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Abstract
We give a geometric account of kinematic control of a spherical rolling robot con-
trolled by two internal wheels just like the toy robot Sphero. Particularly, we introduce
the notion of shape space and fibers to the system by exploiting its symmetry and the
principal bundle structure of its configuration space; the shape space encodes the rota-
tional angles of the wheels, whereas each fiber encodes the translational and rotational
configurations of the robot for a particular shape. We show that the system is fiber
controllable—meaning any translational and rotational configuration modulo shapes
is reachable—as well as find exact expressions of the geometric phase or holonomy
under some particular controls. We also solve an optimal control problem of the spher-
ical robot, show that it is completely integrable, and find an explicit solution of the
problem.

Keywords Spherical rolling robot · Geometric control · Controllability · Holonomy ·
Optimal control · Integrable systems

Mathematics Subject Classification 37J35 · 49J15 · 70E60 · 70Q05 · 93B05 · 93B27 ·
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1 Introduction

1.1 Spherical Rolling Robot

A spherical rolling robot is a simple robot that has been studied extensively in many
different forms from both theoretical and experimental points of view; see e.g., Bhat-
tacharya and Agrawal (2000) for several different types of realizations. One of the
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Fig. 1 Spherical rolling robot
Sphero®; see http://www.
sphero.com

realizations is the Sphericle developed by Bicchi et al. (1997); it is a spherical rolling
robot controlled by two internal wheels inside the spherical shell of the robot. The
Sphero® (see Fig. 1) is a commercial realization of the Sphericle; it is controlled by
two internal wheels (white wheels near the bottom) actuated by motors in the elec-
tromechanical unit inside the sphere (the blue wheels above are idler wheels to sustain
the unit).

Despite its relative simplicity in design and configurations, a spherical rolling robot
like the Sphero has fairly complex motions due to its nonholonomic nature of the
constraints. In fact, the Sphero comes with an interface that enables one to control it by
using a cellphone app as well as both visual and traditional programming languages
and hence is an effective STEM education toy that teaches students basic ideas in
computer programming, mechanics, and control theory.

1.2 Main Results and Outline

We study the kinematics of the spherical rolling robot like the Sphericle or Sphero from
the geometric point of view. Particularly, we exploit the symmetry of the kinematic
model of the robot and the notion of shape space (see e.g.,Montgomery1991, 1993a, b;
Kelly and Murray 1995) and analyze its controllability as well as its optimal control
problem.

We first formulate the kinematic equation describing the nonholonomic constraints
of the system in Sect. 2. The resulting model is effectively the same as that of the
Sphericle in Bicchi et al. (1997).

The main difference from their approach is that we stress the role of symmetry
and formulate the system on a principal bundle; see Sect. 3. In other words, we split
the configuration space into the shape space (configurations of the wheels or the
internal system) and the fiber (the symmetry group or the translational and rotational
configurations of the sphere). The system has a fully actuated subsystem in the shape
space, but the rest of the system in the direction of the fiber is not directly actuated and
is defined by the constraint of the system. However, one is mainly concerned with the
behavior of the system in the fiber. This is the basic geometric setting for the Falling
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Cat Problem (Montgomery 1993a) as well as robotic locomotion (Kelly and Murray
1995).

This leads to the question of fiber controllability (Kelly and Murray 1995) of the
robot in Sect. 4, i.e., whether the system is controllable in the fiber regardless of its
shape. We show that the system is fiber controllable by finding the curvature of its
principal connection (Theorem 4.1).

We also demonstrate a couple of instances of holonomy or geometric phase in
Sect. 5. A holonomy or geometric phase is the displacement in the fiber when the
control system makes a loop in the shape space, i.e., when the shape of the system
undergoes a change and eventually comes back to the original one. We find exact
expressions for translational and rotational holonomies under certain control laws that
may be useful for motion planning.

Finally, in Sect. 6, we formulate an optimal control problem of the robot and show
that the system resulting from the Pontryagin Maximum Principle is completely inte-
grable, as well as obtain an explicit solution to the problem (Theorem 6.1).

2 Robot Kinematics

2.1 Simple Kinematic Model of Sphero

We model the rolling robot under the following simplifying assumptions:

(i) The model is kinematic. (See e.g., Bicchi et al. 1997; Schneider 2002; Shen et al.
2008; Putkaradze and Rogers 2017; Ilin et al. 2017 for dynamical studies of
rolling robots.)

(ii) The electromechanical unit inside the robot always maintains its horizontal posi-
tion.

(iii) There is no slip between the sphere and the ground in the sense that the contact
points of both surfaces have the same velocity.

(iv) There is no slip between the sphere and the internal wheels in the same sense.

It results in an essentially the same model as the Sphericle developed by Bicchi et al.
(1997).

Regarding the second assumption, the electromechanical unit has a ballast weight
at the bottom and is much heavier than the spherical shell. When the robot is in fast
motion, the unit tilts andwobbles inside the sphere due to inertia. However,when it is in
slowmotion, the unit stays at the bottommoreor lessmaintaining its horizontal position
at the bottom of the sphere due to its heavy weight relative to the spherical shell. So we
would like to model the kinematics of the robot assuming that the electromechanical
unit can only rotate about the vertical axis. In other words, we think of the robot as a
spherical robot maneuvered by a two-wheeled unit rotating inside the spherical shell
maintaining its horizontal position.

Regarding the third and fourth assumptions, these condition impose nonholonomic
(rolling) constraints on the robot that define the kinematic system to consider; see
Sect. 2.3. Note that the third condition does not prevent the sphere from rotating about
the vertical axis; see Sect. 2.4 below.
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2.2 Kinematics of Rolling Sphere

Let us first consider the kinematics of the sphere itself. Consider themotion of a sphere
with radius r rolling on the plane x3 = 0 in the spatial frame R

3 = {(x1, x2, x3)}.
Following Jurdjevic (1993) (see also Jurdjevic 1997, Section 4.1), we describe the
kinematics of the sphere as follows: let S := {

q̄ ∈ R
3 | ‖q̄‖ = r

}
be the sphere in the

body frame of the sphere. The configuration of the rolling sphere is specified by the
position of the center xc = (x, r) ∈ R

3 in the spatial frame with x = (x1, x2) ∈ R
2

as well as the rotation matrix R ∈ SO(3) that specifies the orientation of the sphere in
the spatial frame. Hence the configuration space of the rolling sphere is SO(3)×R

2 =
{(R, x)}.

