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Abstract
In this paper, we consider the Koopman operator associated with the discrete and
the continuous-time random dynamical system (RDS). We provide results that char-
acterize the spectrum and the eigenfunctions of the stochastic Koopman operator
associated with different types of linear RDS. Then we consider the RDS for which
the associated Koopman operator family is a semigroup, especially those for which
the generator can be determined. We define a stochastic Hankel–DMD algorithm for
numerical approximations of the spectral objects (eigenvalues, eigenfunctions) of the
stochastic Koopman operator and prove its convergence. We apply the methodology
to a variety of examples, revealing objects in spectral expansions of the stochastic
Koopman operator and enabling model reduction.
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1 Introduction

Prediction and control of the evolution of large complex dynamical systems is a
modern-day science and engineering challenge. Some dynamical systems can bemod-
eled well enough by using the standard mathematical tools, such as differential or
integral calculus. In these cases the simplifications of the system are typically intro-
duced by neglecting some of the phenomena with a small impact on the behavior of
the system. However, there are many dynamical systems for which the mathematical
model is too complex or even does not exist, but data can be obtained by monitoring
some observables of the system. In this context, data-driven analysis methods need to
be developed, including techniques to extract simpler, representative components of
the process that can be used for modeling and prediction.

One approach for decomposing the complex systems into simpler structures is via
the spectral decomposition of the associated Koopman operator. Koopman operator
was introduced in Koopman (1931) in the measure-preserving setting, as a composi-
tion operator acting on the Hilbert space of square-integrable functions. The increased
interest in the spectral operator-theoretic approach to dynamical systems in last decade
starts with the works Mezić and Banaszuk (2004) and Mezić (2005) (see also the ear-
lier Mezić and Banaszuk 2000), where the problem of decomposing the evolution of
an ergodic dissipative dynamical system from the perspective of operator theory was
studied, and data-driven methods for computation of eigenvalues and eigenfunctions
were provided based on rigorous harmonic analysis methods. The application of the
theory to complex systems are numerous, for example, in fluid flows (Bagheri 2013;
Sharma et al. 2016), infectious disease dynamics (Proctor and Eckhoff 2015), power
systems (Susuki and Mezić 2012; Susuki et al. 2016), etc. The advantage of using
the Koopman operator framework lies in the fact that it can be applied within the
data-driven environment, even if the underlying mathematical model is not known.
In addition to the analysis of the system properties the Koopman decomposition of
complex dynamical structures can provide approximations to the evolution of a pos-
sibly high-dimensional system in lower dimensions, enabling model reduction. An
overview of the spectral properties of the Koopman operator and its applications prior
to 2012 is given in Mezić (2013), Budišić et al. (2012).

Of particular importance in Koopman operator theory in the deterministic case is
the interplay between the geometry of the underlying dynamics and the level sets of the
eigenfunctions of the Koopman operator. Namely, invariant sets can be determined as
level sets of Koopman eigenfunctions at eigenvalue 0 (continuous time) or 1 (discrete
time), (Mezić 1994;Mezić andWiggins 1999), periodic sets can be determined as level
sets of Koopman operator eigenfunctions at the imaginary axis (continuous time) or
the unit circle (discrete time), the concept of isostables—level sets of eigenfunctions
associated with eigenvalues with negative real part (continuous time) or inside the
unit circle (discrete time) generalize the geometric concept of Fenichel fibers (Mauroy
et al. 2013). Also, zero level sets of certain families of eigenfunctions determine stable,
unstable, and center manifolds to invariant sets (Mezić 2015, 2017a). In this paper,
we enable generalization of such concepts by developing the theory of stochastic
Koopman operators associated with RDS.
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A variety of methods for determining the numerical approximation of the Koop-
man spectral decomposition, known under the name Koopman mode decomposition
(KMD) have been developed. KMD consists of the triple of Koopman eigenvalues,
eigenfunctions, and modes, which are the building blocks for the evolution of observ-
ables under the dynamics of a dynamical system. A general method for computing the
Koopman modes, based on the rigorous theoretical results for the generalized Laplace
transform, is known under the name generalized Laplace analysis (GLA) (Mezić 2013;
Budišić et al. 2012), whose first version was advanced in Mezić and Banaszuk (2000).
Anothermethod is the dynamicmode decomposition (DMD)method.DMDwasfirstly
introduced in Schmid (2008) for the study of the fluid flows, without any reference to
the Koopman operator. The connection between the KMD and DMDwas first pointed
out in Rowley et al. (2009). LikeGLA,DMD is a data-driven technique. Due to the fact
it could be numerically implemented relatively easily, since it relies on standard linear
algebra concepts, this method become extremely popular in the data-driven systems
research community. Starting with (Schmid 2010) many versions of the DMD algo-
rithm have been introduced to efficiently compute the spectral objects of the Koopman
operator under various assumptions on the data. In Tu et al. (2014) the exact DMD
algorithm was introduced, while in Williams et al. (2015) the extension of the DMD
algorithm, under the name extended dynamic mode decomposition (EDMD) was pro-
posed. These two methods rely on the more standard approaches to representing a
linear operator with respect to a specific basis (finite section method), rather than a
sampling method—as in the companion matrix-based DMD (see Drmač et al. 2018,
section 2.1). Susuki and Mezić (2015) introduced a further extension of the DMD
algorithm, which combines the Prony method with the DMD algorithm, so that the
Hankel matrix is used instead of the companion matrix to compute the Koopman spec-
trum on the single observable as well as on the vector of observable functions. Arbabi
and Mezić (2017) referred to this algorithm as to the Hankel–DMD and proved that
under certain assumptions the obtained eigenvalues and eigenfunctions converge to
the exact eigenvalues and eigenfunctions of the Koopman operator. The assumptions
were removed, and further connections between the spectra of EDMD matrices and
eigenvalues of the Koopman operator were proven in Korda and Mezić (2018).

The majority of works analyzing or practically using the spectral properties of
the Koopman operator assume that the dynamical system under consideration is
autonomous. Similarly, the proposed numerical algorithms for evaluating KMD were
almost exclusively applied to autonomous dynamical systems. The generalization of
the Koopman operator framework to nonautonomous system was introduced in Mezić
and Surana (2016), where the definitions of the nonautonomous Koopman eigenval-
ues, eigenfunction and modes, as building blocks of the dynamical system, are given.
KMD for nonautonomous systems was studied in Maćešić et al. (2018), where the
possibility of using the Arnoldi-like DMD algorithms for evaluating the Koopman
eigenvalues and eigenfunctions in the nonautonomous case was carefully explored
and the appropriate extensions of the algorithm were proposed.

Another possible generalizationof theKoopmanoperator framework is its extension
to random dynamical systems (RDS) and stochastic systems. There is a long history
of analyzing the dynamics of the stochastic Markov processes through the study of the
spectral properties of the associated transfer operators (Dynkin 1965; Yosida 1980;
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Lasota and Mackey 1994; Arnold 1974). In Williams et al. (2015), it was realized that
if the data provided to the EDMD algorithm are generated by a Markov stochastic
process instead of a deterministic dynamical system, the algorithm approximates the
eigenfunctions of the Kolmogorov backward equation. Klus and coworkers used the
Ulam’s method and EDMD algorithm in the series of papers (Klus et al. 2016; Klus
and Schütte 2016) to approximate the spectral objects of the Koopman operator and
its adjoint Perron–Frobenius operator. There is a variety of numerical techniques used
to approximate different transfer operators associated with the stochastic systems, as
well as their spectral objects. A review can be found in Klus et al. (2018).

In this paper we consider the stochastic Koopman operator associated with the
discrete- and continuous-time RDS, using the definition and classification of RDS
from Arnold (1998). The Koopman operator for discrete RDS was first introduced in
Mezić and Banaszuk (2000), where the action of the stochastic Koopman operator on
an observable was defined by taking an expectation of values of the observable at the
next time step. The eigenspace at 1 was shown to relate to invariant sets of stochastic
dynamics, followed by Mezić and Banaszuk (2004), Mezić (2005) in which analysis
of the geometry of eigenspaces associated with any additional eigenvalues on the unit
circle was pursued and shown to relate to periodic sets of the underlying RDS. Here we
extend the definition of the stochastic Koopman operator to the continuous-time RDS
and explore some properties of the associated stochastic Koopman operator family, its
generators, eigenvalues and eigenfunctions.

The characterization of the dynamics of such systems by using the eigenvalues and
the eigenfunctions of the related generators was studied in recent papers (Shnitzer et al.
2017; Tantet et al. 2017; Giannakis 2019). Giannakis (2019) develops a framework for
the KMD based on the representation of the Koopman operator in a smooth orthonor-
mal bases determined from the time-ordered noisy data through the diffusion map
algorithm. Using this representation, the Koopman eigenfunctions are approximated
as the eigenfunctions of the related advection–diffusion operator. A similar approach
by using the manifold learning technique via diffusion maps was used in Shnitzer
et al. (2017) to capture the inherent coordinates for building an intrinsic representa-
tion of the dynamics generated by the Langevin stochastic differential equation. The
linear operator is then used to describe the evolution of the constructed coordinates
on the state space of the dynamical system. The obtained coordinates are approxima-
tions of the eigenfunctions of the stochastic Koopman generator, so that the described
approach is closely connected with the Koopman operator techniques for building the
representation of the system dynamics.

In order to numerically approximate the spectral objects of the stochastic Koop-
man operator, we explore the possibility of application of DMD algorithms that were
originally developed for evaluating KMD in deterministic systems. As already men-
tioned, algorithms that are typically used to extract relevant spectral information are,
for example, the Schmid DMD algorithm (Schmid 2010; Schmid et al. 2011), the
exact DMD algorithm (Tu et al. 2014), and the Arnoldi-like algorithm (Rowley et al.
2009). The application of DMD algorithm to noisy data is studied in Hemati et al.
(2017) and Takeishi et al. (2017). In order to remove the bias errors produced by using
the standard DMD algorithms on data with the observation noise that can arise, for
example, as a consequence of imprecise measurements, Hemati et al. (2017) devel-
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oped the total least-squares DMD. Takeishi et al. (2017) considered the numerical
approximations of spectral objects of the stochastic Koopman operator for the RDS
with observation noise by using the DMD algorithm, and proved its convergence to
the stochastic Koopman operator under certain assumptions, following the work on
deterministic systems in Arbabi and Mezić (2017). Due to the systematic error pro-
duced by the standard DMD algorithm they developed the version of the algorithm
that also takes into account the observation noise and refer to it as the subspace DMD
algorithm. Here we provide the convergence proof for the sHankel–DMD algorithm,
an extension of the Hankel–DMD algorithm.

There exist some numerical issues that can arise in DMD algorithms applied to
deterministic systems, leading to poor approximations of eigenvalues and eigenvec-
tors. In order to overcome these difficulties, Drmač et al. (2018) proposed a data-driven
algorithm for computing DMD, called DMD refined Rayleigh Ritz (DMDRRR) algo-
rithm, which enables selection of Ritz pairs based on the data-driven computation of
the residual, and substantially improves the quality of the retained spectral objects.We
use it in the current context of RDS. In most considered RDS examples, we determine
first the Koopman eigenvalues and eigenfunctions of the related deterministic dynam-
ical system and then explore the algorithm behavior on the considered RDS. Despite
the fact that in some cases we noticed high sensitivity of the numerical algorithm to
the noise introduced into the system, in most cases very satisfactory approximations
are obtained.

The paper is organized as follows. In Sect. 2, the definition of the stochastic Koop-
man operator family for the discrete and the continuous-time RDS is given. The
classes of RDS that we consider are: the discrete-time RDS, the continuous-time RDS
generated by the random differential equations (RDE) and the continuous-time RDS
generated by the stochastic differential equations (SDE). In accordance with this clas-
sification of RDS, we provide some results that characterize the spectral objects of the
Koopman operator associated with the linear RDS. In Sect. 3 we limit our consider-
ations to the RDS for which the associated stochastic Koopman operator family is a
semigroup. These are the RDS which can be identified with the time-homogeneous
Markov stochastic processes. We also provide a characterization of the generators of
the Koopman operator family. In Sect. 4, a brief description of the DMD RRR algo-
rithm is provided and different approaches for its application to the RDS are described.
We define the stochastic Hankel–DMD (sHankel–DMD) algorithm for approximating
the eigenvalues and eigenfunctions of the stochastic Koopman operator and prove,
under the assumption of ergodicity, its convergence to the true eigenvalues and eigen-
functions of the stochastic Koopman operator. Finally, the computations of Koopman
eigenvalues and eigenfunctions by using the described DMD algorithms are illustrated
on variety of numerical examples in Sect. 5.

2 Stochastic Koopman Operator and Linear RDS

First, we give the definition and a brief description of RDS, which follows terminology
and results in Arnold (1998), Arnold and Crauel (1991).
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Let (Ω,F , P) be a probability space andT a semigroup (we can think of it as time).
Suppose that θ := (θ(t))t∈T is a group or semigroup of measurable transformations of
(Ω,F , P) preserving a measure P (i.e., θ(t)P = P), such that a map (t, ω) → θ(t)ω
is measurable. The quadruple (Ω,F , P, (θ(t))t∈T) is a metric dynamical system.

