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Abstract
The phase response curve (PRC) is a tool used in neuroscience that measures the
phase shift experienced by an oscillator due to a perturbation applied at different
phases of the limit cycle. In this paper, we present a new approach to PRCs based
on the parameterization method. The underlying idea relies on the construction of a
periodic system whose corresponding stroboscopic map has an invariant curve. We
demonstrate the relationship between the internal dynamics of this invariant curve and
the PRC, which yields a method to numerically compute the PRCs. Moreover, we link
the existence properties of this invariant curve as the amplitude of the perturbation is
increased with changes in the PRCwaveform and with the geometry of isochrons. The
invariant curve and its dynamics will be computed by means of the parameterization
method consisting of solving an invariance equation. We show that the method to
compute the PRC can be extended beyond the breakdown of the curve by means of
introducing a modified invariance equation. The method also computes the amplitude
response functions (ARCs) which provide information on the displacement away from
the oscillator due to the effects of the perturbation. Finally, we apply the method to
several classical models in neuroscience to illustrate how the results herein extend the
framework of computation and interpretation of the PRC and ARC for perturbations
of large amplitude and not necessarily pulsatile.
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1 Introduction

Oscillations are ubiquitous in the brain (Buzsaki 2006). From cellular to popula-
tion level, there exist numerous recordings showing periodic activity. Mathematically,
oscillations correspond to attracting limit cycles in the phase space whose dynamics
can be described by a phase variable. Under generic conditions, the phase can be
extended to a neighbourhood of the limit cycle via the concepts of asymptotic phase
and isochrons (Guckenheimer 1975; Winfree 1974). Isochrons are the sets of points in
the basin of attraction of a limit cycle whose orbits approach asymptotically the orbit
of a given point on the limit cycle. We associate with these points the same phase as
the base point on the limit cycle. The regions outside the basin of attraction are called
phaseless sets (Guckenheimer 1975).

When the oscillator is perturbed with a transient external stimulus, the trajectory of
each point is displaced away from the limit cycle and set to the isochron of a different
point, thus causing a change in the phase of the oscillation. Phase displacements due
to perturbations of the oscillator that act at different phases of the limit cycle are
described by the so-called phase response curves (PRCs) (Ermentrout and Terman
2010; Schultheiss et al. 2011). PRCs constitute a useful tool to reduce the dynamics of
the oscillator—which can be of high dimension—to a single equation for the phase.
This approach, based on the phase reduction, has been extensively used to studyweakly
perturbed nonlinear oscillators and predict synchronization properties in neuronal
networks (Canavier and Achuthan 2010; Hoppensteadt and Izhikevich 2012).

PRCs can be measured for arbitrary stimuli, both experimentally and numerically,
in individual neurons and in neuronal populations, assuming that there is enough time
to allow the perturbed trajectory to relax back to the limit cycle. For perturbations that
are infinitesimally small in duration (pulsatile) and amplitude, one obtains the so-called
infinitesimal PRC (iPRC). The iPRC corresponds to the first-order approximation of
the PRC with respect to the amplitude, and it can be easily computed by solving the
adjoint equation (Ermentrout and Kopell 1991). Perturbations of small amplitude but
longer duration are assumed to sum linearly; thus, the phase change is obtained by
convolving the input waveform with the iPRC. Of course, this approximation fails
when the perturbation is strong.

Recently, there has been a large effort to compute isochrons and iPRCs accurately
up to high order (Guillamon and Huguet 2009; Huguet and de la Llave 2013; Mauroy
and Mezić 2012; Osinga and Moehlis 2010). Moreover, the isochrons allow for the
control of the phase for trajectories away from the limit cycle. One can extend the phase
coordinate system to a neighbourhood of the limit cycle by incorporating an amplitude
variable. This variable is transverse to the periodic orbit and controls the “distance”
to the limit cycle (Castejón et al. 2013; Wedgwood et al. 2013). This coordinate is
also known as isostable (Wilson and Ermentrout 2018; Wilson and Moehlis 2016).
It is therefore natural to compute the amplitude response curve (ARC) (or isostable
response curve IRC) which, analogously to the PRC, provides the shift in amplitude
due to a perturbation.
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In this paper, we present a methodology to compute the PRC for perturbations of
large amplitude and not necessarily pulsatile using the parameterization method. The
underlying idea of the method is to construct a particular periodic perturbation con-
sisting of the repetition of the transient stimulus followed by a resting period when no
perturbation acts. For this periodic system, we consider its corresponding stroboscopic
map and we prove that, under certain conditions, the map has an invariant curve. The
core mathematical result of this paper is Theorem 3.2, which gives the existence of
the invariant curve and provides the relationship between the PRC and the internal
dynamics of the curve. To prove the Theorem we use the coordinate system given by
the phase and the amplitude variables. In these variables, the map is contractive in
the amplitude direction and one can apply the results about the existence of invariant
curves in Nipp and Stoffer (1992), Nipp and Stoffer (2013). Working in the original
variables, one can also use theorems on the persistence of normally hyperbolic invari-
ant manifolds with a posteriori format (Bates et al. 2008, 20). That is, one formulates
a functional equation for the parameterization of the invariant curve and its internal
dynamics. Then, if there exists an approximate solution of this invariance equation,
which satisfies some explicit nondegeneracy conditions, there is a true solution nearby.
Moreover, these a posteriori theorems provide a numerical algorithm to compute the
invariant curve and its internal dynamics based on a “quasi-Newton” method. We will
implement this algorithm and compute the PRC using the result in Theorem 3.2. We
also present an extension of the algorithm to compute the PRC after the breakdown of
the invariant curve (possibly because it loses its normal hyperbolic properties). In this
case, it is possible to write an invariance equation, which can be solved approximately
using similar algorithms obtaining the PRC and the ARC.

Weapplyourmethodology to some representative examples in the literature, namely
the Morris–Lecar model and the Wilson–Cowan equations, with a sinusoidal type of
stimulus. As the amplitude is increased, we detect the breakdown of the curve, which
we can relate with the geometry of the isochrons. Moreover, we use the modified
version of the algorithms to compute the PRC beyond the breakdown of the invariant
curve. We compare the PRC computed using our methodology with the one computed
using the standard approach, showing a good agreement. This accuracy is maintained
for all the amplitudes, including the transition from type 0 to type 1 PRC (Glass and
Mackey 1988; Glass and Winfree 1984), which occurs when the perturbation sends
points of the limit cycle to the phaseless sets.

