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Abstract
We compare the predictions of stochastic closure theory (SCT) (Birnir in J Nonlinear
Sci 23:657–688, 2013a. https://doi.org/10.1007/s00332-012-9164-z) with experi-
mental measurements of homogeneous turbulence made in the variable density
turbulence tunnel (Bodenschatz et al. in Rev Sci Instrum 85(9):093908, 2014) at the
Max Planck Institute for Dynamics and Self-Organization in Göttingen. While the
general form of SCT contains infinitely many free parameters, the data permit us to
reduce the number to seven, only three of which are active over the entire range of
Taylor–Reynolds numbers. Of these three, one parameter characterizes the variance of
the mean-field noise in SCT and another characterizes the rate in the large deviations
of the mean. The third parameter is the decay exponent of the Fourier variables in the
Fourier expansion of the noise, which characterizes the smoothness of the turbulent
velocity. SCT compares favorably with velocity structure functions measured in the
experiment. We considered even-order structure functions ranging in order from two
to eight as well as the third-order structure functions at five Taylor–Reynolds numbers
(Rλ) between 110 and 1450. The comparisons highlight several advantages of the SCT,
which include explicit predictions for the structure functions at any scale and for any
Reynolds number. We observed that finite-Rλ corrections, for instance, are important
even at the highest Reynolds numbers produced in the experiments. SCT gives us
the correct basis function to express all the moments of the velocity differences in
turbulence in Fourier space. These turn out to be powers of the sine function indexed
by the wavenumbers. Here, the power of the sine function is the same as the order of
the moment of the velocity differences (structure functions). The SCT produces the
coefficients of the series and so determines the statistical quantities that characterize
the small scales in turbulence. It also characterizes the random force acting on the
fluid in the stochastic Navier–Stokes equation, as described in this paper.

Mathematics Subject Classification 76F05

Communicated by Charles R. Doering.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-019-09602-y&domain=pdf
http://orcid.org/0000-0003-3249-0553
https://doi.org/10.1007/s00332-012-9164-z


1082 Journal of Nonlinear Science (2020) 30:1081–1114

1 Introduction

Let us beginwith a brief history ofwind tunnel research and of the effort to describe the
structure of turbulence statistically. In aeronautics, the design of airfoils and airplanes
was a major challenge. The development of appropriate laboratory experiments facil-
itates progress to this day, including the invention of the wind tunnel. The first wind
tunnel is credited to F. Wenham in Great Britain in 1871. The Wright brothers also
constructed their ownwind tunnel in 1901 (Baals and Corliss 1981), but it was Ludwig
Prandtl who designed the first “modern” wind tunnel. This 1917 tunnel was actually
his second design, his first design in 1909 being a closed-loop wind tunnel which,
by his own admission, was “of a temporary nature” (Prandtl 1920). Nonetheless, his
second, more permanent design would become the model for many subsequent wind
tunnels (Anderson 1999). Prandtl’s student, Max Munk, went on to design the first
wind tunnel that allowed adjustment of the density of the working fluid (Bodenschatz
et al. 2014), and so for much higher Reynolds number flows in the tunnel. This tunnel
was built at the LangleyResearchCenter inVirginia in 1923.Most of the early research
done with wind tunnels was devoted to the study of airfoils and airplane shapes and
Mach number (Bodenschatz et al. 2014). One interesting feature of these tunnels was
the ability to adjust Mach number and Reynolds number independently.

Wind tunnels are essential tools to study not only airfoils and model airplanes, but
also to study statistically homogeneous and isotropic turbulence, see Taylor (1935).
Such flows limit turbulence to its essential ingredients: inertia, pressure and friction,
minimize the effects of the boundaries on the flow and do not exhibit a preferred
orientation. It can be created by mechanically stirring a liquid or gas (Bodenschatz
et al. 2014). A close approximation of such flows is realized in a wind tunnel when
a uniform free-stream flow is disturbed by a mesh or a grid, see Comte-Bellot and
Corrsin (1966) and Corrsin (1961).

Experiments to study turbulencewere rare until the second half of the twentieth cen-
tury. The 1940s featured experiments on grid turbulence in California (Millikan et al.
1948), while another series of experiments were performed at the Nuclear Research
Lab in Jülich in the 1970s (Hunt et al. 1992). More recently, wind tunnels were built
at the German Aerospace Center in Göttingen and at the Princeton Gas Dynamics Lab
with similar goals. The experiments in this paper were performed in the facility at
the Max Planck Institute for Dynamics and Self-Organization in Göttingen called the
variable density turbulence tunnel (VDTT), which was completed in 2009 (Boden-
schatz et al. 2014). It has achieved turbulent flow up to Taylor–Reynolds number 1600,
which is the highest recorded for a passive grid experiment until that time, with higher
Reynolds number since being recorded with an active grid (Sinhuber et al. 2015,
2017). Details about the VDTT can be found in Bodenschatz et al. (2014). One of the
Prandtl’s original wind tunnels sits beside the VDTT in Göttingen, see Bodenschatz
et al. (2014).

The mathematical theory of turbulence has its roots in the work of Kolmogorov. In
1941, Kolmogorov published his celebrated four-fifths law and postulated, together
with Obukhov, that the structure functions of turbulence of nth order, Sp, should scale
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with the lag variable, r , so that

Sp(x, y, t) = E(|u(x, t) − u(y, t)|p) = Cp r
p/3,

where p is the order of the structure function and r = |x − y|, where x and y are the
positions in space. Lev Landau criticized the theory for neither taking into account the
organization of the flow on large scales nor the influence of intermittency, which is
the development of long tails in the velocity difference distributions at large Reynolds
numbers (Birnir 2013a). In 1962, Kolmogorov and Obukhov revised their theory to
address these criticisms. They introduced a correction to the exponent, such that

Sp(x, y, t) = Cp < ε
p
3 > r

p
3 = C ′

pr
p
3 +τp = C ′

pr
ζp ,

where ε is the dissipation rate and ζp = p
3 + τp, and τp is a correction that needs to

be determined. A prediction for the correction was found by She and Leveque (1994):

τp = −2p

9
+ 2

(
1 −

(
2

3

) p
3
)

, (1)

see She and Leveque (1994). In Birnir (2013a), the log-Poisson processes of Dubrulle
(1994) and She and Waymire (1995), responsible for the intermittency corrections,
were derived from the stochastic Navier–Stokes equation.

Kolmogorov and Obukhov considered the velocity in turbulent flow to be a stochas-
tic process, and their hypotheses include that the 2-point probability distribution
function (PDF) of turbulence does not depend on x or y individually but only on
r , ν and ε, where r is the lag variable, ν is the kinematic viscosity, and ε is the kinetic
energy dissipation rate of the turbulence per unit mass (Pope 2000). Moreover, when
r >> η, where η is the Kolmogorov (or dissipation) scale, the PDF depends on ε

and r alone, and not on ν. Since the 2-point PDF determines the structure functions
described above, the same statements that apply to the PDFs apply also to the structure
functions.

If the turbulent velocity is a stochastic process, it must satisfy a stochastic Navier–
Stokes equation. Such an equation was formulated by Landau and Lifschitz in their
Fluid Dynamics book (Landau and Lifshits 1959). They considered the noise in the
stochastic Navier–Stokes equation to be the source of fluctuations in the velocity,
which cannot be ignored in turbulence. They argued that it should be white both in
time and space, but this assumption cannot be true since the Navier–Stokes equation
driven by noise that is white in space produces velocities the are not continuous (Walsh
1984), and this is not observed in nature. Birnir (2013a) argued that the noise has
enough smoothness in space that the dissipation rate, ε, is finite, and that the noise is
of a generic nature that includes an additive term corresponding to a mean-field noise
and another additive term corresponding to the large deviations of the mean field. He
also added a multiplicative noise term, modeling jumps in the gradient for the flow
velocity, and showed that this term produced the log-Poisson process of Dubrulle, She
and Waymire and their intermittency corrections τp. These assumptions are the basis
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of the stochastic closure theory (SCT) (Birnir 2013b) and are elaborated in the next
section.

