
Journal of Nonlinear Science (2020) 30:23–66
https://doi.org/10.1007/s00332-019-09567-y

Variational Approach for Learning Markov Processes from
Time Series Data

Hao Wu1,2 · Frank Noé2,3,4

Received: 1 February 2018 / Accepted: 22 July 2019 / Published online: 5 August 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Inference, prediction, and control of complex dynamical systems from time series is
important inmany areas, including financialmarkets, power gridmanagement, climate
and weather modeling, or molecular dynamics. The analysis of such highly nonlinear
dynamical systems is facilitated by the fact that we can often find a (generally non-
linear) transformation of the system coordinates to features in which the dynamics
can be excellently approximated by a linear Markovian model. Moreover, the large
number of system variables often change collectively on large time- and length-scales,
facilitating a low-dimensional analysis in feature space. In this paper, we introduce a
variational approach for Markov processes (VAMP) that allows us to find optimal fea-
ture mappings and optimal Markovian models of the dynamics from given time series
data. The key insight is that the best linear model can be obtained from the top singular
components of the Koopman operator. This leads to the definition of a family of score
functions called VAMP-r which can be calculated from data, and can be employed
to optimize a Markovian model. In addition, based on the relationship between the
variational scores and approximation errors of Koopman operators, we propose a
new VAMP-E score, which can be applied to cross-validation for hyper-parameter
optimization and model selection in VAMP. VAMP is valid for both reversible and
nonreversible processes and for stationary and nonstationary processes or realizations.
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1 Introduction

Extracting dynamical models and their main characteristics from time series data is a
recurring problem in many areas of science and engineering. In the particularly popu-
lar approach of Markovian models, the future evolution of the system, e.g., state xt+τ ,
only depends on the current state xt , where t is the time step and τ is the delay or
lag time. Markovian models are easier to analyze than models with explicit memory
terms. They are justified by the fact that many physical processes—including both
deterministic and stochastic processes—are inherently Markovian. Even when only
a subset of the variables in which the system is Markovian are observed, a variety
of physics and engineering processes have been shown to be accurately modeled by
Markovian models on sufficiently long observation lag times τ . Examples include
molecular dynamics (Chodera and Noé 2014; Prinz et al. 2011), wireless communica-
tions (Konrad et al. 2001; Ma et al. 2001) and fluid dynamics (Mezić 2013; Froyland
et al. 2016).

In the past decades, a collection of closely related Markov modeling methods were
developed in different fields, including Markov state models (MSMs) (Schütte et al.
1999; Prinz et al. 2011; Bowman et al. 2014), Markov transition models (Wu and Noé
2015),Ulam’sGalerkinmethod (Dellnitz et al. 2001;Bollt andSantitissadeekorn 2013;
Froyland et al. 2014), blind-source separation (Molgedey and Schuster 1994; Ziehe
and Müller 1998), the variational approach of conformation dynamics (VAC) (Noé
and Nüske 2013; Nüske et al. 2014), time-lagged independent component analysis
(TICA) (Perez-Hernandez et al. 2013; Schwantes and Pande 2013), dynamic mode
decomposition (DMD) (Rowley et al. 2009; Schmid 2010; Tu et al. 2014), extended
dynamic mode decomposition (EDMD) (Williams et al. 2015a), variational Koopman
models (Hao et al. 2017), variational diffusion maps (Boninsegna et al. 2015), sparse
identification of nonlinear dynamics (Brunton et al. 2016b) and corresponding kernel
embeddings (Harmeling et al. 2003; Song et al. 2013; Schwantes and Pande 2015)
and tensor formulations (Nüske et al. 2016; Klus and Schütte 2015). All these models
approximate the Markov dynamics at a lag time τ by a linear model in the following
form:

E
[
g(xt+τ )

] = K�
E [f(xt )] . (1)

Here f(x) = ( f1(x), f2(x), . . .)� and g(x) = (g1(x), g2(x), . . .)� are feature transfor-
mations that transform the state variables x into the feature space inwhich the dynamics
are approximately linear. E denotes an expectation value over time that accounts for
stochasticity in the dynamics and can be omitted for deterministic dynamical systems.
In some methods, such as DMD, the feature transformation is an identity transforma-
tion: f (x) = g (x) = x—and then Eq. (1) defines a linear dynamical system in the
original state variables. If f and g are indicator functions that partitionΩ into substates,
such that fi (x) = gi (x) = 1 if x ∈ Ai and 0 otherwise, Eq. (1) is the propagation
law of an MSM, or equivalently of Ulam’s Galerkin method, as the expectation values
E [f(xt )] and E

[
g(xt+τ )

]
represent the vector of probabilities to be in any substate at

times t and t + τ , and Ki j is the probability to transition from set Ai to set A j in time
τ . In general, (1) can be interpreted as a finite-rank approximation of the so-called
Koopman operator (Koopman 1931; Mezić 2005), which governs the time evolution
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of observables of the system state and can fully characterize the Markovian dynamics.
As shown in Korda and Mezić (2018), this approximation becomes exact in the limit
of infinitely sized feature transformations with f = g, and a similar conclusion can
also be obtained when f, g are infinite-dimensional feature functions deduced from a
characteristic kernel (Song et al. 2013).

A direct method to estimate the matrixK from data is to solve the linear regression
problemg(xt+τ ) ≈ K�f(xt ), which facilitates the use of regularized solutionmethods,
such as the LASSO method (Tibshirani 1996). Alternatively, feature functions f and
g that allow Eq. (1) to have a probabilistic interpretation (e.g., in MSMs), K can be
estimated by amaximum likelihood or Bayesianmethod (Prinz et al. 2011; Noé 2008).

However, as yet, it is still unclear what are the optimal choices for f and g—either
given a fixed dimension or a fixed amount of data. Notice that this problem cannot
be solved by minimizing the regression error of Eq. (1), because a regression error
of zero can be trivially achieved by choosing a completely uninformative model with
f (x) ≡ g (x) ≡ 1 and K = 1. An approach that can be applied to deterministic
systems and for stochastic systems with additive white noise is to set g (x) = x,
and then choose f as the transformation with smallest modeling error (Brunton et al.
2016a, b).

A more general approach is to optimize the dominant spectrum of the Koopman
operator. At long timescales, the dynamics of the system are usually dominated by
the Koopman eigenfunctions of the Koopman operator with large eigenvalues. If the
dynamics obey detailed balance, those eigenvalues are real-valued, and the variational
approach for reversible Markov processes can be applied that has made great progress
in the field of molecular dynamics (Noé and Nüske 2013; Nüske et al. 2014). In such
processes, the smallest modeling error of (1) is achieved by setting f = g equal to the
corresponding eigenfunctions. Noé and Nüske (2013) describes a general approach to
approximate the unknown eigenfunction from time series data of a reversible Markov
process: Given a set of orthogonal candidate functions, f , it can be shown that their
time-autocorrelations are lower bounds to the corresponding Koopman eigenvalues,
and are equal to them exactly if, and only if f are equal to the Koopman eigenfunctions.
This approach provides a variational score, such as the sum of estimated eigenvalues
(the Rayleigh trace), that can be optimized to approximate the eigenfunctions. If f
is defined by a linear superposition of a given set of basis functions, then the opti-
mal coefficients are found equivalently by either maximizing the variational score,
or minimizing the regression error in the feature space as done in EDMD (Williams
et al. 2015a)—see Hao et al. (2017). However, the regression error cannot be used
to select the form and the number of basis functions themselves, whereas the vari-
ational score can. When working with a finite dataset, however, it is important to
avoid overfitting, and to this end a cross-validation method has been proposed to
compute variational scores that take the statistical error into account (McGibbon and
Pande 2015). Such cross-validated variational scores can be used to determine the
size and type of the function classes and the other hyper-parameters of the dynamical
model.

While this approach is extremely powerful for stationary and data and reversible
Markov processes, almost all real-world dynamical processes and time series thereof
are irreversible and often even nonstationary. In this paper, we introduce a variational
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approach for Markov processes (VAMP) that can be employed to optimize parameters
and hyper-parameters of arbitrary Markov processes. VAMP is based on the singular
value decomposition of the Koopman operator, which overcomes the limited useful-
ness of the eigenvalue decomposition of time-irreversible and nonstationary processes.
We first show that the approximation error of the Koopman operator deduced from the
linear model (1) can be minimized by setting f and g to be the top left and right singu-
lar functions of the Koopman operator. Then, by using the variational description of
singular components, a class of variational scores, VAMP-r for r = 1, 2, . . ., are pro-
posed to measure the similarity between the estimated singular functions and the true
ones. Maximization of any of these variational scores leads to optimal model parame-
ters and is algorithmically identical to Canonical Correlation Analysis (CCA) between
the featurized time-lagged pair of variables xt and xt+τ . This approach can also be
employed to learn the feature transformations by nonlinear function approximators,
such as deep neural networks. Furthermore, we establish a relationship between the
VAMP-2 score and the approximation error of the dynamical model with respect to
the true Koopman operator. We show that this approximation error can be practically
computed up to a constant, and define its negative as the VAMP-E score. Finally, we
demonstrate that optimizing the VAMP-E score in a cross-validation framework leads
to an optimal choice of hyper-parameters.

2 Theory

2.1 Koopman Analysis of Dynamical Systems and Its Singular Value
Decomposition

The Koopman operator Kτ of a Markov process is a linear operator defined by

Kτ g(x) � E
[
g(xt+τ ) | xt = x

]
. (2)

For given xt , the Koopman operator can be used to compute the conditional expected
value of an arbitrary observable g at time t+τ . For the special choice that g is theDirac
delta function δy centered at y, application of the Koopman operator evaluates the tran-
sition density of the dynamics, Kτ δy(x) = P(xt+τ = y|xt = x) (see Appendix A.3).
Thus, the Koopman operator is a complete description of the dynamical properties of
a Markovian system. For convenience of analysis, we consider here Kτ as a mapping
from L2

ρ1
= {

g| 〈g, g〉ρ1 < ∞}
to L2

ρ0
= {

f | 〈 f , f 〉ρ0 < ∞}
, where ρ0 and ρ1 are

empirical distributions of xt and xt+τ of all transition pairs {(xt , xt+τ )} occurring in
the given time series (see Appendix A.1), and the inner products are defined by

〈 f , g〉ρ0 =
∫

f (x) g (x) ρ0 (x) dx, 〈 f , g〉ρ1 =
∫

f (x) g (x) ρ1 (x) dx. (3)

How is the finite-dimensional linear model (1) related to the Koopman operator
description? Let us consider f(xt ) to be a sufficient statistics for xt , and let g be a
dictionary of observables, then the value of an arbitrary observable h in the subspace
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of g, i.e., h = c�g, with some coefficients c, can be predicted from xt asE
[
h(xt+τ )|xt

]

= c�K�f(xt ). This implies that Eq. (1) is an algebraic representation of the projection
of the Koopman operator onto the subspace spanned by functions f and g, and the
matrix K is therefore called the Koopman matrix. Combining this insight with the
generalized Eckart–Young Theorem (Hsing and Eubank 2015) leads to our first result,
namely what is the optimal choice of functions f and g:

Theorem 1 Optimal approximation of Koopman operator. IfKτ is a Hilbert–Schmidt
operator between the separable Hilbert spacesL2

ρ1
andL2

ρ0
, the linear model (1) with

the smallest modeling error in Hilbert–Schmidt norm is given by f = (ψ1, . . . , ψk)
�,

g = (φ1, . . . , φk)
� and K = diag(σ1, . . . , σk), i.e.,

E
[
φi (xt+τ )

] = σiE [ψi (xt )] , for i = 1, . . . , k (4)

under the constraint dim(f), dim(g) ≤ k, and the projected Koopman operator
deduced from (4) is

K̂τ g =
k∑

i=1

σi 〈g, φi 〉ρ1 ψi , (5)

where the singular value σi > 0 is the square root of the i th largest eigenvalue of
K∗

τKτ or KτK∗
τ , the left and right singular function ψi , φi are the i th eigenfunctions

of K∗
τKτ and KτK∗

τ with

〈
ψi , ψ j

〉
ρ0

= 1i= j ,
〈
φi , φ j

〉
ρ1

= 1i= j , (6)

and the first singular component is always given by (σ1, φ1, ψ1) = (1,1,1) with
1 (x) ≡ 1.

