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Abstract
Coupled populations of identical phase oscillators with higher-order interactions can
give rise to heteroclinic cycles between invariant sets where populations show distinct
frequencies. For these heteroclinic cycles to be observable, they have to have some
stability properties. In this paper, we complement the existence results for hetero-
clinic cycles given in a companion paper by proving stability results for heteroclinic
cycles for coupled oscillator populations consisting of two oscillators each. Moreover,
we show that for systems with four coupled phase oscillator populations, there are
distinct heteroclinic cycles that form a heteroclinic network. While such networks
cannot be asymptotically stable, the local attraction properties of each cycle in the
network can be quantified by stability indices. We calculate these stability indices in
terms of the coupling parameters between oscillator populations. Hence, our results
elucidate how oscillator coupling influences sequential transitions along a heteroclinic
network where individual oscillator populations switch sequentially between a high
and a low frequency regime; such dynamics appear relevant for the functionality of
neural oscillators.
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1 Introduction

Interacting populations of identical oscillators can generate a range of collective
dynamics (Strogatz 2004), ranging from complete (global) synchronization to syn-
chrony patterns where synchrony is localized in some populations. These synchrony
patterns include patterns of localized frequency synchrony where some populations
oscillate faster (or slower) than others (Ashwin and Burylko 2015; Bick and Ash-
win 2016; Omel’chenko 2018). For coupled oscillator populations with higher-order
interactions—including higher harmonics or nonlinear interactions between three
or more oscillators (nonpairwise terms)—which arise naturally in phase reductions
(Ashwin and Rodrigues 2016; León and Pazó 2019), heteroclinic structures between
patterns of localized frequency synchrony are possible (Bick 2018, 2019). Hetero-
clinic dynamics are not only of interest in their own right (seeWeinberger and Ashwin
2018 for a recent review), but have also been related, for example, to computation in
neural systems (Rabinovich et al. 2006; Neves and Timme 2012; Ashwin et al. 2016).
In the companion paper (Bick 2019), we showed the existence of heteroclinic cycles
between invariant sets with localized frequency synchrony in three coupled popula-
tions. In particular, we obtained explicit existence conditions for heteroclinic cycles
in terms of the interaction between the phase oscillator populations.

For heteroclinic dynamics between invariant setwith localized frequency synchrony
to be observable over extended timescales, the heteroclinic cycles and networks have
to attract some initial conditions. Apart from asymptotic stability and instability, het-
eroclinic cycles can display various intermediate forms of nonasymptotic stability:
These range from fragmentary asymptotic stability (“attracting more than nothing”)
to essential asymptotic stability (“attracting almost everything”). Podvigina and Ash-
win (2011) introduced a stability index to quantify attraction along trajectories. This
stability index is defined for any dynamically invariant set and thus provides a con-
venient tool to describe the stability of heteroclinic trajectories within a cycle or
network.1 Recently, Garrido-da-Silva and Castro (2019) derived explicit expressions
for the stability indices for the fairly general class of quasi-simple heteroclinic cycles.
Such expressions are particularly useful to describe the stability of heteroclinic cycles
that are part of a network consisting of more than one cycle.

The main contributions of this paper are stability results for heteroclinic cycles
and networks between invariant sets with localized frequency synchrony in coupled
populations of phase oscillators. In particular, we prove stability results which allow to
obtain explicit relations between the coupling parameters of the oscillator populations
and the stability properties of heteroclinic structures in phase space. Importantly, this
progress contributes to the question how the coupling properties (its topology and
functional form) of interacting oscillatory units shape the overall collective dynamics.
The implications of the coupling properties on the dynamics local to synchrony have
been studied extensively; see, for example, Pecora and Carroll (1998), Pereira et al.
(2014). By contrast, our results relate to how the coupling properties shape global

1 To avoid confusion in terminology, we reserve the word “network” for heteroclinic networks and talk
about coupled (or interacting) populations of phase oscillators (rather than oscillator networks).
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dynamical features (such as heteroclinic cycles and networks) for a class of vector
fields relevant to describe real-world coupled nonlinear oscillator populations.

We focus on three and four coupled phase oscillator populations with two oscilla-
tors per population. Due to the existence of invariant subspaces, the heteroclinic cycles
are quasi-simple. Consequently, we apply the stability results of Garrido-da-Silva and
Castro (2019) to calculate the stability indices. We first consider three coupled oscilla-
tor populations to calculate stability indices for the heteroclinic cycles in Bick (2019).
We then show that four coupled oscillator populations support a heteroclinic network
which contains two distinct heteroclinic cycles of the type considered before. Their
stability properties are then calculated using the tools developed for three populations
and we comment on the stability of the whole network. Since our stability conditions
explicitly depend on the coupling parameters of the oscillator populations, our results
elucidate how the coupling structure of the system shapes the asymptotic dynamical
behavior. Moreover, they highlight the utility of the general stability results for quasi-
simple heteroclinic cycles (Garrido-da-Silva and Castro 2019) for heteroclinic cycles
on arbitrary manifolds.

The remainder of this paper is structured as follows. The following section sum-
marizes facts on (robust) heteroclinic cycles, nonasymptotic stability, and coupled
populations of phase oscillators. In Sect. 3, we calculate the stability indices along the
heteroclinic cycle in the companion paper (Bick 2019) for a system of three popula-
tions. Such cycles are contained in a heteroclinic network for four coupled populations
as shown in Sect. 4, and we calculate their stability properties. We also give some
numerical results and comment on the stability of the network as a whole. Finally, we
give some concluding remarks in Sect. 5.

2 Preliminaries

To set the stage, we review some results about heteroclinic cycles, their stability
properties, and coupled populations of phase oscillators; the notation here follows the
companion paper (Bick 2019).

2.1 Heteroclinic Cycles and Their Stability

LetM be a smooth d-dimensional manifold and let X be a smooth vector field onM.
For a hyperbolic equilibrium ξ ∈ M, define the stable manifold W s(ξ) and unstable
manifold W u(ξ) as usual.

Definition 2.1 A heteroclinic cycle C consists of a finite number of hyperbolic equi-
libria ξq ∈ M, q = 1, . . . , Q, together with heteroclinic trajectories

[ξq → ξq+1] ⊂ W u(ξq) ∩ W s(ξq+1) �= ∅

where indices are taken modulo Q.
A heteroclinic network N is a connected union of two or more distinct heteroclinic

cycles.
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For simplicity, we write C = (ξ1, . . . , ξQ). If M is a quotient of a higher-
dimensional manifold and C is a heteroclinic cycle in M, we also call the lift of C a
heteroclinic cycle. The same goes for a heteroclinic network N.

While heteroclinic cycles are in general a nongeneric phenomenon, they can be
robust if all connections are of saddle–sink type in (lower-dimensional) subspaces. Let
C = (ξ1, . . . , ξQ)be aheteroclinic cycle. If there areflow-invariant submanifolds Pq ⊂
M such that [ξq → ξq+1] ⊂ Pq is a saddle–sink connection, then C is robust with
respect to perturbations of X which preserve the invariant sets Pq .

Robust heteroclinic cycles may arise for example in dynamical systems with sym-
metry. Let � be a finite group which acts on M. For a subgroup H ⊂ �, define the
set Fix(H) = { x ∈ M | γ x = x ∀γ ∈ H } of points fixed under H ; this is invariant
under the flow generated by X . For x ∈ M, let �x = { γ x | γ ∈ � } denote its group
orbit and �(x) = { γ ∈ � | γ x = x } its isotropy subgroup. Now assume that the
smooth vector field X is a �-equivariant vector field on M, that is, the action of the
group commutes with X . Any heteroclinic cycle with Pq = Fix(�q) where �q are
isotropy subgroups is robust to�-equivariant perturbations of X , that is,�-equivariant
vector fields close to X will have a heteroclinic cycle close to C; see Krupa (1997) for
more details.

2.1.1 Nonasymptotic Stability

Heteroclinic cycles may have intricate nonasymptotic stability properties. We briefly
recall some definitions that formalize these; we state them for R

d but they generalize
to more general manifoldsM.

For ε > 0, write Bε(A) for an ε-neighborhood of a set A ⊂ R
d and B(A) for its

basin of attraction, i.e., the set of points x ∈ R
d with ω-limit set in A. For δ > 0, the

δ-local basin of attraction is

Bδ(A) := { x ∈ B(A) | ∀t > 0 : 	t (x) ∈ Bδ(A) } ,

where 	t is the flow generated by X . Let 
 denote the Lebesgue measure.

Definition 2.2 (Podvigina 2012) An invariant set A is fragmentarily asymptotically
stable (f.a.s.) if 
(Bδ(A)) > 0 for any δ > 0.

Being f.a.s. is not necessarily a very strong form of attraction. A set that is not
even f.a.s. is usually called completely unstable, see also Podvigina (2012).Melbourne
(1991) introduces the stronger notion of essential asymptotic stability, which we quote
here in the formulation of Brannath (1994).