2 The Assumptions of SCT and Its Predictions

The following assumptions produce the stochastic Navier–Stokes equation (7) given
in the next section. The detailed arguments leading to the form of the noise are given in
Birnir (2013a, b). They follow the spirit of the argument in Landau and Lifshits (1959).
We also list the predictions of the theory, which include a quantitative prediction of
the She–Leveque intermittency corrections to the Kolmogorov–Obukhov ’62 theory
of turbulence.
SCT Assumptions:

1. The small scale flow in fully developed turbulence satisfies a stochastic Navier–
Stokes (SNS) equation.

2. The noise in the SNS consists of both an additive and a multiplicative term.
3. The additive noise is in part a general mean-field noise that is sufficiently smooth

in space for the dissipation rate:

ε = ν

∫
�

|∇u|2dx < ∞,

to be finite. In addition to this “infinite-dimensional Brownian” mean-field noise,
there is a deterministic additive part that captures large deviations in the mean
field.

4. The multiplicative noise models jumps in the velocity gradient, ∇u. This term is
then multiplied by the velocity u. It is the noise associated with the inertial term
in the Navier–Stokes equations.

5. The most singular (having least spatial smoothness) structures in (3-d) turbulence
are one-dimensional vortex lines.

SCT Predictions:

1. The structure functions of turbulence at finite Reynolds numbers are given by for-
mulas that explicitly incorporate the Reynolds number dependence of the structure
functions.

2. The N-point probability density function exists and can be computed. In the
two-point case, it is determined by the Kolmogorov–Hopf functional differential
equation (Birnir 2013b) and has an explicit formula (Birnir 2016).

3. There exists an invariant measure on the phase space of the stochastic Navier–
Stokes equation (Birnir 2013b, 2016). Thismeasure has an explicit formula (Birnir
2016), and the stochastic Navier–Stokes flow is ergodic with respect to this mea-
sure.

4. The PDF for the velocity distribution in turbulence is a generalized hyperbolic
distribution (Barndorff-Nilsen 1977) convolved with the Poisson distribution of
the log-Poisson processes of Birnir 2016. For large values of the lag variable and
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for the fluid velocities themselves, these distributions become (skewed and flat)
Gaussians.

The most important SCT prediction for this paper is (1), the explicit formulae
for the structure functions with given Reynolds number dependencies. We use these
formulas to fit the data measured in the VDTT, and this is the subject of the paper. A
disadvantage of equation is that the noise has infinitelymanyundetermined coefficients
ck, dk and hk . The last coefficients are a consequence of assumption 3 above. The
vorticity lines are one dimensional, and this implies that all the coefficients, hk , are
fixed (Birnir 2013b). However, we are still left with infinitely many coefficients ck
and dk . What we find through comparison with the experimental data is that, after
fitting the characteristics of the VDTT and non-isotropy, we can reduce the number of
coefficients to only three. When the mean flow is given, we are left with one parameter
that characterizes the infinite-dimensionalBrownian, another parameter characterizing
large deviations from the mean, and one exponent characterizing spatial smoothness.
We find, as expected, that the mean flow and the three parameters depend on the
Taylor–Reynolds number. They do not, however, depend on the order of the structure
function. The upshot is a much improved stochastic closure model (26) with only three
parameters characterizing the noise.

One can say that the SCT produces the correct basis, with basis functions that are
functions of the lag variable indexed by the wavenumber, to represent all the statistical
quantities of the velocity differences. This is a big improvement over previous theo-
retical result that only produces one or finitely many statistical quantities measurable
in experiments.

3 The Stochastic Closure Model

In this section, we give a short derivation of the SCT model. We first explain how
the form of the turbulent noise forcing, in the Navier–Stokes equation, is derived and
then use some techniques from probability theory to transform the resulting stochastic
Navier–Stokes equation, for the small-scale velocity, to an integral equation. The
integral equation will be used in the next section to compute a sharp lower estimate
for the structure functions. The reader is directed to Birnir (2013b) for more details.

The flow in the wind tunnel is governed by the Navier–Stokes equation:

ut + (u · ∇)u = ν	u − ∇ p,

div u = 0,

u(x, 0) = u0(x), (2)

where u(x) is the fluid velocity, x ∈ R
3, p is the pressure, and ν is the viscosity. We

also impose periodic boundary conditions upon the flow. The second line in (2) is the
incompressibility condition. Using this equation, we can eliminate the pressure to get

ut + u · ∇u = ν	u + ∇(	−1[Trace(∇u)2]). (3)
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This equation defines the evolution of the velocity of the fluid in time. We will impose
periodic boundary conditions on the small scales below.

Following the classical Reynolds decomposition (Reynolds 1885), we decompose
the velocity into mean flow U and the fluctuations u. Then, the velocity is written as
U + u, where U describes the mean or large-scale flow and u describes the veloc-
ity fluctuations. These two terms describe the large scales and small scales of the
flow, respectively. If we also decompose the pressure into mean pressure P and the
fluctuations p, then the equation for the large-scale flow can be written as

Ut +U · ∇U = ν	U − ∇P − ∇ · (u ⊗ u), (4)

where in coordinates

∇ · (u ⊗ u) = ∂uiu j

∂x j
,

that is ∇ is dotted with the rows of uiu j , and Ri j = u ⊗ u is the Reynolds stress, see
Bernard and Wallace (2002). The Reynolds stress has the interpretation of a turbulent
momentum flux, and the last term in (4) is also know as the eddy viscosity. It describes
how the small scales influence the large scales. In addition, from linearity, we get
divergence free conditions for U and u

∇ ·U = 0, ∇ · u = 0.

Together, (4) and the divergence free condition on U give the Reynolds-averaged
Navier–Stokes (RANS) that forms the basis for most contemporary simulations of
turbulent flow. The large-scale equation (4) is satisfied by the mean flowU = constant
in the measurement region of the VDTT. Thus, in our case, (4) reduces to the pressure
gradient balancing the eddy viscosity.

The notation u ⊗ u = E(u ⊗ u) denotes the expectation that is assumed to be the
same as an ensemble average u ⊗ u = 〈u ⊗ u〉. Thus, when we discuss the mean
large-scale flow Ū and the mean small-scale (fluctuation) flow ū below, we mean the
expectation or ensemble average of these quantities.

Finding a constitutive law for the Reynolds stress u ⊗ u is the famous closure
problem in turbulence, and we will solve that by writing down a stochastic equation
for the small-scale velocity u. This was first done by Landau and Lifshits (1959).

The consequence of the SCT hypothesis is that the fluctuating velocity u in tur-
bulence is a stochastic process that is determined by a stochastic partial differential
equation (SPDE). It will be the Navier–Stokes equation for the fluctuations driven by
noise, see below. This is the point of view taken by Kolmogorov (1941a, b, 1962),
but the question we have to answer is: What is the form of the noise? There is a wide
array of the literature on this question, trying to trace the form of the noise back to the
fluid instabilities, but these attempts have proven to be unsuccessful. Any memory of
the fluid instabilities is quickly forgotten in fully developed turbulence, and the noise
seems to be of a general form. Thus, it makes sense to try to put generic noise into
the Navier–Stokes equations and see how the Navier–Stokes evolution colors generic
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noise. Below we will answer what generic noise in the Navier–Stokes equation must
look like, see Birnir (2013b) for more details.

For fully developed turbulence, we close the model with a stochastic forcing term
to account for the small scales in (2) and (3). This noise term models the dissipation
in the flow. We impose periodic boundary conditions and then discretize on the torus.
Let pk denote the dissipation process in the j th box. We assume these dissipation
processes in the flow are weakly coupled and have meanm. Thus, the average is given
by

Mn = 1

n

n∑
j=1

p j .