The paper is organized as follows: In Sect. 2, we set the mathematical formalism.
In Sect. 3, we state the main result: Theorem 3.2. In Sect. 4, we describe the numerical
algorithms based on Theorem 3.2 and present the extension for the case when the
invariant curve does not exist but the PRC can still be computed. In Sect. 5, we
present numerical results for some representative examples.Wefinishwith a discussion
in Sect. 6. “Appendix” contains the algorithms to compute the PRC based on the
parameterization method described along the manuscript.
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2 Mathematical Formalism

Let us consider a smooth system of ODEs given by

ẋ = X(x) + Ap(t; A), x ∈ R
n, (1)

where p(t; A) is a function with compact support satisfying p(t; A) = 0 everywhere
except for 0 ≤ t ≤ Tpert andmax

t∈R |p(t; A)| = 1.Therefore, A determines the amplitude

of the perturbation.
We assume that for A = 0 (i.e. the unperturbed case) system (1) has a hyperbolic

attracting limit cycle �0 of period T

�0 := {γ0(t), t ∈ [0, T )},

being γ0 a T -periodic solution of (1).
We will denote by ψA(t; t0, x) the general solution of system (1). As system (1)

is autonomous for A = 0, we know that ψ0(t; t0, x) = φ0(t − t0; x), where φ0(t; x)
is the flow of the unperturbed system. Moreover, abusing notation, we will denote by
φA(t; x) = ψA(t; 0, x).

For the unperturbed case, we can define a parameterization K0 for �0 by means of
the phase variable θ = t

T , that is,

K0 : T := [0, 1) → R
n, (2)

such that K0(θ) = γ0(θT ). Thus, the dynamics for θ satisfies

θ̇ = 1/T , with solution �0(t; θ0) = θ0 + t

T
. (3)

Observe that φ0(t; K0(θ)) = K0(θ + t
T ) = K0(�0(t; θ)).

Consider a point x in the basin of attraction M (stable manifold) of the limit
cycle �0. Since �0 is a normally hyperbolic invariant manifold (NHIM), by NHIM
theory (see Fenichel 1971/1972; Guckenheimer 1975; Hirsch et al. 1977), there exists
a unique point on the limit cycle, K0(θ) ∈ �0, such that

d
(
φ0(t; x), φ0(t; K0(θ))

) ≤ Ce−λt , for t ≥ 0, (4)

where −λ < 0 is the maximal Lyapunov exponent of �0. This property allows us to
assign a phase θ to any point x ∈ M. Indeed, the phase function is defined as (see
Guckenheimer 1975):

	 : M ⊂ R
n → T,

x �→ 	(x) = θ,
(5)

such that Eq. (4) is satisfied. The sets of points with the same asymptotic phase are
called isochrons (Winfree 1974). The sets of points where the asymptotic phase is

123



Journal of Nonlinear Science (2019) 29:2877–2910 2881

not defined are called phaseless sets (Guckenheimer 1975). Clearly, for an attracting
normally hyperbolic invariant manifold the phaseless sets are contained in Rn \ M.

In this context, the PRC (see Ermentrout and Terman 2010) for the perturbation
Ap(t; A) in (1) is defined as:

PRC(θ, A) = 	
(
φA(Tpert; K0(θ))

) − 	
(
φ0(Tpert; K0(θ))

)
, (6)

if φA(Tpert; K0(θ)) ∈ M. For the rest of the manuscript, abusing notation, we will
denote by M a bounded neighbourhood of the periodic orbit �0 such that M̄ is
contained in the basin of attraction of �0.

If we denote by

xpert := φA(Tpert; K0(θ)), θpert := 	(xpert), (7)

from (3) and (6), we have that

PRC(θ, A) = θpert −
(

θ + Tpert
T

)
. (8)

Moreover, since φA(Tpert + t; K0(θ)) = φ0(t; xpert) and using the definition of the
phase function given in (5), we have that

PRC(θ, A) = 	
(
φA(Tpert + t; K0(θ))

) − 	
(
φ0(Tpert + t; K0(θ))

)
, (9)

for all t ≥ 0.
The usual way to compute the PRC either experimentally or numerically is the

following. First, one looks for the time t1 � Tpert at which some xi -coordinate of the
perturbed trajectory φA(t; K0(θ)) reaches its maximum value after the perturbation is
turned off. Then, one compares time t1 with the time t0 which is closest to t1 at which
the unperturbed trajectory φ0(t; K0(θ)) reaches its maximum (see Fig. 1). Finally, the
PRC is given approximately by:


θ = t1 − t0
T

. (10)

This approach (that we will refer to as the standard method) provides a good
approximation of the PRC if the time to relax back to the oscillator �0 is short either
because there is a strong contraction (the maximal Lyapunov exponent −λ in (4) is
sufficiently negative) or because the perturbation is weak (A 	 1 in (1)). Otherwise,
one should wait several periods (kT , k ∈ N sufficiently large) before computing the
phase difference.

In the next sections, we present theoretical and numerical results based on the
parameterization method that yield novel algorithms to compute the PRC.
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Fig. 1 After the perturbation is turned off (t > Tpert), the trajectories relax back to the limit cycle and a
phase shift 
θ is experienced

3 Stroboscopic Approach to Compute the PRC byMeans of the
ParameterizationMethod: Theoretical Results

The perturbation p(t; A) in (1) is not periodic. However, we will introduce a periodic
perturbation p̄(t; A) of period T ′ := Tpert + Trel, with Trel � Tpert which coincides
with p(t; A) for 0 ≤ t ≤ T ′. Then, we consider the T ′-periodic system

ẋ = X(x) + A p̄(t; A), x ∈ R
n, (11)

whose solutions coincide with the solutions of (1) for 0 ≤ t ≤ T ′. Since p̄(t; A) is
periodic, we can define the stroboscopic map given by the flow of (11) at time T ′
starting at t = 0, i.e.

FA : Rn → R
n,

x → FA(x) = φA(T ′; x) = φA(Tpert + Trel; x). (12)

Using this approach, the formula for the PRC given in (9) for t = Trel writes as

PRC(θ, A) = 	
(
FA(K0(θ))

) − 	
(
F0(K0(θ))

)
. (13)

Note that for A = 0, one has

F0(K0(θ)) = φ0(T
′; K0(θ)) = K0(θ + T ′/T ), (14)

and therefore

�0 = {K0(θ), θ ∈ [0, 1)} (15)
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is an invariant curve of the map F0. Moreover, by (4) we have that for any x ∈ M

|F0(x) − F0(K0(θ))| ≤ Ce−λT ′
,

where θ = 	(x). Therefore, �0 is a normally hyperbolic attracting invariant curve of
the map F0.