Let q̄ ∈ S be an arbitrary point on the sphere in the body frame; see the sphere on
the left in Fig. 2. For any given configuration (R, x) ∈ SO(3) × R

2 of the sphere, the
position of the point of the sphere in the spatial frame would be

q := xc + Rq̄

as shown on the right in Fig. 2. We may write the velocity of the point q (in the spatial
frame) in terms of (Ṙ, ẋ) ∈ T(R,x)(SO(3) × R

2) as

q̇ =
[
ẋ
0

]
+ Ṙq̄ =

[
ẋ
0

]
+ ω̂Rq̄ =: f (R, ω̂, ẋ; q̄), (1)

where ω̂ is the angular velocity in the spatial frame, i.e.,

ω̂ =
⎡

⎣
0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎤

⎦ := ṘRT ∈ so(3).

Fig. 2 Rolling sphere in the body and spatial frames
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This is an example of the so-called hat map ˆ( · ) : R
3 → so(3) (see e.g., Marsden and

Ratiu 1999, Eq. (9.2.7) on p. 289) defined by

a =
⎡

⎣
a1
a2
a3

⎤

⎦ �→ â =
⎡

⎣
0 − a3 a2
a3 0 − a1

− a2 a1 0

⎤

⎦ . (2)

2.3 No-Slip Constraints

The no-slip condition of the contact point of the sphere with the plane imposes a
nonholonomic constraint as follows: for any given configuration (R, x) ∈ SO(3)×R

2

of the sphere, the contact point q̄c(R) in the body frame satisfies Rq̄c(R) = −re3,
i.e., q̄c(R) = −r RT e3. Hence, in view of (1), the velocity of the contact point in the
spatial frame is:

f
(
R, ω̂, ẋ; q̄c(R)

) = f
(
R, ω̂, ẋ;−r RT e3

)
=
[
ẋ
0

]
− r ω̂e3.

The no-slip condition says this vanishes, i.e.,

ẋ =
[
ẋ1
ẋ2

]
= r

[
ω2

−ω1

]
. (3)

Let us now consider the kinematics of the robot, particularly the interaction between
the sphere and the internal wheels. Let ψ ∈ S

1 be the angle of rotation of the two-
wheeled unit measured from the positive part of the x1-axis (of the spatial frame); see
the left of Fig. 3. Let y(i)

w ∈ R
3 with i = 1, 2 be the position—relative to the center

of the sphere in the body frame—of the contact point of wheel i to the sphere in the
body frame as shown on the right in Fig. 3; the wheels are numbered as shown in the
figure. Let 2w be the track width, h be the distance between the center of the sphere
and the horizontal plane defined by the contact points of the wheels. Then it is easy
to see that

Wheel 1

Wheel 1

Wheel 2

Wheel 2

Fig. 3 Configuration of robot
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Side view from right Side view from left

Wheel 1 Wheel 2

Fig. 4 Side views of wheels

y(1)
w (ψ) :=

⎡

⎣
w cosψ

w sinψ

− h

⎤

⎦ , y(2)
w (ψ) :=

⎡

⎣
−w cosψ

−w sinψ

− h

⎤

⎦ .

In addition to the no-slip condition of the sphere itself described above, the above
model of the rolling robot imposes additional no-slip constraints at the contact points
of the wheels to the sphere. The constraints are simply that the velocity of the contact
point of each wheel must match that of the sphere.

Let us first find the velocities of the contact points of the wheels. Let ρ be the radius
of the wheels. Then the positions of the contact points of the wheels in the spatial
frame are

q(i)
w := xc + y(i)

w (ψ) for i = 1, 2.

Then the velocity (in the spatial frame) of each wheel is the composition of the transla-
tional and rotational velocities of the electromechanical unit and the rotational velocity
of the wheel itself; see Fig. 4. Hence the velocities of the contact points of the wheels
in the spatial frame are given by

q̇(1)
w := ẋc + (wψ̇ − ρϕ̇1)eψ, q̇(2)

w := ẋc − (wψ̇ + ρϕ̇2)eψ,

where eψ := (− sinψ, cosψ, 0)T and is shown on the left in Fig. 3.
On the other hand, the positions of the contact points of the sphere in the body

frame are

q̄(i)
s (R, ψ) := RT y(i)

w (ψ) for i = 1, 2,

and so the velocities of these contact points in the spatial frame are, using (1),

q̇(i)
s := f

(
R, ω̂, ẋ; q̄(i)

s (R, ψ)
)

=
[
ẋ
0

]
+ ω̂y(i)

w (ψ).

The constraints q̇(i)
s = q̇(i)

w with i = 1, 2 then yield

ω̂y(1)
w (ψ) = (wψ̇ − ρϕ̇1)eψ, ω̂y(2)

w (ψ) = −(wψ̇ + ρϕ̇2)eψ.
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However, noting that the hat map (2) satisfies, for any a,b ∈ R
3,

âb = a × b = −b × a = −b̂a,

we have

− ̂y(1)
w (ψ)ω = (wψ̇ − ρϕ̇1)eψ, − ̂y(2)

w (ψ)ω = −(wψ̇ + ρϕ̇2)eψ,

or

Yω = b with Y := −
⎡

⎣
̂y(1)
w (ψ)

̂y(2)
w (ψ)

⎤

⎦ ∈ R
6×3, b :=

[
(wψ̇ − ρϕ̇1)eψ

− (wψ̇ + ρϕ̇2)eψ

]
.

Solving this linear system, we obtain ω = (Y T Y )−1Y Tb or

[
ω1
ω2

]
= − ρ

2h
(ϕ̇1 + ϕ̇2)

[
cosψ

sinψ

]
, (4)

ω3 = ψ̇ − ρ

2w
(ϕ̇1 − ϕ̇2). (5)

2.4 Additional Constraint

We impose one more constraint: the total angular momentum of the robot about the
vertical axis passing though the center of the sphere is conserved. Recall that the no-
slip assumption (iii) from Sect. 2.1 does not prevent the sphere from rotating about
the vertical axis. Accordingly, we make an (ideal) assumption that there is no friction
for such rotations. Assuming no spinning initially, this amounts to setting the total
angular momentum to be zero. Let Is be the moment of inertia of the sphere about any
axis passing through the center (assuming that the mass distribution on the surface
of the sphere is homogeneous) and J be that of the electromechanical unit. Then the
constraint is given by

Isω3 + J ψ̇ = 0.