We now make use of the central limit theorem, which implies Mn will converge to a
Gaussian distribution with mean zero and variance one. For the statement and proof
of the central limit theorem, see page 194 in Grimmett and Stirzaker (2001). Then,
define

xnt = S[tn] − nm√
nσ

,

where Sn =∑n
j=1 p j and [tn] denotes the integer value. We now apply the functional

central limit theorem, as given by Theorem 8.1 in Bhattacharya and Waymire (1990),
and so the processes xnt must converge in distribution to a Brownian motion bt as
n → ∞. This must occur in the direction of any Fourier component and so we get

D̄ =
∑
k �=0

c
1
2
k db

k
t ek(x),

where ek(x) = e2π ikx are the distinct Fourier components complete with its own

Brownian motion bkt , and c
1
2
k are the coefficients that converge sufficiently fast to

ensure convergence of the entire series, see Birnir (2013b).
However, we also must measure the fluctuations in the dissipation which can be

explained via the large deviation principle. To apply the large deviation principle,
we need to describe the rate function associated with the process, which depends on
whether the fluctuations are random. If they are, the fluctuations can be modeled by a
Poisson process with rate λ, and furthermore, if there is bias in the fluctuations, then
the deviations of Mn are bounded above by a constant determining the direction of the
bias times the rate η. Cramer’s theorem, see Birnir (2013b), then gives that the rate
function is bounded by η = λ, and so the second additive noise term is
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D′ =
∑
k �=0

dkηkdtek(x).

Here, ek(x) is defined as above, dk is defined similarly to c0.5k , and ηk are the rates in

the kth direction. We choose ηk = |k| 13 to line up with the scaling of the central limit
theorem term. Thus, the large deviation principle gives the term

D′ =
∑
k �=0

dk |k| 13 dtek(x).

These two terms defined the additive noise forcing term. A more detailed description
of these terms is given in Birnir (2013b).

A final forcing term comes from the multiplicative noise. This noise models jumps
in the velocity gradient or vorticity concentrations, if we let Nk

t denote the number
of velocity jumps associated with the kth wavenumber that have occurred by time t .
This in turn implies that the differential

dNk(t) = Nk(t + dt) − Nk(t)

denotes the number of jumps in the time interval (t, t + dt]. The multiplicative noise
then has the form

J =
∑
k �=0

∫
R

hk(t, z)N̄
k(dt, dz),

where hk measures the size of the jump and N̄ k is the compensated number of jumps.
For more information on the multiplicative noise, see Birnir (2013b).

Thus, adding the terms D̄, D′ and, J multiplied by u, to theNavier–Stokes equation,
we get a stochastic PDE describing the fully developed turbulent small-scale flow in
the wind tunnel:

du + u · ∇udt = [ν	u + ∇(	−1[Trace(∇u)2]) − u · ∇U −U · ∇u]dt
+
∑
k �=0

dk |k| 13 dtek(x) +
∑
k �=0

c
1
2
k db

k
t ek(x)

+ u
∑
k �=0

∫
R

hk(t, z)N̄
k(dt, dz). (5)

Notice that this equation cannot be reduced to the equation for homogeneous and
isotropic turbulence, see Birnir (2013b), by the Galilean invariance of the Navier–
Stokes equation. We drop the term −u · ∇U , in the equation above, since the mean
flow U is constant for homogeneous turbulence and approximately constant in the
wind tunnel, see Bodenschatz et al. (2014). The term −U · ∇u can, however, not be
dropped. Its effect will be computed in next section. An application of Girsanov’s
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theorem allows us to eliminate the (−u · ∇u − U · ∇u)dt term at the cost of adding
an exponential martingale:

Mt = exp(−
∫

(U + u(Bs, s)) · dBs − 1

2

∫ t

0
|U + u(Bs, s)|2ds),

where Bt ∈ R
3 is an auxiliary Brownian motion, to each term in the Navier–Stokes

equation:

du = [ν	u + ∇(	−1[Trace(∇u)2])]Mtdt

+
∑
k �=0

dk |k| 13 Mtdtek(x) +
∑
k �=0

c
1
2
k Mtdb

k
t ek(x)

+ u
∑
k �=0

∫
R

hk(t, z)N̄
kMt (dt, dz). (6)

For the statement and proof of Girsanov’s theorem, see pages 149–151 of Oksendal
(1998). The martingale captures the effects of the large scales on the noise in the
small-scale flow.

The Feynman–Kac formula allows us to eliminate the term

u ×
∑
k �=0

∫
R

hk(t, z)N̄
kMt (dt, dz)

at the cost of adding a log-Poisson process

e
∫ t
s dq = 1

3

⎛
⎝ m∑

k �=0

{∫ t

0

∫
R

ln(1 + hk)N̄
k(ds, dz)

+
∫ t

0

∫
R

(ln(1 + hk) − hk)mk(ds, dz)

})

to each term in the Navier–Stokes equation. For the statement and proof of Feynman–
Kac Formula, see pages 128–129 of Oksendal (1998). Thus, the new Navier–Stokes
equation becomes

du = [ν	u + ∇(	−1[Trace(∇u)2])]e
∫ t
s dqMtdt

+
∑
k �=0

dk |k| 13 e
∫ t
s dqMtdtek(x) +

∑
k �=0

c
1
2
k e
∫ t
s dqMtdb

k
t ek(x) (7)

Finally, we use the definition of mild (or martingale) solutions of nonlinear stochastic
partial differential equations (SPDE) in infinite-dimensional space:
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Definition 3.1 Consider the initial value SPDE problem

du = (Au + F(t, u))dt + G(t, u)dBt , u(x, 0) = u0.

A stochastic process u(ω, x, t) is a mild solution of this SPDE initial value problem
(IVP) if

P

(∫ t

0
|u|22(s)dt < ∞

)
, P a. s.

and

u(t) = eAtu0 +
∫ t

0
eA(t−s)F(s, u(s))ds +

∫ t

0
eA(t−s)G(s, u(s))dBs, P a. s.,

where P is the probability measure in the associated probability space (�,F , P).

For more information, see page 182 in Da Prato and Zabczyk (2014). One can then
state a theorem for the existence of unique mild local (in time) solutions, see page 186
in Da Prato and Zabczyk (2014). Now, this theorem does not apply directly here, as
the multiplicative noise concerns jumps and not only Brownian motion. However, a
slight alteration of the proof gives local existence of solutions. The mild solution of
the stochastic Navier–Stokes equation, governing fully developed turbulence, is given
by

u = eK (t)e
∫ t
0 dqMtu

0 +
∑
k �=0

c
1
2
k

∫ t

0
eK (t−s)e

∫ t
s dqMt−sdb

k
s ek(x)

+
∑
k �=0

dk

∫ t

0
eK (t−s)e

∫ t
s dqMt−s |k| 13 dtek(x), (8)

where K is the operator

K = ν	 + ∇	−1Trace(∇u∇), (9)

Mt is the above exponential martingale, ek(x) = e2π ikx is a Fourier component com-

plete with its own Brownian motion bkt , and the coefficients c
1
2
k and dk decay fast

enough so that the series converges, see Birnir (2013b), Chapter 1. This is also the
integral form of the stochastic Navier–Stokes equation (7). The integral equation (8)
is equivalent to the stochastic Navier–Stokes initial value problem (7) for the small
scales. It will be our main tool in computing the structure functions. The operator K
above has a potential ∇	−1Trace(∇u∇) that depends on both x and t ; thus, it does
not have eigenvalues and does not generate a semigroup. But K generates a flow, that
we have denoted eK (t) above and if we replace it by its time average and apply the
ergodicity of the stochastic Navier–Stokes evolution, see the SCT prediction number
3 above, then we get an operator where the time average of the potential is equal to
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the expectation. This gives an operator K̃ = ν	 + C∂
2/3
x , where by ergodicity C

is a constant, see Birnir (2013b), with eigenvalues that we denote λk , k ∈ N. This
will greatly simplify the computation of the structure functions in the next section.
Instead of estimates of the structure functions as in Birnir (2013a), we get equality in
the formulas.

4 The Computation of the Structure Functions

In this section, we describe the calculation of the structure functions of turbulence,
which will be compared with the experimental data. Using the stochastic Navier–
Stokes integral equation (8) from previous section, we have that

u(x, t) − u(y, t) (10)

=
∑
k �=0

[(
c
1
2
k

∫ t

0
eK (t−s)e

∫ t
s dqMt−sdb

k
s

+ dk

∫ t

0
eK (t−s)e

∫ t
s dqMt−s |k| 13 ds

)
(ek(x) − ek(y))

]
, (11)

where u(x, t) and u(y, t) are the flow velocities at two points x and y in the wind
tunnel. This permits us to describe the computation of the structure functions:

Sp(x − y, t) = E
(|u(x, t) − u(y, t)|p) .