Let us recall here, following (Fenichel 1971/1972, 1973/74; Hirsch et al. 1977), the
definition of normally hyperbolic attracting invariant curve adapted to our problem.

Definition 3.1 Let F : M → M aCr diffeomorphism on aCr -differentiable manifold
M . Assume that there exists a manifold � ⊆ M that is invariant for F . We say that
� ⊂ M is a hyperbolic attracting manifold if there exists a splitting of the tangent
bundle T M into DF-invariant sub-bundles, i.e.

T M = Es ⊕ T�,

and constants C > 0 and

0 < λ+ < η−1 ≤ 1, (16)

such that for all x ∈ � we have

v ∈ Es
x ⇔ ‖DFk(x) v‖ ≤ Cλk+‖v‖, for all k ≥ 0,

v ∈ Tx� ⇔ ‖DFk(x) v‖ ≤ Cη|k|‖v‖, for all k ∈ Z.
(17)

For our problem, following Guillamon and Huguet (2009); Huguet and de la Llave
(2013), we can differentiate the invariance Eq. (14) of �0 obtaining

DF0(K0(θ))DK0(θ) = DK0

(
θ + T ′

T

)
, (18)

and, for n = 2, in Guillamon and Huguet (2009), Huguet and de la Llave (2013) it is
shown that there exists N (θ) such that

DF0(K0(θ))N (θ) = e−λT ′
N

(
θ + T ′

T

)
. (19)

Therefore, for any x = K0(θ) ∈ �0, there is a splitting R
2 =< DK0(θ) > ⊕ <

N (θ) > and rates λ+ = e−λT ′
and η = 1, satisfying (17) thus showing that �0 is

a normally hyperbolic attracting manifold. This result can be generalized to n > 2
using the information provided by the variational equations along the periodic orbit
�0 (see Remark 3.4).

Next, we present the main result of this paper which provides the existence of an
invariant curve �A of the stroboscopic map FA (12) which isO(Ae−λTrel)-close to �0
and relates its internal dynamics with the PRC of �0 in system (1) (see Fig. 2). The
proof of this theorem is given in Sect. 3.1.
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Fig. 2 Sketch of the results of Theorem 3.2. The perturbation acting on a point K0(θ) ∈ �0 for a time
T ′ = Tpert + Trel displaces it to a point FA(K0(θ)). In Theorem 3.2, we show that the phase difference
between the perturbed and unperturbed trajectories is given up to an error O(Ae−λTrel ) by the difference
between the internal dynamics f A(θ) on �A and f0(θ) on �0. For the sake of clarity, we have located the
points K0(θ) and KA(θ) (resp. FA(K0(θ)) and KA( f A(θ))) on the same isochron Iθ (resp. Iθ∗ , where
θ∗ := f A(θ)) although they are O(Ae−λTrel )-close

Theorem 3.2 Consider the stroboscopic map of the T ′-periodic system (11) defined in
(12) with T ′ = Tpert + Trel and let �0 be the normally hyperbolic attracting invariant
curve of the map F0, parameterized by K0, such that

F0 ◦ K0 = K0 ◦ f0,

where f0(θ) = θ + T ′/T .

Consider A > 0. Assume that A is small or A = O(1) and the following hypotheses
are satisfied:

H1 φA(Tpert; x) ∈ M for any x ∈ �0,
H2 The function PRC(θ, A) + θ is a monotone function,
H3 Trel is sufficiently large,

then, there exists an invariant curve �A of the map FA. Moreover, there exist a param-
eterization KA of �A and a periodic function f A such that

FA(KA(θ)) = KA( f A(θ)), (20)

KA(θ) = K0(θ) + O(Ae−λTrel),

PRC(θ, A) = f A(θ) − f0(θ) + O(Ae−λTrel).
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3.1 Proof of Theorem 3.2

3.1.1 The Case A Small

In this section, we prove Theorem 3.2 for A small. We first prove the following lemma
which shows that the map FA has an invariant curve �A which is O(Ae−λTrel)-close
to �0.

Lemma 3.3 Consider the stroboscopic map of the T ′-periodic system (11) defined in
(12), and let �0 be the normally hyperbolic invariant curve of the map F0, parameter-
ized by K0 [see (2)]. Then, for A small enough there exists an invariant curve �A of
the map FA. Moreover, there exist a parameterization KA : T → R

n and a periodic
function fA : T → T satisfying the invariance equation

FA(KA(θ)) = KA( f A(θ)),

such that KA(θ) satisfies

|KA(θ) − K0(θ)| = O(Ae−λTrel), (21)

where −λ < 0 is the maximal Lyapunov exponent of �0.

Proof When n = 2, since, by (18) and (19), �0 is a normally hyperbolic attracting
invariant manifold of F0, the existence of the invariant curve for A small enough
follows from Fenichel’s theorem (Fenichel 1971/1972, 1973/74). We will perform
the rest of the proof for n = 2, but it can be easily generalized to arbitrary n (see
Remark 3.4). Using the results in Guillamon and Huguet (2009) (see Cabré et al.
2005; Castelli et al. 2015 for higher dimensions) we can describe a point (x, y) ∈ M
in terms of the so-called phase–amplitude variables. More precisely, consider the
change of coordinates

K : � ⊂ T × R → M ⊂ R
2

(θ, σ ) → K (θ, σ ) = (x, y),
(22)

where � := T × U and U ⊂ R, such that system (11) for A = 0, expressed in the
variables (θ, σ ), has the following form

θ̇ = 1

T
,

σ̇ = − λσ.

(23)

Moreover, system (11) for A �= 0 small enough, expressed in the variables (θ, σ ),
writes as the T ′-periodic system

θ̇ = 1

T
+ O(A),

σ̇ = − λσ + O(A),

(24)

and we will denote by �A(t; t0, θ, σ ) the general solution of (24).
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Consider now the stroboscopic map FA in the variables (θ, σ ), i.e. F̃A : � → �,
such that F̃A = K−1 ◦ FA ◦ K . We have

F̃A(θ, σ ) = �A(T ′; 0, θ, σ ) =
(

θpert + Trel
T

, σperte
−λTrel

)
, (25)

where K (θpert, σpert) = φA(Tpert; K (θ, σ )) ∈ M. For A small enough, we have

(θpert, σpert) = �A(Tpert; 0, θ, σ ) =
(

θ + Tpert
T

+ O(A), σe−λTpert + O(A)

)
.

In conclusion,

F̃A(θ, σ ) =
(

θ + T ′

T
+ O(A), σe−λT ′ + O(Ae−λTrel)

)
= F̃0 + O(A). (26)

The unperturbed invariant curve �0 in the variables (θ, σ ) is given by:

�̃0 = {(θ, σ ) | θ ∈ T, σ = 0}.