Proof See Appendix A.2. ��
This theorem is universal for Markov processes, and the major assumption is that

the Koopman operator is Hilbert–Schmidt, which is required for the existences of
the singular value decomposition (SVD) of Kτ and the finite Hilbert–Schmidt norm
‖Kτ‖HS. Appendix A.4 provides two sufficient conditions for the assumption. How-
ever, it is worth noting that the Koopman operators of deterministic systems are not
Hilbert–Schmidt or even compact in usual cases (see Appendix A.5), and thus all
conclusions and methods in this paper are not applicable to deterministic systems.

In addition, we prove in Appendix A.3 that ‖K̂τ − Kτ‖HS is equal to a weighted
L2 error of the transition density, which provides a more meaningful interpretation of
the modeling error in Hilbert–Schmidt norm.

Example 1 Consider a one-dimensional dynamical system

xt+1 = xt
2

+ 7xt
1 + 0.12x2t

+ 6 cos xt + √
10ut (7)

evolving in the state space [−20, 20], where ut is a standard Gaussian white noise zero
mean and unit variance (see Appendix K.1 for details on the numerical simulations
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(a) (b) (c)

(d1) (d2) (d3)

(e1) (e2) (e3)

Fig. 1 Analysis results of the dynamical system (7) with lag time τ = 1. a A typical simulation trajectory.
b Transition density P(xt+1|xt ). c The singular values. d The first three nontrivial left and right singular
functions. [The first singular component is (σ1, φ1, ψ1) = (1,1,1).] e Approximate transition densities
obtained from the projected Koopman operator K̂τ consisting of first k singular components defined by (5)
for k = 2, 3, 4, where the relative error is calculated as ‖K̂τ − Kτ ‖HS/‖Kτ ‖HS

and analysis). This system has two metastable states with the boundary close to x = 0
as shown in Fig. 1a, and the singular components are summarized in Fig. 1c, d. As
shown in the figures, the sign structures of the second left and right singular functions
clearly indicate themetastable states, and the third and forth singular functions provide
more detailed information on the dynamics. An accurate estimate of the transition
density can be obtained by combining the first four singular components, and the
corresponding relative approximation error of the Koopman operator is only 6.6%
(see Fig. 1b, e). In addition, we utilize the finite-rank approximate Koopman operators
to predict the time evolution of the distribution of xt for t = 1, . . . , 256 with the
initial state x0 = 12, and a small error can also be achieved when the rank is only 4
as displayed in Fig. 2, where

error =
256∑

t=1

∫
ρ1(xt )

−1
(
P̂(xt |x0) − P(xt |x0)

)2
dxt (8)

is the cumulative kinetic distance (Noé and Clementi 2015) between the transition
density P(xt |x0) and its estimate P̂(xt |x0), and ρ1 is the stationary distribution.
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(b1) (b2) (b3)(a)

Fig. 2 Probability density of state xt predicted by a the full model and b the projected Koopman operator
K̂τ with rank k = 2, 3, 4, where the initial state is x0 = −12

There are other formalisms to describe Markovian dynamics, for example, the
Markov propagator or the weighted Markov propagator, also called transfer operator
(Schütte et al. 1999). These propagators are commonly used for modeling physical
processes such as molecular dynamics, and describe the evolution of probability den-
sities instead of observables. We show in Appendix B that all conclusions in this
paper can be equivalently established by interpreting (σi , ρ1φi , ρ0ψi ) as the singular
components of the Markov propagator.

2.2 Variational Principle for Markov Processes

In order to allow the optimal model (4) to be estimated from data, we develop a
variational principle for the approximation of singular values and singular functions
of Markov processes.

According to the Rayleigh variational principle of singular values, the first singular
component maximizes the generalized Rayleigh quotient of Kτ as

(ψ1, φ1) = argmax
f ,g

〈 f ,Kτ g〉ρ0√〈 f , f 〉ρ0 · 〈g, g〉ρ1
(9)

and themaximal value of the generalized Rayleigh quotient is equal to the first singular
value σ1 = 〈ψ1, Kτ φ1〉ρ0 . For the i th singular component with i > 1, we have

(ψi , φi ) = argmax
f ,g

〈 f ,Kτ g〉ρ0√〈 f , f 〉ρ0 · 〈g, g〉ρ1
(10)

under constraints

〈
f , ψ j

〉
ρ0

= 〈
g, φ j

〉
ρ1

= 0, ∀ j = 1, . . . , i − 1 (11)

and the maximal value is equal to σi = 〈ψi , Kτ φi 〉ρ0 . These insights can be summa-
rized by the following variational theorem for seeking all top k singular components
simultaneously:
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Theorem 2 VAMP variational principle. The k dominant singular components of a
Koopman operator are the solution of the following maximization problem:

k∑

i=1

σ r
i = max

f,g
Rr

[
f, g

]
,

s.t .
〈
fi , f j

〉
ρ0

= 1i= j ,
〈
gi , g j

〉
ρ1

= 1i= j , (12)

where r ≥ 1 can be any positive integer. The maximal value is achieved by the singular
functions fi = ψi and gi = φi and

Rr
[
f, g

] =
k∑

i=1

〈 fi ,Kτ gi 〉rρ0 (13)

is called the VAMP-r score of f and g.

Proof See Appendix C. ��
This theorem generalizes Proposition 2 in Froyland (2013) where only the case of

k = 2 is considered. It is important to note that this theorem has direct implications for
the data-driven estimation of dynamical models. For r = 1, Rr

[
f, g

]
is actually the

time correlation between f(xt ) and g(xt+τ ) since 〈 fi ,Kτ gi 〉ρ0 = Et [ fi (xt )gi (xt+τ )]
and Et [·] denotes the expectation value over all transition pairs (xt , xt+τ ) in the time
series. Hence the maximization of VAMP-r is analogous to the problem of seeking
orthonormal transformations of xt and xt+τ with maximal time-correlations, and we
can thus utilize the canonical correlation analysis (CCA) algorithm (Hardoon et al.
2004) in order to estimate the singular components from data.

2.3 Comparison with Related Analysis Approaches

The SVD of the Koopman operator is equivalent to the eigenvalue decomposition
when the Markov process is time-reversible and stationary with ρ0 = ρ1, and there-
fore the variational principle presented here is a generalization of that developed
for reversible conformation dynamics (Noé and Nüske 2013; Nüske et al. 2014).
Specifically, VAMP-1 maximizes the Rayleigh trace, i.e., the sum of the estimated
eigenvalues (Noé and Nüske 2013; McGibbon and Pande 2015), and VAMP-2 maxi-
mizes the kinetic variance introduced in Noé and Clementi (2015). See Appendix D
for a detailed derivation of the reversible variational principle from the VAMP varia-
tional principle. For irreversible Markov processes, the singular functions can provide
low-dimensional embeddings of kinetic distances between states like eigenfunctions
of reversible processes (Paul et al. 2018). Furthermore, the coherent sets of nonsta-
tionary Markov processes, which are the generalization of metastable states, can be
identified from dominant singular functions (Koltai et al. 2018).
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The dynamics of an irreversibleMarkov process can also be analyzed through solv-
ing the eigenvalue problemKτ g = λg [see, e.g., Williams et al. (2015a, b), Klus et al.
(2015),Klus and Schütte (2015)], and the eigenfunctions form an invariant subspace
of the Koopman operator for multiple lag times since the eigenvalue problem satisfies

Kτ g = λg ⇒ Knτ g = λng, ∀n ≥ 1. (14)

However, as far as we know, there is no variational principle for approximate eigen-
functions of irreversible Markov processes, and it is difficult to evaluate errors of
projections of Koopman operators to the invariant subspaces. The SVD-based analysis
approach overcomes the above problems and yields the optimal finite-rank approx-
imate models. The major limitation of this approach comes from the fact that the
singular functions are dependent on the choice of the lag time and the optimality of
model (4) holds only for a fixed τ . The optimization and error analysis of Koopman
models for multiple lag times will be studied in our future work.

3 Estimation Algorithms

We introduce algorithms to estimate optimal dynamical models from time series data.
We make the Ansatz to represent the feature functions f and g as linear combinations
of basis functions χ0 = (χ0,1, χ0,2, . . .)

� and χ1 = (χ1,1, χ1,2, . . .)
�:

f = U�χ0,

g = V�χ1. (15)

Here,U andV are matrices of sizem×k andm′ ×k, i.e., we are trying to approximate
k singular components by linearly combiningm andm′ basis functions. For the sake of
generality we have assumed that f and g are represented by different basis sets. How-
ever, in practice one can justify using a single basis set the joint set χ� = (χ�

0 ,χ�
1 )

as an Ansatz for both f and g. Please note that despite the linear Ansatz (15), the
feature functions may be strongly nonlinear in the system’s state variables x, thus we
are not restricting the generality of the functions f and g that can be represented. In
this section, we consider three problems: (i) optimizing U and V, (ii) optimizing χ0
and χ1 and (iii) assessing the quality of the resulting dynamical model.