A random dynamical system (RDS) on the measurable space (M,B) over a dynam-
ical system (Ω,F , P, (θ(t))t∈T) is a measurable map ϕ : T × Ω × M → M
satisfying a cocycle property with respect to θ(·), which means that the mappings
ϕ(t, ω) := ϕ(t, ω, ·) : M → M form the cocycle over θ(·), i.e.:

ϕ(0, ω) = idM , ϕ(t + s, ω) = ϕ(t, θ(s)ω) ◦ ϕ(s, ω), for all s, t ∈ T, ω ∈ Ω. (1)

We call θ a driving flow and (Ω,F , P, (θ(t))t∈T) a driving dynamical system.
If T is discrete (for example, T = Z or T = Z

+), we speak about the discrete-time
RDS, ifT is continuous (for example,T = R orT = R

+),we have the continuous-time
RDS.

In the next definition, we introduce the Koopman operator family associated with
the RDS.

Definition 1 The stochastic Koopman operator Kt associated with the RDS ϕ is
defined on a space of functions (observables) f : M → C for which the functional

Kt f (x) = E[ f (ϕ(t, ω)x)], x ∈ M (2)

exists. We refer to the family of operators
(Kt
)
t∈T as to the stochastic Koopman

operator family.

For example, if we work with continuous on a compact metric space and if the
measure is finite, the functional above will exist. This follows from the fact that
the continuous function on compact spaces is bounded, and its composition with
measurable function results with bounded measurable function, which is integrable
(Yosida 1980).

The material exposed in this work refers to the cases where M ⊆ R
d and B is the

Borel σ -algebra of Borel sets in M , so that (M;B) is a standard space. For a fixed
x ∈ M , (ϕ(t, ω)x)t∈T,ω∈Ω is the M-valued stochastic process, which implies that an
RDS defines a family of random processes with values in M . For each x ∈ M , the
corresponding probability measure Px on the canonical space Ω̄ ⊆ MT is induced by
the probability measure P associated with the driving dynamical system and a process
(ϕ(t, ω)x)t∈T,ω∈Ω (see Dynkin 1965; Arnold 1998, Appendix A.2). We suppose then
that the observable functions aremeasurable and integrable with respect to the induced
probability measures.

In the case when spectral expansions of the Koopman operator are required, the
specification of the space of the observable functions might become more detailed.
For example, some Hilbert space will be required for the appropriate application of
the numerical algorithms and in some examples (see Example 2).

Definition 2 The observables φt : M → C that satisfy equation

Ktφt (x) = λS(t)φt (x) (3)
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we call the eigenfunctions of the stochastic Koopman operator, while the associated
values λS(t) we call the stochastic Koopman eigenvalues.

The above definition can be viewed geometrically: the level sets of a stochastic
Koopman operator eigenfunction are unique in the sense that the expectation of the
value of the level set at time t is precisely λS(t)φt (x), i.e., they depend only on the level
set that the dynamics started from at t = 0. An even stronger statement is available
for eigenvalues on the unit circle: in that case, the precise location of the state of the
system after time t is within a level set of the associated eigenfunction. For example, if
φ(x) is an eigenfunction associated with eigenvalue 1, then its level sets are invariant
sets for the underlying RDS [see the proof in Mezić and Banaszuk (2004) for the
discrete-time RDS].

There are three main types of RDS (Arnold 1998) that are particularly important
from the point of view of practical applications. These are: the discrete-time RDS,
the continuous-time RDS generated by RDE and the continuous-time RDS generated
by SDE. In what follows we describe the general settings for each of these types
and provide the results that characterize the eigenvalues and eigenfunctions of the
stochastic Koopman operators associated with the linear RDS.

2.1 Stochastic Koopman Operator for Discrete-Time RDS

For a discrete-time RDS, we have T = Z
+ ∪ {0}. Let (Ω,F , P, (θ(t))t∈T) be a given

metric dynamical system and let denote ψ = θ(1). The discrete RDS ϕ(n, ω) over θ

can be defined by the one step maps T (ω, ·) : M → M

T (ω, ·) := ϕ(1, ω),

since by applying the cocycle property one gets

ϕ(n, ω) = T (ψn−1(ω), ·) ◦ · · · ◦ T (ψ(ω), ·) ◦ T (ω, ·), n ≥ 1. (4)

From the fact that maps ψ i = θ(i) preserve the measure P , it follows that the maps
T (ψ i (ω), ·) are identically distributed, thus (T (ψ i (ω), ·))i∈T is a stationary sequence
of random maps on M (Arnold 1998, Section 2.1). According to (1), ϕ(0, ω) = idM .
The action of the discrete RDS ϕ(n, ω) on x ∈ M gives its value at nth step and we
denote it as

T n(ω, x) = ϕ(n, ω)x. (5)

In the proposition that follows, we consider the eigenvalues and the eigenfunctions
of the stochastic Koopman operator related to the discrete RDS induced by a linear
map T .

Proposition 1 Suppose that A : Ω → R
d×d is measurable and that the one step map

T : Ω × R
d → R

d of a discrete RDS is defined by

T (ω, x) = A(ω)x. (6)
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Denote by �(n, ω) the linear RDS satisfying T n(ω, x) = �(n, ω)x, i.e.,

�(n, ω) = A(ψn−1(ω)) · · ·A(ψ(ω))A(ω).

Assume that �̂(n) = E[�(n, ω)] are diagonalizable, with simple eigenvalues λ̂ j (n)

and left and right eigenvectors ŵn
j , v̂nj , j = 1, . . . , d. Then the eigenfunctions of the

stochastic Koopman operator Kn are

φn
j (x) = 〈x, ŵn

j 〉, j = 1, . . . , d, (7)

with the corresponding eigenvalues λS
j (n) = λ̂ j (n).

Moreover, if matrices A(ω), ω ∈ Ω commute and are diagonalizable with the
simple eigenvalues λ j (ω) and corresponding left eigenvectors w j , j = 1, . . . , d,
then

ŵn
j = w j and λS

j (n) = E

[
n∏

i=1

λ j (ψ
i−1(ω))

]

.

Furthermore, v̂nj , j = 1, . . . , d are the Koopman modes of the full-state observable
and the following expansion is valid

Knx =
d∑

j=1

λS
j (n)〈x, ŵn

j 〉v̂nj . (8)

Proof The action of the stochastic Koopman operator on functions defined by (7) is
equal to

Knφn
j (x) = E[〈�(n, ω)x, ŵn

j 〉] = E[〈x,�(n, ω)∗ŵn
j 〉] = 〈x,E[�(n, ω)∗]ŵn

j 〉
= 〈x, �̂(n)∗ŵn

j 〉 = λ̂ j (n)〈x, ŵ j (n)〉 = λ̂ j (n)φn
j (x), (9)

where we have used that

E[�(n, ω)∗] = (E[�(n, ω)])∗ = �̂(n)∗.

In the case when matrices A(ω), ω ∈ Ω commute and are diagonalizable, they are
simultaneously diagonalizable (see Horn and Johnson 2013, Theorem 1.3.12), i.e.,
there exists a single invertible matrix V, so that A(ω) = VΛ(ω)V−1, where Λ(ω) =
diag(λ1(ω), . . . , λd(ω)). It is clear that the columns of the matrix V are the common
right eigenvectors of the matrices A(ω), ω ∈ Ω , and thatW∗ = V−1, whereW is the
matrix of the left eigenvectors. It is straightforward that

�(n, ω) = V
n∏

i=1

�(ψ i−1(ω))W∗.
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Therefore

�̂(n) = VE

[
n∏

i=1

�(ψ i−1(ω))

]

W∗,

and we easily conclude that ŵ j = w j and λS
j (n) = E

[∏n
i=1 λ j (ψ

i−1(ω))
]
.

Equation (8) can be easily proved by using the decomposition of the state x in the
base ŵn

j , v̂nj , j = 1, . . . , d, the linearity of the Koopman operator, and its action on
the eigenfunctions given with (7), i.e.,

Knx = Kn
d∑

j=1

〈x, ŵn
j 〉v̂nj =

d∑

j=1

Kn〈x, ŵn
j 〉v̂nj =

d∑

j=1

λS
j (n)〈x, ŵn

j 〉v̂nj . (10)

��
Remark 1 We will use the term principal eigenfunctions for the eigenfunctions of the
form φ j (x) = 〈x,w j 〉, j = 1, . . . , d that appear in Proposition 1 and in some other
propositions in the rest of the paper. Also, the eigenvalues corresponding to them we
call the principal eigenvalues. It follows from (8) that in the linear case, the action of
the Koopman operators on the full-state observable can be derived by using just the
principal eigenfunctions, eigenvalues and modes.

2.2 Stochastic Koopman Operator for RDS Generated by the RandomDifferential
Equations

Suppose thatT = R orT = R
+∪{0}. Let (Ω,F , P, (θ(t))t∈T) be ametric dynamical

system. We consider a continuous-time RDS generated by the random differential
equation (RDE) of the following form

ẋ = F(θ(t)ω, x), (11)

defined on the manifold M ⊆ R
d , where θ(t)ω is associated with the random dynam-

ics. In this type of equations, the randomness refers just to the random parameters,
which do not depend on the state of the system. RDE (11) generates an RDS ϕ over
θ , whose action is defined by

ϕ(t, ω)x = x +
∫ t

0
F(θ(s)ω, ϕ(s, ω)x)ds. (12)

The properties of this RDS under different regularity properties of the function F
can be found in Arnold (1998, Section 2.2). A set of trajectories starting at x that are
generated by (11) is given by ϕ(t, ω)x and it defines the family of random variables.
We say that this is a solution of the RDE with the initial condition ϕ(0, ω)x = x.
Since the solutions of the RDE are defined pathwise, for each fixed ω the trajectory
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can be determined as a solution of deterministic ordinary differential equation, so that
the RDE (11) can be seen as a family of ordinary differential equations.

In the next proposition, we derive the eigenvalues and the eigenfunctions of the
stochastic Koopman operators associated with the linear RDS.

Proposition 2 If A : Ω → R
d×d and A ∈ L1(Ω,F , P), then RDE

ẋ = A(θ(t)ω)x, (13)

generates a linear RDS � satisfying

�(t, ω) = I +
∫ t

0
A(θ(s)ω)�(s, ω)ds. (14)

Assume that �̂(t) = E[�(t, ω)] is diagonalizable, with simple eigenvalues μ̂t
j and

left eigenvectors ŵt
j , j = 1, . . . , d. Then

φt
j (x) = 〈x, ŵt

j 〉, j = 1, . . . , d, (15)

are the principal eigenfunctions of the stochastic Koopman operator Kt with corre-
sponding principal eigenvalues λS

j (t) = μ̂t
j , j = 1, . . . , d.

Moreover, if matricesA(ω) commute and are diagonalizable with the simple eigen-
values λ j (ω) and corresponding left eigenvectors w j , j = 1, . . . , d, then

ŵt
j = w j and λS

j (t) = E

[
e
∫ t
0 λ j (θ(s)ω)ds

]
.

Furthermore, v̂tj , j = 1, . . . , d are the Koopman modes of the full-state observable
and the following expansion is valid

Ktx =
d∑

j=1

λS
j (t)〈x, ŵt

j 〉v̂tj . (16)

Proof The first part of the proposition follows from (Arnold 1998, Example 2.2.8),
Furthermore, the action of the stochastic Koopman operator on functions defined

by (15) is equal to

Ktφt
j (x) = E[〈�(t, ω)x, ŵt

j 〉] = E[〈x,�∗(t, ω)ŵt
j 〉] = 〈x,E[�∗(t, ω)]ŵt

j 〉
= 〈x, �̂∗

(t)ŵt
j 〉 = μ̂t

j 〈x, ŵt
j 〉 = μ̂t

jφ
t
j (x) (17)

With the same argument as in the proof of Proposition 1, we haveA(ω) = VΛ(ω)W∗,
where W and V are matrices of common left and right eigenvectors, and Λ(ω) =
diag(λ1(ω), . . . , λd(ω)). It is straightforward that

�(t, ω) = e
∫ t
0 A(θ(s)ω)ds = Ve

∫ t
0 �(θ(s)ω)dsW∗,
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and

�̂(t) = VE
[
e
∫ t
0 �(θ(s)ω)ds

]
W∗.

We easily conclude that ŵ j = w j and λS
j (t) = E

[
e
∫ t
0 λ j (θ(s)ω)ds

]
. The proof of (16)

is same as the proof of (8) in Proposition 2. ��

Example 1 (Linear scalar RDS) Suppose that linear scalar RDE is given by

ẋ = a(ω)x, (18)

where a : Ω → R is random variable with finite moments. Observe that θ(t) = id,
which means that the probability space does not change with time. If the moment
generating function defined by Ma(t) = E[eta(ω)] is analytic for |t | < R, then for
the initial condition ϕ(0, ω)x = x and t < R there exists a unique solution of (18),
which can be expressed as (Strand 1970)

ϕ(t, ω)x = xe
∫ t
0 a(ω)ds . (19)

The action of the stochastic Koopman operator on the full-state observable function
φ(x) = x is then

Kt x = E [ϕ(t, ω)x] = E

[
xe
∫ t
0 a(ω))ds

]
= E

[
ea(ω)t

]
x . (20)

Thus, φ(x) = x is the eigenfunction of the stochastic Koopman operator and the
corresponding eigenvalue satisfies

λS(t) = E

[
ea(ω)t

]
= Ma(t).

