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Abstract

We compare the predictions of stochastic closure theory (SCT) (Birnir in J Nonlinear
Sci 23:657-688, 2013a. https://doi.org/10.1007/s00332-012-9164-z) with experi-
mental measurements of homogeneous turbulence made in the variable density
turbulence tunnel (Bodenschatz et al. in Rev Sci Instrum 85(9):093908, 2014) at the
Max Planck Institute for Dynamics and Self-Organization in Gottingen. While the
general form of SCT contains infinitely many free parameters, the data permit us to
reduce the number to seven, only three of which are active over the entire range of
Taylor—Reynolds numbers. Of these three, one parameter characterizes the variance of
the mean-field noise in SCT and another characterizes the rate in the large deviations
of the mean. The third parameter is the decay exponent of the Fourier variables in the
Fourier expansion of the noise, which characterizes the smoothness of the turbulent
velocity. SCT compares favorably with velocity structure functions measured in the
experiment. We considered even-order structure functions ranging in order from two
to eight as well as the third-order structure functions at five Taylor—Reynolds numbers
(R;.) between 110 and 1450. The comparisons highlight several advantages of the SCT,
which include explicit predictions for the structure functions at any scale and for any
Reynolds number. We observed that finite- R, corrections, for instance, are important
even at the highest Reynolds numbers produced in the experiments. SCT gives us
the correct basis function to express all the moments of the velocity differences in
turbulence in Fourier space. These turn out to be powers of the sine function indexed
by the wavenumbers. Here, the power of the sine function is the same as the order of
the moment of the velocity differences (structure functions). The SCT produces the
coefficients of the series and so determines the statistical quantities that characterize
the small scales in turbulence. It also characterizes the random force acting on the
fluid in the stochastic Navier—Stokes equation, as described in this paper.
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1 Introduction

Let us begin with a brief history of wind tunnel research and of the effort to describe the
structure of turbulence statistically. In aeronautics, the design of airfoils and airplanes
was a major challenge. The development of appropriate laboratory experiments facil-
itates progress to this day, including the invention of the wind tunnel. The first wind
tunnel is credited to F. Wenham in Great Britain in 1871. The Wright brothers also
constructed their own wind tunnel in 1901 (Baals and Corliss 1981), but it was Ludwig
Prandt]l who designed the first “modern” wind tunnel. This 1917 tunnel was actually
his second design, his first design in 1909 being a closed-loop wind tunnel which,
by his own admission, was “of a temporary nature” (Prandtl 1920). Nonetheless, his
second, more permanent design would become the model for many subsequent wind
tunnels (Anderson 1999). Prandtl’s student, Max Munk, went on to design the first
wind tunnel that allowed adjustment of the density of the working fluid (Bodenschatz
et al. 2014), and so for much higher Reynolds number flows in the tunnel. This tunnel
was built at the Langley Research Center in Virginia in 1923. Most of the early research
done with wind tunnels was devoted to the study of airfoils and airplane shapes and
Mach number (Bodenschatz et al. 2014). One interesting feature of these tunnels was
the ability to adjust Mach number and Reynolds number independently.

Wind tunnels are essential tools to study not only airfoils and model airplanes, but
also to study statistically homogeneous and isotropic turbulence, see Taylor (1935).
Such flows limit turbulence to its essential ingredients: inertia, pressure and friction,
minimize the effects of the boundaries on the flow and do not exhibit a preferred
orientation. It can be created by mechanically stirring a liquid or gas (Bodenschatz
et al. 2014). A close approximation of such flows is realized in a wind tunnel when
a uniform free-stream flow is disturbed by a mesh or a grid, see Comte-Bellot and
Corrsin (1966) and Corrsin (1961).

Experiments to study turbulence were rare until the second half of the twentieth cen-
tury. The 1940s featured experiments on grid turbulence in California (Millikan et al.
1948), while another series of experiments were performed at the Nuclear Research
Lab in Jiilich in the 1970s (Hunt et al. 1992). More recently, wind tunnels were built
at the German Aerospace Center in Gottingen and at the Princeton Gas Dynamics Lab
with similar goals. The experiments in this paper were performed in the facility at
the Max Planck Institute for Dynamics and Self-Organization in Gottingen called the
variable density turbulence tunnel (VDTT), which was completed in 2009 (Boden-
schatz et al. 2014). It has achieved turbulent flow up to Taylor—Reynolds number 1600,
which is the highest recorded for a passive grid experiment until that time, with higher
Reynolds number since being recorded with an active grid (Sinhuber et al. 2015,
2017). Details about the VDTT can be found in Bodenschatz et al. (2014). One of the
Prandtl’s original wind tunnels sits beside the VDTT in Goéttingen, see Bodenschatz
et al. (2014).