For convenience of notation, we denote by C00,C11,C01 the covariance matrices
and time-lagged covariance matrices of basis functions, which can be computed from
a trajectory {x1, . . . , xT } by

C00 � Et

[
χ0 (xt )χ0 (xt )�

]
≈ 1

T − τ

T−τ∑

t=1

χ0 (xt ) χ0 (xt )� , (16)

C11 � Et

[
χ1 (xt+τ ) χ1 (xt+τ )

�] ≈ 1

T − τ

T∑

t=1+τ

χ1 (xt ) χ1 (xt )� , (17)
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C01 � Et

[
χ0 (xt )χ1 (xt+τ )

�] ≈ 1

T − τ

T−τ∑

t=1

χ0 (xt )χ1 (xt+τ )
� . (18)

If there are multiple trajectories, the covariance matrices can be computed in the
same manner by averaging over all trajectories. Instead of the direct estimators (16–
18), more elaborated estimation methods such as regularization methods (Tibshirani
1996) and reweighting estimators (Hao et al. 2017) may be used.

3.1 Feature TCCA: Finding the Best Linear Model in a Given Feature Space

We first propose a solution for the problem of finding the optimal parameter matrices
U and V given that the basis functions χ0 and χ1 are known. Substituting the linear
Ansatz (15) into the VAMP variational principle shows thatU andV can be computed
as the solutions of the maximization problem:

max
U,V

Rr (U,V)

s.t.U�C00U = I

V�C11V = I, (19)

where

Rr (U,V) =
k∑

i=1

(
u�
i C01vi

)r
(20)

is a matrix representation of VAMP-r score, and ui and vi are the i th columns of U
and V. This problem can be solved by applying linear CCA (Hardoon et al. 2004)
in the feature spaces defined by the basis sets χ0(xt ) and χ1(xt+τ ), and the same
solution will be obtained for any other choice of r . (See Appendices E.1 and E.2 for
more detailed proof and analysis.) The resulting algorithm for finding the best linear
model is a CCA in feature space, applied on time-lagged data. Hence we briefly call
this algorithm feature TCCA:

1. Compute covariance matrices C00,C01,C11 via (16–18).
2. Perform the truncated SVD

K̄ = C
− 1

2
00 C01C

− 1
2

11 ≈ U′KV′�,

where K̄ is the Koopman matrix for the normalized basis functions C
− 1

2
00 χ0 and

C
− 1

2
11 χ1,K = diag(K11, . . . , Kkk) is a diagonal matrix of the first k singular values

that approximate the true singular values σ1, . . . , σk , and U′ and V′ consist of the
k corresponding left and right singular vectors respectively.

3. Compute U = C
− 1

2
00 U′ and V = C

− 1
2

11 V′.
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4. Output the linear model (1) with Kii , fi = u�
i χ0 and gi = v�

i χ1 being the
estimates of the i th singular value, left singular function and right singular function
of the Koopman operator.

Please note that this pseudocode is given only for illustrative purposes and cannot be
executed literally ifC00 andC11 do not have full rank, i.e., are not invertible. To handle
this problem, we ensure that the basis functions are linearly independent by applying a
decorrelation (whitening) transformation that ensures thatC00 andC11 will both have
full rank. We then add the constant function 1 (x) ≡ 1 to the decorrelated basis sets
to ensure that 1 belongs to the subspaces spanned by χ0 and by χ1. It can be shown
that the singular values given by the feature TCCA algorithm with these numerical
modifications are bounded by 1, and the first estimated singular component is exactly
(K11, f1, g1) = (1,1,1) even in the presence of statistical noise andmodeling error—
see Appendix F.1 for details.

In the case of k = dim(χ0) = dim(χ1) and full rank C00,C11, the output of the
feature TCCA can be equivalently written as

E

[
V�χ1 (xt+τ )

]
= K�

E

[
U�χ0 (xt )

]

⇒ E
[
χ1 (xt+τ )

] = K�
χ E

[
χ0 (xt )

]
(21)

where

Kχ = UKV−1

= C−1
00 C01 (22)

is equal to the least square solution to the regression problem χ1 (xt+τ ) ≈ K�
χ χ0 (xt ).

Note that if we further assume that χ0 = χ1, (21) is identical to the linear model of
EDMD. Thus, the feature TCCA can be seen as a generalization of EDMD that can
provide approximate Markov models for different basis χ0 and χ1. More discussion
on the relationship between the two methods is provided in Appendix G.

3.2 Nonlinear TCCA: Optimizing the Basis Functions

We now extend feature TCCA to a more flexible representation of the transformation
functions f and g by optimizing the basis functions themselves:

f (x) = U�χ0 (x;w) ,

g (x) = V�χ1 (x;w) . (23)

Here,w represents a set of parameters that determines the form of the basis functions.
As a simple example, considerw to represent themean vectors and covariancematrices
of a Gaussian basis set. However, χ0 (x;w) and χ1 (x;w) can also represent very
complex and nonlinear learning structures, such as neural networks and decision trees.

The parametersw could conceptually be determined together with the linear expan-
sion coefficients U,V by solving (19) with C00, C11, C01 treated as functions of w,
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but this method is not practical due to the nonlinear equality constraints are involved.
In practice, we can set k to be min{dim (

χ0
)
, dim

(
χ1
)}, i.e., the largest number of

singular components that can be approximated given the basis set. Then the maximal
VAMP-r score for a fixed w can be represented as

max
U,V

Rr =
∥∥∥C00 (w)−

1
2 C01 (w)C11 (w)−

1
2

∥∥∥
r

r
, (24)

which can also be interpreted as the sum over the r ’th power of all singular values of
the projected Koopman operator on subspaces of χ0,χ1 (see Eq. (80) in Appendix E.1
and Eq. (84) in Appendix E.2). Here ‖A‖r denotes the r -Schatten norm of matrix A,
which is the �r norm of singular values of A, and ‖A‖2 equals the Frobenius norm of
A. The parameters w can be optimized without computing U and V explicitly. Using
these ideas, nonlinear TCCA can be performed as follows:

1. Compute w∗ = argmaxw
∥∥∥C00 (w)− 1

2 C01 (w)C11 (w)− 1
2

∥∥∥
r

r
by gradient descent

or other nonlinear optimization methods.
2. Approximate theKoopman singular values and singular functions using the feature

TCCA algorithm with basis sets χ0 (x;w∗) and χ1 (x;w∗).
Unlike the estimated singular components generated by the feature TCCA, the estima-
tion results of the nonlinear TCCA do generally depend on the value of r . (An example
is given in Appendix E.3, where the VAMP scores can be analytically computed.) We
suggest to set r = 2 in applications for the direct relationship between the VAMP-2
score and the approximation error of Koopman operators and the convenience of cross-
validation (see below). The details of the nonlinear TCCA, including the optimization
algorithmand regularization, are beyond the scope of this paper.AppendixF.2 provides
a brief description of the implementation, and related work based on kernel methods
and deep networks can be found in Andrew et al. (2013) and Mardt et al. (2018).

Example 2 Let us consider the stochastic system described in Example 1 again. We
generate 10 simulation trajectories of length 500 and approximate the dominant sin-
gular components by the feature TCCA. Here, the basis functions are

χ0,i (x) = χ1,i (x) = 140·(i−1)
m −20≤x≤ 40·i

m −20, for i = 1, . . . ,m, (25)

which define a partition of the domain [−20, 20] into m = 33 disjoint intervals. In
other words, the approximation is performed based on anMSMwith 33 discrete states.
Estimation results are given in Fig. 3a, where the discretization errors arising from
indicator basis functions are clearly shown. For comparison, we also implement the
nonlinear TCCA algorithm with radial basis functions

χ0,i (x;w) = χ1,i (x;w) = exp
(−w (x − ci )2

)

∑m
j=1 exp

(
−w

(
x − c j

)2) (26)

with smoothing parameter w ≥ 0, where ci = 40·(i−0.5)
m − 20 for i = 1, . . . ,m are

uniformly distributed in [−20, 20]. Notice that the basis functions given in (25) are
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(a1) (a2) (a3)

(b1) (b2) (b3)

Fig. 3 Estimated singular components of the system in Example 1, where dash lines represent true singular
functions, and the estimation errors of singular functions are defined as δψi = ∫

( fi (x) − ψi (x))
2 ρ0(x)dx ,

δφi = ∫
(gi (x) − φi (x))

2 ρ1(x)dx with ρ0 = ρ1 being the stationary distribution. a Estimates provided
by feature TCCA with basis functions (25). b Estimates provided by nonlinear TCCA with basis functions
(26)

a specific case of the radial basis functions with w = ∞, and it is therefore possible
to achieve better approximation by optimizing w. As can be seen from Fig. 3b, the
nonlinear TCCA provides more accurate estimates of singular functions and singular
values (see Appendix K.1 for more details). In addition, both feature TCCA and non-
linear TCCA underestimate the dominant singular values as stated by the variational
principle.

The nonlinear TCCA is similar to the EDMDwith dictionary learning (EDMD-DL)
(Li et al. 2017), where the feature transformations are optimized by minimizing the
regression error of (1). The major advantages of the nonlinear TCCA over EDMD-DL
are: First, the uninformative model with zero regression error can be systematically
excluded without any extra constraints on features. Second, the optimization objective
is directly related to the approximation error of the Koopman operator (see Sect. 3.3).
Some recent methods extend EDMD-DL for modeling Koopman operators of deter-
ministic systems (Takeishi et al. 2017; Lusch et al. 2018; Otto and Rowley 2019),
and solve the first problem by using the prediction error between the observed xt and
that predicted by the low-dimensional model. But they cannot be applied to stochastic
Koopman operators of Markov processes directly.

3.3 Error Analysis

According to (5), both feature TCCA and nonlinear TCCA lead to a rank k approxi-
mation

K̂τ g =
k∑

i=1

Kii 〈g, gi 〉ρ1 fi =
k∑

i=1

Kii

〈
g, v�

i χ1

〉

ρ1
u�
i χ0 (27)
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to Kτ . We consider here the approximation error of (27) in a general case where
f = U�χ0 and g = V�χ1 may not satisfy the orthonormal constraints due to statistical
noise and numerical errors. After a few steps of derivation, the approximation error
can be expressed as

∥∥∥K̂τ − Kτ

∥∥∥
2

HS
= −RE [K, f, g] + ‖Kτ‖2HS (28)

with

RE [K, f, g] = 2
∑

i

Kii 〈 fi ,Kτ gi 〉ρ0 −
∑

i, j

Kii K j j
〈
fi , f j

〉
ρ0

〈
gi , g j

〉
ρ1

. (29)

Remarkably, this error decomposes into a unknown constant part (the square of
Hilbert–Schmidt norm of Kτ ), and a model-dependent part RE that can be entirely
estimated from data by its matrix representation:

RE (K,U,V) = tr
[
2KU�C01V − KU�C00UKV�C11V

]
. (30)

RE , is thus a score that can be used alternatively to the VAMP-r scores, and we call
RE VAMP-E score. It can be proved that the maximization of RE is equivalent to
maximization ofR2 in feature TCCA or nonlinear TCCA. However, these scores will
behave differently in terms of hyper-parameter optimization (see Sect. 4.1). Proofs
and analysis are given in Appendix H.