Solving the above constraint equation coupled with (5) for ω3 and ψ̇ , we have

ω3 = −cJ

Is
(ϕ̇1 − ϕ̇2), (6)

and

ψ̇ = c(ϕ̇1 − ϕ̇2), (7)
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where we defined

c := ρ Is
2w(Is + J )

.

Equation (7) is a holonomic constraint on the variables (ϕ1, ϕ2, ψ) that can be inte-
grated easily:

ψ = c(ϕ1 − ϕ2), (8)

where we set, without loss of generality, ψ(0) = ϕ1(0) = ϕ2(0) = 0. Hence we may
eliminate ψ from the formulation by using the holonomic constraint (8). Note that
setting ψ(0) = 0 means that the x1-axis is aligned with the axis of the wheels in the
initial configuration; see Fig. 3.

Remark 2.1 The above no-friction assumption for rotations of the sphere about the
vertical axis is reasonable if the surface on which the robot is rolling is very smooth.
One may need to adjust it slightly to take frictions into account depending on how
rough the surface is. If the surface is very rough, one may assume that the moment of
inertia of the sphere Is is much larger than that of the electromechanical unit and so
one may take the limit J/Is → 0 to have c = ρ/(2w) instead.

3 Geometry of Robot Kinematics

3.1 Kinematic Control System

Let us define the configuration space of the robot as

Q := S
1 × S

1 × SO(3) × R
2 = {(ϕ1, ϕ2, R, x)}.

Then the no-slip constraints (3) and (4) along with (6) define the following nonholo-
nomic constraints on Q:

Ṙ = ω̂R (9a)

with

ω =
⎡

⎣
ω1
ω2
ω3

⎤

⎦ =
⎡

⎣
− ρ

2h cos(c(ϕ1 − ϕ2))

− ρ
2h sin(c(ϕ1 − ϕ2))

− cJ/Is

⎤

⎦ ϕ̇1 +
⎡

⎣
− ρ

2h cos(c(ϕ1 − ϕ2))

− ρ
2h sin(c(ϕ1 − ϕ2))

cJ/Is

⎤

⎦ ϕ̇2,

ẋ =
[
ẋ1
ẋ2

]
= rρ

2h
(ϕ̇1 + ϕ̇2)

[− sin(c(ϕ1 − ϕ2))

cos(c(ϕ1 − ϕ2))

]
. (9b)

Assuming that one can control the angular velocity of the wheels, we may define a
kinematic control system for the robot by the nonholonomic constraints (9a) and (9b)
coupled with
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ϕ̇1 = u1, ϕ̇2 = u2. (9c)

As a result, (9) defines a kinematic control system.

3.2 Geometry of Kinematic Control System

The above nonholonomic constraints (9a) and (9b) define a distributionH on Q, i.e.,
at each point q = (ϕ1, ϕ2, R, x) of Q,

Hq := {
(ϕ̇1, ϕ̇2, Ṙ, ẋ) ∈ TqQ | (9a) and (9b)

}

defines a subspace of the tangent space TqQ. Practically speaking,Hq is the space of
admissible velocities of the robot at the configuration q ∈ Q.

Now, let G := SO(3) × R
2 = {(R, x)} and Φ : G × Q → Q be the natural (right)

action of G := SO(3) × R
2 on the G-component of Q, i.e.,

Φ(R0,x0)(ϕ1, ϕ2, R, x) := (ϕ1, ϕ2, RR0, x + x0). (10)

This gives rise to the principal bundle

π : Q → Q/G; (ϕ1, ϕ2, R, x) �→ (ϕ1, ϕ2),

where the base space

S := Q/G = S
1 × S

1 = {(ϕ1, ϕ2)}

is the so-called shape space, i.e., the space of all possible angles of rotation of the two
wheels. Note that Q is a trivial bundle, i.e., Q = S×G. In what follows, we will write

ϕ = (ϕ1, ϕ2) ∈ S, g = (R, x) ∈ G, q = (ϕ, g) = (ϕ1, ϕ2, R, x) ∈ Q

for short. Then we may write the above group action as Φg0(ϕ, g) = (ϕ, gg0) for any
g0 ∈ G.

One can easily show that the distributionH is invariant under the tangent lift ofΦ in
the sense that TqΦg(Hq) = HΦg(q) for any q ∈ Q and any g ∈ G; in fact, ω̂ := ṘR−1

is clearly invariant under the right action of SO(3), and the translational symmetry in
R
2 is trivial. Let Vq be the tangent space at q to the orbit O(q) := {

Φg(q) | g ∈ G
}

of the action Φ, i.e., Vq := TqO(q). Then it is easy to see that it is a complementary
subspace of Hq , i.e., TqQ = Hq ⊕ Vq . As a result, H defines a principal connection
on π : Q → Q/G; see e.g., Montgomery (1993a).

The control system is then defined by the fully actuated subsystem (9c) in the
shape space S coupled with the rest of the system (9b)—defined by the nonholonomic
constraints—in the direction of the fiber G = SO(3) × R

2. A more geometric way of
looking at it is the following: for any given q = (ϕ, g) ∈ Q, we define the horizontal
lift hlq : TϕS → Hq as hlq := (Tqπ |Hq )

−1 or more concretely,
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hlq(ϕ̇1, ϕ̇2) = (ϕ̇1, ϕ̇2, Ṙ, ẋ) with (9a)and(9b).

Then the kinematic control system is defined by the horizontal lift of the controlled
subsystem (9c):

q̇ = hlq(u1, u2).

This is an example of the nonholonomic (kinematic) control system considered by,
e.g., Montgomery (1993a) and Kelly and Murray (1995).