First, we note that the expectation is actually a composition of three expectations: one
for the Brownian motions in the Fourier series representation of the noise, denoted
Eb, another for the log-Poisson process, denoted Ep, and the third EB for the auxiliary
Brownian motion in the martingale in the last section. The log-Poisson expectation
acts upon the term

e
∫ t
s dq = exp

{
2
3 ln|k| + Nk ln

( 2
3

)
3

}
=
(

|k| 23
(
2

3

)Nk
t
) 1

3

,

given by the Feynman–Kac formula, see Birnir (2013b). Then, we get that

Ep([|k| 23
(
2

3

)Nk
t

] p
3 ) = |k|

−
(

− 2p
9 +2

(
1−
(
2
3

) p
3

))
,

see Birnir (2013b). Notice the exponent above is the She–Leveque intermittency cor-
rection (1), denoted τp. Applying Ep also eliminates all terms (ek(x)−ek(y))(e j (x)−
e j (y)) for k �= j . Standard algebra and trigonometry gives

ek(x) − ek(y) = 2eπ ik(x+y) sin(πk · (x − y)).
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Thus, we get that

E
(|u(x, t) − u(y, t)|p) (12)

= E

⎛
⎝∣∣∣∣∑

k �=0

[(
c
1
2
k

∫ t

0
eK (t−s)e

∫ t
s dqMt−sdb

k
s (13)

+ dk

∫ t

0
eK (t−s)e

∫ t
s dqMt−s |k| 13 ds

)
(ek(x) − ek(y))

] ∣∣∣∣
p
⎞
⎠

= Eb

⎛
⎝∣∣∣∣∑

k �=0

[(
c
1
2
k

∫ t

0
eK (t−s)|k|−τp EB(Mt−s)db

k
s

)

+ dk

∫ t

0
eK (t−s)|k|−τp EB(Mt−s)|k| 13 ds)

⎤
⎦× 2eπki(x+y) sin(πk · (x − y))

∣∣∣∣
p
⎞
⎠ .

(14)

Now, we compute the action of the time average of the operator K on the Fourier

components (eigenfunctions of K̃ ), replacing it with the eigenvalues λk = C |k| 23 +
4νπ2|k|2, see Birnir (2013b). This assumes that the expectation of the norm of u in

the Sobolev space H
11
6

+
is finite, see Lemma 2.7 in Birnir (2013b).

Mt is the exponential martingale:

Mt = Exp

[∫
(U + u) · dBs −

∫ |U + u|2
2

ds

]
,

where Bt ∈ R
3 is an auxiliary Brownian motion and U + u is the Reynolds decom-

position of the flow. A simple application of Ito’s formula yields

Mp
t = 1 +

∫ t

0
(U + u)Ms · dBs + p(p − 1)

2

∫ t

0
|U + u|2Mp

s ds.

Thus, we have

EB[Mp
t ] = 1 + p(p − 1)

2

∫ t

0
EB[|U + u|2Mp

s ]ds

≤ 1 + p(p − 1)

2

∫ t

0
sup
x

|U + u|2EB[Mp
s ]ds.

Thus, by Grönwall’s inequality,

EB[Mp
t ] ≤ e

p(p−1)
4

∫ t
0 supx (|U |2+|u|2)dt .
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The sup in x frees the expectation from the expectation of the auxiliary Brownian
motion, used to define the Martingale, and the exponent of the right-hand side is
easily estimated by the same methods as below

Eb

[
sup
x

(|U |2 + |u|2)
]

≤ sup
x

|U |2 + 1

C2

∑
k �=0

(C/2)ck + d2k
|k|ζ2 = Constant.

This implies that EB[Mp
t ] only adds a constant, first to the exponents and then to the

denominators, in the structure functions below and we will ignore it.
Finally, we take the absolute value and expand the polynomial expression in (12).

To ultimately compute the structure functions, we use Ito’s Lemma

E

[(∫ T

S
f (t, w)dBt

)2]
=
∫ T

S
E[( f (t, w))2]dt

to turn any even power of the stochastic integral into a deterministic integral, which
can then be solved for using standard calculus. For odd powers, we use the fact that

E

[∫ T

S
f dBt

]
= 0

to eliminate such terms. We then find the first-order structure function is given by

E(|u(x, t) − u(y, t)|) = S1(x, y, t)

= 2

C

∑
k∈Z3\{0}

|dk |(1 − e−λk t )

|k|ζ1 + 4π2ν
C |k|ζ1+ 4

3

| sin(πk · (x − y))|, (15)

where | · | denotes the vector norm inR3. The second-order structure function is given
by

E(|u(x, t) − u(y, t)|2) = S2(x, y, t)

= 4

C2

∑
k ∈Z3

⎡
⎣(| sin2(πk · (x − y))|)

×
⎧⎨
⎩

C
2 ck(1 − e−2λk t )

|k|ζ2 + 4π2ν
C |k|ζ2+ 4

3

+ |dk |2(1 − e−λk t )

|k|ζ2 + 8π2ν
C |k|ζ2+ 4

3 + 16π4ν2

C2 |k|ζ2+ 8
3

⎫⎬
⎭
⎤
⎦ (16)

where ck = |c
1
2
k |2. The third-order structure function is given by
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E(|u(x, t) − u(y, t)|3) = S3(x, y, t)

= 8

C3

∑
k∈Z3

⎡
⎣(| sin3(πk · (x − y))|)

×
⎧⎨
⎩

C
2 ck |dk |(1 − e−2λk t )(1 − e−λk t )

|k|ζ3 + 8π2ν
C |k|ζ3+ 4

3 + 16π4ν2

C2 |k|ζ3+ 8
3

+ |dk |3(1 − e−λk t )3

|k|ζ3 + 12π2ν
C |k|ζ3+ 4

3 + 48π4ν2

C2 |k|ζ3+ 8
3 + 64π6ν3

C3 |k|ζ3+4

⎫⎬
⎭
⎤
⎦

(17)

The general pth order structure function is given by

Sp(x, y, t) = 2p

C p

∑
k �=0

Ap × | sinp[πk · (x − y)]|, (18)

where

Ap =
2

p
2 �
(
p+1
2

)
σ
p
k 1F1

(
− 1

2 p,
1
2 ,− 1

2

(
Mk
σk

)2)

|k|ζp + pkπ2ν
C |k|ζp+ 4

3 + O(ν2)
, (19)

where � is the gamma function, 1F1 is the hypergeometric function, Mk = |dk |(1 −
e−λk t ), σk =

√
(C2 ck(1 − e−2λk t )), and pk is different for each denominator term in

the series. Note that the Reynolds number dependence is captured via the viscosity
term ν. C is a constant approximating the (Sobolev) norm of the small-scale velocity
of the flow. It will be allowed to vary across structure functions to accommodate a
relative change in the mean and the large deviations.

The above formulas clearly distinguish the stochastic closure theory (SCT) from
previous theories on turbulence. SCT shows that the correct basis for the pth structure
function, in Fourier space, is the collection of sine components of the lag variable,
indexed by different wavenumbers and raised to the power p. The coefficients for this
basis are given by formula (24). This allows us to represent all structure functions as
functions of the lag variable for all Reynolds numbers and all powers p. Furthermore,
this model is directly derived from theNavier–Stokes equations. Such a result has been
unattainable until now. It permits a complete characterization of the experimental data
for the structure functions in homogeneous turbulence.

4.1 The One-Dimensional Structure Functions

We want to fit the structure functions (23) to the experimental data collected in the
VDTT. To do this, we have to reduce the three-dimensional structure functions to
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one-dimensional ones, which are easier to obtain. We will perform the reduction in
this subsection.

We consider structure functions where the measurements are taken at two distinct
points along the length of the tunnel, in the direction of the mean velocity. These are
called the longitudinal structure functions, Sp(r , t), where r = x − y is a vector along
the main axis of the tunnel. One can also consider the transversal structure functions,
Sp(q, t), where q = x−y is a vector in the radial direction of the tunnel, perpendicular
to r . In homogeneous turbulence, these two structure functions are not independent.
Their correlation matrix is given by Pope (2000):

Di j = E
[
(ui (x, t) − ui (y, t))(u j (x, t) − u j (y, t))

]
= S2(r , t)I + (S2(r , t) − S2(q, t))

ri r j
r2

,

where I is the identity matrix in R3 × R
3, and

S2(q, t) = S2(r , t) + r
∂

∂r
S2(r , t),

with r = |r |, | · | denoting the vector norm in R
3. For η << r , Di j is expected to

reduce to

Di j = C2(εr)
2/3
(
4

3
I − 1

3

rir j
r2

)
.