2.3 Stochastic Koopman Operator for RDS Generated by the Stochastic
Differential Equations

Let T = R
+, M = R

d and T ∈ T. Suppose that the stochastic process Xt (ω), t ∈
[0, T ], ω ∈ Ω is obtained as a solution of the nonautonomous stochastic differential
equation (SDE)

dXt = G(t, Xt )dt + σ(t, Xt )dWt , (21)

where G : [0, T ] ×R
d → R

d and σ : [0, T ] ×R
d → R

d×r are L2 measurable. Here
Wt = (W 1

t , . . . ,Wr
t ) denotes the r -dimensional Wiener process with independent

components and standard properties, i.e., E(Wi
t ) = 0, i = 1, . . . , r , E(Wi

t W
j
s ) =

min{t, s}δi j , i, j = 1, . . . , r (δi j is the Kronecker delta symbol). The solution Xt (ω)

of (21) with the initial condition Xt0(ω) is formally defined in terms of Itô integral as
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(see Arnold 1974, Chapter 6)

Xt (ω) = Xt0(ω) +
∫ t

t0
G(s, Xs(ω))ds +

∫ t

t0
σ(s, Xs(ω))dWs . (22)

The probability space on which the process is considered can be identified with Ω =
C0(R+,Rr ) (space of continuous functions satisfying ω(t0) = 0). Then, ω ∈ Ω is
identifiedwith the canonical realization of theWiener process such thatω(t) = Wt (ω).
If F is the Borel σ -algebra, P the measure generated by the Wienner process, and
θ(t) defined by the “Wiener shifts”

θ(t)ω(·) = ω(t + ·) − ω(t), (23)

(Ω,F , P, (θ(t))t∈T) becomes a metric dynamical system (see Arnold 1998,
Appendix A). It is a driving dynamical system for the two-parameter family of RDS
ϕ(t, t0, ω) that is given by

ϕ(t, t0, ω)x = Xt (ω),

where Xt (ω) is givenwith (22) for the initial condition Xt0(ω) = x. The basic existence
and uniqueness results for the SDE of the form (21) that are valid under different
regularity and boundedness properties of the functions G and σ can be found in
Arnold (1974, Section 6.3), Pavliotis (2014, Section 3.3).

The Koopman operator family Kt,t0 related to this RDS is defined by

Kt,t0 f (x) = E[ f (ϕ(t, t0, ω)x)]. (24)

In this more general setting with the two-parameter family of Koopman operators (24),
the eigenfunctions φt,t0 : M → C and eigenvalues λS(t, t0) of the Koopman operator
Kt,t0 defined on a finite-time interval satisfy

Kt,t0φt,t0(x) = λS(t, t0)φ
t,t0(x). (25)

The following two propositions treat two classes of linear SDE. In the first one, the
random part of equations models the additive noise, and in the second one, it models
the multiplicative noise.

Proposition 3 Let the linear SDE with additive noise be defined by

dXt = A(t)Xtdt +
r∑

i=1

bi (t)dWi
t , (26)

where A(t) is d × d matrix of functions and bi (t), i = 1, . . . , r are d-dimensional
vector functions. Assume that the fundamental matrix �(t, t0) satisfying the matrix
differential equation

�̇ = A(t)�, �(t0) = I (27)
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is diagonalizable, with simple eigenvalues μ̂
t,t0
j and left eigenvectors ŵt,t0

j , j =
1, . . . , d. Then

φ
t,t0
j (x) = 〈x, ŵt,t0

j 〉, j = 1, . . . , d, (28)

are the eigenfunctions of the stochastic Koopman operator Kt,t0 , with corresponding
eigenvalues

λS
j (t, t0) = μ̂

t,t0
j .

If matrices A(t) commute and are diagonalizable with the simple eigenvalues λ j (t)
and corresponding left eigenvectors w j , j = 1, . . . , d, then

ŵt,t0
j = w j and λS

j (t, t0) = e
∫ t
t0

λ j (s)ds . (29)

Proof Since the solution of (26) with the initial condition Xt0(ω) = x is given by, (see
Arnold 1974, Section 8.2)

Xt (ω) = �(t, t0)

(

x +
r∑

i=1

∫ t

t0
�−1(s, t0)b

i (s)dWi
s

)

, (30)

we have

Kt,t0φ
t,t0
j (x) = E

[
φ
t,t0
j (Xt (ω))

]

= E

[
〈
�(t, t0)x, ŵ

t,t0
j

〉+ 〈
r∑

i=1

∫ t

t0
�(t, t0)�

−1(s, t0)b
i (s)dWi

s , ŵ
t,t0
j

〉
]

= 〈�(t, t0)x, ŵ
t,t0
j

〉+
r∑

i=1

〈
E

[∫ t

t0
�(t, t0)�

−1(s, t0)b
i (s)dWi

s

]
, ŵt,t0

j

〉

= μ̂
t,t0
j 〈x, ŵt,t0

j 〉 = μ̂
t,t0
j φ

S,t,t0
j (x), (31)

where we used that E

[∫ t

t0
F(s)dWs

]
= 0 (see Arnold 1974, Theorem 4.4.14) applied

to F(s) = �(t, t0)�−1(s, t0)bi (s). With this we proved the first statement.
Since, in the commutative case, the fundamental matrix can be expressed in the

form �(t, t0) = e
∫ t
t0
A(s)ds , its eigenvectors coincide with the eigenvectors of the

matrix A(t) and eigenvalues are given by (29). ��

Proposition 4 Let the linear SDE with multiplicative noise be defined by

dXt = A(t)Xtdt +
r∑

i=1

Bi (t)Xt dW
i
t , (32)
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where A(t), Bi (t), i = 1, . . . , r are d × d matrices of functions. Denote with �(t, t0)
the fundamental matrix satisfying the matrix SDE

d� = A� dt +
r∑

i=1

Bi (t)� dWi
t , �(t0) = I (33)

and assume that �̂(t, t0) = E [�(t, t0)] is diagonalizable, with simple eigenvalues
μ̂
t,t0
j and left eigenvectors ŵt,t0

j , j = 1, . . . , d. Then

φ
t,t0
j (x) = 〈x, ŵt,t0

j 〉, j = 1, . . . , d, (34)

are the eigenfunctions of the stochastic Koopman operator Kt,t0 , with corresponding
eigenvalues

λS
j (t, t0) = μ̂

t,t0
j .

If the matrices A(t),Bi (t), i = 1, . . . , r commute, i.e., if A(t)A(s) = A(s)A(t),
A(t)Bi (s) = Bi (s)A(t),Bi (t)B j (s) = B j (s)Bi (t) for i, j = 1, . . . , r and all s, t ,
and if the matrices A(t) are diagonalizable with the simple eigenvalues λ j (t) and
corresponding left eigenvectors w j , j = 1, . . . , d, then

ŵt,t0
j = w j and λS

j (t, t0) = e
∫ t
t0

λ j (s)ds . (35)

Proof For the fundamental matrix �(t, t0) and the initial condition Xt0(ω) = x, the
solution of (32) is equal to, (see Arnold 1974, Section 8.5)

Xt (ω) = �(t, t0)x, (36)

thus

Kt,t0φ
t,t0
j (x) = E

[
φ
t,t0
j (Xt (ω))

]
= E

[〈
�(t, t0)x, ŵ

t,t0
j

〉]

= 〈�̂(t, t0)x, ŵ
t,t0
j

〉 = μ
t,t0
j 〈x, ŵt,t0

j 〉 = eλ̂ j (t,t0)φ
t,t0
j (x), (37)

For the case with commutative matricesA(t) andBi (t), i = 1, . . . , r , the fundamental
matrix�(t, t0) can be expressed in an explicit form as, (see Arnold 1974, Sections 8.4,
8.5)

�(t, t0) = e
∫ t
t0

(
A(s)− 1

2

∑r
i=1 B

i (s)Bi (s)T
)
ds+∫ tt0

∑r
i=1 B

i (s)dWi
s . (38)

Since

�̂(t, t0) = E [�(t, t0)] = e
∫ t
t0

(
A(s)− 1

2

∑r
i=1 B

i (s)Bi (s)T
)
ds

E

[
e
∫ t
t0

∑r
i=1 B

i (s)dWi
s

]

= e
∫ t
t0

(
A(s)− 1

2

∑r
i=1 B

i (s)Bi (s)T
)
ds e

∫ t
t0

1
2

∑r
i=1 B

i (s)Bi (s)T ds = e
∫ t
t0
A(s)ds

, (39)
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the eigenvectors of �̂(t, t0) coincide with the eigenvectors of the matrix A(t) and
eigenvalues are given by (35), which proves the statement. Here we used the fact that

E

[
e
∫ t
t0
B(s)dWs

]
= e

1
2

∫ t
t0
B(s)B(s)T ds (see Arnold 1974, Theorem 8.4.5). ��

3 Semigroups of Koopman Operators and Their Generators

In this section, we are interested in RDS for which the associated stochastic Koopman
operator family satisfies the semigroup property. Strong results for the properties of
the stochastic Koopman operator family can be obtained in more specific settings such
as linear settingwe analyzed before andMarkov setting. Therefore, we limit here to the
particular types of RDS and consider only those that are Markovian (Crauel 1991), or
even more precisely, to those RDS for which the family of processes {(ϕ(t, ω)x), x ∈
M} is a time-homogeneous Markov family. Denote by Fx

t the σ -algebra generated
by the “past” of the stochastic process, i.e., Fx

t = σ {ϕ(s, ω)x, s ≤ t}. The Markov
property implies that for s ≤ t and every random variable Y , measurable with respect
to Fx

t , the following relation holds

E[Y |Fx
s ] = E[Y |ϕ(s, ω)x]. (40)

Moreover, for such Y , the following equality, known as the Chapman–Kolmogorov
equation, is valid

E [Y |ϕ(s, ω)x] = E
[
E
[
Y |ϕ(t, ω)x

]∣∣ϕ(s, ω)x
]
. (41)

The Chapman–Kolmogorov equation implies the semigroup property of the stochastic
Koopman operators, i.e.,

Kt+s = Ks ◦ Kt . (42)

For the settings of Markov process, the Koopman operator is known under the name
Markov propagator or transition operator and its properties have been studied for a
long time (Dynkin 1965; Yosida 1980).

There are two important and well-known classes of RDS, which can be identified
with theMarkov family. These are the discrete-time RDS generated by an independent
identically distributed process and the continuous-time RDS generated by the stochas-
tic differential equations where the noise is modeled using Wiener process. In each
of these cases the probability space associated with the stochastic process modeling
the noise can be identified with the canonical measure-preserving dynamical system
(Arnold 1998, Appendix A.2).

In what follows we describe briefly the canonical dynamical system (θ(t))t∈T that
is induced by some given stochastic process ξ̃ . We will use this concept in the next
subsection. Let suppose that ξ̃ = (ξ̃t )t∈T, ξ̃t : Ω̃ → B is a B-valued stochastic process
on a probability space Ω̃ , where (B,B) is a measurable state space. The given process
and the probability measure on Ω̃ induce a probability measure P on BT, so that
one can define a new probability space (Ω,F , P) = (BT,BT, P) where BT is the
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σ -algebra generated by the collection of the cylinder sets. The canonical realization
ξ of the stochastic process ξ̃ is defined on (Ω,F , P) by the coordinate functions
ξt (ω) = ω(t), ω ∈ Ω . The shift transformations θ(t) : BT → BT given by

θ(t)ω(·) := ω(t + ·), t ∈ T, (43)

constitute the semigroup or group of measurable transformations. Notice that the
canonical realization ξt (ω) canbeviewed as the compositionof the shift transformation
(43) and of the canonical projection π : BT → B defined by

π(ω(·)) = ω(0), (44)

i.e., ξt (ω) = ω(t) = π(θ(t)ω).
If time T is discrete (T = Z or T = Z

+) a map (t, ω) → θ(t)ω is measurable
and (θ(t))t∈T is a measurable dynamical system. In the continuous-time case (T = R

or T = R
+), when B = R

m or when B is a Polish space, (θ(t))t∈T could become
a measurable dynamical system after some redefinition of the probability measure P
and of the σ -algebra set (see Arnold 1998, Appendix A.2).

3.1 Discrete-Time RDS

Let now assume that for T = Z
+ ∪ {0}, ω = (ωi )i∈T is a canonical realization

of the stochastic process with the associated driving system composed by the shift
transformation maps (43) as described in the previous paragraph. If we assume that
the discrete RDS ϕ(n, ω) is defined by the one step map T (ω, ·) : M → M of the
form

T (ω, ·) = T0(π(ω), ·), (45)

where π denotes the canonical projection (44), by taking into account (45) in (4), we
get

ϕ(n, ω) = T0(π(ψn−1(ω)), ·) ◦ · · · ◦ T0(π(ψ(ω)), ·) ◦ T0(π(ω), ·), n ≥ 1. (46)

Ifω is an i.i.d. stochastic process, the sequence {T (ψ i (ω), ·) = T0(π(ψ i−1(ω)), ·), i ≥
1} is an i.i.d. sequence of random maps, so that RDS (46) generates the time-
homogeneous Markov family {ϕ(n, ω)x, x ∈ M} (Arnold 1998, Chapter 2.1). In
this case the stochastic Koopman operator family is a semigroup, so that Kn =
K1 ◦ · · · ◦ K1 = (K1)n , n > 0. Therefore one can think about K1 as the genera-
tor of the stochastic Koopman semigroup, and we denote it by KS . According to (2),
K1 is determined by using the one step map T (ω, ·) as

KS f (x) = K1 f (x) = E [ f (T (ω, x))] . (47)

It follows from the semigroup property that if λS is the eigenvalue of the stochastic
Koopman generator with the associated eigenfunction φ(x), then (λS)n and φ(x) are
the eigenvalue and the eigenfunction of the operator Kn .
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Remark 2 Note that in the more general case presented in Sect. 2.1, the random maps
were identically distributed but not necessarily independent, so that the future state of
the process obtained by the action of their composition (4) could depend on the past
behavior of the system and not only on the present state.