3.3 Principal Connection Form for Kinematic Control System

Another way of looking at the above principal connection that is more convenient for
our purpose is the following: we may define a principal connection formA : TQ → g
(g-valued one-formon Q), where g = so(3)×R

2 is the Lie algebra ofG = SO(3)×R
2,

as

Aq = Aso(3)
q ⊕ AR

2

q

so that (i) the distribution H ⊂ TQ can be written as Hq = kerAq ; (ii) it is
G-equivariant, i.e., for any g ∈ G and vq ∈ TqQ, we have Aq(TqΦg(vq)) =
Adg−1 Aq(vq); (iii) Aq(ξQ(q)) = ξ for any ξ ∈ g, where ξQ is the infinitesimal
generator defined by

ξQ(q) := d

dε
Φexp(εξ)(q)

∣∣∣∣
ε=0

. (11)

In coordinates, one may write such a connection one-form as (see e.g., Bloch 2015,
Proposition 2.9.12 on p. 120)

A(ϕ,g) = Adg−1

(
dg · g−1 + Ai (ϕ)dϕi

)
. (12)

More concretely, we may define Aso(3) : TQ → so(3) and AR
2 : TQ → R

2 as
follows:

Aso(3)
q := AdR−1

(
dR · R−1 + Aso(3)

i (ϕ)dϕi

)
, AR

2

q :=
[
dx1
dx2

]
+ AR

2

i (ϕ)dϕi ,

wherewe used the Einstein summation convention;dR ·R−1 is seen as an so(3)-valued
one-form, i.e., dR · R−1(Ṙ) = ṘR−1 ∈ so(3), and
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Aso(3)
1 (ϕ) :=

̂
⎡

⎣
ρ
2h cos(c(ϕ1 − ϕ2))
ρ
2h sin(c(ϕ1 − ϕ2))

cJ/Is

⎤

⎦, Aso(3)
2 (ϕ) :=

̂
⎡

⎣
ρ
2h cos(c(ϕ1 − ϕ2))
ρ
2h sin(c(ϕ1 − ϕ2))

− cJ/Is

⎤

⎦,

(13)

AR
2

i (ϕ) := rρ

2h

[
sin(c(ϕ1 − ϕ2))

− cos(c(ϕ1 − ϕ2))

]
for i = 1, 2, (14)

where we used the hat map (2).
As a result, we have q̇ ∈ Hq if and only if Aq(q̇) = 0, and the subsystem (9b) in

the direction of the fiber SO(3) × R
2 can be written as

ω̂ = ṘR−1 = −Aso(3)
i (ϕ)ϕ̇i , ẋ = −AR

2

i (ϕ)ϕ̇i . (15)

Note that the horizontal lift hlq : TϕS → Hq is then written as

hlq(ϕ̇1, ϕ̇2) =
(
ϕ̇1, ϕ̇2, (−Aso(3)

i (ϕ)ϕ̇i )R,−AR
2

i (ϕ)ϕ̇i

)
.

4 Fiber Controllability

One of the main questions regarding the kinematic control system (9) is its control-
lability. The controllability of the subsystem (9c) in the shape space S is fairly trivial
and is of not much practical importance. What is more important practically is the
fiber controllability (Kelly and Murray 1995), i.e., the controllability in the direction
of the fiber G = SO(3) × R

2. The fiber controllability here addresses the question of
whether it is possible to maneuver the robot to an arbitrary (center) position with an
arbitrary rotational orientation, regardless of the configurations of thewheels.As stated
in Proposition 4 in Kelly and Murray (1995) (see also Montgomery 1991, 1993a), the
Ambrose–Singer Theorem (Ambrose and Singer 1953) provides a criterion for fiber
controllability in terms of the principal connection A defined above as well as its
curvature.

4.1 Curvature of Principal Connection

The nonholonomic/nonintegrable nature of the horizontal distributionH is essential in
the kinematic control system (9), as the Lie brackets of vector fields inH then generate
directions of motion outside the distribution H. The lack of integrability is measured
by the curvature B of the principal connection A; it is the g-valued two-form on Q
defined as

B(X ,Y ) := dA(hor X , hor Y ) = −A([hor X , hor Y ]),

where X ,Y ∈ TqQ and hor X , hor Y ∈ Hq are their horizontal components, i.e.,

hor X := X − (A(X))Q(q),
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where ( · )Q stands for the infinitesimal generator defined in (11). A more convenient
formula for B is given by the Cartan structure equation (see e.g., Marsden et al. 2007,
Theorem 2.1.9):

B(X ,Y ) = dA(X ,Y ) + [A(X),A(Y )],

where we have the plus sign on the right-hand side because Φ, defined in (10), is a
right action. This formula gives the following coordinate expression for the curvature:

Bq = Adg−1(B(ϕ)dϕ1 ∧ dϕ2),

where the local expression B : S → g of the curvature is written in terms of the
local expression {Ai : S → g}i=1,2 of the connection one-form (12) as follows: Let
{ea}dimG

a=1 be a basis for g, and Ai (ϕ) = Aa
i (ϕ) ea for i = 1, 2. Then B(ϕ) = Ba(ϕ) ea

with

Ba = ∂Aa
2

∂ϕ1
− ∂Aa

1

∂ϕ2
+ Ca

bc A
b
1A

c
2,

and Ca
bc is the structure constant of g defined as

[eb, ec] = Ca
bcea .

More explicitly, we have

Bq = Bso(3)
q ⊕ BR

2

q ,

where

Bso(3)
q = AdR−1(Bso(3) dϕ1 ∧ dϕ2), BR

2

q = BR
2
dϕ1 ∧ dϕ2

are the curvatures of the principal connections Aso(3) and AR
2
. The expressions are

then given by

Bso(3) =
(

∂(Aso(3)
2 )a

∂ϕ1
− ∂(Aso(3)

1 )a

∂ϕ2
+ Ca

bc(A
so(3)
1 )b(Aso(3)

2 )c

)

êa

=
(

∂Aso(3)
2

∂ϕ1
− ∂Aso(3)

1

∂ϕ2
+ Aso(3)

1 × Aso(3)
2

)̂

= ρ2

2hw

̂
⎡

⎣
− sin(c(ϕ1 − ϕ2))

cos(c(ϕ1 − ϕ2))

0

⎤

⎦, (16)
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where {ea}3a=1 is the standard basis for R
3 and Aso(3)

i : S → R
3 is defined so that

̂Aso(3)
i = Aso(3)

i for i = 1, 2 under the hat map (2), whereas

BR
2 = ∂AR

2

2

∂ϕ1
− ∂AR

2

1

∂ϕ2
= c rρ

h

[
cos(c(ϕ1 − ϕ2))

sin(c(ϕ1 − ϕ2))

]
(17)

because R
2 is abelian.

4.2 Fiber Controllability

We are now ready to prove the fiber controllability of the robot:

Theorem 4.1 The kinematic control system (9) of the spherical rolling robot is fiber
controllable, i.e., given arbitrary two points g0, g1 ∈ G = SO(3) × R

2, there exists a
control u : [t0, t1] → R

2 such that the solution g(t) = (R(t), x(t)) of the system (9)
under the initial condition g(t0) = g0 satisfies g(t1) = g1.