4 Model Validation

4.1 Cross-Validation for Hyper-parameter Optimization

For a data-driven estimation of dynamical models, either using feature TCCA or
nonlinear TCCA, we have to strike a balance between the modeling or discretization
error and the statistical or overfitting error. The choice of number and type of basis
functions is critical for both. If basis sets are very small and not flexible enough to
capture singular functions, the approximation results may be inaccurate with large
biases. We can improve the variational score and reduce the modeling error by larger
and more flexible basis sets. But too complicated basis sets will produce unstable
estimates with large statistical variances, and in particular poor predictions on data
that has not been used in the estimation process—this problem is known as overfitting
in the machine learning community. A popular way to achieve the balance between the
statistical bias and variance are resampling methods, including bootstrap and cross-
validation (Friedman et al. 2001). They iteratively fit a model in a training set, which
are sampled from the data with or without replacement, and validate the model in
the complementary dataset. Alternatively, there are also Bayesian hyper-parameter
optimization methods. See Arlot and Celisse (2010) and Snoek et al. (2012) for an
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overview. Here, we will focus on cross-validation and describe how to use the VAMP
scores in this and similar resampling frameworks.

Let θ be hyper-parameters in feature TCCA or nonlinear TCCA that need to be
specified. For example, θ includes the number and functional form of basis functions
used in feature TCCA, or the architecture and connectivity of a neural network used
for nonlinear TCCA. Generally speaking, different values of θ correspond to different
dynamical models that we want to rank, and these models may be of completely
different types. The cross-validation of θ can be performed as follows:

1. Separate the available trajectories into J disjoint folds D1, . . . ,DJ with approx-
imately equal size. If there are only a small number of long trajectories, we can
divide each trajectory into blocks of length L with τ < L � T and create folds
based on the blocks. This defines a number of J training sets, with training set j
consisting of all data except the j th fold, Dtrain

j = ∪l �= jDl , and the j th fold used

as test set Dtest
j = D j .

2. For each hyper-parameter set θ :

(a) For j = 1, . . . , J :
i. Train onDtrain

j n: training setDtrain
j , construct the best k-dimensional linear

model consisting of (K,U�χ0,V
�χ1) by applying the feature TCCA or

nonlinear TCCA with hyper-parameters θ

ii. Validate on Dtest: measure the performance of the estimated singular
components by a score

CV j (θ) = CV (K,U,V|Dtest) (31)

(b) Compute cross-validation score

MCV (θ) = 1

J

J∑

j=1

CV j (θ) (32)

3. Select model/hyper-parameter set with maximal MCV (θ).

The key to the above procedure is how to evaluate the estimated singular components
for given test set. It is worth pointing out that we cannot simply define the validation
score directly as the VAMP-r score of estimated singular functions for the test data,
because the singular functions obtained from training data are usually not orthonormal
with respect to the test data.

A feasible way is to utilize the subspace variational score as proposed for reversible
Markov processes in McGibbon and Pande (2015). For VAMP-r this score becomes:

CV (K,U,V|Dtest) = Rspace
r (U,V|Dtest)

=
∥∥
∥∥
(
U�Ctest

00 U
)− 1

2
(
U�Ctest

01 V
) (

V�Ctest
11 V

)− 1
2

∥∥
∥∥

r

r
, (33)

where Rspace
r measures the consistency between the singular subspace and the esti-

mated one without the constraint of orthonormality. However, this scheme suffers
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from the following limitations in practical applications: Firstly, the value of k must be
chosen a priori and kept fixed during the cross-validation procedure, which implies
that models with a different number of singular components cannot be compared by
the validation scores. Secondly, computation of the validation score possibly suffers
from numerical instability. (See Appendix I for detailed analysis.)

We suggest in this paper to perform the cross-validation based on the approxi-
mation error of Koopman operators. According to conclusions in Sect. 3.3, feature
TCCA and VAMP-2 base nonlinear TCCA both maximize the VAMP-E score
RE (K,U,V|Dtrain) for a given training set Dtrain.

Therefore, we can score the performance of estimated singular components on the
test set by

CV (K,U,V|Dtest) = RE (K,U,V|Dtest) . (34)

In contrast with the validation score (33) deduced from the subspace VAMP-r score,
the validation score definedby (34) allows us to choose k according to practical require-
ments: If we are only interested in a small number of dominant singular components,
we can select a fixed value of k. If we want to evaluate the statistical performance of
the approximate model consisting of all available estimated singular components as
in the EDMD method, we can set k = min{dim(χ0), dim(χ1)}. We can even view
k as a hyper-parameter and select a suitable rank of the model via cross-validation.
Another advantage of the VAMP-E based validation score is that it does not involve
any inverse operation of matrices and can be stably computed.

It is worth pointing out that a validation score is proposed Kurebayashi et al. (2016)
for cross-validation of kernel DMD based on the analysis of approximation error of
transition densities, which has a similar form to that of VAMP-E. The theoretical and
empirical comparisons between the two scores will be performed in our future work.

Example 3 We consider here the choice of the basis function number m for the non-
linear TCCA in Example 2. We use five fold cross-validation with the VAMP-E score
to compare different values of m. While the average score computed by training sets
keeps increasing with m, both the cross-validation score and the exact VAMP-E score
achieve their maximum value atm = 33 as in Example 2 (see Fig. 4a). The optimality
can also be demonstrated by comparing Figs. 3b and 4b. Amuch smaller basis set with
m = 13 yields large errors in the approximation of singular functions.Whenm = 250,
the estimation of singular functions suffers from overfitting and the estimated singular
value is even larger than the true value due to the statistical noise.

4.2 Chapman–Kolmogorov Test for Choice of Lag Times

Besides hyper-parameters mentioned in above, the lag time τ is also an essential
parameter especially for time-continuous Markov processes. If τ → 0, theKτ is usu-
ally close to the identity operator and cannot be accurately approximated by a low-rank
model, whereas a too high value of τ can cause the loss of kinetic information in data
since P(xt+τ |xt ) is approximately independent of xt in the case of ergodic processes.
However, the variational approach presented in this paper is based on analysis of the
approximation error of the Koopman operator for a fixed τ , so we cannot compare
models with different lag times and choose τ by the VAMP scores.
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(a)

(b1) (b2)

Fig. 4 Cross-validation for modeling the system in Example 1. a Cross-validated VAMP-E scores for the
choice of the number of basis functions m. The black line indicates the exact VAMP-E score calculated
according to the true model. Using cross-validation we compute the average VAMP-E scores computed
from the training sets (blue) and the test sets (red). b Estimated ψ2 and φ2 obtained by the nonlinear TCCA
with m = 13 and 250 (Color figure online)

In order to address this problem, the Chapman–Kolmogorov test can be used, which
is common in building Markov state models (Prinz et al. 2011). Let us consider the
covariance

cov( f , g; nτ) � 〈 f ,Knτ g〉ρ0(nτ)

= Ext∼ρ0(nτ)

[
f (xt )g(xt+nτ )

]
(35)

between observables f and g of lag time nτ , which can be estimated from data as

covemp( f , g; nτ) = 1

T − nτ

T−nτ∑

t=1

f (xt ) g (xt+nτ )
� , (36)

where ρ0(nτ) is the empirical distribution of the simulation data excluding {xt |t >

T − nτ }. If our methods provide an ideal Markov model of lag time τ , the Koopman
operatorKnτ can be approximated by K̂n

τ , and the covariance can also be predicted as

covpred( f , g; nτ) =
〈
f , K̂n

τ g
〉

ρ0(nτ)

= Ext∼ρ0(nτ)

[
f (xt )χ0(xt )

�]

·URn−1KV�

·Ext∼ρ1

[
χ1(xt )g(xt )

]
(37)

(see Appendix J), where
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R = K · Ext∼ρ1

[
g(xt )�f(xt )

]
. (38)

Therefore, the lag time τ can be selected according to the following criteria in
applications: (i) The lag time is smaller than the timescale that we are interested in.
(ii) The equation

covpred( f , g; nτ) = covemp( f , g; nτ) (39)

holds approximately for multiple observables f , g and lag times nτ . In this paper, we
simply set f , g to be the estimated leading singular functions since they dominate the
dynamics of the Markov process.

5 Numerical Examples

5.1 Double-Gyre System

Let’s consider a stochastic double-gyre system defined by:

dxt = −π A sin(π xt ) cos(π yt ) dt + ε
√
xt/4 + 1 dWt,1,

dyt = π A cos(π xt ) sin(π yt ) dt + ε dWt,2, (40)

whereWt,1 andWt,2 are two independent standard Wiener processes. The dynamics
are defined on the domain [0, 2] × [0, 1] with reflecting boundary. For ε = 0, it can
be seen from the flow field depicted in Fig. 5a that there is no transport between
the left half and the right half of the domain and both subdomains are invariant sets
with measure 1

2 (Froyland and Padberg 2009; Froyland and Padberg-Gehle 2014). For
ε > 0, there is a small amount of transport due to diffusion and the subdomains are
almost invariant. Here we used the parameters A = 0.25, ε = 0.1, and lag time τ = 2
in analysis and simulations. The first two nontrivial singular components are shown
in Fig. 5c, where the two almost invariant sets are clearly visible in ψ2, φ2 and ψ3, φ3
are associated with the rotational kinetics within the almost invariant sets.

We generate 10 trajectories of length 4 with step size 0.02, and perform modeling
by nonlinear TCCA with basis functions

χ0,i (x, y;w) = χ1,i (x, y;w) =
exp

(
−w

∥∥(x, y)� − ci
∥∥2
)

∑m
j=1 exp

(
−w

∥∥(x, y)� − c j
∥∥2
) , for i = 1, . . . ,m

(41)
where c1, . . . , cm are cluster centers given by k-means algorithm, and the smoothing
parameter w is determined via maximizing the VAMP-2 score given in (24) (see
Appendix K.2 for more details of numerical computations). The size of basis set m =
37 is selected by the VAMP-E based cross-validation proposed in 4.1 with 5 folds (see
Fig. 5b), and it can be observed fromFig. 5c–e that the leading singular components are
accurately estimated. In contrast, as shown inFig. 5f, g, amuch small valueofm leads to
significant approximation errors of singular components,while for amuch larger value,
the estimates are obviously influenced by statistical noise. Figure 6 illustrates that the
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(a)

(d)

(b) (c)

(e)

(f)

(g)

Fig. 5 Modeling of the double-gyre system (40). a Flow field of the system, where the arrows represent
directions and magnitudes of (dxt , dyt ) with ε = 0. b VAMP-E scores of estimated models obtained from
the train sets, test sets and true model respectively. The largest MCV on test sets and exact VAMP-E score
are both achieved with m = 37 basis functions. c The true singular values and estimated ones given by the
nonlinear TCCA with m = 37. d The first two nontrivial singular components. e–g The estimated singular
components obtained by the nonlinear TCCA with m = 37, 5 and 200

Koopman operator estimated by nonlinear TCCA can successfully predict the long-
time evolution of the distribution of the state. The Chapman–Kolmogorov test results
are displayed in Fig. 7, which confirm that τ = 2 is a suitable choice of the lag time.

