−1) for s > 3. In case s = 6, our result improves Seregin’s result.

(2) We believe that condition (1.7) can be generalized by replacing the exponent
2p

2p−3 by s0 ≤ s <
2p

2p−3 for suitable s0 > 1. In order to keep the paper less technical,

however, we restrict ourselves to the case s = 2p
2p−3 here.

2 Proof of Theorem1.3

We start our discussion of estimating the pressure for both of the cases (i) and (ii). First
note that by the hypothesis u ∈ W 1,p

loc (R3) and due to Sobolev’s embedding theorem

it holds u ∈ L
3p
3−p (R3). This yields

|D(u)|p−2D(u) − u ⊗ u ∈ Lq
loc(R

3), q = min
{ 3p

6 − 2p
,

p

p − 1

}
.

Given 0 < R < +∞, and noting that q ≥ 3
2 for p ≥ 3

2 , we may define the functional
F ∈ W−1, s(B(R)), 3

2 ≤ s ≤ q, by means of

〈F, ϕ〉 =
∫

B(R)

(|D(u)|p−2D(u) − u ⊗ u) : D(ϕ)dx, ϕ ∈ W 1, s′
0 (B(R)),

where we set s′ = s
s−1 . Since u is a weak solution to (1.1), (1.2) in view of (Sohr

2001, Lemma2.1.1) there exists a unique πR ∈ Lq(B(R)) with
∫

B(R)

πRdx = 0 such

that

〈F, ϕ〉 =
∫

B(R)

πR∇ · ϕdx ∀ϕ ∈ W 1,s′
0 (B(R)).

Furthermore, we get for all 3
2 ≤ s ≤ q

∫

B(R)

|πR |sdx ≤ c‖F‖sW−1, s (B(R))
≤ c‖|D(u)|p−2D(u) − u ⊗ u‖sLs (B(R)), (2.1)

with a constant c > 0, depending only on p but independent of 0 < R < +∞. Let
1 < ρ < R < +∞. We set π̃R = πR − (πR)B(1). From the definition of the pressure
πR , it follows that

∫

B(ρ)

(π̃R − π̃ρ)∇ · ϕdx = 0 ∀ϕ ∈ W 1,s′
0 (B(ρ)).

This shows that π̃R − π̃ρ is constant in B(ρ). Since (π̃R − π̃ρ)B(1) = 0 it follows
that π̃ρ = π̃R in B(ρ). This allows us to define π ∈ Lq

loc(R
3) by setting π = π̃R in
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B(R). In particular, π − πB(R) = πR . Thus, thanks to (2.1) we estimate by Hölder’s
inequality

∫

B(R)

|π − πB(R)|sdx ≤ c‖|D(u)|p−2D(u) − u ⊗ u‖sLs (B(R))

≤ cR
s(3−p)

p

( ∫

B(R)

|D(u)|pdx
)s(p−1)

+ c
∫

B(R)

|u|2sdx .

Hence,

‖π − πB(R)‖Ls (B(R)) ≤ cR
3−p
p ‖D(u)‖p−1

L p(B(R)) + c‖u‖2L2s (B(R))
. (2.2)

Note that q = 9
4 whenever 9

5 ≤ p < +∞. This yields the existence of the pressure

π ∈ L
9
4
loc(R

3).

Let 1 < r < +∞ be arbitrarily chosen, and r ≤ ρ < R ≤ 2r . We set R = R+ρ
2 .

Let ζ ∈ C∞(Rn) be a cut off function, which is radially non-increasing with ζ = 1 on
B(ρ) and ζ = 0 onR3\B(R) satisfying |∇ζ | ≤ c(R−ρ)−1. From (1.4) with φ = ζ p

we get

∫
B(R̄)

|D(u)|pζ pdx ≤ −
∫

B(R)

|D(u)|p−2∇ζ p · D(u) · udx+

+ 1

2

∫

B(R)

|u|pu · ∇ζ p +
∫

B(R)

(π − πB(R))u · ∇ζ pdx .