Therefore, by Fenichel’s theorem, for A �= 0 small enough, there exists a function

SA : T → R

θ → SA(θ),
(27)

such that SA(θ) = O(A) and the perturbed invariant curve for F̃A is given by:

�̃A = {(θ, σ ) | θ ∈ T, σ = SA(θ)}. (28)

Analogously, K̃ A(θ) = (θ, SA(θ)) is a parameterization of the invariant curve �̃A.
Hence, using the invariance property, we have

F̃A(K̃ A(θ)) = F̃A(θ, SA(θ))

=
(
F̃1
A(θ, SA(θ)), F̃2

A(θ, SA(θ))
)

=
(
F̃1
A(θ, SA(θ)), SA

(
F̃1
A(θ, SA(θ))

))

= K̃ A(F̃1
A(θ, SA(θ)))

:= K̃ A( f A(θ)),

where the internal dynamics is given by

f A(θ) = F̃1
A(θ, SA(θ)),

and F̃1
A and F̃2

A correspond to the θ and σ component of F̃A, respectively.
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Using the invariance property of �̃A and expression (26) for the stroboscopic map
F̃A, we obtain:

SA

(
θ + T ′

T
+ O(A)

)
= SA(θ)e−λT ′ + O(Ae−λTrel), ∀θ ∈ T.

Therefore, since SA(θ) = O(A) and T ′ = Tpert + Trel we get an improved bound for
SA(θ),

SA(θ) = O(Ae−λTrel).

Using the change of variables (x, y) = K (θ, σ ) given in (22), we can return to the
original variables. Then, assuming (x, y) ∈ �A ⊂ M, if A is small enough, one has

(x, y) = K (θ, σ ) = K (θ, SA(θ)) = K ◦ K̃ A(θ) =: KA(θ). (29)

Thus, the invariant curve can be parameterized by KA and

FA(KA(θ)) = FA ◦ K ◦ K̃ A(θ) = K ◦ F̃A ◦ K̃ A(θ) = K ◦ K̃ A( f A(θ)) = KA( f A(θ)),

that is, the internal dynamics over the invariant curve �A is the same for both param-
eterizations. Therefore,

|KA(θ) − K0(θ)| = |K ◦ K̃ A(θ) − K ◦ K̃0(θ)|
≤ sup

(θ,σ )∈�̄

|DK (θ, σ )||K̃ A(θ) − K̃0(θ)|

≤ C̄ |SA(θ)| ≤ CAe−λTrel ,

(30)

where C is a constant independent of Trel and A. ��
Remark 3.4 Notice that the proof can be generalized to any n > 2, just considering
σ = (σ1, . . . , σn−1) ∈ R

n−1 and

σ̇ = Mσ,

where M is the real canonical form of the projection onto the stable subspace of the
monodromy matrix of the first variational equation along the periodic orbit:

ẋ = DX(γ0(t))x .

The proof can be derived analogously using that σ(t) = σ(0)eMt and |σ0eMt | <

|σ0|e−λt , where −λ < 0 is the maximal Lyapunov exponent of �0.

End of the proof of Theorem 3.2 for A small
To finish the proof of Theorem 3.2, we need to show that the internal dynamics f A in
�A is close to the PRC of �0 of system (1).
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Consider the parameterization KA of the invariant curve �A given in Lemma 3.3,
we have

KA( f A(θ)) = FA(KA(θ)) = FA(K0(θ)) + FA(KA(θ)) − FA(K0(θ)).

Assuming that sup
x∈M̄

|DFA| ≤ C and using that |KA(θ) − K0(θ)| = O(Ae−λTrel)

(see Lemma 3.3), we have

FA(K0(θ)) = KA( f A(θ)) + O(Ae−λTrel). (31)

Moreover, using the formula for the PRC given in (13), we have

PRC(θ, A) = 	[FA(K0(θ))] − 	[F0(K0(θ))]
= 	[KA( f A(θ)) + O(Ae−λTrel)] − 	[K0( f0(θ))]
= 	[KA( f A(θ))] − 	[K0( f0(θ))]

+ 	[KA( f A(θ)) + O(Ae−λTrel)] − 	[KA( f A(θ))]
= f A(θ) − f0(θ) + 	[KA( f A(θ)) + O(Ae−λTrel)] − 	[KA( f A(θ))].

(32)

Now using that sup
x∈M̄

|∇	| ≤ C , we have

PRC(θ, A) = f A(θ) − f0(θ) + O(Ae−λTrel).

3.1.2 The Case A = O(1)

To prove Theorem 3.2 for A = O(1), one can use the results in Bates et al. (2008),
which state that if a map has an approximately invariant manifold which is approxi-
mately normally hyperbolic, then the map has a true invariant manifold nearby.

Due to the strong attracting properties of the invariant curve�0, it is straightforward
to see that �0 is approximately invariant for the map FA, even if A = O(1).

Consider the intermediate map

Fpert(x) = φA(Tpert; x), (33)

we will use the hypothesisH1 that states that Fpert maps the curve �0 into its basin of
attraction M.

Then, given a point x = K0(θ) ∈ �0, if xpert = Fpert(x) = φA(Tpert; x) ∈ M, [see
(7)], by Eq. (4), there exists a point K0(θpert) ∈ �0 such that, for t ≥ 0
∣
∣
∣∣FA(K0(θ)) − K0

(
θpert + Trel

T

)∣
∣
∣∣ = ∣

∣φ0(Trel; xpert) − φ0
(
Trel; K0(θpert)

)∣∣ ≤ Ce−λTrel .

(34)

Using the formula for the PRC given in (8), we have that

θpert + Trel
T

= PRC(θ, A) + θ + Tpert
T

+ Trel
T

= PRC(θ, A) + f0(θ), (35)
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where f0(θ) = θ + T ′/T . Hence, defining

f̄ A(θ) := PRC(θ, A) + f0(θ), (36)

expression (34) reads as

|FA(K0(θ)) − K0( f̄ A(θ))| ≤ Ce−λTrel . (37)

In other words, the curve �0 with inner dynamics f̄ A is approximately invariant for
the map FA with an errorO(e−λTrel) that can be made as small as we want taking Trel
large enough. To apply the results in Bates et al. (2008), one needs to show that �0 is
approximately normally hyperbolic for FA. That is, for each point x ∈ �0 there exists
a decomposition �0,x = �c

0,x ⊕�s
0,x , with �c

0,x being an approximation of the tangent
space to �0 at x , such that

• The splitting is approximately invariant under the linearized map DFA,
• DFA(x)|�s

0
expands and does so to a greater rate than DFA(x)|�c

0
does.