Thus, in R
3, the correlation matrix is determined by longitudinal structure function

S2(r , t) alone and we will restrict our attention to the longitudinal structure functions.
Consider the longitudinal third-order structure function given by the SCT:

S3(r , t) = 8

C3

∑
k∈Z3

⎡
⎣(| sin3(πk · r)|)

⎧⎨
⎩

C
2 ck |dk |(1 − e−2λk t )(1 − e−λk t )

|k|ζ3 + 8π2ν
C |k|ζ3+ 4

3 + 16π4ν2

C2 |k|ζ3+ 8
3

+ |dk |3(1 − e−λk t )3

|k|ζ3 + 12π2ν
C |k|ζ3+ 4

3 + 48π4ν2

C2 |k|ζ3+ 8
3 + 64π6ν3

C3 |k|ζ3+4

⎫⎬
⎭
⎤
⎦ ,

where ck = c1 + c2 + c2, |dk | =
√
d21 + d22 + d22 and |k| =

√
k21 + k22 + k22, and

r = x − y. If we take r = (r , 0, 0) to lie along the axis of the VDTT (cylinder),
then r · k = (rk1, 0, 0), and since only the components with x − y = (r , 0, 0) can be
present in the sum, all the terms drop out except those with k2 = 0 and k3 = 0. Thus,
k = (k1, 0, 0) and the three-dimensional sum reduces to a one-dimensional one. If
taken t → ∞, we get the one-dimensional structure function
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S3(r , t) = 8

C3

∑
k1 �=0

⎡
⎣(| sin3(πk1r)|)

⎧⎨
⎩

C
2 ck1 |dk1 |

|k1|ζ3 + 8π2ν
C |k1|ζ3+ 4

3 + 16π4ν2

C2 |k1|ζ3+ 8
3

+ |dk1 |3
|k1|ζ3 + 12π2ν

C |k1|ζ3+ 4
3 + 48π4ν2

C2 |k1|ζ3+ 8
3 + 64π6ν3

C3 |k1|ζ3+4

⎫⎬
⎭
⎤
⎦ ,

(20)

because ζ3 = 1, where ck1 = c(k1,0,0), |dk1 | = |d(k1,0,0)|.
The argument for all the structure functions Sp, p ≥ 1, is similar. We will compare

the one-dimensional structure function with experimental data and drop the subscript
1 on k1. Thus, the general pth one-dimensional longitudinal structure function, in the
stationary state, is given by

Sp(r ,∞) = 2p

C p

∑
k �=0

2
p
2 �
(
p+1
2

)
σ
p
k 1F1

(
− 1

2 p,
1
2 ,− 1

2

(
Mk
σk

)2)

|k|ζp + pkπ2ν
C |k|ζp+ 4

3 + O(ν2)
| sinp[πkr ]|,

(21)

where r and k are one dimensional,� is the gamma function, 1F1 is the hypergeometric
function, Mk = |dk |, σ 2

k = C
2 ck , and pk is different for each denominator term in

the series. Note that the Taylor–Reynolds number dependence is captured via the
viscosity term ν, as the Taylor–Reynolds number is given by Uλ/ν. C is a constant
approximating the mean velocity fluctuation of the flow.

In order for the sum in S2(r ,∞) above, to converge, ck ∼ 1
k1+ε . A similar argument

applies to
∑

k∈Z\{0} |dk | in S1(r ,∞). For this reason, we expect the exponent m of k
below to satisfy m > 1. We will in fact make the ansatz,

ck =
√

2

π

b

b2 + km
, dk =

√
2

π

a

a2 + km
, (22)

where ck and dk are the one-dimensional versions of the coefficients in the structure
functions, to approximate the experimental data. Provided thatm is greater than 1, the
series determining the one-dimensional restriction of the structure functions (21) will
converge. The thinking here is that there is a universal coefficientm for each Reynolds
number that will determine how fast the sine series converges, and thus the spatial
smoothness of the structure functions. Thus, for k large, ck and dk ∼ 1

km . Moreover,
we are (optimistically) assuming that the two contributions ck and dk , to the large
eddies, also scale with the order of the structure functions and can be characterized
by a number b, respectively, a, for each Taylor–Reynolds number. Thus, for k small,
ck ∼ 1

b and dk ∼ 1
a . This turns out to work reasonably well, see Table 5.

In summary, we reduced the coefficients for the three-dimensional structure func-
tions, ck and dk , to the ones for the one-dimensional structure functions, ck and dk , with
k = (k1, 0, 0). We then fit the formulas for the one-dimensional structure functions
to the data and propose a simple ansatz (22), for the coefficients’ dependence on the
Taylor–Reynolds number and the wavenumber 1/k.
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Table 1 Here, η is the
Kolmogorov length scale given
in micrometers, L is the integral
length scale given in
millimeters, and ν is the
viscosity given in m2/s

Taylor–Reynolds number η L ν

110 1025 165.1 1.55(10−5)

264 162 102.5 2.34(10−6)

508 91 123.9 1.00(10−6)

1000 36 136.6 2.91(10−7)

1450 22 129.5 1.50(10−7)

The data here are at the furthest measured point downstream of the
grid, as η and L evolve downstream

5 Comparison of theModel with the Data

The VDTT is capable of using pressurized inert gases as working fluids. Specifically,
the use of pressurized sulfur hexafluoride with a low kinematic viscosity enables
classical grid experiments at Rλ up to 1600. The turbulence in theVDTTwas generated
by a fixed grid of crossed bars and is called classical grid turbulence (Comte-Bellot and
Corrsin 1966; Corrsin 1961). The classical grid disturbed the free flow mechanically
at the upstream end of the test section. In the wake of the grid, the turbulence evolved
along the length of the tunnel without the middle region being substantially influenced
by the walls of the tunnel (Bodenschatz et al. 2014). The measurements were made
with a Dantec StreamLine hot-wire anemometry system, using NSTAPs developed at
Princeton University, see Vallikivi and Smits (2014). The hot-wire probes were at a
distance of 7.1 m downstream from the 186.6 mm classical grid, so that the turbulence
evolved through at least one eddy turnover time. Taylor’s frozenflowhypothesis is used
to extract x and r from the time series of the probe as in Bodenschatz et al. (2014).
Measurements were taken for Taylor–Reynolds numbers 110, 264, 508, 1000 and
1450. The pertinent parameters for the data are given in Table 1. For more information
about the experiments, see Sinhuber et al. (2015, 2017). Each measurement was taken
over five minutes and sampled at 60kHz, giving 1.8(107) data points.

The longitudinal velocity differences are

δu(r , t) = u(y, t) − u(x, t) = u(x + r , t) − u(x, t)

where x and r are parallel vectors along the x-axis. The system length in the tunnel is an
important value when fitting the data since we scale the lag variable, r , r/η

system length =
(x − y), with the system length. The system length in our case is the mesh size of the
grid, and not the square root of the cross-sectional area of the tunnel, for instance. The
structure functions were plotted against r/η, where r is the distance between positions
x and y as given by the Taylor frozen flow hypothesis and η is the Kolmogorov length
scale. In order for our sine series formula to capture the entire data set, we divided
r/η by its maximum value for which we computed structure functions, which was
r
η

= 19540. We also introduced a variable, D, so that we substituted

r

η
/(19540(D))
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Table 2 The fitted values for A1 in Eq. (25)

Reλ 110 264 508 1000 1450

Second order 0.00744 .0153 .0169 .0183 .0195

Third order .00154 .00395 .00484 .00564 .00664

Fourth order .000384 .00189 .00228 .00251 .00305

Sixth order .0000341 .000431 .000566 .000552 .000691

Eighth order 3.12(10−6) .0000839 .000122 .000144 .000204

Table 3 The fitted values for A2 in Eq. (25)

Reλ 110 264 508 1000 1450

Second order .00285 .00583 .00653 .00697 .00666

Third order .000872 .00299 .00526 .00488 .00395

Fourth order .000174 .000746 .000804 .001 .0006

Sixth order 4.24(10−6) − .0000756 − .00011 .0000919 .0000654

Eighth order 1.04(10−6) .0000127 .0000147 .0000264 − 4.71(10−7)

for x − −y in the formulas. The fitted values for D are given in Table 5. Note that D
is one of the four parameters which are not active over the range of Taylor–Reynolds
numbers, which are shown in Fig. 6 and will be justified later.