Proof Let us define, for each ϕ ∈ S, the subspaces {hi (ϕ)}2i=1 of g as follows:

h1(ϕ) := span{A(ϕ)}, h2(ϕ) := span{B(ϕ)},

where A = Aso(3) ⊕ AR
2
and B = Bso(3) ⊕ BR

2
. Since G = SO(3) × R

2 is a direct
product, g = so(3)⊕R

2 is a direct sum. Hence we may treat so(3) and R
2 separately.

First, it is clear from (13) and (16) that

span{Aso(3)(ϕ)} + span{Bso(3)(ϕ)} = so(3),

and also from (14) and (17) that

span{AR
2
(ϕ)} + span{BR

2
(ϕ)} = R

2

for any ϕ ∈ S. This implies that h1(ϕ) ⊕ h2(ϕ) = g for any ϕ ∈ S. Hence by
Proposition 4 fromKelly andMurray (1995), the kinematic control system (9) is locally
fiber controllable near any (ϕ0, g0) ∈ Q, i.e., there exists an open neighborhood of
g0 ∈ G that can be reached in the fiber direction.

However, since G is connected, this implies that, for any g ∈ G, (ϕ0, g) can be
reached from (ϕ0, g0). In fact, the connectedness implies that, for any g0, g1 ∈ G, one
can find a path (not the trajectory of the system in general) g : [0, 1] → G such that
g(0) = g0 and g(1) = g1. Now the local fiber controllability implies that, for any
t ∈ [0, 1], g(t) ∈ G has an open neighborhoodUt ⊂ G that can be reached from g(t);
also g(t) can be reached from any point inUt by reversing the control because there is
no drift in the system (9). This defines an open cover {Ut }t∈[0,1] of the path g([0, 1]).
But then, since the path is compact, there exists a finite subcovering, and hence the
path is covered by finite open neighborhoods, each of which can be reached from a
certain point on the path; also the point on the path can be reached from any point in
the neighborhood. This proves the existence of a desired control u. 	
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5 Geometric Phase: Curvature and Locomotion

The fiber controllability proved above only concerned with existence of a desired con-
trol and does not provide us with a constructive way of finding a desired control. In this
section, we partially address this problem by finding explicit formulas for the changes
in the translational position and rotational orientation of the sphere—called holonomy
or geometric phase—under those control laws that result in certain types of loops in
the shape space S. These formulas apply to only some special types of control and
can generate only certain types of motions and does not give the control law for any
maneuver in the fiber. Nevertheless, these results illustrate how the geometric ingredi-
ents introduced above play a role in motion generation and have potential applications
in motion planning; see e.g., Kelly and Murray (1995) and Hatton and Choset (2011).

5.1 Translational Holonomy and Area Rule

It is straightforward to calculate the translational motion of the center of the sphere of
the robot by integrating the R

2 part of (9b). A particularly interesting case is where
the control (u1, u2) is applied so that ϕ = (ϕ1, ϕ2) makes a loop in the shape space
torus S = S

1 × S
1 or its covering space R × R (if a wheel makes more than one

revolution). In this case, the displacement of the center of the sphere is determined by
the weighted area enclosed by the loop determined in terms of the curvature (17)—an
example of the “area rule” (see e.g., Kelly and Murray 1995).

Let � : [0, T ] → S be a loop in the shape space S that encloses a domain D ⊂ S,
i.e., ∂D = �([0, T ]). Using Stokes’s Theorem, one can find the displacement of the
center of the sphere in terms of the curvature as follows:

x(T ) − x(0) = −
∫

∂D
AR

2

i (ϕ)dϕi

= −
∫

D
BR

2
(ϕ)dϕ1 ∧ dϕ2

= −
∫

D

[
cos(c(ϕ1 − ϕ2))

sin(c(ϕ1 − ϕ2))

]
dϕ1 ∧ dϕ2. (18)

Example 5.1 As a simple and typical example to see the above area rule, consider a
rectangular loop � in the shape space S = S

1 ×S
1 or its covering space R×R shown

in Fig. 5a. It is straightforward to evaluate the integral over the domain D:

x(T ) − x(0) = −
∫

D
BR

2
(ϕ)dϕ1 ∧ dϕ2

= rρ

c h

[
cos(cα) + cos(cβ) − cos (c(α − β)) − 1
sin(cα) − sin(cβ) − sin (c(α − β)) − 1

]
.

With the parameters as specified in the caption of Fig. 5, the above area rule gives
x(T )−x(0) � (− 0.37,− 0.01); this is the actual displacement of the center x in time
T as shown in Fig. 5b.
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1

2

Γ = ∂D
D

(a) Loop Γ in the shape space S = S
1 × S

1 or its
covering space R× R.

(b) Trajectory of the center of the sphere.

β

α ϕ

ϕ

Fig. 5 Example of translational holonomy by the area rule. In (b), the parameters are: r = 1, ρ = 0.3,
h = 0.75, w = 0.8, and J/Is = 5; the initial position is x(0) = 0; the angles are α = 7π and β = 6π ; the
terminal time is T = 2(α + β)

5.2 Rotational Holonomy

Howmuch does the sphere rotate as ϕ makes a loop in the shape space? Unfortunately,
calculation of geometric phases in rotations is not as simple and clear cut as the
translational case because of the non-abelian nature of SO(3). As we have seen in
(15), the time evolution of the rotational configuration R ∈ SO(3) is related to the
evolution of the angles ϕ of the wheels as follows:

Ṙ =
(
−Aso(3)

i (ϕ)ϕ̇i

)
R. (19)

Suppose that a curve ϕ : [0, T ] → S is given. Then, as is well known in basic theory
of linear differential equations, one may formally write down the solution of the above
system as an infinite series of integrals. However, since SO(3) is non-abelian, this series
does not simplify to a matrix exponential in general. Therefore there is no simple area
rule like the (abelian) translational case.