5.2 Stochastic Lorenz System

As the last example, we investigate the stochastic Lorenz system which obeys the
following stochastic differential equation:

dxt = s(y − x) dt + εxt dWt,1,

dyt = (r xt − yt − xt zt ) dt + εyt dWt,2,

dzt = (−bzt + xt yt ) dt + εzt dWt,2, (42)
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(a) (b) (c) (d)

Fig. 6 Probability density of state (xt , yt ) of the double-gyre system predicted by a the full simulation
model and b the estimated Koopman operator obtained by the nonlinear TCCA with m = 37, 5 and 200,
where the initial state is (x0, y0) = (1.48, 0.8)

(a)

(b)

Fig. 7 Chapman–Kolmogorov test for modeling the double-gyre system by nonlinear TCCA with a τ = 2
and b τ = 0.1. The number of basis functions m = 37 for both cases, covi (nτ) = cov(ψ̂i , φ̂i ; nτ) is
the time-lagged covariance between ψ̂i , φ̂i as defined in (35), and ψ̂i , φ̂i are the i th singular functions
estimated with τ = 2. Blue lines indicate empirical covariances directly calculated from data, red lines
indicate the predicted values given by K̂τ as in (37), and error bars represent standard deviations calculated
from 100 bootstrapping replicates of simulation data (Color figure online)

with parameters s = 10, r = 28 and b = 8/3. The deterministic Lorenz system with
ε = 0 is known to exhibit chaotic behavior (Sparrow 1982) with a strange attractor
characterized by two lobes as illustrated in Fig. 8a. We generate 20 trajectories of
length 25 with ε = 0.3 by using the Euler–Maruyama scheme with step size 0.005,
and one of them is shown in Fig. 8b. As stated in Chekroun et al. (2011), all the
trajectories move around the deterministic attractor with small random perturbations
and switch between the two lobes.

The leading singular components computed from the simulation data by the non-
linear TCCA are summarized in Fig. 8c, where the lag time τ = 0.75 is determined
via the Chapman–Kolmogorov test (see Fig. 8d), χ0 = χ1 consist of m normalized
radial basis functions similar to those used in Sect. 5.1, and the selection of m is
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(a) (b)

(c1)

(c2)

(d)

Fig. 8 Modeling of the stochastic Lorenz system (42). a Flow field of the system, where the arrows
represent the mean directions of (dxt , dyt , dzt ). (b) A typical trajectory with ε = 0.3 generated by the
Euler–Maruyama scheme, which is colored according to time (from blue to red). c The first two nontrivial
singular components computed by nonlinear TCCA. d Chapman–Kolmogorov test results for τ = 0.75,
where covi (nτ) = cov(ψ̂i , φ̂i ; nτ), where error bars represent standard deviations calculated from 100
bootstrapping replicates of simulation data (Color figure online)

also implemented by 5-fold cross-validation. According to the patterns of the singular
functions, the stochastic Lorenz system can be coarse-grained into a simplified model
which transitions between four macrostates corresponding to inner and outer basins
of the two attractor lobes. In particular, the sign boundary of ψ1 closely matches that
between the almost invariant sets of the Lorenz flow (Froyland and Padberg 2009).
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(a1) (a2)

(b1)

(b2)

(c)

Fig. 9 Modeling of the stochastic Lorenz system (42) in the space of ηt . a Plots of a typical trajectory in
spaces of (η1t , η

2
t , η

3
t ) and (η4t , η

5
t , η

6
t ), which are colored according to time (from blue to red). Force field

of the system. b The projected singular functions in the space of (xt , yt , zt ) computed by nonlinear TCCA.
c The singular values estimated from trajectories of (xt , yt , zt ) ∈ R

3 and (η1t , . . . , η
6
t ) ∈ R

6 (Color figure
online)

Next, we map the simulation data to a higher dimensional space via the nonlinear
transformation ηt = η(xt , yt , zt ) defined by

η1t = ( zt
50 + 1

2

)
cos

(
πxt
30 + zt

50 − 1
)
, η2t = ( zt

50 + 1
2

)
sin

(
πxt
30 + zt

50 − 1
)
,

η3t = ( zt
50 + 1

2

)
cos

(π yt
30 + zt

50 − 1
)
, η4t = ( zt

50 + 1
2

)
sin

(π yt
30 + zt

50 − 1
)
,

η5t = cos π(xt+yt )
40 , η6t = cos π(xt−yt )

40 .

(43)
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Figure 9a plots the transformed points of the illustrative trajectory in Fig. 8b. We
utilize the nonlinear TCCA to compute the singular components in the space of ηt
= (η1t , . . . , η

6
t ) by assuming that the available observable is ηt instead of (xt , yt , zt ),

show in Fig. 9b the projections of the singular functions back on the three-dimensional
space

ψ
proj
i (xt , yt , zt ) = ψi (η(xt , yt , zt )), φ

proj
i (xt , yt , zt ) = φi (η(xt , yt , zt )), (44)

and compares the singular values estimated from trajectories of (xt , yt , zt ) and
(η1t , . . . , η

6
t ). It can be seen the projected leading singular components are almost

the same as those directly computed from the three-dimensional data, which illus-
trates the transformation invariance of VAMP. Notice it is straightforward to prove
that the exact ψ

proj
i and φ

proj
i are the solution to the variational problem (12) in

the space of (xt , yt , zt )� if there is an inverse mapping η−1 with η−1(η(xt , yt , zt ))
≡ (xt , yt , zt ).

6 Conclusion

The linearized coarse-grained models of Markov systems are commonly used in a
broad range of fields, such as power systems, fluid mechanics and molecular dynam-
ics. Although the models were developed independently in different communities, the
VAMP proposed in this paper provides a general framework for analysis of them, and
the modeling accuracy can be quantitatively evaluated by the VAMP-r and VAMP-E
scores. Moreover, a set of data-driven methods, including feature TCCA, nonlinear
TCCA and VAMP-E based cross-validation, are developed to achieve optimal model-
ing for given finite model dimensions and finite data sets.

The major challenge in real-world applications of VAMP is how to overcome the
curse of dimensionality and solve the variational problem effectively and efficiently
for high-dimensional systems. One feasible way of addressing this challenge is to
approximate singular components by deep neural networks, which yields the concept
of VAMPnet (Mardt et al. 2018). The optimal models can therefore be obtained by
deep learning techniques. Another possible way is to utilize tensor decomposition
based approximation approaches. Some tensor analysis methods have been presented
based on the reversible variational principle and EDMD (Nüske et al. 2016; Klus and
Schütte 2015; Klus et al. 2018), and it is worth studying more general variational
tensor method within the framework of VAMP in future.

One drawback of the methods developed in this paper is that the resulting models
are possibly not valid probabilistic models with nonnegative transition densities if
only the operator error is considered, and the probability-preserving modeling method
requires further investigations. Moreover, the applications of VAMP to detection of
metastable states (Deuflhard and Weber 2005), coherent sets (Froyland and Padberg-
Gehle 2014) and dominant cycles (Conrad et al. 2016) will also be explored in next
steps.
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Appendix

For convenience of notation, we denote by pτ (x, y) = P(xt+τ = y|xt = x) the
transition density which satisfies

∫

A
pτ (x, y)dy = P(xt+τ ∈ A|xt = x) (45)

for every measurable set A, and define the matrix of scalar products:

〈
a,b�〉

ρ
=
[〈
ai , b j

〉
ρ

]
∈ R

m×n (46)

Kg = (Kg1,Kg2, . . .)
� (47)

for a = (a1, a2, . . . , am)�, b = (b1, b2, . . . , bn)� and g = (g1, g2, . . .)�. In addition,
N (·|c, σ 2) denotes the probability density function of the normal distribution with
mean c and variance σ 2.

A Analysis of Koopman Operators

A.1 Definition of Empirical Distributions

We first consider the case where the simulation data consist of S independent trajec-

tories {x1t }Tt=1, . . . , {xSt }Tt=1 of length T and the initial state xs0
iid∼ p0 (x). In this case,

ρ0 and ρ1 can be defined by

ρ0 = 1

T − τ

T−τ∑

t=1

Pt p0, ρ1 = 1

T − τ

T−τ∑

t=1

Pt+τ p0, (48)

and they satisfy
ρ1 = Pτ ρ0, (49)

where Pt denotes the Markov propagator defined in (63). We can then conclude
that the estimates of C00,C11,C01 given by (16–18) are unbiased and consistent as
S → ∞.

In more general cases where trajectories {x1t }T1t=1, . . . , {xSt }TSt=1 are generated with
different initial conditions and different lengths, the similar conclusions can be
obtained by defining ρ0, ρ1 as the averages of marginal distributions of {xst |1 ≤ t ≤
Ts − τ, 1 ≤ s ≤ S} and {xst |1 + τ ≤ t ≤ Ts, 1 ≤ s ≤ S} respectively.
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A.2 Proof of Theorem 1

BecauseKτ is a Hilbert–Schmidt operator from L2
ρ1

to L2
ρ0
, there exists the following

SVD of Kτ :

Kτ g =
∞∑

i=1

σi 〈g, φi 〉ρ1 ψi . (50)

Due to the orthonormality of right singular functions, the projection of any function
g ∈ L2

ρ1
onto the space spanned by {φ1, . . . , φk} can be written as∑k

i=1 〈g, φi 〉ρ1 φi .

Then K̂τ defined by (5) is the approximate Koopman operator deduced from model
(4), and it is the best rank k approximation to Kτ in Hilbert–Schmidt norm according
to the generalized Eckart–Young Theorem (see Theorem 4.4.7 in Hsing and Eubank
(2015)).

Since the adjoint operator K∗
τ of Kτ satisfies

〈
f ,K∗

τ1
〉
ρ1

= 〈Kτ f ,1〉ρ0
=
∫

E[ f (xt+τ )|xt = x]ρ0(x)dx

=
∫

E[ f (x)]ρ1(x)dx
= 〈 f ,1〉ρ1

for all f , we can obtain
K∗

τ1 = Kτ1 = 1, (51)

and conclude from Proposition 2 in Froyland (2013) that (σ1, φ1, ψ1) = (1,1,1).