Example 2 (Noisy rotation on the circle) We describe here the example considered in
Junge et al. (2004). A deterministic dynamical system representing the rotation on the
unit circle S1 is defined by

T (x) = x + ϑ, (48)

where ϑ ∈ S1 is constant number. We consider here its stochastic perturbation, i.e., a
discrete RDS over the dynamical system θ = (θ(t))t∈T, where θ(t) are shift transfor-
mations (43), defined by the one step map T : Ω × S1 → S1 of the form (45):

T (ω, x) = x + ϑ + π(ω). (49)

Here ω ∈ [−δ/2, δ/2]Z is a canonical realization of a stochastic process and π(·)
is the canonical projection defined by (44). We suppose that the coordinates ωi are
i.i.d. with uniform distribution on the interval [−δ/2, δ/2] for some δ > 0. According
to (47), the action of the associated stochastic Koopman generator on an observable
function f : S1 → C is given by

KS f (x) = E[ f (T (ω, x))] = 1

δ

∫ δ/2

−δ/2
f (x + ϑ + ω0)dω0. (50)

For the functions
φ j (x) = exp (i2π j x), j ∈ Z, (51)

the following equality holds

KSφ j (x) = 1

δ

∫ δ/2

−δ/2
exp(i2π j(x + ϑ + ω0))dω0

= sin ( jπδ)

jπδ
exp(i2π jϑ) exp(i2π j x)

= sin ( jπδ)

jπδ
exp(i2π jϑ)φ j (x). (52)

We easily conclude that (51) are the eigenfunctions of the stochastic Koopman gen-
erator with corresponding eigenvalues

λS
j = sin ( jπδ)

jπδ
exp(i2π jϑ), j ∈ Z (53)

For any function f : L2(S1) → C, we have the spectral expansion

Kn f (x) =
∑

j∈Z
c j

(
sin ( jπδ)

jπδ

)n

exp(i2π jnϑ) exp(i2π j x). (54)
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where c j are the Fourier coefficients of f . Clearly, Kn f (x) → c0 as t → ∞. It
is known that the eigenvalues of the Koopman generator related to the deterministic
dynamical system (48) lie on the unit circle and are equal to λ j = exp(i2π jϑ), while
the eigenfunctions are the same as in the random case. Moreover, it is interesting to
observe that for rational ϑ the eigenspaces in deterministic case, i.e., for δ = 0, are
infinite dimensional, while they are finite dimensional in the stochastic case (δ > 0)
due to the compactness of the operator. To be more precise, in this example, the
eigenspaces become one dimensional.

Remark 3 Consider the case when randomness is additive, i.e., when the one-step map
T : Ω × R

d → R
d is given by

T (ω, x) = Ax + π(θ(t)ω),

where θ(t) is shift transformation and ω : Ω → R
d is the canonical realization of

a process with i.i.d. components. Suppose that E[ω] = 0 and that the matrix A is
diagonalizable with simple eigenvalues λ j , j = 1, . . . , d. Then the eigenfunctions
of the stochastic Koopman generator KS are principal eigenfunctions of the form
φ j (x) = 〈x,w j 〉, j = 1, . . . , d, where w j , j = 1, . . . , d are left eigenvectors of A,
while its eigenvalues coincide with the eigenvalues of the matrix A.

3.1.1 Continuous-Time RDS

Let suppose that the stochastic Koopman operator family satisfies semigroup prop-
erty. Define the generator of the stochastic Koopman family (Kt )t∈T acting on the
observable functions f ∈ C1

b(R
d) (C1

b(R
d) is the space of continuously differentiable

functions on Rd with bounded and continuous first derivative) by the limit

KS f (x) = lim
t→0+

Kt f (x) − f (x)
t

, (55)

if it exists. For the Koopman operators associated with the RDS generated by RDE,
we have the following proposition.

Proposition 5 If the solution of RDE (11) is differentiable with respect to t and the
stochastic Koopman family (Kt )t∈T is a semigroup, then the action of the generator
KS on f ∈ C1

b(R
d) is equal to

KS f (x) = E [F(ω, x)] · ∇ f (x). (56)
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Proof

KS f (x) = lim
t→0+

Kt f (x) − f (x)
t

= lim
t→0+

E [ f (X(t, ω, x))] − f (x)
t

= lim
t→0+

E [ f (X(t, ω, x)) − f (x)]
t

= E

[
lim
t→0+

f (X(t, ω, x)) − f (X(0, ω, x))
t

]

= E

[
d

dt
f (X(t, ω, x))

∣∣∣∣
t=0

]
= E

[
∇ f (x) · d

dt
X(t, ω, x)

∣∣∣∣
t=0

]

= E [F(ω, x)] · ∇ f (x). (57)

The swapping of the order of limit and expectation in the second line is jus-
tified by the dominated convergence theorem and the fact that the convergence
f (X(t, ω, x)) − f (x)

t
is uniform for all ω and x , since the derivative of f is bounded

and the solution is differentiable (see Lasota and Mackey 1994, Section 7.6 for the
proof in the deterministic case). ��
Corollary 1 Suppose that a stochastic Koopman generator KS associated with RDE
(11) exists. If φ1 and φ2 are the eigenfunctions of KS with the associated eigenvalues
λ1 and λ2, then φ1φ2 is also an eigenfunction with the associated eigenvalue λ1 +λ2.

Proof Since KSφi (x) = λiφi (x) = E [F(ω, x)] · ∇φi (x), for i = 1, 2, we have

KS(φ1φ2)(x) = E [F(ω, x)] · ∇(φ1φ2)(x)

= E [F(ω, x)] · ∇φ1(x) · φ2(x) + E [F(ω, x)] · ∇φ2(x) · φ1(x)

= λ1φ1(x)φ2(x) + λ2φ2(x)φ1(x) = (λ1 + λ2)(φ1φ2)(x)

��
Corollary 2 Let φ ∈ C1

b(R
d) be an eigenfunction associated with eigenvalue λ of the

stochastic Koopman generator KS associated with an RDE (11). Then

d

dt
φ(ϕ(t, ω)x) = λφ(ϕ(t, ω)x) + F̃(ω, x) · ∇φ(ϕ(t, ω)x), (58)

where

F̃(ω, x) = F(ω, x) − E [F(ω, x)] .

Corollary 3 Suppose that a stochastic Koopman generator KS associated with linear
RDE (13) exists. Also, assume that Â = E[A(ω)] is diagonalizable, with simple
eigenvalues λ̂ j and left eigenvectors ŵ j , j = 1, . . . , d. Then

φ j (x) = 〈x, ŵ j 〉, j = 1, . . . , d, (59)

are the principal eigenfunctions of the generatorKS, while λS
j = λ̂ j are the associated

principal eigenvalues.
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Proof According to (57), the action of the generator KS of the Koopman operator
family associated with the linear RDS generated by (13) on f ∈ C1

b(R
d) is equal to

KS f (x) = E[A(ω)x] · ∇ f (x) = Âx · ∇ f (x). (60)

Thus

KSφ j (x) = 〈Âx,w j 〉 = 〈x, Â∗w j 〉 = λ̂ j φ j (x),

which proves the statement. ��
Remark 4 Provided that the assumptions of Corollary 3 are valid, the principal eigen-
functions φ j (x) given by (59) are the eigenfunctions of each Koopman operator Kt

also, with the corresponding principal eigenvalues λS
j (t) = eλ̂ j t . The set of principal

eigenfunctions does not cover all the eigenfunctions of the Koopman operator as we
discuss next. According to Corollary 1, over the space of real analytic functions,

φ(x) = φ
n1
1 (x) · · · φnd

d (x), λ =
d∑

j=1

n j λ̂ j ,

with n j ∈ N
+ ∪ {0}, j = 1, . . . , d, are the eigenvalues and eigenfunctions of the

Koopman generator. Thus, like in deterministic case, any analytic observable function
f can be represented as linear combination of powers of the principal eigenfunc-
tions (Mezić 2017b) and its evolution under the RDS can be obtained using spectral
expansion formula.

Another type ofRDSwhich could be identifiedwith the time-homogeneousMarkov
family are the RDS generated by the SDE of the form (21) with autonomous functions
G and σ , i.e.,

dXt = G(Xt )dt + σ(Xt )dWt . (61)

In this case the stochastic differential equation generates the one-parameter family of
RDS ϕ(t, ω) := ϕ(t, 0, ω) = ϕ(t + t0, t0, ω), so that the corresponding stochastic
Koopmanoperator family and the associated stochastic eigenvalues and eigenfunctions
depend on parameter t , only. In this autonomous setting, we denote by Xt (x) the
solution of Eq. (61) for the initial condition X0(ω) = x. In accordance with (22) it is
equal to

Xt (x) = x +
∫ t

0
G(Xs)ds +

∫ t

0
σ(Xs)dWs . (62)

There are numerous books dealingwith the properties of the solutions of such SDE, for
example (Cohen and Elliott 2015, Chapter 16; Da Prato 2014; Pavliotis 2014). Here
we reference some of the books containing proofs that the generated solutions form
Markov family and moreover, that the associated transfer operators form semigroup:
(Arnold 1974, 1998, Section 2.3; Lasota and Mackey 1994, Chapter 11; Cohen and
Elliott 2015, Chapter 17; Da Prato 2014, Section 9).
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In most of the stated references the generator of the stochastic solutions Xt is
studied. This generator is in the stochastic literature known under the name back-
ward Kolmogorov operator and is a second-order elliptic type differential operator.
It appears as the right-hand side of the backward Kolmogorov equation, whose solu-
tion, with the initial condition prescribed as the value of the observable function f (x),
gives the time evolution of the average value of the observable function, i.e., the value
Kt f (x) (Pavliotis 2014, Sections 2.5, 3; Cohen and Elliott 2015, Section 17.4; Da
Prato 2014,Section 9.3). Thus, the Kolmogorov operator is also the generator of the
stochastic Koopman semigroup, and its action over the space of real bounded, contin-
uous, and twice differentiable functions on Rd with bounded and continuous first and
second derivatives, which we denote byC2

b (R
d), is given in the following proposition.

Proposition 6 The action of the generator of the stochastic Koopman family KS on
f ∈ C2

b (R
d) is given by

KS f (x) = G(x)∇ f (x) + 1

2
Tr
(
σ(x)(∇2 f (x))σ (x)T

)
, (63)

where Tr denotes the trace of the matrix.

The following proposition follows from the proof of the Feynman–Kac formula
(Pavliotis 2014, Section 3.4; Cohen and Elliott 2015, Section 17.4).

Proposition 7 Letφ ∈ C2
b (R

d) be an eigenfunction of the stochastic Koopman genera-
torKS associated with RDS generated by SDE (61)with the corresponding eigenvalue
λ. Then

dφ(Xt ) = λφ(Xt )dt + ∇φ(Xt )σ (Xt )dWt . (64)

φ is the eigenfunction of the stochastic Koopman operator Kt also, i.e.,

Ktφ(x) = eλtφ(x). (65)

Proof Suppose d = 1. It follows from Itô’s formula

dYt = f ′(Xt )dXt + 1

2
f ′′(Xt )σ (Xt )

2dt (66)

that the eigenfunction φ(Xt ) evolves according to

dφ(Xt ) = φ′(Xt )G(Xt )dt + 1

2
φ′′(Xt )σ (Xt )

2dt + φ′(Xt )σ (Xt )dWt

= KSφ(Xt )dt + φ′(Xt )σ (Xt )dWt

= λφ(Xt )dt + φ′(Xt )σ (Xt )dWt , (67)

where in the last equality we used that KSφ(x) = λφ(x). By using the similar proce-
dure, the Eq. (64) valid in multidimensional case can be easily derived.

The fact that φ is an eigenfunction of eachKoopman semigroupmemberKt follows
from the spectral mapping theorem (Engel and Nagel 2001, Chapter IV.3). ��
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The fact that the eigenfunctions related to the generator of the dynamical system
evolve according to (67), is used in Shnitzer et al. (2017). In that paper the approx-
imations of eigenfunctions computed via diffusion maps are used to parametrize the
state of the RDS using the linear operator similarly as in Koopman framework.

Remark 5 Unlike in the case of RDS generated by the RDE, the product of eigenfunc-
tions of the stochastic Koopman generator associated with RDS generated by SDE is
not necessarily an eigenfunction. This easily follows from Proposition 6. However, the
eigenfunctions in many cases satisfy a recurrence relationship [e.g., Hermite polyno-
mials, which are Koopman eigenfunctions of Ornstein–Uhlenbeck processes obtained
as a solution of the Ornstein–Uhlenbeck SDE (Pavliotis 2014, Section 4.4)] and thus
can be deduced from the principal eigenfunctions. This reduces the problem to the
analysis of principal eigenfunctions, and thus d objects in an d-dimensional space,
remarkable for a nominally infinite-dimensional representation.