Here we restrict our attention to a particular type of control for which (19) is
explicitly solvable. Upon the change of variables to the new coordinates (φ1, φ2)

defined by

φ1 := ϕ1 + ϕ2, φ2 := ϕ1 − ϕ2, (20)
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the connection form Aso(3) becomes

Aso(3)
q := AdR−1

(
dR · R−1 + Ãso(3)

i (φ)dφi

)
,

where

Ãso(3)
1 (φ) := ρ

2h

̂
⎡

⎣
cos(c φ2)

sin(c φ2)

0

⎤

⎦, Ãso(3)
2 (φ) := cJ

Is

⎡̂

⎣
0
0
1

⎤

⎦,

Note that the first one is constant if φ2 is constant, while the second one is always
constant. This suggests us to make a loop in the shape space so that each edge is
parallel to either the φ1- or φ2-axis; a typical loop of this type is shown in Fig. 6a in
the ϕ1–ϕ2 plane. Particularly, if we require that the angular velocities are piecewise
constant, the loop is given by

ϕ1(t) =
{
t/2 0 ≤ t < α + β,

α + β − t/2 α + β ≤ t ≤ 2(α + β),

ϕ2(t) =

⎧
⎪⎨

⎪⎩

t/2 0 ≤ t < α,

α − t/2 α ≤ t < 2α + β,

t/2 − (α + β) 2α + β ≤ t ≤ 2(α + β),

under the piecewise constant control

u(t) = (u1(t), u2(t)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1/2, 1/2) 0 ≤ t < α,

(1/2,− 1/2) α ≤ t < α + β,

(− 1/2,− 1/2) α + β ≤ t < 2α + β,

(− 1/2, 1/2) 2α + β ≤ t ≤ 2(α + β).

(21)

Then we can compute the rotational holonomy explicitly because (19) is exactly
solvable along each edge of the rectangular loop:

R(α) = exp

⎛

⎜
⎝−α

ρ

2h

⎡̂

⎣
1
0
0

⎤

⎦

⎞

⎟
⎠R(0),

R(α + β) = exp

⎛

⎜
⎝−β

cJ

Is

⎡̂

⎣
0
0
1

⎤

⎦

⎞

⎟
⎠R(α),

R(2α + β) = exp

⎛

⎜
⎝α

ρ

2h

̂
⎡

⎣
cos(cβ)

sin(cβ)

0

⎤

⎦

⎞

⎟
⎠R(α + β),
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(a) Loop in the shape space for rotational holonomy. (b) Trajectory of a point on the sphere.

1

2
2 , 2

)

(
+
2 , −

2

)

(
2 , 2

)

Γ

D

α α

α αβ

β β

β

ϕ

ϕ

Fig. 6 a A loop along which one can find an exact expression for the rotational holonomy, b the initial
position of the point is e(0) = (0, 1, 0). The parameters are the same as those from the caption of Fig. 5
except that α = π and β = 3π/2 here

R(2(α + β)) = exp

⎛

⎜
⎝β

cJ

Is

⎡̂

⎣
0
0
1

⎤

⎦

⎞

⎟
⎠R(2α + β).

Combining the above results, we obtain an explicit expression for the rotational holon-
omy R(2(α + β)) [assuming R(0) = I without of loss of generality] picked up after
the loop in Fig. 6a is traversed.

Note that the resulting rotational holonomy is independent of a particular choice of
control as long as the curve traverses the same loop. In other words, one obtains the
same holonomy R(2(α + β)) along any curve ϕ : [0, T ] → S that traverses the loop
in the shape space as shown in Fig. 6a.

Figure 6b shows an example of the trajectory e(t) in space (modulo translations of
the center of the sphere) for 0 ≤ t ≤ T = 2(α + β) of a point fixed on the sphere
under the control (21), that is, e(t) = R(t) e(0).

Particularly, ifwe pickβ = 2π/c, then the translational holonomyvanishes because
the curvature of the translational part of the connection in terms of (φ1, φ2) is

BR
2 = −c rρ

2h

[
cos(c φ2)

sin(c φ2)

]
dφ1 ∧ dφ2,

and vanishes if integrated over 0 ≤ φ2 ≤ β = 2π/c. Hence x(T ) = x(0) by the area
rule (18). Therefore, with this particular choice of β, the center of the robot comes
back to the original position but picks up the rotational phase calculated above, i.e.,
the total geometric phase is only rotational.
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6 Optimal Control Between Two Center Positions

Let us now consider an optimal control problem of the robot.Wewill restrict ourselves
to a simple special case: The terminal time is fixed, and only the wheel angles and
the translational configurations (the position of the center of the sphere) are specified
at the end (initial and terminal) times, i.e., the rotational configurations at the end
times are immaterial. We show that the resulting optimal control system is completely
integrable and obtain an explicit solution for it using Jacobi’s elliptic function.

6.1 Sub-Riemannian Geodesic and Optimal Control Problem

Consider the problem of maneuvering the robot from a given position of the center of
the sphere to another (regardless of the rotational orientations) in the most “efficient”
way. Here we measure the efficiency in terms of the “energy” of a curve q : [0, T ] →
S × R

2 defined by

E(q) :=
∫ T

0

1

2
‖ϕ̇‖2 dt =

∫ T

0

1

2

(
u1(t)

2 + u2(t)
2
)
dt,

where ‖ · ‖ is the standard Euclidean norm, i.e., ‖ϕ̇(t)‖ := √
ϕ̇1(t)2 + ϕ̇2(t)2.

The curves are subject to the condition that they are horizontal, i.e., satisfy the
nonholonomic constraint (15), and join two given points q0 := (ϕ(0), x(0)) and
qT := (ϕ(T ), x(T )) in S × R

2. More specifically, we have the following optimal
control problem:

min
u

∫ T

0

1

2
(u1(t)

2 + u2(t)
2) dt subject to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = −AR
2

i (ϕ) ui ,

ϕ̇1 = u1, ϕ̇2 = u2,

x(0) and x(T )fixed,

ϕ(0) = ϕ(T )fixed.

(22)

Those curves that minimize this particular form of energy are intimately related
to the so-called sub-Riemannian geodesics: Let us define the length of a curve
q : [0, T ] → S × R

2 connecting q0 and qT by

�(q) :=
∫ T

0
‖ϕ̇‖ dt =

∫ T

0

√
u1(t)2 + u2(t)2 dt .

Note that the metric used here is degenerate because the length is measured in terms
of only ϕ̇ in the derivative q̇ = (ϕ̇, ẋ). A curve that minimizes such a length is called
a sub-Riemannian geodesic; see e.g., Montgomery (2002). In this particular setting,
it is the shortest path in the shape space S whose horizontal lift to S × R

2 joins q0
and qT . What one can show (see e.g., Montgomery 2002, Proposition 1.6) is that ϕ
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is a minimizer of the energy E if and only if ϕ is a sub-Riemannian geodesic with
constant speed, i.e., ‖ϕ̇(t)‖ = const.1

Moreover, as mentioned in Sastry and Montgomery (1992), this type of optimal
control problem is also related to the time-optimal control of the same system: The
normalized control u(t)/‖u(t)‖ solves the time-optimal control problem to minimize
the time T subject to the same system as above as well as the constraint ‖u(t)‖ ≤ 1
on the control inputs.