A.3 Transition Densities Deduced from Koopman Operators

The Koopman operator can also be written as

Kτ g(x) =
∫

pτ (x, y)g(y)dy (52)

if the transition density is given, which implies that

Kτ δy(x) = pτ (x, y). (53)

Then the transition density deduced from the approximate Koopman operator K̂τ

defined by (5) is

p̂τ (x, y) = K̂τ δy(x)

=
k∑

i=1

σiψi (x)φi (y)ρ1(y). (54)
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From (52), we can show that

‖Kτ‖2HS =
∑

i

〈Kτ φi ,Kτ φi 〉ρ0

=
∫ ∑

i

(∫
p(x, y)φi (y)dy

)2

ρ0(x)dx

=
∫ ∑

i

(∫
p(x, y)
ρ1(y)

· φi (y) · ρ1(y)dy
)2

ρ0(x)dx

=
∫ (∫ (

p(x, y)
ρ1(y)

)2

· ρ1(y)dy

)

ρ0(x)dx

=
∫∫

ρ0(x)
ρ1(y)

p(x, y)2dxdy, (55)

and ∥∥∥K̂τ − Kτ

∥∥∥
2

HS
=
∫∫

ρ0(x)
ρ1(y)

(
p̂(x, y) − p(x, y)

)2 dxdy, (56)

i.e., the operator error between K̂τ and Kτ can be represented by the error between
p̂τ and pτ .

It is worth pointing out that the approximate transition density in (54) satisfies the
normalization constraint with

∫
p̂τ (x, y)dy =

k∑

i=1

σiψi (x)
〈
φ j ,1

〉
ρ1

= σ1ψ1(x)

≡ 1, (57)

but p̂τ (x, y) is possibly negative for some x, y. Thus, the approximate Koopman
operators and transition densities are not guaranteed to yield valid probabilisticmodels,
although they can still be utilized to quantitative analysis of Markov processes.

A.4 Sufficient Conditions for Theorem 1

We show here L2
ρ0

,L2
ρ1

are separable Hilbert spaces and Kτ : L2
ρ1

�→ L2
ρ0

is Hilbert–
Schmidt if one of the following conditions is satisfied:

Condition 1 The state space of the Markov process is a finite set.

Proof The proof is trivial by considering Kτ is a linear operator between finite-
dimensional spaces, and thus omitted. ��
Condition 2 The state space of the Markov process is Rd , ρ0(x), ρ1(y) are positive
for all x, y ∈ R

d , and there exists a constant M so that

pτ (x, y) ≤ Mρ1(y), ∀x, y (58)
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Proof Let {e1, e2, . . .} be a orthonormal basis of L2(Rd). Then L2
ρ0

,L2
ρ1

are sepa-

rable because they have the countable orthonormal bases {ρ− 1
2

0 e1, ρ
− 1

2
0 e2, . . .} and

{ρ− 1
2

1 e1, ρ
− 1

2
1 e2, . . .}.

Now we prove that ‖Kτ‖HS < ∞. Because

∫∫
ρ0(x)
ρ1(y)

pτ (x, y)2dxdy ≤
∫∫

Mρ0(x)pτ (x, y)dxdy

= M, (59)

the operator S defined by

S f (x) =
∫ √

ρ0(x)
ρ1(y)

pτ (x, y) f (y)dy (60)

is a Hilbert–Schmidt integral operator from L2(Rd) to L2(Rd) with ‖S‖2HS ≤ M
(Renardy and Rogers 2004). Therefore,

‖Kτ‖2HS =
∑

i

〈
Kτ ρ

− 1
2

1 ei ,Kτ ρ
− 1

2
1 ei

〉

ρ0

=
∑

i

〈Sei ,Sei 〉

= ‖S‖2HS ≤ M, (61)

where 〈 f , g〉 = ∫
f (x)g(x)dx. ��

A.5 Koopman Operators of Deterministic Systems

For the completeness of paper, we prove here the following proposition by contradic-
tion: The Koopman operator Kτ of the deterministic system xt+τ = F(xt ) defined
by

Kτ g(x) = g(F(x)) (62)

is not a compact operator from L2
ρ1

to L2
ρ0

if L2
ρ1

is infinite-dimensional.
Assume that Kτ is compact. Then, the SVD (50) of Kτ exists with σi → 0 as

i → ∞, and there is j so that 0 ≤ σ j < 1. This implies
〈Kτψ j ,Kτψ j

〉
ρ0

= σ 2
j < 1.

However, according to the definition of the Koopman operator,
〈Kτψ j ,Kτψ j

〉
ρ0

=
〈
ψ j , ψ j

〉
ρ1

= 1,which leads to a contradiction.We can conclude thatKτ is not compact
and hence not Hilbert–Schmidt.
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B Markov Propagators

The Markov propagator Pτ is defined by

pt+τ (x) = Pτ pt (x)

�
∫

pτ (y, x) pt (y) dy, (63)

with pt (x) = P(xt = x) being the probability density of xt . According to the SVD of
the Koopman operator given in (50), we have

pτ (x, y) = Kτ δy (x) =
∞∑

i=1

σiψi (x) φi (y) ρ1 (y) . (64)

Then

Pτ pt (x) =
∫

pτ (y, x) pt (y) dy

=
∞∑

i=1

σi 〈pt , ρ0ψi 〉ρ−1
0

ρ1 (x) φi (x) . (65)

Where the following normalizations were used:

〈
ρ0ψi , ρ0ψ j

〉
ρ−1
0

= 〈
ψi , ψ j

〉
ρ0

= 1i= j (66)
〈
ρ1φi , ρ1φ j

〉
ρ−1
1

= 〈
φi , φ j

〉
ρ1

= 1i= j , (67)

The SVD of Pτ can be written as

Pτ pt =
∞∑

i=1

σi 〈pt , ρ0ψi 〉ρ−1
0

ρ1φi . (68)

C Proof of the Variational Principle

Notice that f and g can be expressed as

f = D�
0 ψ, g = D�

1 φ (69)

where ψ = (ψ1, ψ2, . . .)
�, φ = (φ1, φ2, . . .)

� and D0,D1 ∈ R
∞×k .

Since
〈
f, f�

〉

ρ0
= D�

0 D0 (70)
〈
g, g�〉

ρ1
= D�

1 D1 (71)
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and

〈
f,Kτg�〉

ρ0
= D�

0

〈
ψ,Kτφ

�〉

ρ0
D1

= D�
0

〈
ψ,ψ�〉

ρ0
ΣD1

= D�
0 ΣD1,

the optimization problem can be equivalently written as

max
D�
0 D0=I,D�

1 D1=I

k∑

i=1

(
σid�

0,id1,i
)r

, (72)

where Σ = diag(σ1, σ2, . . .).According to the Cauchy–Schwarz inequality and the
conclusion in Section I.3.C of Marshall et al. (1979), we have

k∑

i=1

∣∣∣σid�
0,id1,i

∣∣∣ ≤
k∑

i=1

σi (73)

and
k∑

i=1

(
σid�

0,id1,i
)r ≤

k∑

i=1

∣
∣∣σid�

0,id1,i
∣
∣∣
r ≤

k∑

i=1

σ r
i (74)

under the constraint D�
0 D0 = I,D�

1 D1 = I. The variational principle can then be
proven by considering

k∑

i=1

(
σid�

0,id1,i
)r =

k∑

i=1

σ r
i (75)

when the first k rows of D0 and D1 are identity matrix.

D Variational Principle of Reversible Markov Processes

The variational principle of reversible Markov processes can be summarized as
follows: If the Markov process {xt } is time-reversible with respect to stationary dis-
tribution μ and all eigenvalues of Kτ is nonnegative, then

k∑

i=1

λri = max
k∑

i=1

〈 fi ,Kτ fi 〉rμ

s.t .
〈
fi , f j

〉
μ

= 1i= j (76)

for r ≥ 1 and the maximal value is achieved with fi = ψi , where ψi denotes the
eigenfunctionwith the i th largest eigenvalueλi . The proof is trivial by using variational
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principle of general Markov processes and considering that the eigendecomposition
of Kτ is equivalent to its SVD if {xt } is time-reversible and ρ0 = ρ1 = μ.

E Analysis of Estimation Algorithms

E.1 Correctness of Feature TCCA

We show in this appendix that the feature TCCA algorithm described in Sect. 3.1
solves the optimization problem (19).

Let U′ = C
1
2
00U = (u′

1, . . . ,u
′
k) and V′ = C

1
2
00V = (v′

1, . . . , v
′
k), (19) can be

equivalently expressed as

max
U′,V′

k∑

i=1

(
u′�
i C

− 1
2

00 C01C
− 1

2
11 v′

i

)r

s.t.U′�U′ = I

V′�V′ = I. (77)

According to the Cauchy–Schwarz inequality and the conclusion in Section I.3.C of
Marshall et al. (1979), we have

k∑

i=1

(
u′�
i C

− 1
2

00 C01C
− 1

2
11 v′

i

)r

≤
k∑

i=1

∣∣∣∣u
′�
i C

− 1
2

00 C01C
− 1

2
11 v′

i

∣∣∣∣

r

≤
k∑

i=1

sri (78)

under the constraints U′�U′ = I,V′�V′ = I, where si is the i th largest singular value

ofC
− 1

2
00 C01C

− 1
2

11 . Considering the equalities hold in the above whenU′,V′ are the first

k left and right singular vectors of C
− 1

2
00 C01C

− 1
2

11 , we get

max
U,V

Rr (U,V) =
k∑

i=1

sri

s.t.U�C00U = I

V�C11V = I, (79)

and the correctness of the feature TCCA can then be proved.
Furthermore, if k = min{dim (

χ0
)
, dim

(
χ1
)}, we can get

max
U,V

Rr (U,V) =
∥∥∥∥C

− 1
2

00 C01C
− 1

2
11

∥∥∥∥

r

r
(80)

under the orthonormality constraints.
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E.2 Feature TCCA of Projected Koopman Operators

Define projection operators

Qχ0 f � argmin
f ′∈span{χ0,1,χ0,2,...}

〈
f ′ − f , f ′ − f

〉
ρ0

=
〈
f ,χ�

0

〉

ρ0
C−1
00 χ0, (81)

Qχ1g � argmin
g′∈span{χ1,1,χ1,2,...}

〈
g′ − g, g′ − g

〉
ρ1

=
〈
g,χ�

1

〉

ρ1
C−1
11 χ1, (82)

and let Kproj
τ = Qχ0KτQχ1 be the projection of the Koopman operator Kτ onto

the subspaces of χ0,χ1. Then for any f = u�χ0 ∈ span{χ0,1, χ0,2, . . .} and g =
v�χ1 ∈ span{χ1,1, χ1,2, . . .},

〈
f ,Kproj

τ g
〉

ρ0
=
〈
g,χ�

1

〉

ρ1
C−1
11 C

�
01C

−1
00

〈
χ0, f

〉
ρ0

= u�C01v

= 〈 f ,Kτ g〉ρ0 , (83)

which implies that Eq. (19) can also be interpreted as the variational problem for the
feature TCCA of Kproj