Definition 2.3 (Brannath 1994, Definition 1.2) A compact invariant set A is called
essentially asymptotically stable (e.a.s.) if it is asymptotically stable relative2 to a set

2 Asymptotic stability relative to a set ϒ means that the condition for asymptotic stability is satisfied for
neighborhoods intersected with ϒ rather than for full neighborhoods: for every neighborhoodU of A there
exists a neighborhood V of A such that for all x ∈ V ∩ϒ we have 	t (x) ∈ U for all t > 0, and the ω-limit
set of x is contained in A, see Podvigina and Ashwin (2011, Definition 3).

123



Journal of Nonlinear Science (2019) 29:2571–2600 2575

ϒ ⊂ R
d with the property that

lim
ε→0


(Bε(A) ∩ ϒ)


(Bε(A))
= 1. (1)

Podvigina and Ashwin (2011) introduced the concept of a local stability index3

s(x) ∈ [−∞,+∞] to quantify stability and attraction. It is constant along trajectories,
so to characterize stability/attraction of a heteroclinic cycle with one-dimensional
connections, it suffices to consider finitely many stability indices. Let sq denote the
stability index along [ξq−1 → ξq ]. For our purposes, it is enough to note that (under
some mild assumptions) a heteroclinic cycle C = (ξ1, . . . , ξQ) is completely unstable
if sq = −∞ for all q, it is f.a.s. as soon as sq > −∞ for some q, and it is e.a.s. if and
only if sq > 0 for all q = 1, . . . , Q. See Lohse (2015, Theorem 3.1) for details.

2.1.2 Stability of Quasi-Simple Heteroclinic Cycles

The stability indices can be calculated for specific classes of heteroclinic cycles. Let
C = (ξ1, . . . , ξQ) be a robust heteroclinic cycle on M. As above, let Pq denote
the flow-invariant sets which contain the heteroclinic connections. Let Tq := TξqM
denote the tangent space ofM at ξq . For subspaces V ⊂ W ⊂ Tq , writeW 
V for the
orthogonal complement of V inW . In slight abuse of notation, define P−

q := Tξq Pq−1

and P+
q := Tξq Pq to be the tangent spaces of Pq−1 and Pq in Tq , respectively. These are

linear subspaces of Tq of the same dimension as Pq−1 (which contains the incoming
saddle connection) and Pq (containing the outgoing connection), respectively. Set
Lq := P−

q ∩ P+
q .

Definition 2.4 The robust heteroclinic cycle C is quasi-simple if dim(P−
q 
 Lq) =

dim(P+
q 
 Lq) = 1 for all q ∈ {1, . . . , Q}.

Remark 2.5 Note that this is a slight generalization of the definition given by Garrido-
da-Silva and Castro in (2019) to arbitrary manifolds. In particular, the condition in
Definition 2.4 implies that dim(Pq−1) = dim(Pq).

As usual, an eigenvalue of the Jacobian dX(ξq ) is radial if its associated eigenvector
is in Lq , contracting if the associated eigenvector is in P−

q 
 Lq , expanding if the
associated eigenvector is in P+

q 
 Lq , and transverse otherwise. In other words, a
cycle is quasi-simple if it has unique expanding and contracting directions at each
equilibrium, and thus one-dimensional saddle connections.

The standard way to analyze the stability of heteroclinic cycles is to write down a
Poincaré returnmapwith linearized dynamics local to the equilibria as well as globally
along the connecting orbits; cf. Krupa andMelbourne (1995). For quasi-simple cycles
whose global maps are rescaled permutations of the local coordinate axes Garrido-
da-Silva and Castro (2019) showed how their (asymptotic or nonasymptotic) stability
can be calculated solely from the properties of the linearization at the equilibria of the

3 The stability index is usually denoted by σ(x). We deviate from this since we use σ as the index of an
oscillator population, see, e.g., Eqs. (10) and (28).
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cycle. More precisely, the stability of each equilibrium ξq along the cycle is encoded
in a transition matrix Mq whose entries are rational functions of the eigenvalues at ξq .
The stability of the cycle is determined by properties of these matrices.We explain this
technique inmore detail whenwe apply it in Sect. 3. Note that this immediately implies
that the results in Garrido-da-Silva and Castro (2019) carry over to our definition of
a quasi-simple heteroclinic cycle since the stability does not depend on other global
properties.

For ease of reference, we recall the stability results from Garrido-da-Silva and
Castro (2019, Theorems 3.4, 3.10) in a condensed form. For a heteroclinic cycle C =
(ξ1, . . . , ξQ) with transition matrices Mq , set M(q) := Mq−1 · · ·M1MQ · · ·Mq+1Mq .
AllM(q) have the same eigenvalues. If none of theMq has a negative entry—there are
no repelling transverse directions—we have the following result, which is a dichotomy
between asymptotic stability and complete instability.

Proposition 2.6 (Garrido-da-Silva and Castro 2019, Theorem 3.4) Let C be a quasi-
simple heteroclinic cycle with rescaled permutations of the local coordinate axes as
global maps and transition matrices Mq , q = 1, . . . , Q. Suppose that all entries of
all Mq are nonnegative.

(i) If M(1) satisfies |λmax| > 1, then sq = +∞ for all q = 1, . . . , Q and the cycle C
is asymptotically stable.

(ii) Otherwise, sq = −∞ for all q = 1, . . . , Q and C is completely unstable.

If the transition matrices Mq contain negative entries—there are transversely
repelling directions, for example, if the cycle is part of a network—then addi-
tional criteria have to be satisfied in order for the cycle to possess some form of
nonasymptotic stability. For a matrix M, let λmax denote the maximal eigenvalue and
umax = (umax

1 , . . . , umax
d ) the corresponding eigenvector. Define the conditions (cf.

Garrido-da-Silva and Castro 2019, Lemma 3.2)

(C1) λmax is real,
(C2) λmax > 1,
(C3) umax

m umax
n > 0 for all m, n = 1, . . . , d.

Generally, stability indices are evaluated as a function of the local stability proper-
ties at the equilibrium points (Podvigina and Ashwin 2011); for quasi-simple cycles
in arbitrary dimension (Garrido-da-Silva and Castro 2019), denote this function
by F ind. Later on, we will consider three-dimensional transition matrices and for
β = (β1, β2, β3) ∈ R

3
� {0}, this function reads

F ind(β) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞ if min(β1, β2, β3) ≥ 0,

− β1+β2+β3
min(β1,β2,β3)

if β1 + β2 + β3 > 0

and min(β1, β2, β3) < 0,

0 if β1 + β2 + β3 = 0,

β1+β2+β3
max(β1,β2,β3)

if β1 + β2 + β3 < 0

and max(β1, β2, β3) > 0,

−∞ if max(β1, β2, β3) ≤ 0.
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The following proposition summarizes the second stability result adapted to our set-
ting.

Proposition 2.7 (Garrido-da-Silva and Castro 2019, Theorem 3.10) Let C be a quasi-
simple heteroclinic cycle with rescaled permutations of the local coordinate axes as
global maps and transition matricesMq , q = 1, . . . , Q. Suppose that at least oneMq

has at least one negative entry.

(a) If there is at least one q such that the matrix M(q) does not satisfy conditions
(C1)–(C3), then sq = −∞ for all q = 1, . . . , Q and C is completely unstable.

(b) If all M(q) satisfy conditions (C1)–(C3), then C is f.a.s. and there exist
β(1), . . . , β(s) ∈ R

3 such that the stability indices for C are given by

sq = min
l=1,...,s

F ind(β(l)).

The vectors β(l) that determine the stability indices depend on the local stability
at the equilibria: They are rows of the transition matrices (and their products) with
at least one negative entry. The number s relates to the number of such rows in the
transition matrices (and their products), see Garrido-da-Silva and Castro (2019) for
details.

2.2 Coupled Populations of Phase Oscillators

ConsiderM populations of N phase oscillators where θσ,k ∈ T := R/2πZ denotes the
phase of oscillator k in population σ . Hence, the state of the coupled oscillator popula-
tions is determined by θ = (θ1, . . . , θM ) ∈ TMN where θσ = (θσ,1, . . . , θσ,N ) ∈ TN

is the state of population σ . Let SN denote the permutation group of N elements.
Suppose that the phase evolution is given by

θ̇σ,k := d

dt
θσ,k = ω + Yσ,k(θ) (2)

where ω is the intrinsic frequency of each oscillator and the vector field Y = (Yσ,k) is
(SN ×T)M -equivariant. Here, each copy ofT acts by shifting all oscillator phases of a
given population σ by a common constant, while SN permutes the oscillator indices k.