Again, we will consider the two-dimensional case, but results can be generalized to
arbitrary dimension (see Remark 3.4). Using the change of variables K introduced in
(22) the map FA satisfies [see Eq. (25)]:

FA(K (θ, σ )) = K

(
θpert + Trel

T
, σperte

−λTrel

)
, (38)

where K (θpert, σpert) = Fpert(K (θ, σ )) [see (33)]. Notice that θpert and σpert are cor-
rectly defined as long as Fpert(K (θ, σ )) ∈ M, which is satisfied for points (θ, 0) on
the invariant curve �0 by hypothesis H1 and therefore in a small neighbourhood of
�0. Taking derivatives with respect to θ and σ in expression (38), we have

DFA(K (θ, σ ))DθK (θ, σ ) = DθK
(
θpert + Trel

T , σperte−λTrel
)

∂θpert
∂θ

+Dσ K
(
θpert + Trel

T , σperte−λTrel
)
e−λTrel ∂σpert

∂θ
,

DFA(K (θ, σ ))Dσ K (θ, σ ) = DθK
(
θpert + Trel

T , σperte−λTrel
)

∂θpert
∂σ

+Dσ K
(
θpert + Trel

T , σperte−λTrel
)
e−λTrel ∂σpert

∂σ
.

(39)

Evaluating the above expression on the points (θ, 0), we have

DFA(K0(θ))DK0(θ) = DθK
(
f̄ A(θ), σpert(θ, 0)e−λTrel

) ∂θpert
∂θ

(θ, 0)

+Dσ K
(
f̄ A(θ), σpert(θ, 0)e−λTrel

)
e−λTrel ∂σpert

∂θ
(θ, 0),

DFA(K0(θ))K1(θ) = DθK
(
f̄ A(θ), σpert(θ, 0)e−λTrel

) ∂θpert
∂σ

(θ, 0)

+Dσ K
(
f̄ A(θ), σpert(θ, 0)e−λTrel

)
e−λTrel ∂σpert

∂σ
(θ, 0),

(40)
where f̄ A is defined in (36) [see also (35)] and

K1(θ) := Dσ K (θ, σ )|σ=0. (41)
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Now, we Taylor expand the function K (θ, σ ) around σ = 0 and obtain

DFA(K0(θ))DK0(θ) =
[
DK0( f̄ A(θ)) + e−λTrelσpert(θ, 0)DK1( f̄ A(θ))

] ∂θpert

∂θ
(θ, 0)

+K1( f̄ A(θ))e−λTrel
∂σpert

∂θ
(θ, 0) + O(e−2λTrel),

DFA(K0(θ))K1(θ) =
[
DK0( f̄ A(θ)) + e−λTrelσpert(θ, 0)DK1( f̄ A(θ))

] ∂θpert

∂σ
(θ, 0)

+K1( f̄ A(θ))e−λTrel
∂σpert

∂σ
(θ, 0) + O(e−2λTrel).

(42)

Moreover, as the functions θpert(θ, σ ) and σpert(θ, σ ) are smooth functions at the
points (θ, 0), we can ensure that the error terms are uniform with respect to θ ∈ T.
Let us now define

Z(θ) = ∂θpert

∂σ
(θ, 0)DK0(θ) − ∂θpert

∂θ
(θ, 0)K1(θ),

straightforward computations give

DFA(K0(θ))Z(θ) = O(e−λTrel).

Therefore, calling ε = e−λTrel , we have

DFA(K0(θ))DK0(θ) = �T (θ)DK0( f̄ A(θ)) + O(ε),

DFA(K0(θ))Z(θ) = O(ε),
(43)

with
�T (θ) = ∂θpert

∂θ
(θ, 0), (44)

and as long as
∂θpert

∂θ
(θ, 0) �= 0, θ ∈ T, (45)

which is guaranteed by hypothesis H2, one can produce an iteration procedure to
construct an approximate splitting by which �0 becomes approximately normally
hyperbolic (see Definition 3.1). Then, we apply the results in Bates et al. (2008),
which yield that FA will have an invariant curve �A near �0.

A more direct argument consists in considering the map FA in the variables (θ, σ )

in (22), denoted by F̃A in (25), and apply the results in Nipp and Stoffer (1992) (see
also Nipp and Stoffer 2013) to this map. Thanks to hypothesisH1, one can consider a
neighbourhood of �0 where the change of variables (x, y) = K (θ, σ ) is defined, and
therefore, the map F̃A is a smooth diffeomorphism

F̃A : Dρ := T × Iρ → T × R,
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where Iρ = {σ ∈ R, |σ | ≤ ρ}, with ρ > 0 small, and has the form

F̃A(θ, σ ) =
(

f0(θ) + f̂ (θ, σ )

g(θ, σ )

)
,

where

f0(θ) = θpert(θ, 0) + Trel
T

, f̂ (θ, σ ) = θpert(θ, σ ) − θpert(θ, 0), g(θ, σ ) = σpert(θ, σ )e−λTrel .

HypothesisH2 ensures that f0 is a smooth diffeomorphism (and therefore invertible).
Taking Trel large enough, the map F̃A strongly contracts in the σ direction. Moreover,
for (θ, σ ) ∈ Dρ , we have

∣∣∣∣
∂ f̂

∂θ

∣∣∣∣ ≤ L11,

∣∣∣∣
∂ f̂

∂σ

∣∣∣∣ ≤ L12,

∣∣∣∣
∂g

∂θ

∣∣∣∣ ≤ L21,

∣∣∣∣
∂g

∂σ

∣∣∣∣ ≤ L22,

where L11, L12 = O(ρ), L21, L22 = O(e−λTrel) can be made small by taking ρ small
and Trel large. One can then apply Theorem 3 in Nipp and Stoffer (1992), which give,
for Trel large enough (hypothesis H3), the existence of the invariant curve in form
(28), where the function SA must satisfy

F̃2
A(θ, SA(θ)) = SA(F̃1

A(θ, SA(θ))),

and SA = O(e−λTrel). Again, F̃1
A and F̃2

A correspond to the θ and σ components of
F̃A, respectively.

Returning to the original variables x = K (θ, σ ) defined in (22) and using that
�A ⊂ M, we obtain the parameterization KA of �A as in (29). Moreover, once we
have bounded the size of SA, an analogous reasoning to (30) gives

|KA(θ) − K0(θ)| ≤ Ce−Trel . (46)

End of the Proof of Theorem 3.2 for A = O(1)
To finish the proof of Theorem 3.2, we need to show that the internal dynamics f A in
�A is close to the PRC of �0 for system (1).