τ .
By ignoring the statistical noise, we can conclude from Theorem 2 that the

{(si , fi , gi )} provided by the feature TCCA are exactly the singular components of
Kproj

τ , and the optimality of the estimation result is therefore invariant for any choice
of r ≥ 1. In addition, the sum over the r ’th power of all singular values of Kproj

τ is

∑

i

sri =
∥∥∥∥C

− 1
2

00 C01C
− 1

2
11

∥∥∥∥

r

r
. (84)

E.3 An Example of Nonlinear TCCA

Consider a stochastic system

xt+1 = 1

2
xt + ut , (85)

where ut is Gaussian white noise with mean zero and variance 1. By setting

ρ0(x) = ρ1(x) = N
(
x |0, 4

3

)
(86)

to be the stationary distribution and basis functions
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χ0(x) = χ1(x) =
(

1, exp(−wx2) −
√

3

8w + 3
, x exp(−(1 − w

1
10 )x2)

)�
(87)

with parameter w ∈ [0.01, 1], we can obtain

C00 = C11 = diag

(

1,

(
16

3
w + 1

)− 1
2 − 3

8w + 3
, 4

√
3
(
−16w

1
10 + 19

)− 3
2

)

,

C01 = diag

(
1,

(
16

3
w2 + 16

3
w + 1

)− 1
2 − 3

8w + 3
,

2
√
3
(
16(1 − w

1
10 )2 − 16w

1
10 + 19

)− 3
2
)

(88)

The maximal VAMP-r score for a given w can then be analytically computed by

Rr (w) = tr
[(

C00(w)−1C01(w)
)r]

(89)

according to (24).We evaluateRr (w) at 9901 equally spaced points ofw in the interval
[0.01, 1] for r = 1, 2, and the maximal values ofR1,R2 are achieved at w = 0.3157
and w = 0.7069 respectively.

F Implementation of Estimation Algorithms

F.1 Decorrelation of Basis Functions

For convenience of notation, here we define

X = (
χ0(x1), . . . ,χ0(xT−τ )

)� (90)

Y = (
χ1(x1+τ ), . . . ,χ0(xT )

)�
. (91)

In this paper, we utilize principal component analysis (PCA) to explicitly reduce
correlations between basis functions as follows: First, we compute the empiricalmeans
of basis functions and the covariance matrices of mean-centered basis functions:

π0 = 1

T − τ
X�1 (92)

π1 = 1

T − τ
Y�1 (93)

COV0 = 1

T − τ
X�X − π0π

�
0 (94)

COV1 = 1

T − τ
Y�Y − π1π

�
1 . (95)
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Next, perform the truncated eigen decomposition of the covariance matrices as

COV0 ≈ Q�
0,dS0,dQ0,d (96)

COV1 ≈ Q�
1,dS1,dQ1,d , (97)

where the diagonal of matrices S0,d ,S1,d contain all positive eigenvalues that are
larger than ε0 and absolute values of all negative eigenvalues (ε0 = 10−10 in our
applications). Last, the new basis functions are given by

χnew
0 =

[
Q�

0,dS
1
2
0,d

(
χ0 − π0

)

1

]

, χnew
1 =

[
Q�

1,dS
1
2
1,d

(
χ1 − π1

)

1

]

(98)

We denote the transformation (98) by

χnew
0 ,χnew

1 = DC
[
χ0,χ1|π0,π1,COV0,COV1

]
(99)

Then the feature TCCA algorithm with decorrelation of basis functions can be sum-
marized as:

1. Compute π0,π1 and COV0,COV1 by (92–95).
2. Let χ0,χ1 := DC

[
χ0,χ1|π0,π1,COV0,COV1

]
, and recalculate X and Y

according to the new basis functions.
3. Compute covariance matrices C00,C01,C11 by

C00 = 1

T − τ
X�X

C01 = 1

T − τ
X�Y

C11 = 1

T − τ
Y�Y

4. Perform the truncated SVD C
− 1

2
00 C01C

− 1
2

11 = U′
kΣ̂kV′�

k .

5. Output estimated singular components Σ̂k = diag(σ̂1, . . . , σ̂k), U�
k χ0 = (ψ̂1,

. . . , ψ̂k)
� and V�

k χ1 = (φ̂1, . . . , φ̂k)
� with Uk = C

− 1
2

00 U′
k and Vk = C

− 1
2

11 V′
k .

Notice that the estimated C00, C01 and C11 in the above algorithm satisfy

[
C00 C01

C�
01 C11

]
= 1

T − τ

[
X�X X�Y
Y�X Y�Y

]

= 1

T − τ
(X,Y)� (X,Y)

� 0 (100)

where C � 0 means C is a positive semi-definite matrix. According to the Schur
complement lemma, we have
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C01C
−1
11 C

�
01 � C00

⇒
(
C

− 1
2

00 C01C
− 1

2
11

)(
C

− 1
2

00 C01C
− 1

2
11

)�
� I (101)

where I denotes an identity matrix of appropriate size. So the estimated σ1 ≤ 1.
Furthermore, since v�

0 χ0 = v�
1 χ1 = 1 for v0 = (0, . . . , 0, 1)� and v1 = (0,

. . . , 0, 1)�,

(
C

− 1
2

00 C01C
− 1

2
11

)(
C

− 1
2

00 C01C
− 1

2
11

)�
C

1
2
00v0 = C

1
2
00

(
X�X

)−1
X�Y

(
Y�Y

)−1
Y�Xv0

= C
1
2
00X

+YY+1

= C
1
2
00v0 (102)

which implies that 1 is the largest singular value of C
− 1

2
00 C01C

− 1
2

11 .

F.2 Parameter Optimization in Nonlinear TCCA

The optimization problem

max
w

Rr (w) =
∥∥∥C00 (w)−

1
2 C01 (w)C11 (w)−

1
2

∥∥∥
r

r
(103)

can be solved by direct search as in our examples (see Appendix K.1). But for a high-
dimensional parameter vector w, it is more efficient to perform the optimization by
the gradient descent method in the form of

w ← w + η
∂Rr (w)

∂w
, (104)

where η is the step size. When r = 2, the gradient of Rr with respect to an element
wi in w can be written as

∂Rr

∂wi
= 2

T − τ
tr

[

C−1
00 C01C

−1
11

(
Y − C�

01C
−1
00 X

)( ∂X
∂wi

)�]

+ 2

T − τ
tr

[

C−1
11 C

�
01C

−1
00

(
X − C01C

−1
11 Y

)( ∂Y
∂wi

)�]
, (105)

where X,Y have the same definitions as in Appendix F.1. If the data size is too large,
we can approximate the gradient based on a random subset of data in each iteration,
and updatew in a stochastic gradient descent manner (Andrew et al. 2013; Mardt et al.
2018).

Like feature TCCA, the nonlinear TCCAalso suffers from the numerical singularity
when C00 or C11 is not full rank. This problem can be addressed by the decorrelation
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of basis functions when performing direct search. For the gradient descent method (or
stochastic gradient descent method), we can replace the objective functionRr (w) by
a regularized one

Rr (w; ε) =
∥
∥∥(C00 (w) + εI)−

1
2 C01 (w) (C11 (w) + εI)−

1
2

∥
∥∥
r

r
, (106)

where ε > 0 is a hyper-parameter and can be selected by the cross-validation.

G Relationship Between VAMP and EDMD

The proof of (21) is trivial. Here, we only show that the eigenvalue problem of K̂τ

given by the feature TCCA is equivalent to that of matrix Kχ as

K̂τ g = λg ⇐⇒ Kχb = λb with g = b�χ (107)

under the assumption that χ0 = χ1 = χ and C00 is invertible, which is consistent
with the spectral approximation theory in EDMD. First, if g and λ satisfy Kτ g = λg,
there must exist vector b so that g = b�χ . Then

K̂τ g = λg

⇒ b�K�
χ χ = λb�χ

⇒ b�K�
χ C00 = λb�C00

⇒ Kχb = λb. (108)

Second, if Kχb = λb,

K̂τb�χ = b�K�
χ χ

= λb�χ . (109)

H Analysis of the VAMP-E Score

H.1 Proof of (28)

Here we define

C f f =
〈
f, f�

〉

ρ0
= U�C00U, (110)

Cgg =
〈
g, g�〉

ρ1
= V�C11V, (111)

C f g =
〈
f,Kτg�〉

ρ1
= U�C01V. (112)

Considering {φi } is an orthonormal basis of L2
ρ1
, we have
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∥
∥∥K̂τ

∥
∥∥
2

HS
=
∑

j

〈
K̂τ φ j , K̂τ φ j

〉

ρ0

=
∑

j

〈〈
φ j , g�〉

ρ1
Kf, f�K

〈
g, φ j

〉
ρ1

〉

ρ0

=
∑

j

〈
φ j , g�〉

ρ1
K
〈
f, f�

〉

ρ0
K
〈
g, φ j

〉
ρ1

= tr

⎡

⎣K
〈
f, f�

〉

ρ0
K
∑

j

〈
g, φ j

〉
ρ1

〈
φ j , g�〉

ρ1

⎤

⎦

= tr

⎡

⎣K
〈
f, f�

〉

ρ0
K

〈
∑

j

〈
g, φ j

〉
ρ1

φ j , g�
〉

ρ1

⎤

⎦

= tr

[
K
〈
f, f�

〉

ρ0
K
〈
g, g�〉

ρ1

]

= tr
[
KC f fKCgg

]
(113)

and
〈
K̂τ ,Kτ

〉

HS
=
∑

j

〈
K̂τ φ j ,Kτ φ j

〉

ρ0

=
∑

j

〈〈
φ j , g�〉

ρ1
Sf, σ jψ j

〉

ρ0

=
∑

j

σ j

〈
φ j , g�〉

ρ1
S
〈
f, ψ j

〉
ρ0

= tr

⎡

⎣K
∑

j

σ j
〈
f, ψ j

〉
ρ0

〈
φ j , g�〉

ρ1

⎤

⎦

= tr

⎡

⎣K

〈

f,
∑

j

σ jψ j

〈
φ j , g�〉

ρ1

〉

ρ0

⎤

⎦

= tr

[
K
〈
f,Kτg�〉

ρ0

]

= tr
[
KC f g

]
, (114)

where 〈·, ·〉HS denotes theHilbert–Schmidt inner product of operators. Then, according
to the definition of Hilbert–Schmidt norm,

∥
∥∥K̂τ − Kτ

∥
∥∥
2

HS
=
∥
∥∥K̂τ

∥
∥∥
2

HS
− 2

∑

j

〈
K̂τ ,Kτ

〉

HS
+ ‖Kτ‖2HS

= tr
[
KC f fKCgg − 2KC f g

]+ ‖Kτ‖2HS (115)
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H.2 Relationship BetweenVAMP-2 andVAMP-E

We first show that the feature TCCA algorithm maximizes VAMP-E. Notice that

RE (K,U,V) = tr

[

2

(
C

1
2
00UKV�C

1
2
11

)� (
C

− 1
2

00 C01C
− 1

2
11

)

−
(
C

1
2
00UKV�C

1
2
11

)� (
C

1
2
00UKV�C

1
2
11

)]

= −
∥∥∥∥C

1
2
00UKV�C

1
2
11 − C

− 1
2

00 C01C
− 1

2
11

∥∥∥∥

2

F
+
∥∥∥∥C

− 1
2

00 C01C
− 1

2
11

∥∥∥∥

2

F

= −
∥∥∥∥U

′KV′� − C
− 1

2
00 C01C

− 1
2

11

∥∥∥∥

2

F
+
∥∥∥∥C

− 1
2

00 C01C
− 1

2
11

∥∥∥∥

2

F
, (116)

where ‖·‖F denotes the Frobenius norm and U′ = C
1
2
00U, V

′ = C
1
2
11V. It can be seen

that the feature TCCA algorithm maximizes the first term on the right-hand side of
(116) and therefore maximizes VAMP-E.