The symmetry implies that certain phase configurations are dynamically invariant.
For a single population of N oscillators, the subset

S :=
{
(φ1, . . . , φN ) ∈ TN

∣
∣
∣ φk = φk+1

}
(3)

corresponds to phases being in full phase synchrony and

D :=
{

(φ1, . . . , φN ) ∈ TN
∣
∣
∣
∣ φk+1 = φk + 2π

N

}

(4)
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denotes a splay phase configuration—typically we call any element of the group
orbit SND a splay phase. For interacting oscillator populations, we use the shorthand
notation

θ1 · · · θσ−1Sθσ+1 · · · θM =
{

θ ∈ TMN
∣
∣
∣ θσ ∈ S

}
(5a)

θ1 · · · θσ−1Dθσ+1 · · · θM =
{

θ ∈ TMN
∣
∣
∣ θσ ∈ D

}
(5b)

to indicate that population σ is fully phase synchronized or in splay phase. Because
of the SM

N symmetry, the sets (5) are invariant (Ashwin and Swift 1992). We extend
this notation to intersections of sets (5): In particular, for Xτ ∈ {S,D} we write

X1 · · ·XM =
M⋂

τ=1

θ1 · · · θτ−1Xτ θτ+1 · · · θM . (6)

For example, S · · · S (M times) is the set of cluster states where all populations are
fully phase synchronized and D · · ·D the set where all populations are in splay phase.

To reduce the continuous phase-shift symmetry TM , we may rewrite (2) in terms of
phase differences ψσ,k := θσ,k+1 − θσ,1, k = 1, . . . , N − 1. Hence, with ψσ ∈ TN−1

we also write for example ψ1S · · · S (or simply ψS · · · S if the index is obvious) to
indicate that all but the first population is phase synchronized. Note that the sets (6) are
equilibria relative to TM , that is, they are equilibria for the reduced system in terms of
phase differences on TM(N−1). While the linearization of (2) on TMN at the relative
equilibria (6) has M zero eigenvalues (corresponding to perturbations along the group
orbits of each of the M phase-shift symmetries), linear stability of (6) on the reduced
phase space TM(N−1) is given by the remaining M(N − 1) eigenvalues.

2.2.1 Frequencies and Localized Frequency Synchrony

Suppose that M > 1 and let θ : [0,∞) → TMN be a solution of (2) with initial
condition θ(0) = θ0.While θ̇σ,k(t) is the instantaneous angular frequency of oscillator
(σ, k), define the asymptotic average angular frequency of oscillator (σ, k) by

�σ,k(θ
0) := lim

T→∞
1

T

∫ T

0
θ̇σ,k(t) dt . (7)

Here, we assume that these limits exist for all oscillators, but this notion can be
generalized to frequency intervals; see also Bick and Ashwin (2016), Bick (2017).

Definition 2.8 A connected flow-invariant set A ⊂ TMN has localized frequency syn-
chrony if for any θ0 ∈ A and fixed σ we have �σ,k = �σ for all k and there exist
indices σ �= τ such that

�σ �= �τ . (8)
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Remark 2.9 Note that a chain-recurrent set A with localized frequency synchrony is a
weak chimera as defined by Ashwin and Burylko (2015).

3 Three Coupled Oscillator Populations

Here, we derive explicit stability results for the heteroclinic cycles in M = 3 coupled
populations of N = 2 phase oscillators (2) with interaction functions that include
higher harmonics and nonpairwise interactions; such terms arise naturally in phase
reductions of nonlinear oscillators (Ashwin andRodrigues 2016; León andPazó 2019).
Specifically, interactions between pairs of oscillators are mediated by the coupling
function

g(ϑ) = sin(ϑ + α) − r sin(a(ϑ + α)) (9)

and the interaction between populations is determined by the nonpairwise interaction
function

G̃(4)(θτ ;ϑ) = −1

4

(
cos(θτ,1 − θτ,2 + ϑ + α) + cos(θτ,2 − θτ,1 + ϑ + α)

)
. (10)

For coupling strength K > 0 between populations, the phase of oscillator k ∈ {1, 2}
in population σ ∈ {1, 2, 3} evolves according to

θ̇σ,k = ω + g(θσ,3−k − θσ,k) + K G̃(4)(θσ−1; θσ,3−k − θσ,k)

− K G̃(4)(θσ+1; θσ,3−k − θσ,k).
(11)

These are the equations ofmotion considered in the companion paper (Bick 2019) with
phase shifts parametrized by α := α2 = α4− π

2 and use the notation introduced there.4

The interactions between populations in (11)—which include nonpairwise coupling
—are a special case of (2). More precisely, with ZM := Z/MZ the system (11) is
(SN × T)M � ZM -equivariant. Each copy of T acts by shifting all oscillator phases
of one population by a common constant, while SN permutes its oscillators. The
action of ZM permutes the populations cyclically. These actions do not necessarily
commute. The phase space of (11) is organized by invariant subspaces and there are
relative equilibria DSS, DDS and their images under the Z3 action. In this section, we
consider the dynamics of (11) on the reduced phase space TM(N−1) = T3 where the
coordinates represent the phase differences in each population. In particular, on T3

the sets DSS,DDS are equilibria DSS = (π, 0, 0), DDS = (π, π, 0).

3.1 Heteroclinic Cycles and Local Stability

The coupled oscillator populations (11) with interaction functions (9), (10) support
a robust heteroclinic cycle (Bick 2018, 2019). More specifically, on T3 the linear
stability of the equilibria DSS, DDS is given by the eigenvalues

4 As shown in Bick (2018) and Appendix A, these equations can alternatively also be interpreted as a
truncation of coupled populations with state-dependent phase-shift parameters.
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λDSS1 = 2 cos(α) + 4r cos(2α), (12a)

λDSS2 = 2K sin(α) − 2 cos(α) + 4r cos(2α), (12b)

λDSS3 = −2K sin(α) − 2 cos(α) + 4r cos(2α), (12c)

and

λDDS1 = 2K sin(α) + 2 cos(α) + 4r cos(2α), (13a)

λDDS2 = −2K sin(α) + 2 cos(α) + 4r cos(2α), (13b)

λDDS3 = −2 cos(α) + 4r cos(2α). (13c)

Conditions for the existence of a robust heteroclinic cycle can now be given in terms
of the local stability properties of DSS, DDS (which, in turn, depend on the interaction
parameters):

Lemma 3.1 (See Bick 2018 and Lemma 3.2 in Bick 2019) Suppose that λDSS3 < 0 <

λDSS2 and λDDS2 < 0 < λDDS1 . Then the M = 3 coupled populations of N = 2 phase
oscillators (11) with interaction functions (9), (10) have a robust heteroclinic cycle

C2 = (DSS,DDS,SDS,SDD,SSD,DSD)

between relative equilibria.

For α fixed with |α − π
2 | sufficiently small, the assumptions of Lemma 3.1 define a

cone-shaped region in (K , r) parameter space: there is an affine linear function L such
that K > K0 where L(K0) = 0 and r between −L(K ) and L(K ). For the remainder
of this section, we assume that the assumptions of Lemma 3.1 hold.

Lemma 3.2 The cycle C2 is quasi-simple.

Proof It suffices to consider the equilibria DSS and DDS due to the symmetry which
permutes populations. We haveW u(DSS) ⊂ DψS,W u(DDS) ⊂ ψDS which implies
that each saddle has one contracting, expanding, and transverse eigenvalue; there are
no radial eigenvalues since DSψ ∩ DψS = DSS and DψS ∩ ψDS = DDS. 
�

Subject to nonresonance conditions,wemay linearize theflowaround the equilibria;
see also Aguiar and Castro (2010, Proposition 4.1).

Lemma 3.3 Suppose that λDSS1 , λDDS3 �= 0, and

0 �= 2r cos(2α) ± 3 cos(α), (14a)

0 �= 4K sin(α) ± 4r cos(2α) ± 2 cos(α) (14b)

(in the second line we allow any combination of + and −). Then we can linearize
the flow at the equilibria in C2. For α = π

2 , these conditions reduce to r �= 0 and
r �= ±K.
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Proof According to the C1 linearization theorem (Ruelle 1989), we can linearize
the flow if the eigenvalues λl of the linearization satisfy Re λl �= Re λ j + Re λk
when Re λ j < 0 < Re λk . Given (12), conditions (14) are just these nonresonance
conditions. Substituting α = π

2 yields the second assertion. 
�

3.2 Cross Sections, TransitionMatrices, and Stability

Using standard notation, we write

−cDSS := λDSS3 , eDSS := λDSS2 , tDSS := λDSS1 , (15)

−cDDS := λDDS2 , eDDS := λDDS1 , tDDS := λDDS3 , (16)

for the contracting, expanding, and transverse eigenvalues. Thus eq , cq > 0, q ∈
{DSS,DDS}. The ratios between contraction/transverse stability and expansion are
given by

aq := cq
eq

, bq := − tq
eq

(17)

for q ∈ {DSS,DDS}; we have aq > 0 by definition and bq > 0 if tq < 0.

3.2.1 Poincaré Map and Transition Matrices

We first consider the linearized flow at the equilibria to calculate the local transi-
tion maps. Introduce local coordinates (v,w, z) which correspond to the contracting,
expanding, and transverse directions, respectively. After appropriate rescaling, con-
sider the cross sections

H in
q = { (v,w, z) | |v| = 1, |w| ≤ 1, |z| ≤ 1 } , (18)

Hout
q = { (v,w, z) | |v| ≤ 1, |w| = 1, |z| ≤ 1 } (19)

at q ∈ {DSS,DDS}. The linearized flow at ξq is

	τ
q(v,w, z) = (

exp(−cqτ)v, exp(eqτ)w, exp(tqτ)z
)
.