This can be done analogously to the case A small using (46) instead of (21) arriving
to

PRC(θ, A) = f A(θ) − f0(θ) + O(e−λTrel). (47)

This step concludes the proof.

4 Computation of the PRC byMeans of the ParameterizationMethod

Theorem 3.2 establishes that the PRC can be obtained from the dynamics f A of the
stroboscopic map FA on the invariant curve �A. This allows us to take advantage of
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the existing algorithms based on the parameterization method (Cabré et al. 2005; Haro
et al. 2016) to compute the parameterization of the invariant curve KA as well as its
internal dynamics f A. The algorithms are based on a Newton-like method to solve the
invarianceEq. (20) for the unknowns KA and f A. Indeed, given an approximation of the
parameterization of the invariant curve KA and its internal dynamics f A, the method
provides improved solutions that solve the invariance equation up to an error which is
quadratic with respect to the initial one at each step. Moreover, the method requires
to compute alongside the invariant normal bundle of the invariant curve N (θ) and its
linearized dynamics �(θ). In order to make the paper self-contained, the algorithms
are reviewed in detail in “Appendix A”.

4.1 Computation of the PRC Beyond the Existence of the Invariant Curve

The results of Theorem 3.2 rely on the computation of an invariant curve for the stro-
boscopic map FA of a system with an “artificially” constructed periodic perturbation
[see Eq. (11)]. In some cases, as we will see in the numerical examples presented in
Sect. 5, the invariant curve �A does not exist. This situation can happen if Fpert(�0) is
not in the basin of attraction M of the limit cycle �0 (breaking hypothesis H1), or if
θpert(θ, 0) has a critical point θ∗ and therefore dθpert/dθ(θ∗, 0) = 0 (breaking hypoth-
esisH2). However, when the hypothesisH2 fails, it is possible to design an algorithm
based on the parameterization method (Canadell and Haro 2016), to compute the PRC
with enough accuracy by means of solving an approximate invariance equation.

Using (38) with σ = 0, we have

FA(K0(θ)) = K

(
θpert(θ, 0) + Trel

T
, σpert(θ, 0)e−λTrel

)
= K ( f̄ A(θ), C̄A(θ)),

where f̄ A(θ) is given in (36) and

C̄A(θ) := σpert(θ, 0)e−λTrel . (48)

Taylor expanding K (θ, σ ) with respect to σ , we obtain

FA(K0(θ)) = K0( f̄ A(θ)) + O(e−λTrel). (49)

Of course, expression (49) is only valid if Fpert(�0) ∈ M (hypothesis H1), but
we do not impose that �0 is approximately normally hyperbolic. Nevertheless, we
will use the ideas in the algorithms reviewed in “Appendix A” and we will design a
quasi-Newton method to compute a function gA that satisfies

FA(K0(θ)) − K0(gA(θ)) = E(θ), (50)

where the error E cannot be smaller than the terms O(e−λTrel) that we have dropped.
Assuming that gA satisfies Eq. (50), we look for an improved solution ĝA(θ) =

gA(θ) + 
gA(θ) such that ĝA solves the approximate invariance equation up to an
error which is quadratic in E . Thus, if we linearize about gA we have
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FA(K0(θ)) − K0(ĝA(θ)) = FA(K0(θ)) − K0(gA(θ)) − DK0(gA(θ))
gA(θ) + O(|
gA|2)
= E(θ) − DK0(gA(θ))
gA(θ) + O(|
gA|2).

(51)

Therefore, we look for 
gA satisfying the equation

E(θ) = DK0(gA(θ))
gA(θ),

which provides


gA(θ) = < DK0(gA(θ)), E(θ) >

< DK0(gA(θ)), DK0(gA(θ)) >
, (52)

where < ·, · > denotes the dot product.

Remark 4.1 Notice that expression (52) corresponds to the projection of E onto the
tangent direction DK0, thus obtaining
gA in the same way as
 f A in Algorithm A.2
(see “Appendix A”).

The algorithm to compute the PRC is then:

Algorithm 4.2 Computation of the PRC.Given a parameterization of the limit cycle
K0(θ) and an approximate solution of Eq. (50) gA(θ), perform the following opera-
tions:

1. Compute E(θ) = FA(K0(θ)) − K0(gA(θ)).
2. Compute DK0(gA(θ)).
3. Compute 
gA = <DK0(gA(θ)),E(θ)>

<DK0(gA(θ)),DK0(gA(θ))>
.

4. Set gA(θ) ← gA(θ) + 
gA(θ).
5. Repeat steps 1–4 until the error E is smaller than the established tolerance. Then

PRC(θ, A) = gA(θ) − (
θ + T ′/T

)
.

In Sect. 5, we apply Algorithm 4.2 to several examples, illustrating the convergence
of the method and the good agreement of the results with the standard method.

4.2 Computation of the PRC and ARC

In the previous section, we have used that K0 satisfies Eq. (49). Notice that we can be
more precise and include the exact expression of the terms of O(e−λTrel), that is,

FA(K0(θ)) = K0( f̄ A(θ)) + K1( f̄ A(θ))C̄A(θ) + O(e−2λTrel),

with K1(θ) as in (41).
We already know that the function f̄ A(θ) provides the PRC through relation (36).

Wewould like to emphasize here the role of C̄A(θ)defined in (48). The analogous curve
to the PRC for the amplitude σ is known as the amplitude response curve (Castejón
et al. 2013; Wilson and Moehlis 2015) (ARC) and is given by ARC(θ) = σpert(θ, 0),
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that is, the value of σ at xpert [see (7)]. Therefore, since σpert(θ, 0) = C̄A(θ)eλTrel , the
function C̄A(θ) provides the ARC through the expression ARC(θ, A) = C̄A(θ)eλTrel .

As in the previous section, it is possible to design aquasi-Newtonmethod to compute
the functions gA and CA that satisfy

FA(K0(θ)) − K0(gA(θ)) − CA(θ)K1(gA(θ)) = E(θ), (53)

where the error E will not be smaller than the terms of orderO(e−2λTrel) that we have
dropped.