Applying Hölder’s and Young’s inequality, we get from above

∫

B(ρ)

|D(u)|pζ pdx ≤ c(R − ρ)−p
∫

B(R)\B(ρ)

|u|pdx + c(R − ρ)−1
∫

B(R)\B(ρ)

|u|3dx

+ c(R − ρ)−1
∫

B(R)\B(ρ)

|π − πB(R)||u|dx

= I + I I + I I I . (2.3)

The case 3
2 ≤ p ≤ 9

5 :Observing (1.8) and applyingSobolev’s embedding theorem,
we get

u ∈ L
3p
3−p (R3). (2.4)
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In (2.3) we take ρ = R
2 . Applying Hölder’s inequality, we easily get

I + I I ≤ c

( ∫

R3\B( R
2 )

|u| 3p
3−p dx

) 3−p
3 + cR

5p−9
p

( ∫

R3\B( R
2 )

|u| 3p
3−p dx

) 3−p
p

.

Using (2.4) and recalling that p ≤ 9
5 , we see that I + I I = o(R) as R → +∞.

Applying Hölder’s inequality along with (2.2) with s = 3
2 , we estimate

I I I ≤ cR−1
(
R

3−p
p ‖D(u)‖p−1

L p(B(R))
+ c‖u‖2

L3(B(R))

)( ∫

R3\B( R
2 )

|u|3dx
) 1

3

≤ c‖∇u‖p−1
L p

( ∫

R3\B( R
2 )

|u| 3p
3−p dx

) 3−p
3p

+ cR
5p−9

p ‖u‖2
L

3p
3−p

( ∫

R3\B( R
2 )

|u| 3p
3−p dx

) 3−p
3p

.

Observing (2.4) along with p ≤ 9
5 , we find I I I = o(R) as R → +∞. Inserting the

above estimates into the right-hand side of (2.3), we deduce that D(u) ≡ 0, which
implies that u = u(x) is a linear function x . Taking into account the condition (1.6),
we obtain u ≡ 0.

The case 9
5 < p < 3: In order to estimate I and I I , we choose another cut off

function ψ ∈ C∞(R3), which is radially non-increasing with ψ = 1 on B(R) and
ψ = 0 onR3\B(R) satisfying |∇ψ | ≤ c(R−ρ)−1. Recalling that u = ∇·V , applying
integration by parts and applying the Hölder inequality, we find

∫

B(R)

|u|pψ pdx

=
∫

B(R)

∂i (Vi j − (Vi j )B(R))u j |u|p−2ψ pdx

= −
∫

B(R)

(Vi j − (Vi j )B(R))

(
∂i u j |u|p−2 + (p − 2)u juk∂i uk |u|p−4

)
ψ pdx

−
∫

B(R)

(Vi j − (Vi j )B(R))u j |u|p−2∂iψ
pdx
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≤ c

( ∫

B(R)

|V − V B(R)|pdx
) 1

p
( ∫

B(R)

|∇u|pdx
) 1

p
( ∫

B(R)

|u|pψ pdx

) p−2
p

+ c(R − ρ)−1
( ∫

B(R)

|V − V B(R)|pdx
) 1

p
( ∫

B(R)

|u|pψ pdx

) p−1
p

.

Using Hölder’s inequality, Young’s inequality and observing (1.7), we obtain

∫

B(R)

|u|pψ pdx ≤ c

( ∫

B(R)

|V − V B(R)|pdx
) 1

2
( ∫

B(R)

|∇u|pdx
) 1

2

+ c(R − ρ)−p
∫

B(R)

|V − V B(R)|pdx

≤ cR3−p
( ∫

B(R)

|V − V B(R)|
3p

2p−3 dx

) 2p−3
6

( ∫

B(R)

|∇u|pdx
) 1

2

+ c(R − ρ)−p R6−2p
( ∫

B(R)

|V − V B(R)|
3p

2p−3 dx

) 2p−3
3

≤ cR
9−2p
3

( ∫

B(R)

|∇u|pdx
) 1

2 + c(R − ρ)−p R
18−4p

3 .