Hence the time of flight is τ = − log(w)/eq which implies that the local map at ξq is

hlocq : H in
q → Hout

q , (±1, w, z) �→ (waq ,±1, wbq z).

Considering the invariant subspaces, we see that the global maps are rescaled per-
mutations. More specifically, we have

hglq : Hout
q → H in

q+1, (v,w, z) �→ (Aqw, Bqz, Dqv).

123



2582 Journal of Nonlinear Science (2019) 29:2571–2600

Write hq := hglq ◦ hlocq : H in
q → H in

q+1. Ignoring v, this yields a map between the
incoming 2-dimensional sections of subsequent equilibria

hq(w, z) = (Bqw
bq z, Dqw

aq ).

Taken together, the Poincaré return map for the linearized dynamics around the hete-
roclinic cycle (modulo the Z3 group action) is

h = hDDS ◦ hDSS.

If we introduce logarithmic coordinates, we can write the return map in terms of
transition matrices (Field and Swift 1991; Garrido-da-Silva and Castro 2019). Restrict
to the (w, z) coordinates and introduce logarithmic variables η = log(w), ζ = log(z).
In the new variables, the maps hq become linear,

ĥq(η, ζ ) = Mq

(
η

ζ

)

+
(
log Bq

log Dq

)

(20)

with

Mq =
(
bq 1
aq 0

)

(21)

Note that these transition matrices are the same as the ones for simple cycles in R
4 of

type C (Podvigina and Ashwin 2011).
The transition matrix for the Poincaré map h isMDDSMDSS. These transition matri-

ces govern the stability of the cycle (Garrido-da-Silva and Castro 2019, Theorem 3.4).

3.2.2 Stability of C2 for˛ = �
2

The stability properties at the saddles are symmetric, and stability is governed by the
properties of the transition matrix

M =
(
b 1
a 0

)

. (22)

Here, we omitted the index q of the saddle sinceMDSS = MDDS = M. This is the same
transition matrix as for a simple heteroclinic cycle in R

4 of type C−
1 (Podvigina and

Ashwin 2011).

Lemma 3.4 (Podvigina and Ashwin 2011, Section 4.2.2) A heteroclinic cycle whose
stability is given by the transition matrix M is asymptotically stable if b ≥ 0 (that is,
t ≤ 0) and a + b > 1; otherwise, it is completely unstable.

In terms of the oscillator coupling parameters,we can now show that the heteroclinic
cycle loses stability completely in a (degenerate) transverse bifurcation at r = 0 as
both transverse eigenvalues pass through zero.
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Theorem 3.5 For α = π
2 , the heteroclinic cycle C2 is asymptotically stable if r > 0

and completely unstable if r < 0.

Proof Substituting the stability properties (12), (13), we obtain

a = c

e
= 2K + 4r

2K − 4r
b = − t

e
= 4r

2K − 4r
. (23)

Simplifying the expressions b ≥ 0 and a + b > 1 now proves the assertion. 
�

3.2.3 Stability for˛ �= �
2

If α �= π
2 , then the two transverse eigenvalues t1 = 2 cos(α) + 4r cos(2α),

t2 = −2 cos(α) + 4r cos(2α) are distinct. Consequently, there are two transverse
bifurcations as the oscillator coupling parameters are varied: We have

• t1, t2 < 0 if r >
|cos(α)|

4 cos2(α)−2
,

• t1, t2 > 0 if r <
−|cos(α)|

4 cos2(α)−2
, and

• one positive and one negative transverse eigenvalue otherwise.

The stability of the heteroclinic cycle is now determined by the properties of the
transition matrix

M = MDDSMDSS =
(
b1b2 + a2 b1

a1b2 a1

)

. (24)

The stability calculations are analogous to those for simple heteroclinic cycles in R
4

of type C−
2 (Podvigina and Ashwin 2011; Lohse 2015); for such cycles, we have the

following result.

Lemma 3.6 (Stability conditions for C−
2 cycles given in Podvigina and Ashwin 2011;

Lohse 2015) For asymptotic stability, we need t1, t2 < 0 and

max {b1b2 + a2 + a1, 2(b1b2 + a2 + a1 − a1a2)} > 2.

If t2 < 0 < t1 and b1b2 − a1 + a2 < 0, then the cycle is completely unstable.

These results can now be used to show that the heteroclinic cycle loses stability
completely as one of the transverse eigenvalues becomes positive.

Theorem 3.7 The heteroclinic cycle C2 is asymptotically stable if

r >
|cos(α)|

4 cos2(α) − 2

and completely unstable otherwise.
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Proof First, observe that there are relations between the eigenvalues (12), (13) of the
linearization at the saddle points. Set S = 2K sin(α).We have e1 = S+t2, c1 = S−t2,
e2 = S+t1, c2 = S−t1 which are all positive. Consequently, S > 0 and c1 = e1−2t2,
c2 = e2 − 2t1.

If t1, t2 < 0 (the hypothesis of the theorem is satisfied), we have

b1b2 + a2 + a1 = 2 + t1t2 − 2t1e1 − 2t2e2
e1e2

> 2 (25)

since all terms are positive. Hence by Lemma 3.6, the heteroclinic cycle is asymptot-
ically stable.

Now suppose that t2 < 0 < t1 (the case t1 < 0 < t2 is analogous). We have

b1b2 − a1 + a2 = t1t2 − 2St1 + 2St2
e1e2

< 0 (26)

since all terms are negative. By Lemma 3.6, the heteroclinic cycle is completely
unstable. 
�

The dichotomy between asymptotic stability and complete instability appears to be
nongeneric for C−

2 -cycles compared to Lohse (2015, Corollary 4.8). This is due to the
fact that e2 and c2 are not independent of t1. In fact, the case t1 = 0 coincides with the
degenerate situation c2 = e2. Therefore, the assumption in Lohse (2015, Corollary
4.8) that b1b2 − a1 + a2 > 0 even for small t1 > 0 cannot be satisfied here.

3.3 Eigenvalues and Eigenvectors of the TransitionMatrix Products

In the previous section, we used results from Podvigina and Ashwin (2011), Lohse
(2015) (stated as Lemmas 3.4 and 3.6) to determine the stability of the cycle. We now
relate these to the hypotheses in Propositions 2.6 and 2.7 by calculating eigenvalues
and eigenvectors of the transition matrix products. This is useful for our stability
analysis in the higher-dimensional system in Sect. 4.

For α �= π
2 , the transition matrix product M as defined in (24) has eigenvalues

λ1 > λ2 given by

λ1 = 1

2

(
a1 + a2 + b1b2 +

√
(a1 − a2 − b1b2)2 + 4a1b1b2

)
,

λ2 = 1

2

(
a1 + a2 + b1b2 −

√
(a1 − a2 − b1b2)2 + 4a1b1b2

)

and corresponding eigenvectors

u1 = (u11, u12) =
(

1,
a1 − a2 − b1b2 + √

(a1 − a2 − b1b2)2 + 4a1b1b2
2b1

)

,

u2 = (u21, u22) =
(

1,
a1 − a2 − b1b2 − √

(a1 − a2 − b1b2)2 + 4a1b1b2
2b1

)

.

Recall from (17) that aq = cq
eq

and bq = − tq
eq
. So if t1, t2 < 0, then both eigenvalues

are real and hence condition (C1) is satisfied. Moreover, by the calculations in the
proof of Theorem 3.7, we have
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λ1 >
1

2
(a1 + a2 + b1b2) > 1,

so (C2) is satisfied as well. Since in this case all transition matrices have only nonneg-
ative entries, Proposition 2.6 applies and the cycle is asymptotically stable. We note
that (C3) is also satisfied, because 4a1b1b2 > 0 implies that

u11u12 = u12 >
a1 − a2 − b1b2 + |a1 − a2 − b1b2|

2b1
> 0.

Similarly, for the components of the other eigenvector we get

u21u22 = u22 <
a1 − a2 − b1b2 − |a1 − a2 − b1b2|

2b1
< 0.

This is not directly related to condition (C3), but will also be used in the following
section.

On the other hand, if t2 < 0 < t1, the transition matrix M1 has a negative entry.
Again by the calculations in the proof of Theorem 3.7, we have a1 − a2 − b1b2 > 0,
and therefore

u11u12 = u12 <
a1 − a2 − b1b2

2b1
< 0.

Thus, (C3) is violated and by Proposition 2.7(a) the cycle is completely unstable. The
case t1 < 0 < t2 is analogous for the other transition matrix product.