The mathematical theory of turbulence has its roots in the work of Kolmogorov. In
1941, Kolmogorov published his celebrated four-fifths law and postulated, together
with Obukhov, that the structure functions of turbulence of nth order, S, should scale
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with the lag variable, r, so that
Sp(x, v, 1) = E(ju(x, 1) — u(y, 1)|P) = Cp, rP/3,

where p is the order of the structure function and r = |x — y|, where x and y are the
positions in space. Lev Landau criticized the theory for neither taking into account the
organization of the flow on large scales nor the influence of intermittency, which is
the development of long tails in the velocity difference distributions at large Reynolds
numbers (Birnir 2013a). In 1962, Kolmogorov and Obukhov revised their theory to
address these criticisms. They introduced a correction to the exponent, such that

Sp(X,y,t)=Cp<e§ >r3=C

where € is the dissipation rate and ¢, = % + 7, and 1), is a correction that needs to
be determined. A prediction for the correction was found by She and Leveque (1994):

fp=—%”+z(1-<§>3>, ()

see She and Leveque (1994). In Birnir (2013a), the log-Poisson processes of Dubrulle
(1994) and She and Waymire (1995), responsible for the intermittency corrections,
were derived from the stochastic Navier—Stokes equation.

Kolmogorov and Obukhov considered the velocity in turbulent flow to be a stochas-
tic process, and their hypotheses include that the 2-point probability distribution
function (PDF) of turbulence does not depend on x or y individually but only on
r, v and €, where r is the lag variable, v is the kinematic viscosity, and € is the kinetic
energy dissipation rate of the turbulence per unit mass (Pope 2000). Moreover, when
r >> n, where 7 is the Kolmogorov (or dissipation) scale, the PDF depends on €
and r alone, and not on v. Since the 2-point PDF determines the structure functions
described above, the same statements that apply to the PDFs apply also to the structure
functions.

If the turbulent velocity is a stochastic process, it must satisfy a stochastic Navier—
Stokes equation. Such an equation was formulated by Landau and Lifschitz in their
Fluid Dynamics book (Landau and Lifshits 1959). They considered the noise in the
stochastic Navier—Stokes equation to be the source of fluctuations in the velocity,
which cannot be ignored in turbulence. They argued that it should be white both in
time and space, but this assumption cannot be true since the Navier—Stokes equation
driven by noise that is white in space produces velocities the are not continuous (Walsh
1984), and this is not observed in nature. Birnir (2013a) argued that the noise has
enough smoothness in space that the dissipation rate, €, is finite, and that the noise is
of a generic nature that includes an additive term corresponding to a mean-field noise
and another additive term corresponding to the large deviations of the mean field. He
also added a multiplicative noise term, modeling jumps in the gradient for the flow
velocity, and showed that this term produced the log-Poisson process of Dubrulle, She
and Waymire and their intermittency corrections 7,. These assumptions are the basis
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of the stochastic closure theory (SCT) (Birnir 2013b) and are elaborated in the next
section.

2 The Assumptions of SCT and Its Predictions

The following assumptions produce the stochastic Navier—Stokes equation (7) given
in the next section. The detailed arguments leading to the form of the noise are given in
Birnir (2013a,b). They follow the spirit of the argument in Landau and Lifshits (1959).
We also list the predictions of the theory, which include a quantitative prediction of
the She-Leveque intermittency corrections to the Kolmogorov—Obukhov *62 theory
of turbulence.

SCT Assumptions:

1. The small scale flow in fully developed turbulence satisfies a stochastic Navier—
Stokes (SNS) equation.

2. The noise in the SNS consists of both an additive and a multiplicative term.

3. The additive noise is in part a general mean-field noise that is sufficiently smooth
in space for the dissipation rate:

6:1)/ |Vu|?dx < oo,
Q

to be finite. In addition to this “infinite-dimensional Brownian” mean-field noise,
there is a deterministic additive part that captures large deviations in the mean
field.

4. The multiplicative noise models jumps in the velocity gradient, Vu. This term is
then multiplied by the velocity u. It is the noise associated with the inertial term
in the Navier—Stokes equations.

5. The most singular (having least spatial smoothness) structures in (3-d) turbulence
are one-dimensional vortex lines.

SCT Predictions:

1. The structure functions of turbulence at finite Reynolds numbers are given by for-
mulas that explicitly incorporate the Reynolds number dependence of the structure
functions.

2. The N-point probability density function exists and can be computed. In the
two-point case, it is determined by the Kolmogorov—Hopf functional differential
equation (Birnir 2013b) and has an explicit formula (Birnir 2016).

3. There exists an invariant measure on the phase space of the stochastic Navier—
Stokes equation (Birnir 2013b, 2016). This measure has an explicit formula (Birnir
2016), and the stochastic Navier—Stokes flow is ergodic with respect to this mea-
sure.

4. The PDF for the velocity distribution in turbulence is a generalized hyperbolic
distribution (Barndorff-Nilsen 1977) convolved with the Poisson distribution of
the log-Poisson processes of Birnir 2016. For large values of the lag variable and
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for the fluid velocities themselves, these distributions become (skewed and flat)
Gaussians.