6.2 Pontryagin Maximum Principle

Let us write

q = (ϕ, x) ∈ S × R
2, p = (γ,p) ∈ T ∗

(ϕ,x)(S × R
2).

Then the control Hamiltonian is defined by

Hc(q, p, u) := p ·
(
−AR

2

i (ϕ)ui
)

+ γ · u − 1

2
(u21 + u22).

Since it is quadratic in control u, it is easily maximized with respect to u to yield the
optimal control u�(q, p) = argmaxu∈R2 Hc(q, p, u); specifically,

u�
i (ϕ, γ ) = γi − p · AR

2

i (ϕ)

= γi − rρ

2h
[p1 sin(c(ϕ1 − ϕ2)) − p2 cos(c(ϕ1 − ϕ2))]

for i = 1, 2. Hence we have the Hamiltonian

H(q, p) := max
u∈R2

Hc(q, p, u)

= 1

2

(
u�
1(ϕ, γ )2 + u�

2(ϕ, γ )2
)

= 1

2

(
γi − p · AR

2

i (ϕ)
)2

. (23)

Then the optimal solution necessarily satisfies the Hamiltonian system

q̇ = ∂H

∂ p
, ṗ = −∂H

∂q
,

or

ẋ = −AR
2

i (ϕ) u�
i (ϕ, γ ), ϕ̇i = u�

i (ϕ, γ ),

ṗ = 0, γ̇i = p · ∂AR
2

j

∂ϕi
u�
j (ϕ, γ ).

1 Note that one can reparametrize a curve ϕ : [0, T̃ ] → S with
∥∥ϕ̇(t̃)

∥∥ �= const. by its arc length t (or
constant multiple of it) so that ‖ϕ̇(t)‖ = const.
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More explicitly, we have

ẋ = −rρ

2h

(
u�
1(ϕ, γ ) + u�

2(ϕ, γ )
) [− sin(c(ϕ1 − ϕ2))

cos(c(ϕ1 − ϕ2))

]
,

ϕ̇i = u�
i (ϕ, γ ), ṗ = 0,

[
γ̇1
γ̇2

]
= c

rρ

2h
(p1 cos(c(ϕ1 − ϕ2)) + p2 sin(c(ϕ1 − ϕ2)))

(
u�
1(ϕ, γ ) + u�

2(ϕ, γ )
)

[
1

−1

]
. (24)

6.3 Symmetry and Integrability of Optimal Solution

The Hamiltonian (23) is clearly independent of x, and hence the corresponding costate
p = (p1, p2) is conserved as one sees in (24). The system also has the following S

1

symmetry: define an S
1 action

S
1 × (S × R

2) → S × R
2; (ϕ0, (ϕ1, ϕ2, x)) �→ (ϕ1 + ϕ0, ϕ2 + ϕ0, x).

Its cotangent lift is

S
1 × T ∗(S × R

2) → T ∗(S × R
2);

(ϕ0, (ϕ1, ϕ2, x, γ1, γ2,p)) �→ (ϕ1 + ϕ0, ϕ2 + ϕ0, x, γ1, γ2,p),

and theHamiltonian (23) is invariant under this action. As a result, γ1+γ2 is conserved
as well; this is easy to see directly in (24) as well. One may also set, as in (20),

φ1 := ϕ1 + ϕ2, φ2 := ϕ1 − ϕ2, σ1 := γ1 + γ2

2
, σ2 := γ1 − γ2

2
(25)

so that (ϕ, γ ) �→ (φ, σ ) is a canonical change of coordinates. Then one easily sees
that the Hamiltonian (23) is independent of φ1 and hence σ1 is conserved.

Now, the Poisson bracket on T ∗(S × R
2) is defined as follows: For any F,G ∈

C∞(T ∗(S × R
2)),

{F,G} := ∂F

∂q
· ∂G

∂ p
− ∂G

∂q
· ∂F

∂ p
.

It is straightforward to see that the four first integrals

F1 := H , F2 := γ1 + γ2, F3 := p1, F4 := p2

are independent, and also are in involution, i.e.,
{
Fi , Fj

} = 0 for i, j = 1, . . . 4.
Hence the system is completely integrable.
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6.4 Exact Solution

In order to obtain an exact solution to the above system, we reduce it to the equation
for a nonlinear pendulum. To that end, we exploit some of the first integrals from
above to rewrite the system (24).

Let us first use (F3, F4) = (p1, p2) = p. Since p is conserved, we may set

p = (p1, p2) = |p|(cos δ, sin δ),

where |p| and δ are both constant. Now let us set

γ̃i := u�
i (ϕ, γ )

= γi − rρ

2h
(p1 sin(c φ2) − p2 cos(c φ2))

= γi − rρ

2h
|p| sin(c φ2 − δ)

for i = 1, 2. Then we can write the Hamiltonian H in terms of them as

H(q, p) = 1

2
γ̃ 2
i = 1

4

(
(γ̃1 + γ̃2)

2 + (γ̃1 − γ̃2)
2
)
, (26)

and also the differential equations for the angles (φ1, φ2) as

φ̇1 = γ̃1 + γ̃2, φ̇2 = γ̃1 − γ̃2.

However, the above expression (26) of the Hamiltonian H motivates us to set

γ̃1 + γ̃2 = γ1 + γ2 − rρ

h
|p| sin(c φ2 − δ) = 2

√
H cos θ, (27a)

γ̃1 − γ̃2 = γ1 − γ2 = 2
√
H sin θ (27b)

using a new variable θ so that we have

φ̇1 = 2
√
H cos θ, φ̇2 = 2

√
H sin θ. (28)

Let us obtain a differential equation for θ . First observe that

− θ̇ csc2 θ = d

dt
cot θ = d

dt

(
φ̇1

φ̇2

)
= d

dt

(
γ̃1 + γ̃2

γ̃1 − γ̃2

)
.