5.1 VDTT Dependent Fits: Grid and Large Eddies, Mean Small-Scale Velocity

We need to allow for variation in the non-universal largest scales of the flow (Blum
et al. 2011). This is experiment specific and influences only the first two terms of
the sine series. These parameters are only significant for low Reynolds numbers, see
Tables 2 and 3. This clearly distinguishes these two parameters from the others. As a
result, we see that the grid can stimulate the first two sinusoidal modes but does not
influence the rest of the cascade. Thus, the SCT formula becomes:

Sp(x, y, t) = A1 sin[π |x − y|] + A2 sin[2π |x − y|]
+ 2p

C p

∑
k=3

Ap × | sinp[πk|x − y|]|, (23)

where

Ap =
2

p
2 �
(
p+1
2

)
σ
p
k 1F1

(
− 1

2 p,
1
2 ,− 1

2

(
Mk
σk

)2)

|k|ζp + pkπ2ν
C |k|ζp+ 4

3 + O(ν2)
, (24)

and A1 and A2 are the free parameters. The first two terms capture the interaction of
the grid and the two largest eddies in the flow. However, this influence is limited to the
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Fig. 1 Taylor–Reynolds number 110. Note that the plots are made on a log–log scale. The dots correspond
to the data from the VDTT, whereas the line is the fitted SCT

lowest Reynolds numbers and becomes insignificant for the higher Reynolds numbers
and the modeling range of the rest of the parameters.

Fitting was done in Mathematica using the built-in “findfit” function. To bound
computational time reasonably, the series given in Sect. 2 were limited to one thousand
terms. The full model used to fit the data is given by

Sp = A1| sin[(πr/η)/(19540.3(D))]| + A2| sin2[(2πr/η)/(19540.3(D))]|
+
∑
k=3

2p

C p
Ap| sinp[(πkr/η)/(19540.3(D))]|, (25)

where Ap is given by (24). The fits are done with seven parameters, namely a, b,
m, C , D, A1 and A2. The fits are shown in Figs. 1, 2, 3, 4, 5. However, only three
parameters are active over the entire inertial range, specifically a, b andm, in the sense
that they are changing the relative weights of the Fourier components of the solution
u(x, t). The parameter D measures the system length correction for large Reynolds
numbers. This correction serves to place the transition from the dissipative range to the
inertial range. The parameter C measures the root-mean-squared small-scale velocity,
whereas A1 and A2 measure the influence of the large eddies upon the grid. These three
parameters measure the transition out of the inertial range. This is shown in Figs. 6, 7
and 8 and will be justified later. The best results came when using the fourth-order
structure functions for each Taylor–Reynolds number to fix the coefficients a, b and
D.

Tables 2, 3 and 4 contain the fitted values of A1, A2 andC respectively, as described
in (25). Note that A1, A2, C and m are given their own tables as they change with
the order of the structure function, whereas a, b and D are placed in the same table
as they do not. Consider Fig. 9a that shows the values of the coefficient A1 as a
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Fig. 2 Taylor–Reynolds number 264. Note that the plots are made on a log–log scale. The dots correspond
to the data from the VDTT, whereas the line is the fitted SCT
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Fig. 3 Taylor–Reynolds number 508. Note that the plots are made on a log–log scale. The dots correspond
to the data from the VDTT, whereas the line is the fitted SCT

function of the Taylor–Reynolds number taken from Table 2. We show that the values
are small and do not change much over the range of T–R numbers in the experiment.
The figure shows the values based on the first three structure functions do not change
much of the whole over the range of T–R numbers in the experiment and the higher-
order structure functions give negligible correction. One can think of the second-order
structure function as the root-mean-square size of the largest eddy in the flow. Table 3
shows that the same analysis applies to the coefficient A2 except that its values are
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Fig. 4 Taylor–Reynolds number 1000. Note that the plots are made on a log–log scale. The dots correspond
to the data from the VDTT, whereas the line is the fitted SCT
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Fig. 5 Taylor–Reynolds number 1450. Note that the plots are made on a log–log scale. The dots correspond
to the data from the VDTT, whereas the line is the fitted SCT

even smaller. Consequently, we omit the plot of A2. Table 4 shows that the parameter
C increases over the range of T–R numbers in the experiment and Fig. 9b shows its
plot corresponding to the increasing structure functions. We see that only the second
moment (red), measuring the root-mean-square size of the mean fluctuation velocity,
increases significantly over the range of T–R numbers in the experiment, see Fig. 9b.
The plots corresponding to the higher moments increase significantly less, although
they indicate that the mean velocity is getting spatially rougher. However, this is not
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Fig. 6 The two different fits for Taylor–Reynolds number 1450. The red solid line corresponds to the
previously given fit with D = 1.3, whereas the black dashed line corresponds to the fit with D < 1. Note
the downward peak for the black dashed line resulting from the sine series wanting to return to zero before
the last data point (Color figure online)

Fig. 7 The original fit to the sixth-order structure function for Reynolds number 1450 is the red solid line.
The black dashed line is if we tie A1 and A2 back to the original formula (23). Note the effect on the largest
values of r/η and how this creates the wiggles we are seeing (Color figure online)

Fig. 8 The red solid line is the original fit to the third-order structure function for Reynolds number 1450.
The black dashed line changes the value of the parameter C from 3.59 to 4. Note the effect here, as the
original fit for the dissipative and inertial range is pushed down slightly, and a new transitionary regime is
created. This effect is more pronounced in the brown dotted line, when C is increased from 4 to 6 (Color
figure online)
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Table 4 The fitted values for C
in Eq. (25)

Reλ 110 264 508 1000 1450

Second order 2.8 3.31 4.21 7.62 21.1

Third order 1.4 1.27 1.49 2.72 3.59

Fourth order 1.07 1.01 1.19 2.36 6

Sixth order 1.15 1.29 1.34 1.73 2.49

Eighth order 0.616 .531 .596 1.17 2.84

Table 5 The fitted values for a,
b and D in Eq. (25)

Reλ a b D

110 11.64 0.01612 1.569

264 9.581 0.05236 1.769

508 8.314 0.06504 1.518

1000 3.792 0.09247 1.32

1450 2.684 0.4092 1.3

Note that these parameters are grouped as they are independent of the
order of the structure functions

(a) (b)

Fig. 9 aThe values of the coefficient A1 of the first Fourier component, as a function of the Taylor–Reynolds
number, fromTable 2. Top (red) secondmoment, second from top (blue) thirdmoment, third from top (black)
fourth moment. The higher moments give negligible correction, whereas the first three change little, notice
the scale, over the range of T–R numbers in the experiment. b The values of the coefficient C , as a function
of the Taylor–Reynolds number, from Table 4, top (red) second moment (root-mean-square size), lower,
the higher moments. Notice that neither (a) or (b) is plotted on a log scale (Color figure online)

influencing much the balance of the Fourier components in the Fourier representation
of u(x, t) compared to the significant changes in the parameters a, b and m discussed
below. It simply measures the increase in the mean turbulent velocity as the turbulence
increases. One can interpret this as a consequence of the fact that the turbulence in the
VDTT is homogeneous but not fully isotropic. Thus, even with constant fan speed, the
mean small-scale velocity increases with Reynolds number (increased by changing
the pressure). The top line in Table 4 expresses this most clearly.