Since R ≥ 1, and p > 9/5 we have R
9−2p
3 ≤ Rp and R

18−4p
3 ≤ R2p, and therefore

I ≤ c(R − ρ)−p R p
( ∫

B(R)

|∇u|pdx
) 1

2 + (R − ρ)−2p R2p.

To estimate I I , we proceed similar. We first estimate the L3 norm of u as follows:

∫

B(R)

|u|3ψ3dx

=
∫

B(R)

∂i (Vi j − (Vi j )B(R))u j |u|ψ3dx

= −
∫

B(R)

(Vi j − (Vi j )B(R))∂i (u j |u|)ψ3dx −
∫

B(R)

(Vi j − (Vi j )B(R))u j |u|∂iψ3dx
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≤ c

( ∫

B(R)

|V − V B(R)|
3p

2p−3 dx

) 2p−3
3p

( ∫

B(R)

|u|3ψ3dx

) 1
3
( ∫

B(R)

|∇u|pdx
) 1

p

+ c(R − ρ)−1
( ∫

B(R)

|V − V B(R)|3dx
) 1

3
( ∫

B(R)

|u|3ψ3dx

) 2
3

.

Using Young’s inequality, we get

∫

B(R)

|u|3ψ3dx ≤ c

( ∫

B(R)

|V − V B(R)|
3p

2p−3 dx

) 2p−3
2p

( ∫

B(R)

|∇u|pdx
) 3

2p

+ c(R − ρ)−3
∫

B(R)

|V − V B(R)|3dx

≤ c

( ∫

B(R)

|V − V B(R)|
3p

2p−3 dx

) 2p−3
2p

( ∫

B(R)

|∇u|pdx
) 3

2p

+ c(R − ρ)−3R
3(3−p)

p

( ∫

B(R)

|V − V B(R)|
3p

2p−3 dx

) 2p−3
p

. (2.5)

Once more appealing to (1.7), and recalling R ≥ 1, p > 9/5, and thus R
9−p
p ≤ R4,

we arrive at

I I ≤ c(R − ρ)−1R

( ∫

B(R)

|∇u|pdx
) 3

2p + c(R − ρ)−4R
9−p
p

≤ c(R − ρ)−1R

( ∫

B(R)

|∇u|pdx
) 3

2p + c(R − ρ)−4R4. (2.6)

It remains to estimate I I I . Using Hölder’s inequality and Young’s inequality, we infer

I I I ≤ c(R − ρ)−1
∫

B(R)

|π − πB(R)|
3
2 dx + c(R − ρ)−1

∫

B(R)

|u|3dx . (2.7)

Combining (2.7), (2.6) and (2.2), we obtain

I I I ≤ cR
3(3−p)

2p (R − ρ)−1
( ∫

B(R)

|∇u|pdx
) 3(p−1)

2p + c(R − ρ)−1
∫

B(R)

|u|3dx .
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The second term on the right-hand side can be absorbed into I I . We also observe

here, R
3(3−p)

2p < R thanks to R ≥ 1 and p > 9/5.
Thus, inserting the estimate of I I , and once more using R ≥ 1, we find

I I I ≤ cR(R − ρ)−1
( ∫

B(R)

|∇u|pdx
) 3(p−1)

2p + cR(R − ρ)−1
( ∫

B(R)

|∇u|pdx
) 3

2p

+ cR4(R − ρ)−4.

Inserting the estimates of I , I I and I I I into the right-hand side of (2.3), and applying
Young’s inequality, we are led to

∫

B(R)

|D(u)|pζ pdx ≤ 1

2

∫

B(R)

|∇u|pdx + cR4(R − ρ)−4 + cR2p(R − ρ)−2p

+ cR
2p

2p−3 (R − ρ)
− 2p

2p−3 + cR
2p
3−p (R − ρ)

− 2p
3−p

≤ 1

2

∫

B(R)

|∇u|pdx + cRm(R − ρ)−m, (2.8)

where we set

m = max

{
4, 2p,

2p

2p − 3
,

2p

3 − p

}
,

and used the fact that Rα(R−ρ)−α ≤ Rβ(R−ρ)−β for α ≤ β. Furthermore, applying
Calderón–Zygmund’s inequality, we infer