4 Four Coupled Oscillator Populations

4.1 Four Interacting Populations Support a Heteroclinic Network

In this section, we consider M = 4 coupled populations with N = 2 phase oscillators
each. For the coupling function g as in (9) and parameter δ ∈ [−1, 1], define the
interaction functions

G̃(4)(θτ ;ϑ) = −1

4

(
cos(θτ,1 − θτ,2 + ϑ + α) + cos(θτ,2 − θτ,1 + ϑ + α)

)
(27)

G̃(2)
σ (ϑ) = g(ϑ) + K

(

1 − 1

N

)

Kσ cos(ϑ + α). (28)

For K1 = 1, K2 = −1, K3 = −1+δ, K4 = −1−δ, we obtain the oscillator dynamics
where the phase of oscillator k in each population σ = 1, . . . , 4 evolves according to

θ̇1,k = ω + G̃(2)
1 (θ1,3−k − θ1,k) + K G̃(4)(θ4, θ1,3−k − θ1,k)

− K G̃(4)(θ2, θ1,3−k − θ1,k) + K G̃(4)(θ3, θ1,3−k − θ1,k),
(29a)
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Fig. 1 A heteroclinic network N2 arises in M = 4 coupled populations of N = 2 oscillators. The types
of arrowhead (>, �, ≫) indicate the eigenvalues for α = π

2 and δ = 0: λ≫ = −4K − 4r < λ� =
−2K − 4r < λ> = −4r < 0 < 2K − 4r . The ψk along an arrow indicates the phase difference that
corresponds to the invariant subspace

θ̇2,k = ω + G̃(2)
2 (θ2,3−k − θ2,k) − K G̃(4)(θ4, θ2,3−k − θ2,k)

+ K G̃(4)(θ1, θ2,3−k − θ2,k) − K G̃(4)(θ3, θ2,3−k − θ2,k),
(29b)

θ̇3,k = ω + G̃(2)
3 (θ3,3−k − θ3,k) − K G̃(4)(θ4, θ3,3−k − θ3,k)

− K G̃(4)(θ1, θ3,3−k − θ3,k) + K (1 + δ)G̃(4)(θ2, θ3,3−k − θ3,k),
(29c)

θ̇4,k = ω + G̃(2)
4 (θ4,3−k − θ4,k) − K G̃(4)(θ1, θ4,3−k − θ4,k)

+ K (1 − δ)G̃(4)(θ2, θ4,3−k − θ4,k) − K G̃(4)(θ3, θ4,3−k − θ4,k).
(29d)

If δ = 0, these equations relate to the system of four interacting populations in Bick
(2018) as discussed in Appendix A. The vector field is (SN × T)M -equivariant: The
symmetric group SN acts by permuting oscillators within populations and TM by a
phase shift in each population. If δ = 0, the system is (SN × T)M � Z2 equivariant
where Z2 = 〈(34)〉 acts by permuting populations three and four. If δ �= 0, then
there is a parameter symmetry (δ, θ3, θ4) �→ (−δ, θ4, θ3). Again, we consider the
dynamics on the reduced phase space TM(N−1) = T4 of phase differences of the
oscillators in each population. As above, we have the equilibria SSSS = (0, 0, 0, 0),
DSSS = (π, 0, 0, 0), etc., on the reduced phase space T4.

Theorem 4.1 The system of coupled phase oscillator populations (29) supports a
robust heteroclinic network N2—sketched in Figs. 1 and 2—between relative equi-
libria with localized frequency synchrony.

Proof First, suppose that δ = 0. The dynamics on the invariant subspaces ψ1ψ2ψ3S
and ψ1ψ2Sψ4 reduce to (11). Hence by Lemma 3.1, the coupled phase oscillator
populations (29) have a heteroclinic network with two quasi-simple cycles Ĉ2 ⊂
ψ1ψ2ψ3S and Č2 ⊂ ψ1ψ2Sψ4. Having δ �= 0 constitutes an equivariant perturbation
that maintains the (SN ×T)M symmetry, with respect to which both cycles are robust.


�
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Fig. 2 The heteroclinic
network N2 shown in Fig. 1 is
constituted by the heteroclinic
cycles Ĉ2 ⊂ ψ1ψ2ψ3S and
Č2 ⊂ ψ1ψ2Sψ4. The stability
indices along the saddle
connections are denoted by ŝq
and šq , respectively

The eigenvalues of the linearization at the equilibria can be evaluated explicitly.
For example, linearizing the reduced vector field at SDSS yields eigenvalues

λSDSS1 = −2K sin(α) − 2 cos(α) + 4r cos(2α), (30a)

λSDSS2 = 2 cos(α) + 4r cos(2α), (30b)

λSDSS3 = 2K (1 + δ) sin(α) − 2 cos(α) + 4r cos(2α), (30c)

λSDSS4 = 2K (1 − δ) sin(α) − 2 cos(α) + 4r cos(2α), (30d)

where λSDSSσ determines linear stability of SDSS with respect to perturbations of the
phase differencesψσ . As above, this gives explicit bounds for parameter values which
support the heteroclinic network—where linear stability of the equilibria now also
depends on δ—and conditions to linearize the flow around the heteroclinic network
(cf. Lemma 3.3).

Note that there are other equilibria that are not part of either cycle in the heteroclinic
network. For example, on SSSS all populations are phase synchronized and its stability
is governed by the (quadruple) eigenvalueλSSSSσ = 4r cos(2α)−2 cos(α), independent
of the parameters K , δ. We typically consider a phase-lag parameter α with |α − π

2 |
sufficiently small (cf. Sect. 3.1), in which case we have that SSSS is linearly stable
for r > 0 sufficiently large. Moreover, note that if δ = 0, we have λSSSS = λDDSS3 ;
then SSSS is linearly stable if the transverse eigenvalues within the corresponding
subspace of each cycle are negative; cf. Sect. 3.2.

4.2 Stability of the Cycles

Note that by construction, the saddle SDSS has a two-dimensional unstable manifold.
Hence, neither cycle can be asymptotically stable for |δ| and ∣

∣α − π
2

∣
∣ sufficiently

small. Since the cycles are quasi-simple, we can determine their stability by looking at
the corresponding transition matrices. Because of the parameter symmetry, we restrict
ourselves to the cycle Ĉ2 ⊂ ψ1ψ2ψ3S without loss of generality and just write C
and sq for the remainder of this subsection.

Within the invariant subspace ψ1ψ2ψ3S, we have one contracting, expanding, and
transverse direction with local coordinates denoted by v,w, z as above. In addition,
there is another transverse direction—denoted by z⊥ in local coordinates—which
is mapped to itself under the global map. The second transverse eigenvalues (those
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transverse to ψ1ψ2ψ3S) evaluate to

t⊥DSSS = −2K sin(α) − 2 cos(α) + 4r cos(2α), (31a)

t⊥DDSS = −2K δ sin(α) − 2 cos(α) + 4r cos(2α), (31b)

t⊥SDSS = 2K (1 − δ) sin(α) − 2 cos(α) + 4r cos(2α), (31c)

t⊥SDDS = −2K δ sin(α) − 2 cos(α) + 4r cos(2α), (31d)

t⊥SSDS = −2K sin(α) − 2 cos(α) + 4r cos(2α), (31e)

t⊥DSDS = −4K sin(α) − 2 cos(α) + 4r cos(2α). (31f)

There are two possibilities for transverse bifurcations when δ changes. If δ > 0, there
is a transverse bifurcation at t⊥SDSS = 0. But since t⊥SDSS = eSDSS, the other cycle of
the network then ceases to exist. If δ < 0, there is a possibility of two simultaneous
transverse bifurcations when t⊥DDSS = t⊥SDDS = 0. Write b⊥

q = −t⊥q /eq . Again, the
global maps are permutations of the local coordinate axes and the return map evaluates
to

hq(w, z, z⊥) = (Bqw
bq z, Dqw

aq , Eqw
b⊥
q z⊥)

where Bq , Dq , Eq are constants.
In logarithmic coordinates (η, ξ, ξ⊥), this gives the transition matrix

Mq =
⎛

⎝
bq 1 0
aq 0 0
b⊥
q 0 1

⎞

⎠ (32)

that governs the stability of the cycle. Note that the upper left 2 × 2 submatrix is the
same as the transition matrix (21). In order to simplify notation, we write ξ1 =̂ SDSS
and ξ2, . . . , ξ6 for the subsequent equilibria of C. Assuming that we are in a parameter
region where the network exists, see Theorem 4.1, we can now make the following
statement about the stability of its subcycles.

Theorem 4.2 Assume that the cycle C is asymptotically stable5 within the three-
dimensional subspace it is contained in and |δ| sufficiently small. Then we have the
following dichotomy.

(i) If the transitionmatrix productM(2) satisfies the eigenvector condition (C3), thenC
is f.a.s. and its stability indices sq , q = 1, . . . , 6, (with respect to the dynamics
in TM) are given by

sq = F ind(μq , νq , 1) > −∞,

where μq = bqμq+1 + aqνq+1 + b⊥
q , νq = μq+1 for q = 2, . . . , 6 and μ1 =

b⊥
1 , ν1 = 0.