The most important SCT prediction for this paper is (1), the explicit formulae
for the structure functions with given Reynolds number dependencies. We use these
formulas to fit the data measured in the VDTT, and this is the subject of the paper. A
disadvantage of equation is that the noise has infinitely many undetermined coefficients
¢k, dr and hy. The last coefficients are a consequence of assumption 3 above. The
vorticity lines are one dimensional, and this implies that all the coefficients, &y, are
fixed (Birnir 2013b). However, we are still left with infinitely many coefficients ci
and dx. What we find through comparison with the experimental data is that, after
fitting the characteristics of the VDTT and non-isotropy, we can reduce the number of
coefficients to only three. When the mean flow is given, we are left with one parameter
that characterizes the infinite-dimensional Brownian, another parameter characterizing
large deviations from the mean, and one exponent characterizing spatial smoothness.
We find, as expected, that the mean flow and the three parameters depend on the
Taylor—Reynolds number. They do not, however, depend on the order of the structure
function. The upshot is a much improved stochastic closure model (26) with only three
parameters characterizing the noise.

One can say that the SCT produces the correct basis, with basis functions that are
functions of the lag variable indexed by the wavenumber, to represent all the statistical
quantities of the velocity differences. This is a big improvement over previous theo-
retical result that only produces one or finitely many statistical quantities measurable
in experiments.

3 The Stochastic Closure Model

In this section, we give a short derivation of the SCT model. We first explain how

the form of the turbulent noise forcing, in the Navier—Stokes equation, is derived and

then use some techniques from probability theory to transform the resulting stochastic

Navier—Stokes equation, for the small-scale velocity, to an integral equation. The

integral equation will be used in the next section to compute a sharp lower estimate

for the structure functions. The reader is directed to Birnir (2013b) for more details.
The flow in the wind tunnel is governed by the Navier—Stokes equation:

ur+ (- Vyu =vAu — Vp,
divu =0,
u(x,0) = up(x), (2)

where u(x) is the fluid velocity, x € R3, p is the pressure, and v is the viscosity. We
also impose periodic boundary conditions upon the flow. The second line in (2) is the
incompressibility condition. Using this equation, we can eliminate the pressure to get

Uy 4+ u - Vu = vAu + V(A" Trace(Vu)?)). 3)
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This equation defines the evolution of the velocity of the fluid in time. We will impose
periodic boundary conditions on the small scales below.

Following the classical Reynolds decomposition (Reynolds 1885), we decompose
the velocity into mean flow U and the fluctuations u. Then, the velocity is written as
U + u, where U describes the mean or large-scale flow and u describes the veloc-
ity fluctuations. These two terms describe the large scales and small scales of the
flow, respectively. If we also decompose the pressure into mean pressure P and the
fluctuations p, then the equation for the large-scale flow can be written as

U +U-VU=vAU — VP -V - (u®u), 4)

where in coordinates

R Bu,- u;
V-uMQu) = ——,

ox j
that is V is dotted with the rows of u;u;, and R;; = u ® u is the Reynolds stress, see
Bernard and Wallace (2002). The Reynolds stress has the interpretation of a turbulent
momentum flux, and the last term in (4) is also know as the eddy viscosity. It describes
how the small scales influence the large scales. In addition, from linearity, we get
divergence free conditions for U and u

V.U =0, V.ou=0.

Together, (4) and the divergence free condition on U give the Reynolds-averaged
Navier—Stokes (RANS) that forms the basis for most contemporary simulations of
turbulent flow. The large-scale equation (4) is satisfied by the mean flow U = constant
in the measurement region of the VDTT. Thus, in our case, (4) reduces to the pressure
gradient balancing the eddy viscosity.

The notation ¥ ® u = E(u ® u) denotes the expectation that is assumed to be the
same as an ensemble average u ® u = (u ® u). Thus, when we discuss the mean
large-scale flow U and the mean small-scale (fluctuation) flow i below, we mean the
expectation or ensemble average of these quantities.

Finding a constitutive law for the Reynolds stress u @ u is the famous closure
problem in turbulence, and we will solve that by writing down a stochastic equation
for the small-scale velocity u. This was first done by Landau and Lifshits (1959).

The consequence of the SCT hypothesis is that the fluctuating velocity u in tur-
bulence is a stochastic process that is determined by a stochastic partial differential
equation (SPDE). It will be the Navier—Stokes equation for the fluctuations driven by
noise, see below. This is the point of view taken by Kolmogorov (1941a,b, 1962),
but the question we have to answer is: What is the form of the noise? There is a wide
array of the literature on this question, trying to trace the form of the noise back to the
fluid instabilities, but these attempts have proven to be unsuccessful. Any memory of
the fluid instabilities is quickly forgotten in fully developed turbulence, and the noise
seems to be of a general form. Thus, it makes sense to try to put generic noise into
the Navier—Stokes equations and see how the Navier—Stokes evolution colors generic
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noise. Below we will answer what generic noise in the Navier—Stokes equation must
look like, see Birnir (2013b) for more details.