Proceeding as in the previous section, we assume that gA and CA satisfy Eq. (53)
and we look for improved solutions, ĝA(θ) = gA(θ)+
gA(θ) and ĈA(θ) = CA(θ)+

CA(θ), such that ĝA and ĈA solve the approximate invariance equation up to an error
which is quadratic in E . Thus, if we linearize about gA and CA, we have

FA(K0(θ)) − K0(ĝA(θ)) − K1(ĝA(θ))ĈA(θ)

= FA(K0(θ)) − K0(gA(θ)) − DK0(gA(θ))
gA(θ) − K1(gA(θ))CA(θ)

− DK1(gA(θ))
gA(θ)CA(θ) − K1(gA(θ))
CA(θ) + O(
2, e−2λTrel)

= E(θ) − DK0(gA(θ))
gA(θ) − DK1(gA(θ))
gA(θ)CA(θ)

− K1(gA(θ))
CA(θ) + O(
2).

(54)

Hence, we are left with the following equation for 
gA and 
CA,

E(θ) = [DK0(gA(θ)) + DK1(gA(θ))CA(θ)]
gA(θ) + K1(gA(θ))
CA(θ).

(55)

Therefore, the unknown 
gA corresponds to the projection of the error E onto the
direction R := DK0 ◦ gA +CA · DK1 ◦ gA and
CA(θ) corresponds to the projection
of E onto the K1 direction. Of course, DK0 and K1 are transversal since K1 is tangent
to the isochrons of the unperturbed limit cycle, which are always transversal to the
limit cycle. Since CA = O(e−λTrel), assuming that Trel is large enough, we can always
guarantee that R and K1 are transversal. Therefore, multiplying (55) by K⊥

1 (gA(θ)),
we have


gA(θ) = < K⊥
1 (gA(θ)), E(θ) >

< K⊥
1 (gA(θ)), R(θ) >

, (56)

whereas multiplying by R(θ)⊥, we obtain


CA(θ) = < R⊥(θ), E(θ) >

< R⊥(θ), K1(gA(θ)) >
, (57)

where < ·, · > denotes the dot product.
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Remark 4.3 Notice that CA(θ) = O(e−λTrel), and if we disregard the termsO(e−λTrel)

in expression (56), we obtain


gA(θ) = < K⊥
1 (gA(θ)), E(θ) >

< K⊥
1 (gA(θ)), DK0(gA(θ)) >

, (58)

which is equivalent to the expression obtained in (52). Indeed, in this case the vectors
E(θ) and DK0(θ) have the same direction, and expression (52) can be replaced by


gA(θ) = < v, E(θ) >

< v, DK0(gA(θ)) >
,

where v can be any vector as long as it is not perpendicular to DK0(gA(θ)).

Thus, the algorithm to compute the PRC and the ARC is:

Algorithm 4.4 Computation of the PRC and the ARC.Given a parameterization of
the limit cycle K0(θ), the tangent vector to the isochrons of the limit cycle K1(θ), and
approximate solutions of Eq. (53) gA(θ) andCA(θ), perform the following operations:

1. Compute E(θ) = FA(K0(θ)) − K0(gA(θ)) − CA(θ)K1(gA(θ)).
2. Compute R(θ) = DK0(gA(θ)) + DK1(gA(θ))CA(θ).

3. Compute 
gA(θ) = <K⊥
1 (gA(θ)),E(θ)>

<K⊥
1 (gA(θ)),R(θ)>

.

4. Compute 
CA(θ) = <R⊥(θ),E(θ)>

<R⊥(θ),K1(gA(θ))>
.

5. Set gA(θ) ← gA(θ) + 
gA(θ).
6. Set CA(θ) ← CA(θ) + 
CA(θ).
7. Repeat steps 1–6 until the error E is smaller than the established tolerance. Then,

PRC(θ, A) = gA(θ) − (θ + T ′/T ),

and

ARC(θ, A) = CA(θ)eλTrel .

5 Numerical Examples

In this section, we apply the algorithms based on the parameterization method intro-
duced in Sect. 4 to compute the PRC to some relevant models in neuroscience, namely
the Wilson–Cowan model (Wilson and Cowan 1972) and the Morris–Lecar model
(Morris and Lecar 1981). We will use the same perturbation for both models:

p(t) = sin6
(

π t

Tpert

)
,
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for 0 ≤ t ≤ Tpert and Tpert = 10. The value of Trel is different for each model,
and its value is indicated with the other parameters of the model in Tables 1 and 2,
respectively.

In order to validate the algorithms, we will compare the results obtained using the
parameterization method with the standard method (see formula (10)).

The Wilson–Cowan model The Wilson–Cowan model describes the behaviour of
a coupled network of excitatory and inhibitory neurons. The perturbed model has the
form (see Wilson and Cowan 1972):

Ė = − E + Se(aE − bI + P + Ap(t)),

İ = − I + Si (cE − d I + Q),
(59)

where the variables E and I are the firing rate activity of the excitatory and inhibitory
populations, respectively, and

Sk(x) = 1

1 + e−ak (x−θk )
, for k = e, i, (60)

is the response function.
We consider two sets of parameters, for which the system displays a limit cycle.

For the first set of parameters the limit cycle is born from a Hopf bifurcation, and for
the second one from a saddle node on invariant circle (SNIC) bifurcation (Borisyuk
and Kirillov 1992). We refer to them as WC-Hopf and WC-SNIC, respectively. Some
parameters of the model are common to both cases, namely a = 13, b = 12, c = 6,
d = 3, ae = 1.3, ai = 2, θe = 4, θi = 1.5. Parameters (P, Q) for each set are given
in Table 1, together with the period T , the characteristic exponent−λ of each periodic
orbit, and the relaxation time Trel of the perturbation.

We compute the PRC for the limit cycle of the Wilson–Cowan model for different
values of the amplitude A. In Figs. 3 and 4, we show the comparison between the
PRCs computed using the standard method and the parameterization method for the
WC-Hopf and the WC-SNIC, respectively. We remark the good agreement between
both methods.

We also show the invariant curve �A, the internal dynamics f A and the derivative
of f A in Fig. 5 for the WC-Hopf and in Fig. 6 for the WC-SNIC. Notice that as A
increases, the shape of the PRC shows a sudden increase for certain phase values (see
panel A in Figs. 5 and 6). A more detailed discussion about this phenomenon will be
given in Sect. 5.1.