5 For δ = 0, explicit conditions are given in Theorem 3.7. These can be amended for δ �= 0 to take the
δ-dependency into account.
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(ii) If M(2) does not satisfy condition (C3), then C is completely unstable.

Proof Since t⊥1 > 0 is the only positive transverse eigenvalue of an equilibrium
in C, the transition matrix M1 is the only one with a negative entry, b⊥

1 < 0. By
Proposition 2.7 the stability of C depends on whether or not all M(q) satisfy condi-
tions (C1)–(C3) in Sect. 2. Statement (ii) follows immediately by Proposition 2.7(a).

For (i), we want to apply Proposition 2.7(b). By Garrido-da-Silva and Castro (2019,
Lemma 3.6), it suffices to show that M(2) satisfies conditions (C1) and (C2), because
then all M(q) satisfy (C1)–(C3). We calculate

M(2) = M1M6 · · ·M2 =
⎛

⎝
∗ ∗ 0
∗ ∗ 0

b⊥
1 μ + ν b⊥

1 μ̃ + ν̃ 1

⎞

⎠ ,

where μ, ν, μ̃, ν̃ > 0. For a moment, suppose that δ = 0. Due to the symmetry of the
system in the subspace ψ1ψ2ψ3S, the upper left 2× 2 submatrix is the third power of
the matrixM in (24) and we can use the calculations from Sect. 3.3. Note thatM(2) has
an eigenvalue λ = 1 with eigenvector (0, 0, 1). Its other two eigenvalues are the third
powers of those of M, call them λ1 > λ2, by a slight abuse of notation. Then λmax =
λ1 > 1under the assumptions of this theorem, so conditions (C1) and (C2) are satisfied.
Proposition 2.7(b) applies, and C is f.a.s.. Since eigenvectors and eigenvalues vary
continuously in δ, the same is true for |δ| sufficiently small.

In order to derive expressions for the stability indices, we have to find the
arguments β(l) ∈ R

3 of the function F ind from Proposition 2.7. As is shown in
Garrido-da-Silva and Castro (2019), this becomes simpler if for all q = 1, . . . , 6
we have

U−∞(
M(q)

) :=
{

x ∈ R
3−

∣
∣
∣
∣ lim
k→∞

(
M(q)

)k
x = −∞

}

= R
3−, (33)

whereR
3− = { (x1, x2, x3) | x1, x2, x3 < 0 } and the convergence is demanded in every

component. Clearly, this asymptotic behavior is controlled by the eigenvectors ofM(q).
Consider first the case q = 2. Under our assumptions, all components of the eigen-
vector corresponding to the largest eigenvalue λmax > 1 have the same sign. Another
eigenvector is (0, 0, 1). From Sect. 3.3, we know that the first two components of the
remaining eigenvector have opposite signs. It follows that any x ∈ R

3− written in the
eigenbasis of M(2) must have a nonzero coefficient for the largest eigenvector. There-
fore, x ∈ U−∞(

M(2)) and (33) holds. For q �= 2, note that all M(q) are similar, hence
they have the same eigenvalues. Their eigenvectors are obtained by multiplying those
of M(2) by M2,M3M2, . . . ,M6M5M4M3M2, respectively. This involves only matrices
with nonnegative entries and thus does not affect our conclusions using the signs of
the entries of the eigenvectors. Therefore, (33) holds for all q = 1, . . . , 6.

Since (33) is satisfied, the only arguments β(l) ∈ R
3 that must be considered

for F ind in the calculation of sq are the rows of the (products of) transition matri-
ces Mq ,Mq+1Mq ,Mq+2Mq+1Mq and so on. Among these, we only need to take rows
into account where at least one entry is negative; if there are none, the respective index
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is equal to +∞. Negative entries can only occur when M1 is involved in the product,
and then only in the last row. So for sq the last row ofM1M6 · · ·Mq must be considered.
SinceM2 has no negative entries and its third column is (0, 0, 1), the first two entries in
the last row ofM2M1M6 · · ·Mq are greater than the respective entries ofM1M6 · · ·Mq ,
yielding a greater value for F ind. The same goes for M3M2M1M6 · · ·Mq and so on.
Thus, sq is indeed obtained by plugging the last row ofM1M6 · · ·Mq into F ind. We get

s1 = F ind(last row of M1),

s2 = F ind(last row of M1M6M5M4M3M2),

s3 = F ind(last row of M1M6M5M4M3),

s4 = F ind(last row of M1M6M5M4),

s5 = F ind(last row of M1M6M5),

s6 = F ind(last row of M1M6).

The lower right entry of all these matrices is 1, so for all q = 1, . . . , 6 we can write
sq = F ind(μq , νq , 1) > −∞. Since the last row ofM1 is (b⊥

1 , 0, 1), we haveμ1 = b⊥
1

and ν1 = 0 as claimed. The recursive relations now follow immediately from (32). 
�
We conclude this section with a few remarks on our results. We first recall some

facts about the stability index and nonasymptotic attraction properties (that hold under
some mild assumptions, see Lohse 2015 for details) that are helpful to put the remarks
into perspective: A cycle is e.a.s. if and only if the stability indices along all its
connections are positive. This means that the cycle attracts “a lot of” initial conditions
in its neighborhood and thus is expected to be observable in experiments. When an
index is even equal to +∞, the cycle attracts everything except for possibly a set of
measure zero near the respective connection.

By contrast, being f.a.s. is a weaker property: An f.a.s. cycle still attracts a positive
measure set of initial conditions—however, this set may be very small in the sense
that its proportion of a neighborhood of the cycle may shrink to zero when the neigh-
borhood becomes small. Therefore, without additional information, it is hard to say
whether or not an f.a.s. cycle may be detected experimentally. Such information can
be provided through stability indices: An f.a.s. cycle may possess connections with
positive (even +∞) and negative (even −∞) indices at the same time—only if initial
conditions are chosen close to a connection with positive index is the cycle likely to
be observed. With this in mind, we now comment on some aspects of Theorem 4.2.

Remark 4.3 Consider condition (C3). Let umax = (umax
1 , umax

2 , umax
3 ) be the eigenvec-

tor of M(2) associated with λmax. For δ = 0, note that (umax
1 , umax

2 ) is an eigenvector
of M associated with its largest eigenvalue, so both of its components have the same
sign. Let sgn denote the sign function. To fulfill (C3), we need sgn(umax

3 ) = sgn(umax
1/2 ).

A straightforward calculation yields
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umax
3 = (b⊥

1 μ + ν)umax
1 + (b⊥

1 μ̃ + ν̃)umax
2

λmax − 1
= μ2umax

1 + ν2umax
2

λmax − 1
,

so it is sufficient to have μ2, ν2 > 0. This is stronger than assuming (C3), and as soon
as it is satisfied, we have s2 = F ind(μ2, ν2, 1) = +∞. Thus, in that case the cycle is
strongly attracting along the connection [SDSS → SDDS]. However, the cycle is not
necessarily e.a.s., since the other stability indices are independent of s2 and might be
negative.

By contrast, the indices s1 and s6 are always finite because F ind has at least one
positive and at least one negative argument through b⊥

1 . This makes sense since they
are indices along connections shared with the other cycle in the network, while s2
belongs to the trajectory that is furthest away from the common ones (in terms of
following connections in the direction of the flow). For the other indices s3, s4, s5,
there is not necessarily a negative argument, so they could be equal to +∞. From the
recursive relations between theμq and νq , we see that sq = +∞ implies sq−1 = +∞
for q ∈ {3, 4, 5}, which is plausible given the architecture of the heteroclinic network.
Remark 4.4 Since sq > −∞ for all q, we have shown that under the assumptions of
Theorem 4.2 the cycle C is not only f.a.s., but indeed attracts a positive measure set of
initial conditions along every single one of its connections. Straightforward constraints
on μq , νq given through the definition of F ind determine the signs of all sq and thus
yield necessary and sufficient conditions for C to be e.a.s.. A simple example for such
a necessary condition is b⊥

1 > −1, so that s1 > 0. This is the same as eSDSS > t⊥SDSS
and in terms of the network parameters amounts to δ > 0, cf. Fig. 3.

Similar conditions for the other sq become increasingly cumbersome to write down
explicitly and we gain little insight from them. Instead, we evaluated the stability
indices (of both cycles) numerically. Two cases are illustrated in Fig. 3. We conjecture
that there is an open parameter region where the assumptions of Theorem 4.2 are
satisfied and the network is e.a.s. (though not asymptotically stable) due to both cycles
being maximally stable—one of them e.a.s. and the other one with positive stability
indices everywhere except for the connections shared by both cycles. We comment
further on this below.

4.2.1 Relationship to the Kirk–Silber Heteroclinic Network

The connection structure of our heteroclinic cycle/network resembles that of the Kirk–
Silber network (Kirk and Silber 1994) illustrated in Fig. 4. From the perspective of the
heteroclinic network, one may view the network N2 in Theorem 4.1 as a Kirk–Silber
heteroclinic network with an additional equilibrium in each connection. However, the
cycles in the Kirk–Silber network are of type B, while the stability properties of N2
rather resemble type C cycles, see Sect. 3.2. We now comment on the similarities and
differences between the possible stability configurations for both networks. We find
that some stability features of the network in Kirk and Silber (1994) are universal in
the sense that similar conclusions hold even for a more complicated network such as
the one investigated here.