4 Numerical Approximations of the Stochastic Koopman Operator

Oneof the goals of thiswork is to compute the numerical approximations of the spectral
objects of the stochasticKoopman operators, i.e., their eigenvalues and eigenfunctions.
This is performed by extending the DMD algorithms, that are originally developed for
approximating the spectral object of the Koopman operators in deterministic settings,
to the stochastic framework. DMD algorithms and the spectral analysis of the Koop-
man operator are connected in the following way. Suppose that the restriction of the
infinite-dimensional stochastic Koopman operatorKt to an appropriate n-dimensional
subspace of functions is closed under the action of the Koopman operator (see Drmač
et al. 2018). LetK ∈ C

n×n denote its representation by an n × n-dimensional matrix.
The goal of the DMD numerical algorithms is to determine the spectrum and associ-
ated eigenvectors of the finite-dimensional linear operatorK, and those are in turn the
eigenvalues and coordinates of eigenfunctions of the associated Koopman operator in
the chosen finite-dimensional basis. If the considered subspace is not closed under the
action of the Koopman operator, one can expect that under certain assumptions, the
operator K at least approximates the underlying dynamics (Arbabi and Mezić 2017;
Korda and Mezić 2018).

The DMD algorithm provides us with a decomposition of the pair (Xm,Ym) given
by the eigenvalues and the eigenvectors of the operator K, which is in the data-driven
settings not known explicitly, while it is known that its action on the range Xm should
be equal to Ym (Tu et al. 2014). For n � m and full column range of Xm , there
exists an exact solution of the equation Ym = KXm , while for m � n the equation is
satisfied in a least-squares sense (Tu et al. 2014).

Here we use the enhanced DMD algorithm, proposed in Drmač et al. (2018), which
we denote hereafter by DMD RRR. We briefly describe two types of DMD algorithm
and propose their application in the stochastic framework. The first type of DMD
algorithm is the modification of the standard DMD approach that uses snapshot pairs
in deterministic framework, and the second one is obtained from the DMD applied to
theHankelmatrix. In the stochastic framework, in both considered approaches, instead
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of the application of the algorithm to the individual snapshots along a trajectory, it
is applied to the expected values of the observable functions at the appropriate time
moment.

4.1 The DMD Algorithms for RDS

Let f = ( f1, . . . , fn)T : M → C
n be a vector-valued observable on the state space.

For an x ∈ M , let fk(ω, x) = f(T k(ω, x)), k = 0, 1, . . . be a vector-valued observable
series on the trajectory of the considered discrete-time RDS. Denote its expectation by
fk(x) = E[fk(ω, x)] = Kkf(x). For the continuous-time RDS ϕ, we choose the time
step �t and define the values of the observables in the same way as in the discrete-
time case by taking T k(ω, x) = ϕ(k�t, ω)x. The expected value of the observable
at the time moment tk = k�t , i.e., the value of the action of the stochastic Koopman
operator Kk on f , is evaluated as fk(x) = Kk

�t f(x) = E[f(ϕ(k�t, ω)x).
In this stochastic framework, the DMD algorithm is applied to the matrices

Xm,Ym ∈ C
n×m , which are for the chosen initial states x1, . . . , xm ∈ M defined

by

Xm = (f0(x1) f0(x2) . . . f0(xm)
)
and Ym = (fk(x1) fk(x2) . . . fk(xm)

)
. (68)

In this case we expect that the DMD algorithm provides us with the eigenvalues and
eigenfunctions of the finite-dimensional approximation operator associated with the
Koopman operatorKtk . In the case when the Koopman operator family is a semigroup,
we have Kk

�t = (K1
�t )

k , and thus it makes sense to apply the DMD algorithm to the
time-delayed expected values of the observable function, which means that for the
chosen initial condition x0, we define the matrices Xm and Ym as

Xm = (f0(x0) f1(x0) . . . fm−1(x0)
)

and Ym = (f1(x0) f2(x0) . . . fm(x0)
)
.

(69)
In this case, we expect that the algorithm provide us with the eigenvalues and
eigenfunctions of the approximation operator associated with K1

�t . The proof of the
convergence of the DMD type algorithm with input matrices (69) where f1, . . . , fn
span the finite-dimensional invariant subspace of the stochastic Koopman operator, to
its eigenvalues and eigenfunctions is given in Takeishi et al. (2017) for the RDS in
which the noise is modeled by i.i.d. random variables and under the assumption of
ergodicity.

Wedescribe now the crucial steps of theDMDRRRalgorithm.TheDMDRRRalgo-
rithm starts in the same way as other SVD-based DMD algorithms, i.e., with the SVD
decomposition for low-dimensional approximationof data:Xm = UΣV∗ ≈ UrΣrV∗

r ,
where Σ = diag((σi )

min(m,n)
i=1 ), σi are singular values arranged in the descending

order, i.e., σ1 ≥ · · · ≥ σmin(m,n) ≥ 0, and r is the dimension of the approxima-
tion space. Ur and Ur are composed from first r columns of matrices U and U and
�r = diag((σi )i = 1r ). Then Ym = KXm can be approximated as

Ym ≈ KUrΣrV∗
r . (70)
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SinceKUr = YmVrΣ
−1
r , the Rayleigh quotient matrix Sr = U∗

rKUr with respect to
the range Ur can be computed in this data-driven setting as

Sr = U∗
rYmVrΣ

−1
r . (71)

Each eigenpair (λ,w) of Sr generates the corresponding Ritz pair (λ,Urw), that is
a candidate for the approximation of the eigenvalue and eigenvector of the Koopman
operator.

Here we emphasize few crucial points at which the DMD RRR algorithm is
improved in comparison with the standard DMD algorithms (Schmid 2010; Tu et al.
2014). The first point of difference refers to the dimension r of the reduction space.
Instead of defining the dimension of the space a priori or to take into account the spec-
tral gap in singular values, it is proposed in Drmač et al. (2018) to take into account
user supplied tolerance ε, which is then used for defining r as the largest index satis-
fying σr ≥ σ1ε. The algorithm is, according to Drmač et al. (2018), further enhanced
with the residual computation for each Ritz vector pair (λ,Urw)

η = ‖K(Urw) − λ(Urw)‖2 = ‖(YmVrΣ
−1
r )w − λ(Urw)‖2, (72)

where ‖ ·‖2 stands for L2 norm. Then the vectors at which the required accuracy is not
attained are not taken into account. The final improvement compared to the standard
algorithms refers to scaling of the initial data, i.e., if the matrix Dx is defined with
Dx = diag(‖Xm(:, i)‖2)m−1

i=0 , we set Xm = X(1)
m Dx and Ym = Y(1)

m Dx and proceed

with X(1)
m and Y(1)

m as data matrices.

4.2 Stochastic Hankel–DMD (sHankel–DMD) Algorithm

Here we define the stochastic Hankel matrix and describe the application of the DMD
type algorithm on it. We use the Hankel–DMDmethod described in Arbabi andMezić
(2017) for deterministic dynamical system and expand the ideas to the stochastic set-
tings. We first limit to the discrete-time RDS and assume that the associated stochastic
Koopman operator family satisfies the semigroup property, since only in such case the
results of the DMD algorithm applied to the Hankel matrix are meaningful. Otherwise,
the situation similar to the nonautonomous deterministic case arise and the applica-
tion of the DMD algorithm to the time-delayed expected values of the observables
becomes an attempt to approximate different operators, which results with significant
errors (Maćešić et al. 2018).

The Hankel matrix in the stochastic framework is defined as follows. For a scalar
observable f : M → C, we define the vector of n observations along the trajectory
that starts at x ∈ M and is generated by the one step discrete random map T :

fn(ω, x) =
(
f (x), f (T (ω, x)), . . . , f (T n−1(ω, x))

)T
. (73)
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Let fkn (x), k = 0, 1, . . . denote the expectation of fn(θ(k)ω, T k(ω, x)) over the
trajectories of length k, i.e.,

fkn (x) = E

[
fn(θ(k)ω, T k(ω, x))

]

=
(
Kk f (x),Kk f (T (ω, x)), . . . ,Kk f (T n−1(ω, x))

)T
. (74)

Observe that the components of fkn (x) are the values of the function Kk f along
the trajectory of length n starting at x ∈ M . Numerically, the approximations of
Kk f (T j (ω, x)), j = 0, . . . , n − 1 are obtained as expectations of the observable
function values over the multiple trajectories of length k starting from T j (ω, x), j =
0, . . . , n − 1.

The stochastic Hankel matrix of dimension n ×m, associated with the trajectories
starting at x ∈ M and generated by the map T is defined by

Hn×m(ω, x) =
(
f0n (x) f1n (x) . . . fm−1

n (x)
)

=

⎛

⎜⎜⎜
⎝

f (x) K1 f (x) . . . Km−1 f (x)
f (T (ω, x)) K1 f (T (ω, x)) . . . Km−1 f (T (ω, x))

...
...

. . .
...

f (T n−1(ω, x)) K1 f (T n−1(ω, x)) . . . Km−1 f (T n−1(ω, x))

⎞

⎟⎟⎟
⎠

. (75)

The columns of Hn×m are approximations of functions in the Krylov subspace

Km(K, f ) = span
(
f , K1 f , . . . , Km−1 f

)
, (76)

obtained by sampling the values of functions Kk f , k = 0, . . . ,m − 1 along the
trajectory of length n starting at x ∈ M .

When the DMD algorithm is applied to the stochastic Hankel matrix, the input
data matrix Xm is defined by taking the first m columns of the Hankel matrix
Hn×(m+1)(ω, x), while the data matrix Ym is formed from the last m columns of
the same matrix. We refer to this methodology as to the stochastic Hankel–DMD
(sHankel–DMD) algorithm.

As already mentioned, when we consider the continous-time RDS, we could for the
chosen�t associate with it a discrete RDS by defining the one-step map as T (ω, x) =
ϕ(�t, ω)x. Then the Koopman operatorKk should be replaced with the operatorKk

�t .

4.3 Convergence of the sHankel–DMD Algorithm

It was proved in Arbabi and Mezić (2017) that for ergodic systems, under the assump-
tion that observables are in an invariant subspace of the Koopman operator, the
eigenvalues and eigenfunctions obtained by the extended DMD algorithm applied
to Hankel matrix, converge to the true Koopman eigenvalues and eigenfunctions of
the considered system. The convergence of the DMD algorithm with input matrices
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Xm andYm defined by (69) to the eigenvalues and the eigenfunctions of the Koopman
operator is proved in Takeishi et al. (2017) for the class of RDS in which the noise
is modeled by i.i.d. random variables, under the assumption of ergodicity, and of the
existence of the finite-dimensional invariant subspace. Here we prove that under the
same assumptions, the convergence is accomplished for the sHankel–DMD algorithm.
Our proof is based on the fact that the eigenvalues and the eigenfunctions obtained
by DMD algorithm correspond to the matrix that is similar to the companion matrix,
which represents the finite-dimensional approximation of the Koopman operator in the
Krylov basis. We limit the considerations to the discrete-time RDS. Suppose that the
dynamics on the compact invariant set A ⊆ M is generated by the measure-preserving
map T (ω, ·) : A → A for each ω ∈ Ω . We recall from Arnold (1998, Section 1.4)
that a probability measure ν is invariant for RDS ϕ(n, ω) = T n(ω, ·) if it is invari-
ant for the skew product flow Θ(n)(ω, x) = (θ(n)ω, T n(ω, x)) generated by T and
θ(t), i.e., if Θ(n)ν = ν and if πΩν = P where πΩ denotes the canonical projection
Ω × A → Ω . Invariant measures always exist for a continuous RDS on compact
space A (see Arnold 1998, Theorem 1.5.10). If A is a Polish space, the measure ν on
Ω × A could be written as product of measures, i.e., dν(ω, x) = dμω(x)dP(ω), i.e.,
for f ∈ L1(ν)

∫

Ω×A
f dν =

∫

Ω

∫

A
f (ω, x)dμω(x)dP(ω).

If the skew product dynamical system Θ is ergodic on Ω × A with respect to some
invariant measure ν and if θ(n) is ergodic with respect to P, we say that ϕ is ergodic
with respect to the invariant measure ν. Under the assumption of ergodicity of Θ with
respect to the measure ν, the Birkhoff’s ergodic theorem states that the time average
of observable f ∈ L2(Ω × A; ν) under Θ is given by

lim
n→∞

1

n

n−1∑

k=0

f (θ(k)ω, T k(ω, x)) =
∫

Ω×A
f (ω, x)dν, a. e. on Ω × A. (77)

The following proposition shows that under the assumption of ergodicity and
Markovian property ofRDS, the sHankel–DMDalgorithmprovide uswith approxima-
tions of eigenvalues and eigenfunctions that converge to the trueKoopman eigenvalues
and eigenfunctions.

Proposition 8 Suppose that the dynamics on the compact invariant set A ⊆ M is
given by the one step map T (ω, ·) : A → A for each ω ∈ Ω and that the associated
discrete-time RDS ϕ is ergodic with respect to some invariant measure ν. Assume
additionally that the processes {ϕ(n, ω)x, x ∈ A} form a Markov family. Denote by μ

the marginal measure μ = EP(ν) on A.
Let the Krylov subspace Km(K, f ) span an r-dimensional subspace of the Hilbert

space H = L2(A, μ), with r < m, invariant under the action of the stochastic
Koopman operator. Then for almost every x ∈ A, as n → ∞, the eigenvalues and
eigenfunctions obtained by applying DMD algorithm to the first r + 1 columns of the
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n × (m + 1)-dimensional stochastic Hankel matrix, converge to the true eigenvalues
and eigenfunctions of the stochastic Koopman operator.