Table 5 shows the parameter D (measuring system size) does not change with the
order of the structure functions and does not change much over the range of T–R
numbers in the experiment.
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The conclusion of the analysis of the parameters D, A1, A2 and C in this section is
that they are characteristics for the VDTT and the experiment. The first three do not
change much with Reynolds number, and D is a small tuning of the system size that
is necessary for capturing the influence of the grid. A1 and A2 are the amplitudes of
the first two large eddies in the flow, presumably influenced by the grid. They are only
significant for low Reynolds number. We model them or the interaction of the grid and
the first two eddies for small Reynolds number. C is the only parameter that increases
with the Reynolds number. It measures the root mean square of the small-scale mean
velocity, and since the flow is generated by a constant large-scale flow, C will increase
with the Reynolds number as measured by the second structure functions. This small-
scale mean flow can be considered to be the result of the non-isotropy of the flow. The
higher-order structure function measures the smoothness of the mean small-scale flow
and does not change much with Reynolds number, see Table 4 and Fig. 9b. Thus, these
four parameters are VDTT specific and not universal for homogeneous turbulence,
in distinction to the remaining parameters a, b and m, discussed in the next section,
that all change with Reynolds number and are we believe universal for homogeneous
turbulence and independent of the VDTT.

6 Evaluation of theModel

In this section, we present the results of the fits to the data. In Figs. 1, 2, 3, 4 and 5, the
dots are the data from the experiment, while the lines are the SCT theory predictions.
The agreement between the theory is satisfactory for most orders of the structure
functions and for most Reynolds numbers. For the highest Reynolds numbers and
highest-order (sixth and eighth order) structure functions, we see differences between
the theory and experiment at the smallest scales. In general, we note that the fits
become less accurate as we increase the order of the structure functions. The fits for
the second-, third- and fourth-order structure functions are generally better than the
fits for the sixth- and eighth-order structure function fits, which are rougher. This is
expected from the theory given by Birnir (2013b) and will be explored further in a
future paper (Fig. 6).

6.1 VDTT Independent Fits: Homogeneous Turbulence

Table 5 gives the fitted values for a and b that change significantly over the range of
T–R numbers in the experiment, see Fig. 10. This table shows that the central limit
theorem term,

D̄ =
∑
k �=0

c
1
2
k db

k
t ek(x); c

1
2
k =

√
2

π

b

b2 + km
,

as given by b has a greater influence for smaller Taylor–Reynolds numbers than the
large deviation principle term:
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(a) The coefficients a and b, from Table 5.
(b) The coefficients b and 1

a2 . b changes by a
factor of 40 over the Taylor-Reynolds num-
ber range in the experiment.

Fig. 10 The dependence of the coefficients, in the improved SCT model (26), on the Taylor–Reynolds
number. The coefficient 1

a2
makes the large deviation contribution in (26), so it is plotted separately against

b. Note that a versus b is included for completeness but due to the nature of the Fourier coefficients ck and
dk as defined in (22), the ideal comparison is b against 1

a2

Table 6 The fitted values for m
in Eq. (25)

Reλ 110 264 508 1000 1450

Second order 1.563 1.16 1.069 .8965 .9148

Third order 1.408 1.111 0.922 .6488 .5262

Fourth order 1.269 .8751 .7936 .5554 .4865

Sixth order .98607 .5055 .5192 .4339 .3398

Eighth order .9711 .5924 .5755 .3771 .2482

D′ =
∑
k �=0

dkηkdtek(x); dk =
√

2

π

a

a2 + km
,

given by a, as for small values of k, these terms essentially become 1
a2

and b, respec-
tively, because b is small. As the Reynolds number goes up, we do see an increasing
influence of b dominating the increase of 1

a2
, see the plot in Fig. 10b. Thus, the con-

tribution of the central limit theorem is greater.
We do not have enough data to tell what the limits of a and b are as the Taylor–

Reynolds number Rλ goes to infinity. Table 5 shows that b increases with Rλ

presumably reaching a limit b(∞) < 1, and a decreases with Rλ probably going
to a limit a(∞) > 1. Below we will show that a is more influential than b as Rλ

becomes large.
The values of the exponent m of the wavenumber k = k1 are given in Table 6.

Their change over the inertial range seems small, but since m is an exponent, the
influence on the weight of the Fourier components of u(x, t) is highly significant. In
general, the exponents are larger or very close to 1, at least near the top of the table.
The first (top) line in Table 6, corresponding to the second-order structure function,
verifies the hypothesis concerning the coefficients ck and dk in Sects. 2 and 4. The
one-dimensional coefficient ck and dk , from Sect. 4.1, should decay as |k|−m , m > 1.
All the exponents in the first line in Table 6 satisfy this except the last two. However,
both still lie within the fitting uncertainty and may be explained by the Reynolds
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number corrections absorbing the weight of the power. Thus, the exponents m(Rλ) in
the first line depend on Rλ, but approach 1 as Rλ becomes large. We would expect the
exponents to remain above one for the rest of the lines on the table, but this is not the
case. We will seek to explain this result in a future paper.

7 The Improved SCTModel

The comparison of theory and data for homogeneous turbulence now produces a much
improved stochastic closure model, removing the infinitely many coefficients ck , dk
and hk from Eq. (7). What we find is that the large scales satisfy Eq. (4), whereas the
small-scale flow satisfies the stochastic Navier–Stokes equation:

du + u · ∇udt = (ν	u + ∇(	−1[Trace(∇u)2]))dt − u · ∇U −U · ∇u

+
∑
k �=0

(
a

|a|2 + |k|m
)

|k|− 5
3 dtek(x)

+
∑
k �=0

b1/2

(|b|2 + |k|m)1/2
|k|−2dbkt ek(x)

− u
1

3

∑
k �=0

N̄ k
t dt, (26)

where a,b1/2, k ∈ R
3, a = |a|, and b = |b1/2|2. The improved SCT model depends

on three parameters a, b andm, which are all function of the Taylor–Reynolds number
Rλ. A plot of a and b from Table 5 is shown in Fig. 10a. It shows that the large
deviation coefficient a is larger than the central limit theorem coefficient b. But this
is deceiving since the right comparison is between 1/a2 and b for small wavenumber
k, because of the form of the coefficients ck, dk in (22). This comparison is shown in
Fig. 10b. We see that b is larger than 1/a2 and dominates for small Reynolds numbers.
For large wavenumbers k, b dominates even more because now it is compared with
a2/k2. The conclusion is that the central limit theorem term is the main contributor to
the noise in the velocity differences, for small Reynolds numbers, and the bias given
by the large deviation term is only significant for large Reynolds numbers. We will
verify this below.

The coefficient C that appears in the computation of the structure functions (21) is
not constant for each Taylor–Reynolds number, see Table 4, because it measures both
the size of the velocity fluctuations and the relative strength of the center limit theorem
term and the large deviation term in the noise. However, it does not vary much over the
center part of Table 4 as a function of the Taylor–Reynolds number. The exponent m
also varies with Taylor–Reynolds number. However, it also does not vary much with
the Taylor–Reynolds number above the diagonal, as indicated by the bold numbers,
in Table 6.
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7.1 The Characterization of the Noise

We will now answer the question: “What is the noise in homogeneous turbulence?”
based on the improvements of the SCT model. This is the question that is stated in
Sect. 3 and partially answered by the original SCT model. We can completely answer
the question and characterize the noise appearing in the stochastic Navier–Stokes
equation (7). Recall that the original conjecture by Landau and Lifshits (1959) was
that the noise was white or uncorrelated. The question can be rephrased to ask what the
noise forcing is that the fluid velocity is subjected to in fully developed turbulence. In
the stochasticNavier–Stokes equation, the noisewasmodeled (SCT) as a Fourier series
with infinitely many coefficients, but now these coefficients have been determined by
the experimental data in Sect. 5. The following observations can be made:
The Noise in Homogeneous Turbulence:

1. The color of the noise in the stochastic Navier–Stokes equation (7) depends on the
Reynolds number through the coefficients a, b and the exponent m.

2. For small Reynolds number, the mean-field noise, or the central limit theorem
and large deviation noise, is exponentially correlated (decaying), with correlation
(Fig. 17):

Cr = C

2
e−2πbr + 1

2
e−2πar

(
r + 1

2πa

)
,

up to a multiplicative factor of 1
C2 , where the values of b(Reλ) (central limit

theorem), a(Reλ) (large deviation) and m(Reλ) (spatial smoothness) are taken
from Tables 4, 5 and 6, for low values of Reλ, and r = |x − y| is the correlation
distance between two points x and y in the fluid, see Fig. 11a.