∫

B(ρ)

|∇u|pdx ≤
∫

R3

|∇(uζ )|pdx

≤
∫

B(R)

|D(u)|pζ pdx + c(R − ρ)−p
∫

B(R)

|u|pdx . (2.9)

Estimating the left-hand side of (2.8) from below by (2.9), and applying the iteration
Lemma in (Giaquinta 1983, V.Lemma3.1), we deduce that

∫

B(ρ)

|∇u|pdx ≤ cRm(R − ρ)−m (2.10)

for all r ≤ ρ < R ≤ 2r . Choosing R = 2r and ρ = r in (2.10), and passing r → +∞,
we find

∫
R3

|∇u|pdx < +∞. (2.11)
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Similarly, from (2.6) and (2.11), we get the estimate

r−1
∫

B(r)

|u|3dx ≤ c ∀1 < r < +∞. (2.12)

Next, we claim that

r−1
∫

B(3r)\B(2r)

|u|3dx = o(1) as r → +∞. (2.13)

Let ψ ∈ C∞(R3) be a cut off function for the annulus B(3r)\B(2r) in B(4r)\B(r),
i.e., 0 ≤ ψ ≤ 1 in R

3, ψ = 0 in R
3\(B(4r) \ B(r)), ψ = 1 on B(3r)\B(2r) and

|∇ψ | ≤ cr−1. Recalling that ui = ∂ j Vi j , and applying integration by parts, using
Hölder’s inequality along with (1.7) we calculate∫

B(4r)\B(r)

|u|3ψ3dx

=
∫

B(4r)\B(r)

∂ j (Vi j − (Vi j )B(4r))ui |u|ψ3dx

= −
∫

B(4r)\B(r)

(Vi j − (Vi j )B(4r))∂ j (ui |u|)ψ3dx

−
∫

B(4r)\B(r)

(Vi j − (Vi j )B(4r))(ui |u|)∂ jψ
3dx

≤ c

( ∫

B(4r)

|V − V B(4r)|
3p

2p−3 dx

) 2p−3
3p

( ∫

B(4r)\B(r)

|u|3ψ3dx

) 1
3

( ∫

B(4r)\B(r)

|∇u|pdx
) 1

p

+ cr−1
( ∫

B(4r)

|V − V B(4r)|
3p

2p−3 dx

) 2p−3
3p

( ∫

B(4r)\B(r)

|u|3ψ3dx

) 1
3

( ∫

B(4r)\B(r)

|u|pdx
) 1

p

≤ cr
2
3

( ∫

B(4r)\B(r)

|u|3ψ3dx

) 1
3
( ∫

B(4r)\B(r)

|∇u|pdx
) 1

p

+ cr− 1
3

( ∫

B(4r)\B(r)

|u|3ψ3dx

) 1
3
( ∫

B(4r)\B(r)

|u|pdx
) 1

p

. (2.14)
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Let us define ũ B(4r)\B(r) = 1∫
ψdx

∫
B(4r)\B(r)

uψdx . Recalling that u = ∇ · (V −
V B(2r)), using integration by parts, Hölder’s inequality, together with (1.7) we get

|̃uB(4r)\B(r)| ≤ 1∫
ψdx

∣∣∣∣
∫

B(4r)\B(r)

(V − V B(4r)) · ∇ψdx

∣∣∣∣

= cr−1
∫
−
B(4r)

|V − V B(4r)|dx ≤ cr−1
(∫
−
B(4r)

|V − V B(4r)|
3p

2p−3 dx

) 2p−3
3p

≤ cr
9−7p
3p . (2.15)

By the triangular inequality, we have

( ∫

B(4r)\B(r)

|u|pdx
) 1

p ≤
( ∫

B(4r)\B(r)

|u − uB(4r)\B(r)|pdx
) 1

p

+
( ∫

B(4r)\B(r)

|uB(4r)\B(r) − ũ B(4r)\B(r)|pdx
) 1

p

+
( ∫

B(4r)\B(r)

|̃uB(4r)\B(r)|pdx
) 1

p

= I1 + I2 + I3.