Proof Consider the observables f : A → R belonging to the Hilbert space H =
L2(A, μ). Due to the ergodicity of Θ , in accordance with the Birkhoff’s ergodic
theorem, (77) is valid, thus we get

lim
n→∞

1

n

n−1∑

k=0

f (T k(ω, x)) =
∫

Ω×A
f (x)dν =

∫

Ω

∫

A
f (x)dμω(x)dP(ω) =

∫

A
f dμ,

(78)
where the last equality follows from the fact that μ = EP(ν) = EP(μω). For observ-
ables f , g ∈ H let the vectors of n observations along the trajectory starting at x ∈ A
of the RDS generated by the map T be denoted by fn(ω, x) and gn(ω, x) and defined
by (73). If we denote the data-driven inner product by < fn(ω, x), gn(ω, x) >, we
have

lim
n→∞

1

n

[
< fn(ω, x), gn(ω, x) >

] = lim
n→∞

1

n

n−1∑

k=0

f (T k(ω, x))g∗(T k(ω, x))

= lim
n→∞

1

n

n−1∑

k=0

f g∗ (T k(ω, x)
)

=
∫

A
f g∗dμ =< f , g >H for a.e. x (79)

with respect to the measure μ. Using the assumption that Km(K, f ) spans r -
dimensional subspace of H, which is invariant for the stochastic Koopman operator,
the restriction of the Koopman operator to this subspace is finite dimensional and can
be realized by an r × r matrix. The representation of this matrix in the basis formed
by the functions

(
f , K f , . . . , Km−1 f

)
is given with the companion matrix

C =

⎛

⎜⎜⎜⎜⎜
⎝

0 0 . . . 0 c0
1 0 . . . 0 c1
0 1 . . . 0 c2
...

...
. . .

...
...

0 0 . . . 1 cr−1

⎞

⎟⎟⎟⎟⎟
⎠

, (80)

where the vector c = (
c0, c1, . . . , cr−1

)T , obtained by using least-squares
approximation is equal to

c = G−1 (< f ,Kr f >H, < K1 f ,Kr f >H, . . . , < Kr−1 f ,Kr f >H
)T

. (81)

Here G denotes the Gramian matrix with elements Gi j =< Ki−1 f ,K j−1 f >H,

i, j = 1, . . . , r (see Arbabi and Mezić 2017; Drmač et al. 2018).
Consider now the stochastic HankelmatrixHn×(r+1)(ω, x) of dimension n×(r+1)

along a trajectory starting at x and the DMD algorithm applied to the matrices
Xr = (

f0n (x) f1n (x) . . . fr−1
n (x)

)
and Yr = (

f1n (x) f2n (x) . . . frn (x)
)
. In what follows

123



2034 Journal of Nonlinear Science (2020) 30:2007–2056

we will prove that the eigenvalues and eigenvectors provided by DMD algorithm
converge to the eigenvalues and eigenvectors of the stochastic Koopman operator.
We will use the fact that these eigenvalues and eigenvectors are computed from the
eigenvalues and eigenvectors of the matrix Sr (71), which is, according to Drmač
et al. (2018, Proposition 3.1), in the case considered here, similar to the numeri-
cal companion matrix C̃ that is defined hereafter. We denote by C̃ the numerical
companion matrix computed as a best approximation of the least-squares problem
C̃ = arg minB∈Cr×r ‖Yr − XrB‖ (Drmač et al. 2018) by applying the companion
matrix algorithm (Arbabi and Mezić 2017; Drmač et al. 2018) to matrices Xr and
Yr . Using the assumption that the Krylov subspace spans an r -dimensional subspace,
which means that the matrix Xr has a full column rank, the pseudoinverse is of the
form X†

r = (X∗
rXr )

−1X∗
r and the matrix C̃ is

C̃ = X†
rYr = (X∗

rXr )
−1X∗

rYr

=
(
1

n
X∗
rXr

)−1 (1
n
X∗
rYr

)
= G̃−1

(
1

n
YrX∗

r

)
. (82)

Here G̃ denotes the numerical Grammian matrix whose elements are equal to

G̃i j (ω, x) = 1
n < f i−1

n (x), f j−1
n (x) >

= 1

n

n−1∑

k=0

Ki−1 f (T k(ω, x))K j−1 f ∗(T k(ω, x))

= 1

n

n−1∑

k=0

(Ki−1 f )(K j−1 f ∗)(T k(ω, x)), i, j = 1, . . . , r . (83)

Now, by using (79), we conclude that

lim
n→∞ G̃i j (ω, x) =< Ki−1 f ,K j−1 f >H, i, j = 1, . . . , r for a.e. x (84)

with respect to the measure μ. From (82) we get that the last column c̃ =
(c̃0(ω, x), c̃1(ω, x), . . . , c̃r−1(ω, x))T of C̃ is equal to

c̃ = G̃−1 1
n

(
< f0n (x), frn (x) >, < f1n (x), frn (x) >, . . . , < fr−1

n (x), frn (x) >
)T

.

(85)
Since

lim
n→∞ < f j−1

n (x), frn (x) >=< K j−1 f ,Kr f >H j = 1, . . . , r , for a.e. x (86)

with respect to the measure μ and the matrix G̃−1 converges to the inverse of the true
GrammianmatrixG−1, it follows that the components of c̃ converge to the components
of c (81). As in Arbabi and Mezić (2017, Proposition 3.1), we use now the fact that
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the eigenvalues of the matrix C̃ are the roots of a polynomial having coefficients c̃i .
Therefore the eigenvalues of C̃ are continuously dependent on these coefficients,which
implies that the eigenvalues of the companion matrix C̃ converge to the eigenvalues of
the exact companion matrix, i.e., to the exact eigenvalues of the stochastic Koopman
operator. As we already mentioned before, the eigenvalues and eigenvectors provided
by DMD algorithm are computed from the eigenvalues and eigenvectors of the matrix
Sr (71), which is for the full column rank matrix Xr , similar to the companion matrix
C̃ (see Drmač et al. 2018, Proposition 3.1), thus the conclusion follows. ��

5 Numerical Examples

In this section, we illustrate the computation of the approximations of spectral objects
of the stochastic Koopman operator on a variety of numerical examples. In all the
examples we use the proposed methodologies in combination with the DMD RRR
algorithm. First, we consider two discrete RDS examples: Example 2 and the linear
RDS. Due to the fact that in the first case the semigroup property for the Koopman
operator family is valid, the input matrices of DMD algorithm are defined by (69). We
show that good approximations of the eigenvalues and eigenfunctions are obtained. In
the second linear case, the DMD algorithm is applied on input matrices (68) and the
differences between the exact and computed eigenvalues are determined. In Sect. 5.2
the approximation of time-dependent principal eigenvalues for the continuous-time
RDS generated by the linear RDE are determined by applying DMD RRR algorithm
on data matrices defined by (68) where Ym changes in time. In these two linear test
examples, discrete and continuous one, the solutions do not form Markov family,
so that the associated stochastic Koopman operator family is not a semigroup. In
Sect. 5.3, we apply DMD RRR algorithm on input matrices defined by (68) and (69)
to the RDS generated by scalar linear and scalar nonlinear SDE and approximate its
eigenvalues and eigenfunctions. Finally, we apply the sHankel–DMD algorithm to
two RDS generated by SDE systems (stochastic Stuart–Landau and noisy Van der
Pol system) whose solutions converge to the asymptotic limit cycles and to the RDS
generated by noisy Lotka–Volterra system with an asymptotically stable equilibrium
point. In most considered examples, we first apply the DMD RRR algorithm to the
related deterministic dynamical system (without noise) and then explore its behavior
on the RDS.

5.1 Discrete RDS Examples

5.1.1 Noisy Rotation on the Circle

Consider the dynamical system defined in Example 2. We use the following set of
observables:

f j (x) = cos( j2πx), g j (x) = sin( j2πx), j = 1, . . . , n1,

arranged in the vector-valued observable as
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f = ( f1, . . . , fn1 , g1, . . . , gn1)
T .

The input matrices Xm and Ym of the DMD RRR algorithm are defined by (69).
We consider both cases: deterministic and stochastic. In deterministic case, it follows
from Tu et al. (2014), that for m � n, the matrix obtained by DMD algorithm is the
approximation of the associated Koopman operator in a least-square sense. There-
fore, in this example, due to the ergodicity and as a consequence of the law of large
numbers, as m → ∞, the obtained values provided by DMD algorithm converge to
the eigenvalues and eigenvectors of the finite-dimensional approximating matrix of
the Koopman operator. According to Takeishi et al. (2017), the algorithm converge
in the stochastic case also to the eigenvalues and eigenfunctions of the stochastic
Koopman operator. It is interesting to mention that to recover the spectrum of the
stochastic Koopman operator in the considered ergodic system, it was enough to take
in the matrices Xm and Ym only the values of the observable vector on one long
enough trajectory, i.e., to take Xm = (f(x0) f(T (ω, x0)) . . . f(Tm−1(ω, x0))) and
Ym = (f(T (ω, x0)) f(T 2(ω, x0)) . . . f(Tm(ω, x0))), where x0 denotes the chosen
initial state.

We take n1 = 150, which gives n = 300 observable functions, and use m = 5000
sequential expectations of the observable functions to determine the matrices Xm and
Ym . The numerical results for the flow with the parameters ϑ = π/320 and δ = 0.01
obtained by using the DMD RRR algorithm are presented in Fig. 1. We note that
the eigenvalues obtained in the deterministic case lie, as expected, on unit circle.
The real parts of eigenfunctions φi (x), i = 1, 2, 3, which we recover numerically,
are presented in subfigure (c) of Fig. 1. They closely coincide with the theoretically
established eigenfunctions given by (51). The results presented in subfigure (e) of
Fig. 1 show that numerically captured eigenvalues of the stochastic Koopman operator
coincide very well with theoretical eigenvalues (53). In the stochastic case, the real
parts of the eigenfunctions belonging to the first three eigenvalues λS

i , i = 1, 2, 3 are
presented in subfigure (f) of Fig. 1. As shown in Example 2, the eigenfunctions are
given by (51). Two remarks are in order: (1) The deterministic and stochastic Koopman
operators commute in this case, and thus the eigenfunctions are the same and the
addition of noise does not perturb them (cf. Giannakis 2019 where the numerically
computed eigenfunctions in a similar commuting situation were not sensitive to the
noise introduced in the system). (2) The computed eigenvalues are the approximation
of the eigenvalues associated with the restriction of the stochastic Koopman to the
subspace spanned by the components of the vector observable. Since that subspace is
invariant under the action of the Koopman operator, the eigenvalues are, as expected,
computed with high accuracy.

Results very similar to the presented oneswere obtainedwhen the observable vector
is constructed with the observable functions: f j (x) = e j2π i x and g j (x) = e− j2π i x ,
j = 1, . . . , n1.

5.1.2 Discrete Linear RDS

Here we consider the discrete linear RDS generated by a map (6) with
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A(ω) =
(

0 π(ω)

−π(ω) 0

)
, (87)

where π is given by (44). We suppose that the dynamical system θ = (θ(t))t∈Z+ is
defined by the shift transformations (43). The coordinates ωi , i ∈ Z

+ of ω ∈ Ω are
induced by i.i.d. random variables with the following distribution

P(ωi = 1) = p1, P(ωi = 2) = 1 − p1, 0 < p1 < 1.

As proved in Proposition 1, the principal eigenvalues of the stochastic Koopman
operator are equal to the eigenvalues of the matrix Â = E[A(ω)], while the asso-
ciated eigenfunctions are given by (7). We take p1 = 0.75 and select N = 104

initial points uniformly distributed over [0, 1] × [0, 1]. For every chosen initial
point x j,0, j = 1, . . . , N , we determine the random trajectory x j,k, k = 1, 2, . . .,
where x j,k denotes state value at kth step. The DMD RRR algorithm is applied
to the full-state observables by taking states on each of the trajectory separately,
i.e., we take as the algorithm input the matrices Xm, j ,Ym, j ∈ R

2,m defined by
Xm, j = (

x j,0, x j,1, . . . , x j,m−1
)
and Ym, j = (

x j,1, x j,2, . . . , x j,m
)
, j = 1, . . . , N .

In each computation associated with initial value x j,0, we obtain the eigenvalue pair

λ
( j)
1,2, which should approximate the principal Koopman eigenvalues λ̂1,2. For fixed m

and for the chosen set of initial conditions, we get samples of approximating eigenval-
ues λ

( j)
1,2, j = 1, . . . , N . To estimate the error, for the obtained sets of approximating

eigenvalues, we evaluate the L1, L2 and L∞ norms of the difference between the
exact eigenvalues and the computed eigenvalues. The norms determined for different
values of parameter m are presented in Fig. 2. One could notice that the accuracy
of the obtained eigenvalues increases monotonically with the number m used in the
computations, and that the error isO( 1√

m
), as would be expected for a random process

of this type. It is worth noticing that the norm of the state values ‖x j,m‖ increases with
m and could become quite large for large values of m. Thus, the condition number
of the input matrices of the DMD RRR algorithm could be very large. However, the
scaling that is applied in this enhanced DMD RRR algorithm prevent the instabilities
that otherwise could be introduced if the standard DMD algorithm without scaling is
applied.