For fully developed turbulence, we close the model with a stochastic forcing term
to account for the small scales in (2) and (3). This noise term models the dissipation
in the flow. We impose periodic boundary conditions and then discretize on the torus.
Let pi denote the dissipation process in the jth box. We assume these dissipation
processes in the flow are weakly coupled and have mean m. Thus, the average is given
by

1 n
Jj=l1

We now make use of the central limit theorem, which implies M,, will converge to a
Gaussian distribution with mean zero and variance one. For the statement and proof
of the central limit theorem, see page 194 in Grimmett and Stirzaker (2001). Then,
define

S[tn] —nm

\/ﬁo’

where S, = Z’}: 1 pj and [tn] denotes the integer value. We now apply the functional
central limit theorem, as given by Theorem 8.1 in Bhattacharya and Waymire (1990),
and so the processes x; must converge in distribution to a Brownian motion b, as
n — oo. This must occur in the direction of any Fourier component and so we get

n _
Xy =

_ 1
D =Y cldbfer(x),
k0

2mikx

where ex(x) = e are the distinct Fourier components complete with its own
1

Brownian motion bf , and ck7 are the coefficients that converge sufficiently fast to
ensure convergence of the entire series, see Birnir (2013b).

However, we also must measure the fluctuations in the dissipation which can be
explained via the large deviation principle. To apply the large deviation principle,
we need to describe the rate function associated with the process, which depends on
whether the fluctuations are random. If they are, the fluctuations can be modeled by a
Poisson process with rate A, and furthermore, if there is bias in the fluctuations, then
the deviations of M,, are bounded above by a constant determining the direction of the
bias times the rate n. Cramer’s theorem, see Birnir (2013b), then gives that the rate
function is bounded by n = A, and so the second additive noise term is
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D = denkdtek(x).
k0

Here, ey (x) is defined as above, dj is defined similarly to c2'5, and ny, are the rates in

1
the kth direction. We choose 1y = |k|3 to line up with the scaling of the central limit
theorem term. Thus, the large deviation principle gives the term

D' =" dilk|3drex(x).
k#£0

These two terms defined the additive noise forcing term. A more detailed description
of these terms is given in Birnir (2013b).

A final forcing term comes from the multiplicative noise. This noise models jumps
in the velocity gradient or vorticity concentrations, if we let N,k denote the number
of velocity jumps associated with the kth wavenumber that have occurred by time ¢.
This in turn implies that the differential

dN*(t) = N¥(t +dr) — N* (1)

denotes the number of jumps in the time interval (¢, ¢ 4 d¢]. The multiplicative noise
then has the form

J = Z/th(t,z)l\_fk(dt,dz),

k#£0

where /1, measures the size of the jump and N* is the compensated number of jumps.
For more information on the multiplicative noise, see Birnir (2013b).

Thus, adding the terms D, D’ and, J multiplied by u, to the Navier-Stokes equation,
we get a stochastic PDE describing the fully developed turbulent small-scale flow in
the wind tunnel:

du +u - Vudt = [vAu + V(A [Trace(Vu)?]) —u - VU — U - Vu]ds

1
+ ) dlk|Fdrer (o) + Y e dbfer(x)

k#0 k#0
vuy [ bRt do). )
k20 /R

Notice that this equation cannot be reduced to the equation for homogeneous and
isotropic turbulence, see Birnir (2013b), by the Galilean invariance of the Navier—
Stokes equation. We drop the term —u - VU, in the equation above, since the mean
flow U is constant for homogeneous turbulence and approximately constant in the
wind tunnel, see Bodenschatz et al. (2014). The term —U - Vu can, however, not be
dropped. Its effect will be computed in next section. An application of Girsanov’s
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theorem allows us to eliminate the (—u - Vu — U - Vu)dr term at the cost of adding
an exponential martingale:

1 t
M, :exp(—/(U+u(Bs,s)) -dBy — 5/ |U + u(Bs, s)|ds),
0

where B; € R3 is an auxiliary Brownian motion, to each term in the Navier—Stokes
equation:

du = [vAu + V(A [Trace(Vu)?]) 1M, dt

1 1
+ ) dilk|s Midter(x) + Y cf Mydbfeg(x)

k#0 k#0
+uy / hi(t, )N* M, (dr, dz). ©)
k20 /R

For the statement and proof of Girsanov’s theorem, see pages 149-151 of Oksendal
(1998). The martingale captures the effects of the large scales on the noise in the
small-scale flow.

The Feynman—Kac formula allows us to eliminate the term

wx 3 [ N .o
k=0 YR

at the cost of adding a log-Poisson process

1

t n ! -
elsda — 3 Z{/O /Rln(l + hi)N*(ds, dz)

k#0

t
+ / / (In(1 + ) — hk)mk(ds,dz)})
0 JR

to each term in the Navier—Stokes equation. For the statement and proof of Feynman—
Kac Formula, see pages 128—129 of Oksendal (1998). Thus, the new Navier—Stokes
equation becomes

du = [vAu + V(A [Trace(Vie)2])Jels %9 M, ds

t 1
+ devcﬁefx Y My drer(x) + Y cf el Y M dbFer(x) (7
k0 k0

Finally, we use the definition of mild (or martingale) solutions of nonlinear stochastic
partial differential equations (SPDE) in infinite-dimensional space:
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Definition 3.1 Consider the initial value SPDE problem
du = (Au + F(t,u))dt + G(t,u)dB;, u(x,0) = uop.