First, note that the equivalent of Remark 4.3 also holds for the Kirk–Silber network,
where both cycles contain ξ2, but the connection [ξ2 → ξ3] belongs to only one of
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(a) (b)

Fig. 3 Stability indices of the heteroclinic cycles Ĉ2 and Č2 as in Fig. 2 for (α, K , r) = ( π
2 , 0.2, 0.01).

The symbol ‘+’ for a stability index denotes ‘positive and finite’ and ‘−’ denotes ‘negative and finite’

Fig. 4 The Kirk–Silber network (Kirk and Silber 1994) is formed of two heteroclinic cycles. The stability
indices along connections in the cycle containing the equilibria (ξ1, ξ2, ξ3) carry a tilde, those with respect
to (ξ1, ξ2, ξ4) do not

them. In this sense, the connection [ξ2 → ξ3] in the Kirk–Silber network corresponds
to [SDSS → SDDS] in N2, where SDSS belongs to both cycles but SDDS does
not. The stability index s̃23 along [ξ2 → ξ3] is always equal to +∞ under assump-
tions corresponding to the ones we make in Theorem 4.2, in particular if each cycle
is asymptotically stable within its respective subspace, cf. Castro and Lohse (2014,
Subsection 5.1).

Second, all stability indices along common connections in the Kirk–Silber network
are finite which is the same for N2 as shown in Theorem 4.2 and Remark 4.3. In the
Kirk–Silber network, this applies only to [ξ1 → ξ2]. The last observation inRemark4.3
means that s̃31 = +∞ implies s̃23 = +∞ in the Kirk-Silber case. Note that this is
not true anymore if one drops the assumption that all eigenvalues transverse to the
network are negative, see Castro and Lohse (2014, Figure 8) where s̃31 is finite but
s̃23 = +∞. We do not address this case for our network here—in this sense our study
corresponds to Kirk and Silber (1994) rather than Castro and Lohse (2014).

Third, conditions for the Kirk–Silber network to be f.a.s. or e.a.s. can be stated
explicitly, see in particular Kirk and Silber (1994, Lemma 3) or Castro and Lohse
(2014, Subsection 5.1) for a formulation in terms of stability indices. For N2, the
situation is more complex due to the higher number of connections and equilibria in
the network as indicated in Theorem 4.2 and Remark 4.4 and an exhaustive description
of all these seems hardly worthwhile.
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(a) (b)

Fig. 5 The two-dimensional unstable manifold W u(SDSS) ⊂ SDψ3ψ4 of SDSS (bottom left circle) not
only contains points (shaded) which are in the stable manifold of DSDS (top left circle) and SDSD (bottom
right circle) but also points in the stable manifold of SDDD (top right circle). The stable manifolds of
the additional equilibria ξSDψ3D and ξSDDψ4 (black squares) separate the initial conditions. The other
parameters are (α, K , r) = ( π

2 , 0.2, 0.01)

4.3 Stability of the Heteroclinic Network

Even if the stability of all cycles that constitute a heteroclinic network is known, it is
hard to make general conclusions about the stability of the network as a whole. For
“simple” cases, like the Kirk–Silber network, a comprehensive study can be found
in Castro and Lohse (2014). Based on the results in the previous section, one can
draw several conclusions. If one cycle of N2 is f.a.s.—conditions are given in Theo-
rem 4.2—then the network itself is f.a.s. Moreover, if one cycle, say Ĉ2, is e.a.s. and
the heteroclinic trajectories in Č2 that are not contained in Ĉ2 have positive stability
indices, then the network is e.a.s.—this is the case in Fig. 3(b).

The geometry of the two-dimensional manifold W u(SDSS) ⊂ SDψ3ψ4 gives
insight into the dynamics near the heteroclinic network N2. For simplicity, we focus
on the case α = π

2 . By (29), the dynamics of the phase differences on SDψ3ψ4 are
given by

ψ̇3 = sin(ψ3) (K cos(ψ4) − 4r cos(ψ3) + K (1 + 2δ)) , (34a)

ψ̇4 = sin(ψ4) (K cos(ψ3) − 4r cos(ψ4) + K (1 − 2δ)). (34b)

Note that if |δ| K < 2 |r | there is a (saddle) equilibrium ξSDψ3D ∈ SDψ3D with ψ3 =
arccos(δK/2r) ∈ (0, π). For the same condition, there is an analogous equilibrium
ξSDDψ4 ∈ SDDψ4 with ψ4 = arccos(−δK/2r) ∈ (0, π). The stable manifolds of
these saddle equilibria now organize the dynamics on SDψ3ψ4.

Proposition 4.5 For the heteroclinic network N2 in Theorem 4.1 with |α − π
2 | and |δ|

sufficiently small, and an open interval of r , there is robustly an open wedge of initial
conditions on Wu(SDSS) such that the trajectories converge to an equilibrium which
is not contained in either cycle constituting N2.

Proof We first give conditions on the parameters that ensure that there are no asymp-
totically stable sets in the invariant set (0, π)2 ⊂ SDψ3ψ4. It suffices to show that there
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are no equilibria in (0, π)2. By direct calculation, one can verify that for α = π
2 , δ = 0

any equilibrium in (0, π)2 must lie in {ψ := ψ3 = ψ4} ⊂ (0, π)2. The dynamics ofψ
are given by ψ̇ = (K −4r) cos(ψ)+K . Hence, there are no equilibria if 0 < r < K/2
given K > 0; these are exactly the conditions for there to be an asymptotically stable
heteroclinic cycle in each subspace by Lemma 3.1 and Theorem 3.5.

Now W s(ξSDψ3D), W s(ξSDDψ4) are—as source–saddle connections—robust hete-
roclinic trajectories [SDSS → ξSDψ3D], [SDSS → ξSDDψ4 ]. These separate (0, π)2

into three distinct sets of initial conditions which completes the proof. 
�
The dynamics on (0, π)2 ⊂ SDψ3ψ4 are shown in Fig. 5. The stable manifolds

of ξSDψ3D and ξSDDψ4 subdivide (0, π)2 robustly into three wedges with nonempty
interior that lie in the stable manifolds of SDDS, SDSD, and SDDD, respectively.
In particular, this suggests that a significant part of trajectories passing by SDSS
will approach SDDD which is not contained in either heteroclinic cycle of the net-
work N2.

Remark 4.6 Let N be a heteroclinic network and let ξq , p = 1, . . . , Q, denote the
equilibria of all its cycles.Abusing the ambiguity ofDefinition 2.1,6 we callN complete
(Ashwin et al. 2018) or clean (Field 2017) if W u(ξp) ⊂ ⋃Q

q=1 W
s(ξq) for all p and

almost complete if the set W u(ξp) ∩ ⋃Q
q=1 W

s(ξq) is of full measure for all p and

the Lebesgue measure for any volume form on W u(ξp); see also Bick (2019) for a
detailed discussion in the context of coupled oscillator populations.

For N2 to be almost complete for |δ| sufficiently small, the set W u(SDSS) ∩
(W s(SDDS)∪W s(SDSD)) would have to be of full (Lebesgue) measure in SDψ3ψ4.
However, Proposition 4.5 shows that there is a set of nonvanishingmeasure in SDψ3ψ4
which lies in the stable manifold of SDDD, an equilibriumwhich is not in the network.
Hence, N2 cannot be almost complete (nor complete).

4.4 Numerical Exploration

Solving the system of M = 4 populations of N = 2 oscillators (29) numerically
shows transitions between dynamically invariant sets with localized frequency syn-
chrony along the heteroclinic network N2. Figure 6 shows the phase dynamics: There
are initial conditions for which the trajectories are attracted to either cycle of N2.
Since the network is not asymptotically stable, there are trajectories that spend some
time close to the heteroclinic network before converging to the asymptotically sta-
ble equilibrium SSSS. A full classification of the geometry close to the heteroclinic
network as for the Kirk–Silber network (see, for example, Kirk and Silber 1994, Fig-
ure 5) is beyond the scope of this paper: On the one hand, the Kirk–Silber network
only allows for limited ways of trajectories switching between the two disjoint cycles

6 Definition 2.1 is somewhat ambiguous since it does not specify howmany heteroclinic connections belong
to the heteroclinic network. IfN2 only contains one (one-dimensional) heteroclinic trajectory (as suggested
by the proof of Theorem 4.1) then it is clearly not almost complete since dim(W u(SDSS)) = 2. Strictly
speaking, for the discussion of completeness we actually consider a network N2 that contains the equilibria
of N2 and all connecting heteroclinic trajectories.
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(a)

(b)

(c)

Fig. 6 The heteroclinic network N2 induces transitions between invariant sets with localized frequency
synchrony for M = 4 populations of N = 2 oscillators (29) with parameters α = π

2 , K = 0.3, r = 0.005,
δ = 0.1. The top plot in each panel shows the oscillators’ phase evolution (shading; black corresponds
to θσ,k = π and white to θσ,k = 0) in a co-rotating reference frame in which synchronized populations
appear stationary. The bottom plot shows the average instantaneous frequencies of each population (colors;
populations σ = 1, 2 in gray, σ = 3 in blue, σ = 4 in red). Panel a shows a trajectory that is attracted
to the cycle Ĉ2 and Panel b shows a trajectory that is attracted to the cycle Č2. Since the network is
not asymptotically stable, there are trajectories—see Panel c—which spend time close to the heteroclinic
network before converging to the sink SSSS (Color figure online)

(Castro and Lohse 2016), so here one may expect more diverse configurations in our
(higher-dimensional) setting. On the other hand, the particular geometry of our setting
likely imposes additional constraints.