5.2 Continuous-Time Linear RDS

We consider now the continuous-time linear RDS that evolves according to (13) where

A(ω) =
(

π(ω) 1
−b2 π(ω)

)
, (88)

θ(t) are shift transformations given by (43), and π is like in the previous test example
given by (44). It is supposed that the coordinatesω(t), t ∈ R

+ ofω ∈ Ω are piecewise
constant of the form ω(t) =∑∞

i=1 ωi1((i−1)�t s ,i�t s ](t), where�t s is the chosen fixed
time interval between switches and ωi , i ∈ Z

+ are i.i.d. random variables with the
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Fig. 2 Discrete linear RDS defined by (87). L1, L2, and L∞ errors of approximated Koopman eigenvalues

following distribution

P(ωi = a1) = p1, P(ωi = a2) = 1 − p1, 0 < p1 < 1. (89)

In the considered case, the obtainedRDS is notMarkovian and the stochasticKoopman
operators (Kt )t∈T do not satisfy semigroup property.

We are interested in the numerical approximations of the eigenvalues of the associ-
ated stochastic Koopman operators. Therefore we apply the DMD RRR algorithm to
the matrices Xm and Ym defined using (68) and the full-state observables. Using such
approach, we expect to obtain the numerical approximations of the principal eigen-
values of the Koopman operators Ktk = Kk

�t , k = 0, 1, 2, . . .. Due to the switches of
the matrices at time moments i�ts , we choose the time step �t so that K�t = �ts
for some K ∈ N.

Since the matrices A(ω) commute and have simple eigenvalues, they are simulta-
neously diagonalizable, so that according to Proposition 2, the stochastic Koopman

eigenvalues of the operator Kt are equal λS
j (t) = E

(
e
∫ t
0 λ j (θ(s)ω)ds

)
, j = 1, 2.

For large enough values of t , for example t = N�t s , after applying central
limit theorem we get that the distribution of

∫ t
0 λ j (θ(s)ω)ds = ∑N

i=1 λ j (ωi )�t s

is approximately normal with mean value λ̂ j (t) = E(λ j (ωi ))t and the variance
σ̂ 2
j (t) = V (λ j (ωi ))�t s t , where V denotes variance. Here λ j (ωi ), j = 1, 2 are the

eigenvalues of the matrix A(ωi ), thus we get

λ̂1,2(t) = (â ± bi)t, where â = p1 a1 + (1 − p1)a2,

and

σ̂ 2
1,2(t) = p1(1 − p1)(a1 − a2)

2�t s t .
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It follows that e
∫ t
0 λ j (θ(s)ω)ds is approximately lognormally distributed with the mean

value
λS
j (t) = E

(
e
∫ t
0 λ j (θ(s)ω)ds

)
= eλ̂ j (t)+ 1

2 σ̂ 2
j (t). (90)

In the numerical computations,we takea1 = − 0.1,a2 = 0.1,b = 2, and�t s = π
30 .

Thenumerical approximations of the expectedvalues of the solutionbasedon N = 100
sampled trajectories and for the values of p1 = 0.75, p1 = 0.5, and p1 = 0.25 are
presented in Fig. 3. By taking into accountm = 100 initial points, we approximate the
eigenvalues of the Koopman operators Ktk , tk = k�t , where �t = π

60 . The relative
error between the eigenvalues (90) and the eigenvalues computed using DMD RRR
algorithm is presented in Fig. 4. One can conclude that the computations are stable
since the relative errors in all three considered cases have similar magnitudes despite
the fact that for p1 = 0.25 the norm of the solution significantly increases. As in the
previous example, this is a consequence of the scaling of data used in the DMD RRR
algorithm. As expected, the variance of errors increase with time.

5.3 Stochastic Differential Equations Examples

In this section we consider the flow induced by the autonomous SDE of the form
(61) with random force accounting for the effect of the noise and disturbances of the
system. In the considered examples the numerical solutions are determinedbyusing the
Euler–Mayurama method and the Runge–Kutta method for SDE developed in Rößler
(2010). We use the fact that the convergence of Euler–Maruyama method is, for the
examples we consider here, proved in Hutzenthaler and Jentzen (2015), so that with
very small time step we obtain the reference solutions and then check the numerical
solutions obtained with Runge–Kutta method. Nevertheless, the Runge–Kutta method
performs significantly better and needs less computational effort to attain the same
accuracy since much larger time step can be used.

5.3.1 Linear Scalar SDE

We consider the SDE
dX = μXdt + σdWt , (91)

with μ < 0 and σ > 0, that generates the one-dimensional Ornstein–Uhlenbeck
process (Pavliotis 2014). It is known that in the deterministic case, i.e., for σ = 0, the
Koopman eigenvalues are equal to

λn = nμ, n = 0, 1, 2, . . .

and the related Koopman eigenfunctions are

φn(x) = xn .

In the stochastic case, the spectral properties of the stochastic Koopman generator
associated with the given equation were studied, for example in Gaspard et al. (1995),
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Pavliotis (2014) (under the name backward Kolmogorov equation or Fokker–Planck
equation). Its eigenvalues are the same as in deterministic case, while the eigenfunc-
tions are (see Gaspard et al. 1995; Pavliotis 2014)

φn(x) = anHn(αx), α =
√

|μ|
σ

, n = 0, 1, 2, . . . .

Here Hn denotes Hermite polynomials and an are normalizing parameters.
It is known that the accuracy of the eigenvalues and eigenfunctions obtained by

DMD algorithms is closely related to the choice of observable functions. In the deter-
ministic case, when we take monomials f j (x) = x j , j = 1, . . . , n as observable
functions, satisfactory results for the first n eigenvalues were obtained for moderate
values of n, for example n = 10, while for larger values of n significant numerical
errors arise and only few eigenvalues were captured correctly. That is a consequence
of highly ill-conditioned system when monomials of higher order xn are used, since
their evolution, given by enμt xn , tends quickly to zero. Therefore the columns of the
matrix Xm become highly linearly dependent. In the case with n = 10 and m = 2000
snapshots, the ten leading eigenvalues are determined with the accuracy greater than
0.01 (see Fig. 5b). It is worth mentioning that the standard DMD algorithm, which
does not include scaling of data, was more sensitive and when it was applied on the
same series of snapshots, at most three eigenvalues with the accuracy greater than 0.01
were computed.

In the stochastic case, the DMD RRR algorithm was applied on the same set of
observable functions as in the deterministic case. We use both approaches described
in the Sect. 4.1 for defining input matricesXm andYm . In the first approach, for chosen
m = 100 initial points from the interval [− 1, 1] and n-dimensional observable vector,
we defineXm ,Ym ∈ R

n×m by (68), whereYm is determined for k = 100 and by using
N = 1000 trajectories for each initial condition. In the second approach, for one chosen
initial point, we generate N = 1000 trajectories to determine the approximations of
the expected values of the observable functions, which are then used in (69) to form
input matrices Xm and Ym for m = 2000. The eigenvalues computed by using the
first approach lead to very accurately computed eigenvalues of the Koopman operator
(see Fig. 5d) with the accuracy similar as in deterministic case. The accuracy depends
on the number of computations N , as well as on the number and on the distribution
of the initial points. In the second approach, the number of eigenvalues captured with
satisfactory accuracy decreases and in the presented case only four of themare captured
with the accuracy greater than 10−2 (see Fig. 5e). The eigenfunctions associated with
this four eigenvalues are captured with satisfactory accuracy (Fig. 5f). The reason
for the lower accuracy could be a consequence of the errors that are introduced into
the matrices Xm and Ym when the expected values of the observable functions are
approximated by averaging its values along the trajectories. When multiple initial
conditions are used such type of error is introduced only in the matrix Ym and not in
the matrix Xm . The accuracy of the algorithm could be increased by increasing the
number of computed trajectories since then, due to the law of large numbers, the more
accurate approximations of expected values of the observables should be obtained.
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5.3.2 Nonlinear Scalar SDE

One of the simplest nonlinear stochastic dynamical systems is the SDE of the form

dX = (μX − X3)dt + σdWt . (92)

Its solutions are of different nature for μ > 0, μ = 0 and μ < 0 (Gaspard et al. 1995)
and therefore the related deterministic equation (for σ = 0) usually appears in the
literature when studying the bifurcation phenomena. We consider here the equation
for fixed parameter μ < 0. The eigenvalues and the eigenfunctions of the Liouville
operator associated with this equation and its adjoint were derived in Gaspard et al.
(1995). Since (for σ = 0) the adjoint of the Liouville operator is actually the Koopman
operator of the deterministic equation, we have from (Gaspard et al. 1995) that the
eigenvalues are equal to

λn = nμ, n = 0, 1, 2, . . . ,

while the associated eigenfunctions are

φn(x) =
(

x
√
x2 + |μ|

)n

.

In the stochastic case, when σ > 0, the eigenvalues and the eigenfunctions of the
generator of the stochastic Koopman operator family can be evaluated by solving
the associated backward Kolmogorov equation, which can be transformed to the
Schrödinger equation (see Gaspard et al. 1995). We determine the approximations
of eigenvalues numerically by solving Schrödinger equation using finite difference
method. For small values of σ the eigenvalues are very similar to the deterministic
case.

As in the linear scalar case, we first apply the DMD RRR algorithm to compute
the eigenvalues and the eigenfunctions of the Koopman operator in the deterministic
case. The specific set of observables used in the computation is of importance for
the accuracy of the results. When we use the analytically known eigenfunctions or
their linear combinations as the observable functions, the subspace spanned by these
functions is closed under the action of the Koopman operator, so that its restriction
on that subspace can be exactly described by a finite-dimensional matrix, which is the
key matrix used for obtaining outputs of DMD RRR algorithm. As a consequence,
the eigenvalues and the eigenfunctions are computed with high accuracy (see Fig. 6).
On the other hand, when the set of observables was composed of monomials, the
results were less accurate and only a few leading eigenvalues and eigenfunctions were
computed with satisfactory accuracy.

In the stochastic case, similarly as in the previous linear example, we use both DMD
RRR approaches and the same set of observable functions as in deterministic case. The
results obtained by using m = 100 initial conditions, and the expected value of the
observable functions determined over N = 1000 trajectories and after k = 100 time
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steps give the same number of accurately computed eigenvalues as in deterministic
case (see Fig. 6d). On the other hand, when the second approach associated with
one initial point is used, only first three eigenvalues are computed with satisfactory
accuracy despite the fact that the same number of computed trajectories N = 1000
and a large number of columns m = 2000 was used. The reason for lower accuracy
could be in the error introduced into the matrices Xm and Ym as was described in the
linear scalar case.

5.3.3 Stuart–Landau Equations

The Stuart–Landau equations describe the behavior of a nonlinear oscillating system
near the Hopf bifurcation. In polar coordinates (r , θ), the system reads

dr = (δr − r3)dt

dθ = (γ − βr2)dt, (93)

where β, γ, and δ are parameters of the system. The behavior of the system depends
on these parameters. The parameter δ associated with the Hopf bifurcation controls
the stability of the fixed point x∗ (δ < 0) and of the limit cycleΓ (δ > 0). We consider
here the system with the limit cycle, i.e., for δ > 0. According to Tantet et al. (2017),
the base frequency of the limit cycle Γ : r = √

δ is equal to ω0 = γ − βδ and
the eigenvalues of the system are λln = −2lδ + inω0, l ∈ N, n ∈ Z. The stochastic
Stuart–Landau equations are defined by

dr =
(

δr − r3 + ε2

r

)
dt + ε dWr

dθ = (γ − βr2)dt + ε

r
dWθ , (94)

where Wr and Wθ satisfy SDE system

dWr = cos θdWx + sin θdWy

dWθ = − sin θdWx + cos θdWy,

and dWx and dWy are independentWiener processes.Adetailed analysis of that system
is provided in Tantet et al. (2017). For small noise, controlled by the parameter ε, the
approximation of Koopman eigenvalues are derived in Tantet et al. (2017), so that for
the system with a stable limit cycle Γ (δ > 0), the eigenvalues are given by

λln =
{

− n2ε2(1+β2)
2δ + inω0 + O(ε4), l = 0

−2lδ + inω0 + O(ε2), l > 0
. (95)

In order to determine the Koopman eigenvalues, we apply the sHankel–DMD
algorithm to the scalar observable function of the form f (r , θ) = ∑K

k=1 e
±ikθ ,
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Fig. 7 Stuart–Landau system with parameters δ = 0.5, β = 1, γ = 1. Deterministic case—Eq. (93): a
solution; bKoopman eigenvalues. Stochastic case—Eq. (94): c solution; d stochastic Koopman eigenvalues.
The threshold for the residuals is set to 0.001

k = 1, . . . , K in the deterministic case, and to the function

f (r , θ) =
K∑

k=1

e±ik(θ−β log(r/δ)), k = 1, . . . , K

in the stochastic case to calculate the eigenvalues λ0,n, n = 1, . . . , K . The results for
both cases, deterministic and stochastic, are presented in Fig. 7. For moderate values
of n, quite good approximations of eigenvalues λ0,n are obtained. We mention that
to obtain the base rotating frequency and corresponding multiples, the time span of
values or expected values of the observable functions used in the DMDRRR algorithm
must include the basic period.