A stochastic process u(w, x, t) is a mild solution of this SPDE initial value problem

(IVP) if
t

P </ ul3(s)dr < oo), P a.s.
0

and

t t
u(t) =eA’uo+/ eA(’—S>F(s,u(s))ds+/ eA9G (s, u(s))dB;, P a.s.,
0 0

where P is the probability measure in the associated probability space (2, F, P).

For more information, see page 182 in Da Prato and Zabczyk (2014). One can then
state a theorem for the existence of unique mild local (in time) solutions, see page 186
in Da Prato and Zabczyk (2014). Now, this theorem does not apply directly here, as
the multiplicative noise concerns jumps and not only Brownian motion. However, a
slight alteration of the proof gives local existence of solutions. The mild solution of
the stochastic Navier—Stokes equation, governing fully developed turbulence, is given
by

1 t
=KD g0 + doc / K=ol 401, dbFey (x)
0

k#0
+ 2 di / KUl a0, el drey (o), ®)
k20 Y0
where K is the operator
K = vA + VA 'Trace(Vu V), &)

2mikx

M, is the above exponential martingale, e (x) = e is a Fourier component com-
1

plete with its own Brownian motion b, and the coefficients ckz and dj decay fast
enough so that the series converges, see Birnir (2013b), Chapter 1. This is also the
integral form of the stochastic Navier—Stokes equation (7). The integral equation (8)
is equivalent to the stochastic Navier—Stokes initial value problem (7) for the small
scales. It will be our main tool in computing the structure functions. The operator K
above has a potential VA~ !Trace(VuV) that depends on both x and #; thus, it does
not have eigenvalues and does not generate a semigroup. But K generates a flow, that
we have denoted ¢X® above and if we replace it by its time average and apply the
ergodicity of the stochastic Navier—Stokes evolution, see the SCT prediction number
3 above, then we get an operator where the time average of the potential is equal to
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the expectation. This gives an operator K = vA + C 8)%/ 3, where by ergodicity C
is a constant, see Birnir (2013b), with eigenvalues that we denote Ay, k € N. This
will greatly simplify the computation of the structure functions in the next section.
Instead of estimates of the structure functions as in Birnir (2013a), we get equality in
the formulas.

4 The Computation of the Structure Functions

In this section, we describe the calculation of the structure functions of turbulence,
which will be compared with the experimental data. Using the stochastic Navier—
Stokes integral equation (8) from previous section, we have that

u(x, 1) — u(y, 1) (10)
t
= Z [(c,%/ eK(t_‘Y)ef;qu,,sdbf
k£0 0
1 t
+ di / K9 els qu,s|k|%ds) (ex(x) —q(y))] (11)
0

where u(x,t) and u(y, t) are the flow velocities at two points x and y in the wind
tunnel. This permits us to describe the computation of the structure functions:

Sp(x =y, 1) = E (lu(x, 1) —u(y,n)|”).
First, we note that the expectation is actually a composition of three expectations: one
for the Brownian motions in the Fourier series representation of the noise, denoted
Ey, another for the log-Poisson process, denoted E),, and the third Ep for the auxiliary

Brownian motion in the martingale in the last section. The log-Poisson expectation
acts upon the term

1
2 2 NE\ 3
efqu:exp{3ln'k'+3Nkln(3)} = (|k|§ (%) ) ,

given by the Feynman—Kac formula, see Birnir (2013b). Then, we get that

Lyt A(e(-0))
Ep(klz {3 ] 1) = Il

)

see Birnir (2013b). Notice the exponent above is the She—Leveque intermittency cor-
rection (1), denoted 7). Applying E}, also eliminates all terms (e (x) — e (y)) (e (x) —
ej(y)) for k # j. Standard algebra and trigonometry gives

Tik(x+y)

ep(x) —ex(y) =2e sin(rk - (x — y)).
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Thus, we get that

E (lux, 1) —u(y,n|”) (12)
? t
=E Z[(c,f / K= elsdapy, bk (13)
ks£0 0

s "d : !
b [ KIS e as) ) — ()]

1t
= Eyp Z[(c;? / KD k| =% Eg (M, _,)db)
k#0 0
! 1 . p
+ di f KO Eg (M) k3 ds) | x 26780 sinGrk - (x — )
0
(14)

Now, we compute the action of the time average of the operator K on the Fourier

components (eigenfunctions of K), replacing it with the eigenvalues A, = C|k|% +
4vr?|k|?, see Birnir (2013b). This assumes that the expectation of the norm of u in

+
the Sobolev space He is finite, see Lemma 2.7 in Birnir (2013b).
M; is the exponential martingale:

U 2
M,:Exp[/(U—f—u)-st—/%ds]

where B, € R? is an auxiliary Brownian motion and U + u is the Reynolds decom-
position of the flow. A simple application of Ito’s formula yields

M,”:1+/0t(U+u)Ms.d35+@/0r|u+u|2m’ds.
Thus, we have
Epif) =14+ 2020 fo EslU + ul?M1ds
< 1+p(pT_1)/0t sup |U + u|* Eg[MF1ds.
x

Thus, by Gronwall’s inequality,

Eg[MP] < ™5 Jo supc (UP+uPydr,
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The sup in x frees the expectation from the expectation of the auxiliary Brownian
motion, used to define the Martingale, and the exponent of the right-hand side is
easily estimated by the same methods as below

C/2)ck +d}
Ey [SUP(|U|2 + |ul )i| < supIUI2 + Z( /2 = Constant.