3. For large Reynolds number, themean-field noise becomes oscillatory, approaching
the correlation:

Cr = C

2
b cos(2πb2r) + 2πa2r sin(2πa2r),

up to a multiplicative factor of 1
C2 , again taking the values from Tables 4, 5 and 6,

for high values of Reλ, see Fig. 11b.

These correlations are computed using the variance of the velocity and the second-
order structure function above, using the well-known formula S2(r) = 2(σ −Cr ) and
taking the limit of a very large spatial period. The exact formulas of the correlations
depend on the ansatz that we made for the coefficients ck and dk in Sect. 4.1, but
the above statements, about the nature of the correlations, are true in general. Thus,
they represent the physical noise in the VDTT but more generally the generic noise in
homogeneous turbulence.

Once we put in the values of b and a from Table 5, we see that the slow decay
of e−2πbr (central limit theorem) dominates for small Reynolds numbers, but the
rapid oscillations of 2πa2r sin(2πa2r) (large deviation) dominate for large Reynolds
number. This is consistent with the observations made above. Recall, however, that
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(a) (b)

Fig. 11 a The normalized (Pearson’s coefficient) two-point correlation, of the noise in the Navier–Stokes
equation (26), for Taylor–Reynolds number 110, with values of a and b from the first line in Table 5, and C
from the first column, first line of Table 4. b The normalized (Pearson’s coefficient) two-point correlation,
of the noise in the Navier–Stokes equation (26), for Taylor–Reynolds number 1450, with values of a and b
from the last line in Table 5, and C from the last column, first line of Table 4

these are the correlations of the noise in the stochastic Navier–Stokes equation, not
the correlations of the turbulent velocity itself, see Sect. 4.

Comparing with the conjecture made by Landau and Lifschitz in Landau and Lif-
shits (1959), we see that they were missing the Reynolds number dependance of the
noise. However, their conjecture was not so far from the noise in homogeneous turbu-
lence at large Reynolds numbers. It was only missing the rapid oscillations (growing
with increasing lag variable) that enable the turbulent velocity to remain continuous.

8 Sensitivity Analysis

Now that we have compared the experimental data from the VDTT to formulas com-
puted by the SCT, it is desirable to check how robust these results are. In particular, we
want to know whether the formulas with the Reynolds number corrections do better
than the formulas without them? Also, do the results depend on the probe size used in
the experiments or are they independent of it? In this section, we perform a sensitivity
analysis to test the results and answer these questions.

First, we consider the formula for the general pth structure function as given in
(21). One way to let the Reynolds number go to infinity is to let the viscosity of the
fluid go to zero. Doing so simplifies the coefficients Ap in (24), so that for Rλ = ∞,
ν = 0,

Ap =
2

p
2 �
(
p+1
2

)
σ
p
k 1F1

(
− 1

2 p,
1
2 ,− 1

2

(
Mk
σk

)2)
|k|ζp . (27)

The further denominator terms found in (26) but not above are corrections to the
formula to account for the Reynolds number of the flow. Data fits were also done to
the formula without the Reynolds number corrections. Figures 12, 13, 14, 15 and 16
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Fig. 12 Error for Taylor–Reynolds number 110. Note that the plots are made on a log–log scale
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Fig. 13 Error for Taylor–Reynolds number 264. Note that the plots are made on a log–log scale

are plots of the error between the formula fits and the data at each data point. The
changed values for the parameter m for the uncorrected fits is given in Table 7. The
blue circles are the error to the Reynolds corrected formulas, while the red diamonds
are the error to the formula without the Reynolds number correction.

There are a couple of observations to make about the error plot. First, for small
Taylor–Reynolds numbers, it appears that the corrections improve the fitting, espe-
cially for the smaller data points. This improvement erodes as the Taylor–Reynolds
number increases, until we see very little difference in accuracy for Taylor–Reynolds
number 1450. This makes sense, as the corrections to account for Reynolds num-
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Fig. 14 Error for Taylor–Reynolds number 508. Note that the plots are made on a log–log scale
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Fig. 15 Error for Taylor–Reynolds number 1000. Note that the plots are made on a log–log scale

ber get smaller as the Reynolds number increases, with the formulas becoming the
uncorrected version when we let the Reynolds number go to infinity.

We also see an issue in fitting the smallest data points for solely for Reynolds
number 1450. This issue appears to be connected to the system length, as shown in
Fig. 6. A second fit to the fourth structure function for this Reynolds number was found
with D = .921. This does improve the fitting for the smaller data points. However,
D being this small causes an issue at the larger data points, namely the sine curve
wants to return to zero before the last data point. Since there are relatively few data
points at small values of r/η, we set D = 1.3. The value of 1.3 was chosen as it the
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Fig. 16 Error for Taylor–Reynolds number 1450. Note that the plots are made on a log–log scale

Table 7 The fitted values for m for the uncorrected for Reynolds number effects structure function fits

Reλ 110 264 508 1000 1450

Second order 2.09081 1.49402 1.31448 1.07963 0.984291

Third order 1.79012 1.41339 1.05553 0.822192 0.730565

Fourth order 1.6408 1.09179 0.920749 0.687336 0.595942

Sixth order 1.65727 1.08667 0.91658 0.681818 0.592901

Eighth order 1.66164 1.06728 0.901549 0.662111 0.577724

smallest number needed to fully capture the larger data points. Figure 6 also illustrates
the effect D has on the fits, serving to place the transition from the dissipative range
into the inertial range.

One potential point of concern with the fitting result was the probe size. The size
of the probe could influence the fit, and a different probe size could produce different
results. To check for this, fits were redone with a reduced number of data points.
In particular, for every Taylor–Reynolds number and every structure function, fits
were redone without including the first, the first two and the first three data points,
respectively. We saw minimal change in the main parameters, the greatest being a
difference of one in the third significant digit. The robust test for Reynolds number
508 is included in Fig. 17. As we can see, there is not a significant change in the value
of m when removing the first couple of data points. However, the removal of fifteen
or more data points removes the entire dissipative range and so we would expect the
changes to be significant. As a result, we are convinced the fits are unaffected by the
probe size.

Finally, we show the effect parameters A1, A2 andC have on the fits. Figure 7 shows
the effects of A1 and A2. Note that these effects show up for all Reynolds number and
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Fig. 17 Robustness test for a Reynolds number of 508. Note that the x-axis is the number of data points
removed from the fitting. We see very little change in the m parameter until we remove enough data points
to eliminate the dissipative range completely. Note the scales on the y-axis. As a result, we are convinced
our fits are not dependent on the probe size

all order of structure functions, although they become negligible as the order of the
structure function increases. These two parameters also created the wiggles we see at
the largest values of r/η. Figure 8 shows the effect of parameter C . This parameter
places the vertical location of the transition out of the inertial range.

9 Conclusion

We started by following Kolmogorov’s method as described in Sect. 2 to close the
Navier–Stokes equations that describe fully developed turbulence. We did this by
introducing a stochastic forcing term to account for the small scales, seeBirnir (2013a).
Having closed themodel, we then compute a sine series representation for the structure
functions of turbulence, with Reynolds number corrections. These formulas were then
fitted to data generated from the variable density turbulence tunnel at the Max Planck
Institute for Dynamics and Self-Organization. The fits proved to be good with seven
parameters. However, only three of these parameters a, b,m were active over the entire
range of T–R numbers in the experiment, although one more parameter C measures
the mean fluctuation velocity and increases over the range of T–R numbers in the
experiment. Of the other four D, A1, A2 and C , one D is active only for the transition
from the dissipative range into the inertial range, whereas the other three are active
for the transition out of the inertial range.

It thus seems that the parameters D, A1, A2 and C are particular to the VDTT
and experiments without isotropy, but the three parameters a, b and m are universal
and characteristic for homogeneous turbulence. This obviously has to be tested by
comparison with other experiments in homogeneous turbulence.
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We also compared fits to the formula with a correction to account for the Reynolds
number to fits without that correction. This difference is quantified in Figs. 12, 13,
14, 15 and 16. We see that the Reynolds correction formulas generate better fits as the
Reynolds number increases for lower structure functions but have little impact on the
fits for the higher structure functions.
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