5.3.4 Noisy Van der Pol Oscillator

We analyze the two-dimensional test example in which the deterministic part is the
system of two equations modeling standard Van der Pol oscillator. The stochastic part
is modeled by the one-dimensional Wiener process so that the following system is
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considered

dX1 = X2dt

dX2 =
(
μ(1 − X2

1)X2 − X1

)
dt + √

2εdWt . (96)

It was proved in Arnold (1998) that the solution of the considered SDE system exists.
Furthermore, it was proved in Hutzenthaler and Jentzen (2015) that the numerical
solutions computed with the Euler–Maruyama method converge to the exact solution
of the considered SDE,which is also true for theRunge–Kuttamethod for SDE (Rößler
2010) used here.

As in the previous examples, we consider first the deterministic system. It is well
known that the dynamics converge to an asymptotic limit cycle whose basin of attrac-
tion is the wholeR2. According to Strogatz (1994), for the base frequency of the limit
cycle the expression ω0 = 1 − 1

16μ
2 + O(μ3) is valid, thus for the parameter value

μ = 0.3 the basic frequency of the limit cycle is ω0 ≈ 0.995. For the chosen initial
state, the base frequency computed by applying the Hankel–DMD RRR algorithm

using the scalar observable function f (X1, X2) = X1 + X2 +
√
X2
1 + X2

2, is equal
to 0.9944151. In Fig. 8 we present the eigenvalues computed with the standard DMD
algorithm and the eigenvalues obtained by using DMD RRR algorithm for which the
residuals of eigenvectors determined using (72) are smaller than the chosen threshold
η0 = 10−3. The number of eigenvalues and eigenvectors obtained by using both DMD
algorithms is 250 for the chosen Hankel matrix with n = 250 columns and a larger
number of rows, but for only fewof them the residuals of the eigenvectors do not exceed
the chosen threshold. The eigenvalues obtained using DMD RRR algorithm form a
lattice structure containing the eigenvalues of the form {kω0,−μ + kω0 : k ∈ Z},
which is consistent with the theoretical results given in Mezić (2017b). As evident
from Fig. 8, the standard DMD algorithm without residue evaluation computes many
spurious eigenvalues. In Fig. 9 we present the solution and the eigenvalues for which
the residuals of eigenvectors do not exceed the chosen threshold in DMD RRR. The
time evolution of the real part of the first three eigenfunctions of theVan der Pol system
presented in the same figure coincide with the results presented in Arbabi and Mezić
(2017).

The same approach as in the deterministic case is applied on the solution obtained
from the stochastic system (96). FromFig. 9we can conclude that some sort of stochas-
tic asymptotic limit cycle appears, i.e., for large t the solution is “smeared out” around
the deterministic limit cycle. Such statistical equilibrium can be determined by solving
the associated Fokker–Planck equation. In Fantuzzi et al. (2016) the energy bounds
of the noisy van der Pol oscillator were determined. For small and moderate noise,
the base frequency of the averaged limit cycle remains similar to the deterministic
case (Leung 1995). Here we take the noise parameter ε = 0.005. The sHankel–DMD
algorithm is applied to the same observable function as in the deterministic case and by
using the same matrix dimension. The eigenvalues and eigenfunctions of the related
stochastic Koopman operator are not known analytically. They can be approximated
by the numerical discretization of the associated generator, however their evaluation
is out of the scope of this paper. Again, as in the deterministic case, only the eigen-

123



2050 Journal of Nonlinear Science (2020) 30:2007–2056

Fig. 8 Van der Pol oscillator (96). Deterministic case: a eigenvalues obtained by using standard DMD
algorithm; b eigenvalues obtained by using DMD RRR algorithm with the threshold for the residuals equal
to 0.001

values for which the residuals of the corresponding eigenvectors do not exceed the
threshold η0 = 10−3 are selected and presented in Fig. 9. By comparing the results
shown in Fig. 9, we conclude that the numerically determined time evolution of eigen-
functions in the stochastic case is very similar to the evolution of eigenfunctions in
the deterministic case.

5.3.5 Noisy Lotka–Volterra (Predator–Prey) System

Here we consider the Lotka–Volterra systemwith competition, describing the predator
prey system with two species. Such type of a model is typically used by biologists and
ecologists for modeling the population dynamics. The corresponding noisy system is
given by:

dX1 = (a1 − b1X2 − c1X1) X1dt + σ1X1dW
1
t

dX2 = (−a2 + b2X1 − c2X2) X2dt + σ2X2dW
2
t . (97)

Themodel parameters a1, b1, c1, a2, b2, c2 > 0 depend on the particular species under
consideration. The intensity of the noise is modeled by nonnegative parameters σ1 and
σ2.

We first consider the properties of the deterministic system. The first quadrant
R
2+ = {(X1, X2)| X1 ≥ 0, X2 ≥ 0} is the domain of evolution of the system. There is

an equilibrium point on the x1-axis ( a1c1
, 0). If the nullclines a1 − b1X2 − c1X1 = 0

and −a2 + b2X1 + c2X2 = 0 do not intersect, the equilibrium point on the positive
x1 axis is unique. On the other hand, if these lines do intersect at the point (x∗

1 , x
∗
2 ),

it can be shown that this is an asymptotically stable equilibrium point whose basin of
attraction isR2+ with the exception of the axes. The considered system can be linearized
around the equilibrium point. As known from the Hartman–Grobman theorem, if all

123



Journal of Nonlinear Science (2020) 30:2007–2056 2051

Fi
g.

9
V
an

de
r
Po

l
os
ci
lla
to
r
(9
6)
.D

et
er
m
in
is
tic

ca
se
:
a
so
lu
tio

n;
b
K
oo
pm

an
ei
ge
nv
al
ue
s;
c
th
e
tim

e
ev
ol
ut
io
n
of

re
al

pa
rt
of

K
oo

pm
an

ei
ge
nf
un

ct
io
ns

al
on

g
tr
aj
ec
to
ri
es
.

St
oc
ha
st
ic

ca
se

ε
=

0.
00

5:
d
so
lu
tio

n;
e
st
oc
ha
st
ic

K
oo
pm

an
ei
ge
nv
al
ue
s;
f
th
e
tim

e
ev
ol
ut
io
n
of

re
al

pa
rt
of

st
oc
ha
st
ic

K
oo

pm
an

ei
ge
nf
un

ct
io
ns

al
on

g
tr
aj
ec
to
ri
es
.
T
he

th
re
sh
ol
d
fo
r
th
e
re
si
du
al
s
is
se
tt
o
0.
00

1

123



2052 Journal of Nonlinear Science (2020) 30:2007–2056

the eigenvalues of the Jacobianmatrix at the fixed point have negative (or positive) real
part, then there exist a C1-diffeomorphism h defining the conjugacy map that locally
transform the system to the linear one. Even more, as proved in Lan andMezić (2013),
if all the eigenvalues have negative real part (i.e., if the fixed point is exponentially
stable), the C1-diffeomorphism h is defined on the whole basin of attraction and the
system is conjugate to the linear one globally on the basin of attraction. This implies
that the eigenvalues of the Koopman operator are the same as the eigenvalues of the
Koopman operator associated with the linear system.

We select a1 = 1.0, b1 = 0.5, c1 = 0.01, a2 = 0.75, b2 = 0.25, c2 = 0.01.
The off-axes equilibrium point is equal to (x∗

1 , x
∗
2 ) = (3.07754, 1.93845). Since the

eigenvalues of the Jacobian matrix at this point are equal to λ1,2 = − 0.02500799 ±
0.863524 i , we conclude that this is an exponentially stable fixed point and that the
system is conjugate to the linear one on its basin of attraction.

To numerically evaluate the eigenvalues and eigenfunctions of the Koopman oper-
ator we use, as in the Van der Pol oscillator example, the Hankel–DMD RRR
algorithm, where the Hankel matrix is defined for the scalar observable function
f (X1, X2) = X1 + X2. We use the matrix with n = 250 rows and m = 100 columns.
By taking into account only the eigenvalues related to the eigenvectors with the resid-
uals smaller than η0 = 10−3, several leading eigenvalues of the Koopman operator are
capturedwith high accuracy (see Fig. 10). The principal eigenvaluesλ1,2 are calculated
with the accuracy greater than 10−6.

The solution and the asymptotic properties of noisy Lotka Volterra equation (97)
are considered in Arató (2003). In the stochastic case, for small enough parameters σ1
and σ2, one can determine the coordinates of the fixed point (x̄∗

1 , x̄
∗
2 ) as the solution of

equations: a1 − σ 2
1
2 − b1X2 − c1X1 = 0 and a2 − σ 2

2
2 − b1X2 − c1X1 = 0. According

to Arató (2003), one can expect heuristically that ξ1 = X1 − x̄∗
1 and ξ2 = X2 − x̄∗

2 are
components of theOrnstein–Uhlenbeck process in two dimensions, which is a solution
of the corresponding linear SDEobtainedby the linearization around thepoint (x̄∗

1 , x̄∗
2 ).

For small enough σ1 and σ2, the fixed point (x̄∗
1 , x̄

∗
2 ) remains asymptotically stable.

In the stochastic example that we consider here with the same parameters as in the
deterministic case and for the variance parameters σ1 = σ2 = 0.05, the fixed point
is equal to (x̄∗

1 , x̄
∗
2 ) = (3.08243, 1.93585). After linearizing (97) around this point,

we get that the eigenvalues of the corresponding Jacobian matrix are equal to λS
1,2 =

− 0.02509 ± 0.86363i . These eigenvalues coincide with the principal eigenvalues of
the stochastic Koopman generator associated with the linear system.

Like in the deterministic case, we use the sHankel–DMD algorithm, applied to the
same observable function as before. The expectations are determined as the average
values over N = 1000 trajectories (see Fig. 10). The principal eigenvalues of the
Koopman operator in the considered stochastic case are evaluated by using the larger
Hankel matrix than in deterministic case, with n = 750 and m = 250. Using the
residual threshold η0 = 10−3, we chose only the eigenvalues related to the eigenvec-
tors having small enough residual. The remaining set of eigenvalues is presented in
Fig. 10d. One can see that the principal eigenvalues are determined quite accurately,
however, the higher order ones are missing.
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Fig. 10 Lotka–Volterra system (97). Deterministic case: a solution; b Koopman eigenvalues. Stochastic
case: c solution; d stochastic Koopman eigenvalues—the exact eigenvalues refer to the determined eigen-
values λS1,2 that we heuristically expect to be valid in the stochastic case. The threshold for the residuals is
set to 0.001

6 Conclusions

In this work, we consider the generators and spectral objects of stochastic Koopman
operators associated with random dynamical systems. We explore linear RDS, with-
out invoking Markovian property, and (generally nonlinear) RDS with the Markov
property that implies the associated stochastic Koopman family is a semigroup.

To numerically compute the eigenvalues and the eigenfunctions of the stochastic
Koopman operator family, we propose approaches that enable use of DMD algo-
rithms in the stochastic framework for both Markovian and non-Markovian cases. We
define the stochastic Hankel DMD algorithm and prove that under the assumption of
ergodicity of RDS and the existence of finite-dimensional invariant Krylov subspace,
it converges to the true eigenvalues and eigenfunctions of the stochastic Koopman
operator.

The results presented for a variety of numerical examples show stability of the
proposed numerical algorithms that reveal the spectral objects of the stochastic Koop-
man operators. Specifically, we use the DMD RRR algorithm (Drmač et al. 2018) that
enables precise determination of spectral objects via control of the residuals.
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There are many interesting questions remaining in the study of stochastic Koopman
operators. Some of the most intriguing ones relate to relationship of the geometry of
the level sets of stochastic Koopman operator eigenfunctions to the dynamics of the
underlying RDS, initiated in Mezić and Banaszuk (2004) for the case of asymptotic
dynamics, and eigenvalues on the unit circle. We are currently pursuing such work for
the more general class of eigenvalues off the unit circle and their associated eigenfunc-
tions. Furthermore, the application of the proposed algorithms on somemore complex
dynamical systems in the stochastic framework could be very interesting, thus we plan
such investigations in our future work.
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Arbabi, H., Mezić, I.: Ergodic theory, dynamic mode decomposition and computation of spectral properties
of the Koopman operator. SIAM J. Appl. Dyn. Syst. 16(4), 2096–2126 (2017)

Arnold, L.: Stochastic Differential Equations. Wiley, New York (1974)
Arnold, L.: Random Dynamical Systems. Springer, New York (1998)
Arnold, L., Crauel, H.: Random dynamical systems. Lypunov exponents. In: Proceedings Oberwolfach

1990. Springer Lecture notes in Mathematics, vol. 1486, pp. 1–22 (1991)
Bagheri, S.: Koopman-mode decomposition of the cylinder wake. J. Fluid Mech. 726, 596–623 (2013)
Budišić, M., Mohr, R., Mezić, I.: Applied Koopmanism. Chaos 22(4), 596–623 (2012)
Cohen, S.N., Elliott, R.J.: Stochastic Calculus and Applications, 2nd edn. Birkhäuser, New York (2015)
Crauel, H.: Markov measures for random dynamical systems. Stoch. Stoch. Rep. 37(3), 153–173 (1991)
Da Prato, G.J.Z.: Stochastic Equations in Infinite Dimensions, 2nd edn. Cambridge University Press, Cam-

bridge (2014)
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Maćešić, S., Črnjarić Žic, N., Mezić, I.: Koopman operator family spectrum for nonautonomous systems.

SIAM J. Appl. Dyn. Syst. 17(4), 2478–2515 (2018)
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