For the optimal model generated by the nonlinear TCCA, the first term on the right-
hand side of (116) is equal to zero, and the second term is maximized as a function of
w. Thus, the nonlinear TCCA also maximizes VAMP-E.

In addition, for K,U,V provided by both feature TCCA and nonlinear TCCA,

RE (K,U,V) = −
∥∥∥∥U

′KV′� − C
− 1

2
00 C01C

− 1
2

11

∥∥∥∥

2

F
+
∥∥∥∥C

− 1
2

00 C01C
− 1

2
11

∥∥∥∥

2

F

= −
min{m,n}∑

i=k+1

K 2
i i +

min{m,n}∑

i=1

K 2
i i

=
k∑

i=1

K 2
i i

= R2(U,V). (117)

I Subspace Variational Principle

The variational principle proposed in Sect. 2.2 can be further extended to singular
subspaces of the Koopman operator as follows:

k∑

i=1

σ r
i ≥ Rspace

r
[
f, g

] =
∥∥∥∥C

− 1
2

f f C f gC
− 1

2
gg

∥∥∥∥

r

r
(118)

for r ≥ 1, and the equality holds if span{ψ1, . . . , ψk} = span{ f1, . . . , fk} and
span{φ1, . . . , φk} = span{g1, . . . , gk}, where C f f = 〈

f, f�
〉
ρ0
, C f g = 〈

f,Kτg�〉
ρ0
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andCgg = 〈
g, g�〉

ρ1
. This statement can be proven by implementing the feature TCCA

algorithm with feature functions f and g.
The Rspace

r
[
f, g

]
is a relaxation of VAMP-r , which measures the consistency

between the subspaces spanned by f, g and the dominant singular spaces, and we
call it the subspace VAMP-r score.Rspace

r
[
f, g

]
is invariant with respect to the invert-

ible linear transformations of f and g, i.e.,Rspace
r

[
f, g

] = Rspace
r

[
A f f,Agg

]
for any

invertible matrices A f ,Ag .
In the cross-validation for feature TCCA, we can utilize Rspace

r to calculate the
validation score by

CV (K,U,V|Dtest) = Rspace
r (U,V|Dtest)

= Rspace
r

[
U�χ0,V

�χ1|Dtest

]

=
∥∥∥
∥
(
U�Ctest

00 U
)− 1

2
(
U�Ctest

01 V
) (

V�Ctest
11 V

)− 1
2

∥∥∥
∥

r

r
.

(119)

We now analyze the difficulties of applying Rspace
r to the cross-validation. First,

for given basis functions χ0,χ1,Rspace
r (U,V|Dtest) is monotonically increasing with

respect to k and

Rspace
r (Uk,Vk |Dtest) =

∥
∥∥∥
(
Ctest
00

)− 1
2 Ctest

01

(
Ctest
11

)− 1
2

∥
∥∥∥

r

r
(120)

is independent of the estimated singular components if k = max{dim(χ0), dim(χ1)}.
Therefore, k is a new hyper-parameter that cannot be determined by the cross-
validation. Second, for training set, U�

k C
train
00 Uk = V�

k C
train
11 Vk = I. But for test

set, U�
k C

test
00 Uk and V�

k C
test
11 Vk are possibly singular and the validation score cannot

be reliably computed.

J Computation of K̂n
�

The approximate Koopman operator in the form of (27) can also be written as

K̂τ g =
〈
g, g�〉

ρ1
Kf . (121)

Hence,

K̂n
τ g =

〈
g, g�〉

ρ1
K
(
Rn−1

)�
f, (122)

and we have 〈
f , K̂n

τ g
〉

ρ0(nτ)
=
〈
f , f�

〉

ρ0(nτ)
Rn−1K 〈g, g〉ρ1 (123)
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and

p̂nτ (x, y) = K̂n
τ δy(x)

= f(x)�Rn−1Kg(y)ρ1(y), (124)

where
R = K

〈
g, f�

〉

ρ1
. (125)

Notice that substituting f = U�χ0, g = V�χ1 into (123) yields (37).

K Details of Numerical Examples

K.1 One-Dimensional System

For convenience of analysis and computation, we partition the state space [−20, 20]
into 2000 bins S1, . . . , S2000 uniformly, and discretize the one-dimensional dynamical
system described in Example 1 as

P(xt+1 ∈ S j |xt ∈ Si ) ∝ N
(

s j | si
2

+ 7si
1 + 0.12s2i

+ 6 cos si , 10

)

, (126)

where si is the center of the bin Si , and the local distribution of xt within any bin is
always uniform distribution. All numerical computations and simulations in Exam-
ples 1, 2 and 3 are based on (126), and the initial state x0 is distributed according to
the stationary distribution ρ0 = ρ1 = μ.

In Example 1, the stationary distribution and singular components of the Koopman
operator are analytically computed by the featureTCCAwith basis functionsχ0,i (x) =
χ1,i (x) = 1x∈Si as follows:

1. Compute the transition matrix P = [Pi j ] = [P(xt+1 ∈ S j |xt ∈ Si )] and the
stationary vector π = [πi ] satisfying

π�P = π�,
∑

i

πi = 1.

2. Compute covariance matrices C00 = C11 = diag(π) and C01 = diag(π)P.
3. Perform the SVD

K̄ = C
− 1

2
00 C01C

− 1
2

11 = U′KV′�

with K = diag(σ1, . . . , σ2000) and σ1 ≥ σ2 ≥ . . . ≥ σ2000.

4. Compute U = [Ui j ] = C
− 1

2
00 U′ and V = [Vi j ] = C

− 1
2

11 V′.
5. Output the stationary distributionμ(x) = ∑

i 50πi ·1x∈Si and singular components
(σi , ψi (x), φi (x)) = (σi ,

∑
j U ji · 1x∈S j ,

∑
j V ji · 1x∈S j ).
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The transition density of the projected Koopman operator K̂τ = ∑k
i=1 σi 〈·, φi 〉ρ1 ψi

is obtained by

p̂τ (x, y) = K̂τ δy(x)

=
k∑

i=1

σiψi (x)φi (y)μ(y) (127)

(see Appendix A.3) and the corresponding approximate transition matrix is

P̂ = U�
k KkVkdiag(π), (128)

whereUk,Vk consist of the first k columns ofU,V, andKk = diag(σ1, . . . , σk). Then
the relative error of K̂τ in Fig. 1e can be calculated by

‖K̂τ − Kτ‖HS
‖Kτ‖HS =

√∑2000
i=k+1 σ 2

i
√∑2000

i=1 σ 2
i

, (129)

the long-time transition density in Fig. 2 is given by

p̂nτ (x, y) = 50
∑

j

[
P̂n
]

i j
· 1y∈S j , (130)

and the cumulative error of p̂nτ (x, y) is

error =
256∑

n=1

∫
μ(y)−1 ( p̂nτ (x, y) − pnτ (x, y)

)2 dy

=
256∑

n=1

2000∑

j=1

π−1
j

([
P̂n
]

i j
− [

Pn]
i j

)2

(131)

for x ∈ Si .
In Examples 2 and 3 , the smoothing parameter w are optimized by the golden-

section search algorithm (Press et al. 2007) as follows for nonlinear TCCA:

1. Let a = −6, b = 6, c = 0.618a + 0.382b, d = 0.382a + 0.618b.
2. Compute R2(exp a), R2(exp b), R2(exp c) and R2(exp d), where R2(w)

=
∥∥∥C00 (w)− 1

2 C01 (w)C11 (w)− 1
2

∥∥∥
2

F
and ‖ · ‖F denotes the Frobenius norm.

3. If max{R2(exp a),R2(exp b),R2(exp c)} > max{R2(exp b),R2(exp c),R2
(exp d)}, let (a, b, c, d) := (a, d, 0.618a + 0.382d, c). Otherwise, let (a, b, c, d)

:= (c, b, d, 0.618b + 0.382c).
4. If |a − b| < 10−3, output logw ∈ {a, b, c, d} with the largest value of R2(w).

Otherwise, go back to Step 2.
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Furthermore, w is computed in the same way when perform nonlinear TCCA in
Sects. 5.1 and 5.2 .

K.2 Double-Gyre System

For the double-gyre system in Sect. 5.1, we first perform the temporal discretization
by the Euler–Maruyama scheme as

P(xt+Δ|xt ) = N (xt+Δ|xt − π A sin(πxt ) cos(π yt )Δ, ε2(xt/4 + 1)),

P(yt+Δ|xt ) = N (yt+Δ|yt + π A cos(πxt ) sin(π yt )Δ, ε2), (132)

where xt = (xt , yt )� and Δ = 0.02 is the step size. Then perform the spatial dis-
cretization as

P(xt+Δ ∈ S j |xt ∈ Si ) ∝ N (s j,x |si,x − π A sin(πsi,x ) cos(πsi,y)Δ, ε2(si,x/4 + 1))

·N (s j,y |si,y + π A cos(πsi,x ) sin(πsi,y)Δ, ε2). (133)

Here S1, . . . , S1250 are 50× 25 bins which form a uniform partition of the state space
[0, 2]×[0, 1] and (si,x , si,y) represents the center of Si . Simulation data and the “true”
singular components are all computed by using (133) with the initial distribution of
(x0, y0) being the stationary one.

In Fig. 6, the transition density of lag time nτ is computed from the estimated
singular components (K,U�χ0,V

�χ1) as

p̂nτ (x, y) = 625
∑

j

[
P̂n
]

i j
· 1y∈S j , for x ∈ Si (134)

where
P̂ = U�KVdiag(ρ1) (135)

is the approximate transition matrix, and ρ1 = [ρ1i ] with

ρ1i = 1

T − τ

T−τ∑

t=1

1xt+τ ∈Si . (136)
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