Let us evaluate the right-hand side. First rewrite (26) as

1

2

(
γ̃1 + γ̃2

γ̃1 − γ̃2

)2

= 2H

(γ̃1 − γ̃2)2
− 1

2
.
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Taking the time derivative of both sides, we have

(γ̃1 + γ̃2) · d

dt

(
γ̃1 + γ̃2

γ̃1 − γ̃2

)
= − 4H

(γ̃1 − γ̃2)2

( ˙̃γ1 − ˙̃γ2
)
.

However, since γ̃1 − γ̃2 = γ1 − γ2, we have, using (24),

˙̃γ1 − ˙̃γ2 = γ̇1 − γ̇2

= c
rρ

h

(
γ1 + γ2 − rρ

h
(p1 sin(c φ2) − p2 cos(c φ2))

)

(p1 cos(c φ2) + p2 sin(c φ2))

= c
rρ

h
|p|(γ̃1 + γ̃2) cos(c φ2 − δ).

Therefore,

d

dt

(
γ̃1 + γ̃2

γ̃1 − γ̃2

)
= − 4H

(γ̃1 − γ̃2)2
· crρ

h
|p| cos(c φ2 − δ)

= − csc2 θ · crρ
h

|p| cos(c φ2 − δ).

As a result, we obtain

θ̇ = c
rρ

h
|p| cos(c φ2 − δ).

On the other hand (27a) gives

rρ

h
|p| sin(c φ2 − δ) = γ1 + γ2 − 2

√
H cos θ = 2

(
σ1 − √

H cos θ
)
,

where we used the definition of σ1 from (25) as well. Setting

a := rρ

h
|p|,

we have

θ̇ = c a cos(c φ2 − δ), (29a)

2
(√

H cos θ − σ1

)
= −a sin(c φ2 − δ), (29b)

and thus we have

θ̇2 + 4c2
(√

H cos θ − σ1

)2 = c2a2
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or

(
dθ

dt

)2

= c2
(
a2 − 4

(√
H cos θ − σ1

)2)
.

Now, assuming θ ∈ (−π, π), we introduce a new variable ϑ ∈ (−π, π) defined
by

tan(ϑ/2) =
√
a + 2(

√
H + σ1)

a − 2(
√
H − σ1)

tan(θ/2)

or

ϑ := 2 arctan

⎛

⎝

√
a + 2(

√
H + σ1)

a − 2(
√
H − σ1)

tan(θ/2)

⎞

⎠, (30)

where we also assumed that a − 2(
√
H − σ1) > 0; note that a + 2(

√
H + σ1) > 0

follows from (29b).
Then the differential equation for ϑ is given by

(
dϑ

dt

)2

= c2
(
a2 + 4(H − σ 2

1 ) + 4a
√
H cosϑ

)
= 2(E + A cosϑ), (31)

where we set

E := c2

2

(
a2 + 4(H − σ 2

1 )
)
, A := 2c2a

√
H .

This is the differential equation for a nonlinear pendulum.
For example, if A < E , it corresponds to oscillatory solutions of the nonlinear

pendulum, and one obtains the solution

ϑ(t) = 2 arcsin

(

sn

(

m, F(m, ϑ0/2) ±
√

E + A

2
t

))

,

where m := √
2A/(E + A) < 1, and F is the elliptic integral of the first kind, i.e.,

F(m, ϑ) :=
∫ ϑ

0

1
√
1 − m sin2 θ

dθ,

and sn is the Jacobi elliptic function, i.e.,

sn−1(m, x) :=
∫ x

0

1
√

(1 − ξ2)(1 − m ξ2)
dξ = F(m, sin−1 x),
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(a) Trajectory of the wheels in the covering space R×R

of the shape space S = S
1 × S

1.
(b) Trajectory of the center of the sphere inR2

Fig. 7 Solution of the optimal control problem (22) for Example 6.3—trajectories of the wheels and of the
center of the sphere. One can see that the trajectory of the wheels in the ϕ1–ϕ2 plane is very similar to one
of Euler’s elasticas. On the other hand, the trajectory of the center of the sphere is much more complicated
and makes several switches in its direction

that is, sn(m, F(m, ϑ)) = sin ϑ . Then the angle θ is given in terms of ϑ as follows:

θ(t) = 2 arctan

⎛

⎝

√
a − 2(

√
H − σ1)

a + 2(
√
H + σ1)

tan(ϑ(t)/2)

⎞

⎠.

Therefore, we obtain φ1 and φ2 (and hence ϕ1 and ϕ2) by quadrature using (28);
similarly we obtain the position x of the center of the sphere by quadrature using (24)
as well.

To summarize, we have the following:

Theorem 6.1 The optimal control problem (22) is completely integrable. Particularly,
if the condition a − 2(

√
H − σ1) > 0 is satisfied, then its solution (ϕ(t), x(t)) is

obtained by quadrature using a solution of the nonlinear pendulum equation (31).

Remark 6.2 The above calculations and the result are reminiscent of a similar result
by Jurdjevic (1993) (see also Jurdjevic 1997, Section 14.3) on the plate-ball system—
rolling a ball on the plane bymoving a plate attached at the top of the ball. Specifically,
the result says that each extremal path of the center of the sphere—x(t) = (x1(t), x2(t))
in our notation—connecting two translational and rotational configurations is Euler’s
elastica. One difference is that our curve is in the shape space or the ϕ1–ϕ2 plane as
opposed to the x1–x2 plane; another difference is that it is not exactly Euler’s elastica.
Given the differential equation (28), our curvewould beEuler’s elastica if θ(t) satisfied
the nonlinear pendulum equation (31). In fact, this is the case with the plate-ball sys-
tem with (ϕ1, ϕ2) being replace by (x1, x2). However, in our case, it is ϑ—defined as
a slight deformation of θ in (30)—that satisfies the nonlinear pendulum equation (31).
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As a result, our curve in the ϕ1–ϕ2 plane is a slight deformation of Euler’s elastica;
see Example 6.3 below.

Example 6.3 We set the parameters as follows: r = 1, ρ = 0.3, h = 0.75, w = 0.8,
J/Is = 5, and T = 10. Consider the problem of maneuvering the center of spherical
rolling robot from the origin to (1, 1) on the x1–x2 plane after each wheel makes 5
revolutions in displacement (not necessarily the total revolutions), i.e., x(0) = (0, 0),
ϕ(0) = (0, 0), x(T ) = (1, 1), and ϕ(T ) = (10π, 10π). This turns out to be the case
with A < E discussed above.

Figure 7 shows the optimal trajectory of the wheels in the (covering space of) the
shape space S and of the center of the sphere in R

2.
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