Using the Poincaré inequality and (2.15), we find

I1 + I3 ≤ cr

( ∫

B(4r)\B(r)

|∇u|pdx
) 1

p + cr
18−7p
3p . (2.16)

For I2, we use the Hölder inequality, and then, the Poincaré inequality to estimate

I2 =
( ∫

B(4r)\B(r)

∣∣∣∣ 1∫
ψdx

∫

B(4r)\B(r)

(u − uB(4r)\B(r))ψdx

∣∣∣∣
p

dx

) 1
p

≤ c

( ∫

B(4r)\B(r)

|u − uB(4r)\B(r)|pdx
) 1

p ≤ cr

( ∫

B(4r)\B(r)

|∇u|pdx
) 1

p

. (2.17)

Combining (2.16) and (2.17), we get

( ∫

B(4r)\B(r)

|u|pdx
) 1

p ≤ cr
18−7p
3p + cr

( ∫

B(4r)\B(r)

|∇u|pdx
) 1

p

. (2.18)
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Inserting (2.18) into the last term of (2.14) and the dividing result by( ∫
B(4r)\B(r)

|u|3ψ3dx

) 1
3

, we find

r−1
∫

B(4r)\B(r)

|u|3ψ3dx ≤ cr− 1
3

( ∫

B(4r)\B(r)

|∇u|pdx
) 1

p + cr
18−11p

3p .

Thus, observing (2.11) and p > 9/5, we obtain the claim (2.13).
Let 1 < r < +∞ be arbitrarily chosen. By ζ ∈ C∞(Rn) we denote a cut off func-

tion, which is radially non-increasing with ζ = 1 on B(2r) and ζ = 0 on R
3\B(3r)

such that |∇ζ | ≤ cr−1. We multiply (1.1) by uζ integrate over B(3r) and apply
integration by parts. This yields

∫

B(3r)

|∇u|pζ 2dx =
∫

B(3r)

|∇u|p−2∇ζ 2 · ∇u · udx

+ 1

2

∫

B(3r)

|u|2u · ∇ζ +
∫

B(3r)

(π − πB(3r))u · ∇ζdx

≤ c
∫
B(3r)\B(r)

|∇u|pdx + cr−p
∫
B(3r)\B(r)

|u|pdx

+ cr−1
∫

B(3r)\B(2r)

|u|3dx + cr−1
∫

B(3r)\B(2r)

|π − πB(3r)||u|dx

= I + I I + I I I + I V . (2.19)

Using (2.12), we immediately get

I = o(1) as r → +∞.

From (2.18) and (2.11) it follows that

I I = c

{
r−1

( ∫
B(3r)\B(r)

|u|pdx
) 1

p
}p

≤ cr
18−10p

3 + c
∫
B(3r)\B(r)

|∇u|pdx = o(1) as r → +∞. (2.20)

From (2.13), we also find I I I = o(1) as r → +∞. Finally, applying Hölder’s
inequality and using (2.13), we get

I V ≤ c

(
r−1

∫

B(3r)

|π − πB(3r)| 32 dx
) 2

3
(
r−1

∫

B(3r)\B(r)

|u|3dx
) 1

3
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= c

(
r−1

∫

B(3r)

|π − πB(3r)| 32 dx
) 2

3

o(1) (2.21)

as r → +∞. Using estimate (2.2) with B(3r) in place of B(R), we obtain

r−1
∫

B(3r)

|π − πB(3r)| 32 dx ≤ cr
9−5p
2p

( ∫

B(3r)

|∇u|pdx
) 3(p−1)

2p + cr−1
∫

B(3r)

|u|3dx .

By virtue of (2.11) and (2.12), the right-hand side of the above inequality is bounded
for r ≥ 1. Therefore, (2.21) shows that I V = o(1) as r → +∞. Inserting the above
estimates of I , I I , I I I and I V into the right-hand side of (2.19), we deduce that

∫

B(r)

|∇u|pdx = o(1) as r → +∞.

Accordingly, u ≡ const and by means of (2.12) it follows u ≡ 0. ��
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