¢
iz ke

This implies that Eg[M/] only adds a constant, first to the exponents and then to the
denominators, in the structure functions below and we will ignore it.

Finally, we take the absolute value and expand the polynomial expression in (12).
To ultimately compute the structure functions, we use Ito’s Lemma

T 2 T
E[( f fa. w)d&) } f EL(f (1, w))*1ds
S S

to turn any even power of the stochastic integral into a deterministic integral, which
can then be solved for using standard calculus. For odd powers, we use the fact that

E[/SdeB,]zo

to eliminate such terms. We then find the first-order structure function is given by

E(lu(x,t) —u(y,t)]) = S1(x, y, 1)
2 Z |dic| (1 — e=*1)
= |§l+47'[ V|k|{1+3

" 7Isin(mk - (x — y))l, (15)
keZ3\{0}

where | - | denotes the vector norm in R3. The second-order structure function is given
by
E(lu(x, 1) —u(y, D) = Sa2(x, y, 1)

4
== Z (| sin®(7rk - (x — y)|)

kez?
Scr(1 — e72M)

k|22 + 42 oo+

|di|*(1 — e
|k|§‘2 4 872 v|k|§2+3 T (i ad el 167[41)2

16
|k|§2+3 (16)

where ¢, = |ck |?. The third-order structure function is given by
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E(ju(x.1) — u(y, 0]) = S3(x, y,1)
8
=3 2 | UsindGrk o= y)D
keZ3
§exldil (1 — e=2M) (1 — =M1y

el + B2 k053 4 légi;‘vﬂ,qmg

|dk|3(1 _ef)»kt):‘ﬁ
k|83 + ]Zgzv |k|£3+% + 482‘2‘1)2 \k|{3+§ + 642721)3|k|§3+4

7)

The general pth order structure function is given by

2r .
Sp(x,y,t):aZA,,x | sin?[7k - (x — y)]l, (18)
k£0

where
(et P F PR IAY
2 )%k 111 2P 7272 5

A, = , (19)
! kIS + B2 |k 65 4 O(02)

where I is the gamma function, | F is the hypergeometric function, M = |di|(1 —

e M), o = \/ (%ck(l — e~ 2M1)), and py is different for each denominator term in
the series. Note that the Reynolds number dependence is captured via the viscosity
term v. C is a constant approximating the (Sobolev) norm of the small-scale velocity
of the flow. It will be allowed to vary across structure functions to accommodate a
relative change in the mean and the large deviations.

The above formulas clearly distinguish the stochastic closure theory (SCT) from
previous theories on turbulence. SCT shows that the correct basis for the pth structure
function, in Fourier space, is the collection of sine components of the lag variable,
indexed by different wavenumbers and raised to the power p. The coefficients for this
basis are given by formula (24). This allows us to represent all structure functions as
functions of the lag variable for all Reynolds numbers and all powers p. Furthermore,
this model is directly derived from the Navier—Stokes equations. Such a result has been
unattainable until now. It permits a complete characterization of the experimental data
for the structure functions in homogeneous turbulence.

4.1 The One-Dimensional Structure Functions

We want to fit the structure functions (23) to the experimental data collected in the
VDTT. To do this, we have to reduce the three-dimensional structure functions to
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one-dimensional ones, which are easier to obtain. We will perform the reduction in
this subsection.

We consider structure functions where the measurements are taken at two distinct
points along the length of the tunnel, in the direction of the mean velocity. These are
called the longitudinal structure functions, S, (r, t), where r = x — y is a vector along
the main axis of the tunnel. One can also consider the transversal structure functions,
S,(q,t), where g = x —y is a vector in the radial direction of the tunnel, perpendicular
to r. In homogeneous turbulence, these two structure functions are not independent.
Their correlation matrix is given by Pope (2000):

Djj = E [(ui(x,1) —ui (y, D) (uj(x, 1) —uj(y,1)]
= 520,01 + (S2(r, 1) — $2(q, t)>%’

where / is the identity matrix in R3 x R3, and
0
$2(g, 1) = Sa(r, 1) + rgsz(r, 1),

with » = |r|, | - | denoting the vector norm in R3. Forn << r, D; j is expected to
reduce to

4 Lrir;
Djj = Cy(er)*? <§I - §%> .

Thus, in R3, the correlation matrix is determined by longitudinal structure function
S>(r, t) alone and we will restrict our attention to the longitudinal structure functions.
Consider the longitudinal third-order structure function given by the SCT:

Sexldi|(1 — e 20y (1 — e~M)

k|5 + %W{ﬁ% + 162#|k|€3+§

8
Sy 0) = > | (sin’Grk - r)))

keZ?

|di ]2 (1 — e=41)3

k|% + %Vd{ﬁ-% + 482#|k|§3+% + 642_§V3|k|43+4

+

where ¢ = ¢| + 2 + ¢, |dk| = \/d} +d; +d; and |k| = \/k} + k3 + k3, and
r =x—y.If wetake r = (r,0,0) to lie along the axis of the VDTT (cylinder),
thenr - k = (rkq, 0, 0), and since only the components with x — y = (, 0, 0) can be
present in the sum, all the terms drop out except those with k = 0 and k3 = 0. Thus,
k = (k1,0,0) and the three-dimensional sum reduces to a one-dimensional one. If
taken t — 00, we get the one-dimensional structure function
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C
§Ck| |dk1|

8
S0 = 5 2 | Usin*Grhar)) _ geuldal
C k170 k1% + &TTV|]<1|C3+§ + 16221; ey 63+

3
|dk1|
ki|% + 1272y ki §3+% + 48742 ki §3+% + 647013 ky|t3t4
C C? C3

(20)

because {3 = 1, where Cky = C(kl,O,O)’ |dk1| = |d(k1,(),0)|-

The argument for all the structure functions S,, p > 1,is similar. We will compare
the one-dimensional structure function with experimental data and drop the subscript
1 on kj. Thus, the general pth one-dimensional longitudinal structure function, in the
stationary state, is given by

2
4 +1 4 1 1 1 (M
o 22F(p2 )Uk 151 (_El” 2272 (a_:) )
Sp(r, OO) = a E

= Ik[S + B2V |53 4 O(v2)

| sin?[kr]|,

2y

where r and k are one dimensional, I" is the gamma function, | F7 is the hypergeometric
function, M = |dg|, crkz = %ck, and py is different for each denominator term in
the series. Note that the Taylor—-Reynolds number dependence is captured via the
viscosity term v, as the Taylor—Reynolds number is given by UX/v. C is a constant
approximating the mean velocity fluctuation of the flow.

In order for the sum in S, (r, 00) above, to converge, cx ~ # . A similar argument
applies to Zkez\ 1o} ldk| in 81 (r, 00). For this reason, we expect the exponent m of k
below to satisfy m > 1. We will in fact make the ansatz,

_\/7 b d _\/? a 22)
k= b2+ km TN T2 e

where ¢ and d; are the one-dimensional versions of the coefficients in the structure
functions, to approximate the experimental data. Provided that m is greater than 1, the
series determining the one-dimensional restriction of the structure functions (21) will
converge. The thinking here is that there is a universal coefficient m for each Reynolds
number that will determine how fast the sine series converges, and thus the spatial
smoothness of the structure functions. Thus, for k large, c; and dy ~ % Moreover,
we are (optimistically) assuming that the two contributions ¢ and dj, to the large
eddies, also scale with the order of the structure functions and can be characterized
by a number b, respectively, a, for each Taylor—-Reynolds number. Thus, for k small,
ck ~ % and dj ~ % This turns out to work reasonably well, see Table 5.

In summary, we reduced the coefficients for the three-dimensional structure func-
tions, c; and dg, to the ones for the one-dimensional structure functions, ¢ and dj, with
k = (k1,0,0). We then fit the formulas for the one-dimensional structure functions
to the data and propose a simple ansatz (22), for the coefficients’ dependence on the
Taylor—Reynolds number and the wavenumber 1/k.
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Table 1 Here, 1 is the

Taylor—R 1d b L
Kolmogorov length scale given 2y oF-ReynoTds nimber " !
in micrometer.s, L 'is the integral 110 1025 165.1 1.55(10_5)
length scale given in 6
millimeters, and v is the 264 162 102.5 2.34(107°)
viscosity given in m? /s 508 91 123.9 1.00(106)
1000 36 136.6 2.91(1077)
1450 22 129.5 1.50(10_7)

The data here are at the furthest measured point downstream of the
grid, as n and L evolve downstream

5 Comparison of the Model with the Data

The VDTT is capable of using pressurized inert gases as working fluids. Specifically,
the use of pressurized sulfur hexafluoride with a low kinematic viscosity enables
classical grid experiments at R up to 1600. The turbulence in the VDTT was generated
by a fixed grid of crossed bars and is called classical grid turbulence (Comte-Bellot and
Corrsin 1966; Corrsin 1961). The classical grid disturbed the free flow mechanically
at the upstream end of the test section. In the wake of the grid, the turbulence evolved
along the length of the tunnel without the middle region being substantially influenced
by the walls of the tunnel (Bodenschatz et al. 2014). The measurements were made
with a Dantec StreamLine hot-wire anemometry system, using NSTAPs developed at
Princeton University, see Vallikivi and Smits (2014). The hot-wire probes were at a
distance of 7.1 m downstream from the 186.6 mm classical grid, so that the turbulence
evolved through at least one eddy turnover time. Taylor’s frozen flow hypothesis is used
to extract x and r from the time series of the probe as in Bodenschatz et al. (2014).
Measurements were taken for Taylor—Reynolds numbers 110, 264, 508, 1000 and
1450. The pertinent parameters for the data are given in Table 1. For more information
about the experiments, see Sinhuber et al. (2015, 2017). Each measurement was taken
over five minutes and sampled at 60kHz, giving 1.8(107) data points.
The longitudinal velocity differences are