Switching between the cycles Ĉ2 and Č2 in N2—similar to the dynamics in Bick
(2018)—can be observed in the system (29) subject to additive noise. More specif-
ically, for (29) written as θ̇σ,k = ω + Yσ,k(θ)—see (2)—and independent Wiener
processes Wσ,k , we solved the stochastic differential equation

123



2596 Journal of Nonlinear Science (2019) 29:2571–2600

Fig. 7 The phase dynamics of system (35) with additive noise of strength η = 10−7 explore the entire
heteroclinic network N2 for parameters α = π

2 , r = 0.005, K = 0.3, and δ = 0.01. Data are plotted as in
Fig. 6

θ̇σ,k = ω + Yσ,k(θ) + ηWσ,k (35)

usingXPP (Ermentrout 2002). As shown in Fig. 7, the solutions show transitions either
along the heteroclinic trajectory [SDSS → SDDS] or [SDSS → SDSD]. While there
are trajectories that will leave the neighborhood of N2 eventually, sufficiently large
noise can counteract this and push the trajectory back into the basin of attraction of
one of the cycles.

5 Discussion

Coupled populations of identical phase oscillators do not only support heteroclinic
networks between sets with localized frequency synchrony but the stability properties
of these networks can also be calculated explicitly. Rather than looking at dynamical
systems with generic properties at the equilibria, we focus on a specific class of vector
fields and obtain explicit expressions for the stability of a heteroclinic network—a
feature of the global dynamics of the system—in terms of the coupling parameters.
In particular, this does not exclude the possibility that stability properties depend
nonmonotonously on the coupling parameters. The coupling parameters themselves
can be related to physical parameters of interacting real-world oscillators, for example
through phase reductions of neural oscillators (Hansel et al. 1993).

Our results motivate a number of further questions and extensions, in particular in
the context of the companion paper (Bick 2019). First, we here restricted ourselves to
the quotient system; this is possible by considering nongeneric interactions between
oscillator populations. The question what the dynamics look like if the resulting sym-
metries are broken, will be addressed in future research. Second, what happens for
coupled populations with N > 2 oscillators? The existence conditions for cycles in
Bick (2019) and the numerical results in Bick (2018) suggest existence of such a net-
work, but stability conditions would rely on the explicit calculation of the stability
indices (Podvigina and Ashwin 2011). In particular, the main tool used here, namely
the results for quasi-simple cycles (Garrido-da-Silva and Castro 2019), ceases to apply
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since the unstable manifold of SDSS would be of dimension four and contain points
with different isotropy (Bick 2019).

How coupling structure shapes the global dynamics of a system of oscillators is a
crucial question in many fields of application. Hence, our results may be of practi-
cal interest: In the neurosciences for example, some oscillators may fire at a higher
frequency than others for some time before another neural population becomes more
active (Tognoli and Scott Kelso 2014). The networks here mimic this effect to a cer-
tain extent: Trajectories which move along the heteroclinic network correspond to
sequential speeding up and slowing down of oscillator populations. At the same time,
large-scale synchrony is thought to relate to neural disfunction (Uhlhaas and Singer
2006). From this point of view, the (in)stability results of Sect. 4 appear interesting,
since trajectories in numerical simulations may get “stuck” in the fully phase synchro-
nized configuration SSSS. Hence, our results may eventually elucidate how to design
networks that avoid transitions to a highly synchronized pathological state.
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Appendix A. Phase Oscillator Populations with Nonpairwise Coupling

The dynamical equations (29) contain interaction terms that arise naturally in phase
reductions of limit cycle oscillators. At the same time, they are related to interactions
between oscillator populations through state-dependent phase shift which may be
approximated by nonpairwise coupling as shown in Bick (2018); here we generalize
these calculations to allow for arbitrary coupling topologies.

Consider a system of M populations of N phase oscillators where θσ,k denotes the
phase of oscillator k of population σ . Recall that the Kuramoto-order parameter

Zσ = 1

N

N∑

j=1

exp(iθσ, j )

encodes the level of synchrony of population σ . In particular, Rσ = |Zσ | = 1 if
and only if all oscillators are phase synchronized. Now suppose that the phase of
oscillator k in population σ evolves according to

θ̇σ,k = ω +
∑

j �=k

g(θσ, j − θσ,k + K�ασ ) (36)

where the interaction is mediated through the coupling function

g(ϑ) = sin(ϑ + α) − r sin(a(ϑ + α)), (37)
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a ∈ N, and the phase shifts

�ασ =
∑

τ �=σ

Kστ (1 − R2
τ )

are linear combination of the (square of the) Kuramoto-order parameters. Here, K ≥ 0
is the overall interaction strength and Kστ ≥ 0 determines the strength of interaction
between populations σ and τ . Set Kσ := ∑M

τ=1 Kστ .
To approximate the dynamics, we expand the coupling function. We have

g(ϑ + K�ασ ) = g(ϑ) + K�ασ cos(ϑ + α) + O(Kr) + O(K 2). (38)

Using trigonometric identities, we obtain

R2
τ = 1

N 2

N∑

p,q=1

cos(θτ,p − θτ,q)

which implies

R2
τ cos(ϑ + α) = 1

N
cos(ϑ + α) + 1

N 2

∑

p �=q

cos(θτ,p − θτ,q + ϑ + α). (39)

Now define the interaction functions

G̃(2)(ϑ) = g(ϑ) + K

(

1 − 1

N

)

Kσ cos(ϑ + α), (40)

G̃(4)(θτ ;ϑ) = − 1

N 2

∑

p �=q

cos(θτ,p − θτ,q + ϑ + α). (41)

Substituting (38) and (39) into (36) and dropping the O(Kr), O
(
K 2

)
terms yield

θ̇σ,k = ω +
∑

j �=k

(

G̃(2)(θσ, j − θσ,k) + K
M∑

τ=1

Kστ G̃
(4)(θτ ; θσ, j − θσ,k)

)

(42)

as an approximation for (36). Note that the interaction between different populations
is through nonpairwise coupling terms: the arguments of the trigonometric functions
in G̃(4) depend on four phase variables rather than just differences between pairs of
phases.

The M = 3 coupled populations of N = 2 oscillators above are determined by the
coupling matrix

(Kστ ) =
⎛

⎝
0 −1 1
1 0 −1

−1 1 0

⎞

⎠ .
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Note that Kσ = 0 for all σ . Thus,

G̃(2)(ϑ) = g(ϑ)

G̃(4)(θτ ;ϑ) = −1

4

(
cos(θτ,1 − θτ,2 + ϑ + α) + cos(θτ,2 − θτ,1 + ϑ + α)

)

and (42) reduce to Eq. (11) in the main text above.
Now consider M = 4 populations of N = 2 oscillators with coupling matrix

(Kστ ) =

⎛

⎜
⎜
⎝

0 −1 1 1
1 0 −1 −1

−1 1 + δ 0 −1
−1 1 − δ −1 0

⎞

⎟
⎟
⎠

where the parameter δ parametrizes the asymmetry between populations three and
four. For δ = 0, the coupling corresponds to the phase shifts

�α1 = −(1 − R2
2) + (1 − R2

3) + (1 − R2
4), (43a)

�α2 = (1 − R2
1) − (1 − R2

3) − (1 − R2
4), (43b)

�α3 = −(1 − R2
1) + (1 − R2

2) − (1 − R2
4), (43c)

�α4 = −(1 − R2
1) + (1 − R2

2) − (1 − R2
3). (43d)

considered in Bick (2018). We have

G̃(4)(θτ ;ϑ) = −1

4

(
cos(θτ,1 − θτ,2 + ϑ + α) + cos(θτ,2 − θτ,1 + ϑ + α)

)
(44)

G̃(2)
σ (ϑ) = g(ϑ) + K

(

1 − 1

N

)

Kσ cos(ϑ + α) (45)

with K1 = 1, K2 = −1, K3 = −1 + δ, K4 = −1 − δ. Hence, Eq. (29) can also be
interpreted as a nonpairwise truncation (42) of the system (36) studied in Bick (2018).
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