Su(r,t) =u(y,t) —ulx,t) =ulx+r,t) —ulx,t)

where x and r are parallel vectors along the x-axis. The system length in the tunnel is an
important value when fitting the data since we scale the lag variable, r, Werrn/#gth =
(x — y), with the system length. The system length in our case is the mesh size of the
grid, and not the square root of the cross-sectional area of the tunnel, for instance. The
structure functions were plotted against r /n, where r is the distance between positions
x and y as given by the Taylor frozen flow hypothesis and 7 is the Kolmogorov length
scale. In order for our sine series formula to capture the entire data set, we divided
r/n by its maximum value for which we computed structure functions, which was

% = 19540. We also introduced a variable, D, so that we substituted
r
—/(19540(D))
n
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Table 2 The fitted values for A in Eq. (25)

Rey, 110 264 508 1000 1450
Second order 0.00744 .0153 .0169 .0183 .0195
Third order .00154 .00395 .00484 .00564 .00664
Fourth order .000384 .00189 .00228 00251 .00305
Sixth order .0000341 .000431 .000566 .000552 .000691
Eighth order 3.12(1079) .0000839 .000122 .000144 .000204

Table 3 The fitted values for A; in Eq. (25)

Re; 110 264 508 1000 1450

Second order .00285 .00583 00653 00697 00666
Third order .000872 .00299 00526 00488 .00395
Fourth order .000174 000746 .000804 001 .0006
Sixth order 4.24(1076) — 0000756 —.00011 .0000919 .0000654
Eighth order 1.04(107°) .0000127 .0000147 0000264 —4.711077)

for x — —y in the formulas. The fitted values for D are given in Table 5. Note that D
is one of the four parameters which are not active over the range of Taylor—Reynolds
numbers, which are shown in Fig. 6 and will be justified later.

5.1 VDTT Dependent Fits: Grid and Large Eddies, Mean Small-Scale Velocity

We need to allow for variation in the non-universal largest scales of the flow (Blum
et al. 2011). This is experiment specific and influences only the first two terms of
the sine series. These parameters are only significant for low Reynolds numbers, see
Tables 2 and 3. This clearly distinguishes these two parameters from the others. As a
result, we see that the grid can stimulate the first two sinusoidal modes but does not
influence the rest of the cascade. Thus, the SCT formula becomes:

Sp(x,y,t) = Aysin[z|x — y[] + Az sin[27|x — y|]

2p
+= " Ap x | sin?[wk|x — y]]I. (23)

k=3
where
2%1" p+1 14 F 1 1 1 M, 2
2 )0k 11\ T2P 2 T2 o

A, = , (24)
b k| + %szé“ﬁ% +0OW?)

and A and A; are the free parameters. The first two terms capture the interaction of
the grid and the two largest eddies in the flow. However, this influence is limited to the
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Fig.1 Taylor—Reynolds number 110. Note that the plots are made on a log—log scale. The dots correspond
to the data from the VDTT, whereas the line is the fitted SCT

lowest Reynolds numbers and becomes insignificant for the higher Reynolds numbers
and the modeling range of the rest of the parameters.

Fitting was done in Mathematica using the built-in “findfit” function. To bound
computational time reasonably, the series given in Sect. 2 were limited to one thousand
terms. The full model used to fit the data is given by

Sy, = Aqlsin[(rr/n)/(19540.3(D))]| + Az| sin®[(27rr /1) /(19540.3(D))]|

2P
+ kX_; oAl sin?[(wkr /1) /(19540.3(D))]], (25)

where A, is given by (24). The fits are done with seven parameters, namely a, b,
m, C, D, A1 and A,. The fits are shown in Figs. 1, 2, 3, 4, 5. However, only three
parameters are active over the entire inertial range, specifically a, b and m, in the sense
that they are changing the relative weights of the Fourier components of the solution
u(x,t). The parameter D measures the system length correction for large Reynolds
numbers. This correction serves to place the transition from the dissipative range to the
inertial range. The parameter C measures the root-mean-squared small-scale velocity,
whereas A1 and A, measure the influence of the large eddies upon the grid. These three
parameters measure the transition out of the inertial range. This is shown in Figs. 6, 7
and 8 and will be justified later. The best results came when using the fourth-order
structure functions for each Taylor—Reynolds number to fix the coefficients a, b and
D.

Tables 2, 3 and 4 contain the fitted values of A, A, and C respectively, as described
in (25). Note that Ay, A>, C and m are given their own tables as they change with
the order of the structure function, whereas a, b and D are placed in the same table
as they do not. Consider Fig. 9a that shows the values of the coefficient A; as a
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