The Morris–Lecar model It was originally developed to study the excitability prop-
erties for the muscle fibre of the giant barnacle, and it has been established as a
paradigm for the study of different neuronal excitability types (Rinzel and Ermentrout
1989; Rinzel and Huguet 2013). The perturbed model has the form (see Morris and
Lecar 1981):

CV̇ = Iapp − gL(V − VL) − gKw(V − VK ) − gCam∞(V )(V − VCa) + Ap(t),

ẇ = φ
w∞(V ) − w

τw(V )
,

(61)
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Table 1 (P, Q) parameter values for the Wilson–Cowan model close to the corresponding type of bifurca-
tion

Parameter Hopf SNIC

P 2.5 1.45

Q 0 −0.75

T 5.26 13.62

Trel 15T 6T

−λ − 0.157 − 0.66

For the indicated parameter values and A = 0, system (59) has a stable limit cycle of period T and
characteristic exponent −λ

Fig. 3 PRCs for the Wilson–Cowan model near a Hopf bifurcation (WC-Hopf) for different values of the
amplitude A (as indicated in each panel) showing the comparison between the parameterization method
(solid blue line) and the standard method (red dots) (Color figure online)

Fig. 4 PRCs for the Wilson–Cowan near a SNIC bifurcation (WC-SNIC) for different values of the ampli-
tude A (as indicated in each panel) showing the comparison between the parameterization method (solid
blue line) and the standard method (red dots) (Color figure online)
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Fig. 5 For the Wilson–Cowan model near a Hopf bifurcation (WC-Hopf) and different amplitude values
A we show: a the PRCs, b the dynamics f A(θ) on the invariant curve �A , c the invariant curve �A , d
the derivative of f A(θ). The dashed blue line in panel b corresponds to the identity function (Color figure
online)

Fig. 6 For the Wilson–Cowan model near a SNIC bifurcation (WC-SNIC) and different amplitude values
we show: a the PRCs, b the dynamics f A(θ) on the invariant curve �A , c the invariant curve �A , d the
derivative of f A(θ). The dashed blue line in panel b corresponds to the identity function (Color figure
online)

where

m∞(V ) = 1

2
(1 + tanh((V − V1)/V2)),

w∞(V ) = 1

2
(1 + tanh((V − V3)/V4)),

τw(V ) = (cosh((V − V3)/(2V4)))
−1.

(62)
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Table 2 Parameter values for the Morris–Lecar model close to the corresponding type of bifurcation

Parameter Hopf SNIC

φ 0.04 0.067

gCa 4.4 4

V3 2 12

V4 30 17.4

Iapp 91 45

T 99.27 99.192

Trel 6T 5T

−λ − 0.0919 − 0.1198

For the indicated parameter values and A = 0, system (61) has a stable periodic orbit of period T and
characteristic exponent −λ

Fig. 7 PRCs for the Morris–Lecar model near a Hopf bifurcation (ML-Hopf) for different values of the
amplitude (indicated in each panel) showing the comparison between the parameterization method (solid
blue line) and the standard method (red dots) (Color figure online)

As in the previous example,we consider two sets of parameters forwhich the system
displays a limit cycle across a Hopf and a SNIC bifurcation (Ermentrout and Terman
2010; Rinzel and Huguet 2013). We will refer to them as MC-Hopf and MC-SNIC,
respectively. Some parameters of the model will be common to both cases, namely
C = 20, VL = − 60, VK = − 84, VCa = 120, V1 = − 1.2, V2 = 18, gL = 2, gK =
8. The other parameter values are listed in Table 2.

We compute the PRC for different values of the amplitude A. In Figs. 7 and 8, we
show the comparison between the standard method and the parameterization method
for ML-Hopf and ML-SNIC, respectively. Again, we remark the good agreement
between both methods. Other elements of the computation of the PRCs using the
parameterization method are shown in Figs. 9 and 10. Again, both cases show a sharp
rise in the PRC for certain phase values as the amplitude increases. We refer the reader
to Sect. 5.1 for a more detailed discussion.
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Fig. 8 PRCs for the Morris–Lecar model near a SNIC bifurcation (ML-SNIC) for different values of the
amplitude (indicated in each panel) showing the comparison between the parameterization method (solid
blue line) and the standard method (red dots) (Color figure online)

Fig. 9 For the Morris–Lecar near a Hopf bifurcation (ML-Hopf) and different amplitude values we show:
a the PRCs, b the dynamics f A(θ) on the invariant curve �A , c the invariant curve �A , d the derivative of
f A(θ). The dashed blue line in panel b corresponds to the identity function

5.1 Large Amplitude Perturbations

The application of the parameterization method using the algorithms in “Appendix A”
(see Sect. 4) strongly relies on the existence of an invariant curve �A for the strobo-
scopic map of a system with an “artificially” constructed periodic perturbation (see
Theorem 3.2). In the numerical examples shown in Figs. 5, 6, 9 and 10, the computa-
tion of the invariant curve fails when the amplitude becomes large and approaches a
certain value A∗ (which is different for each example), and so does the computation of
the PRC using this method. In this section, we will discuss how changes in the wave-
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Fig. 10 For theMorris–Lecar near a SNIC bifurcation (ML-SNIC) and different amplitude values we show:
a the PRCs, b the dynamics f A(θ) on the invariant curve �A , the invariant curve �A , d the derivative of
f A(θ). The dashed blue line in panel b corresponds to the identity function

form of the PRC might be related to normally hyperbolic properties of the invariant
curve. We will first focus our discussion on the WC-Hopf model.

First notice that, as the amplitude A increases, the PRC becomes steeper (see
Fig. 5a). By looking at the internal dynamics f A on the invariant curve �A (see
Fig. 5b), we observe that as the amplitude increases, the curve f A shows a sharp
rise followed by a flat region. Moreover, there appear stable and unstable fixed points
on the invariant curve �A (intersection of f A with the identity line in Fig. 5b). Thus,
the curve �A preserves its normal hyperbolicity as long as the contraction/expansion
rates on the invariant curve are weaker than the contraction rates on the normal tions
[see Eq. (43)]. Indeed, since the contraction rate in the normal direction is O(e−λTrel)

[see (43)], this means that DfA(θ) = dθpert/dθ must remain bounded away from 0
[see (45)]. However, we observe that as A increases the value of DfA approaches 0 for
a certain θ (see Fig. 5d), thus causing the loss of the normal hyperbolicity property and
the breakdown of the curve. For values of A slightly smaller than the one for which
DfA(θ) vanishes, the numerical method in “Appendix A” fails to converge. However,
we can apply the modified parameterization method provided by the algorithms in
Sect. 4 and compute the function gA [see Eq. (50)] and the PRC beyond the existence
of an invariant curve (see Fig. 11b–d right).

Notice that the method in Algorithm 4.2 also works if the invariant curve exists (see
Fig. 11a right). In this case, gA is O(e−λTrel)-close to f A [see Eqs. (36), (47), (49),
(53)]. Therefore, for practical purposes, the modified method is faster and accurate
enough to compute the PRC.

It is possible to describe the phenomenon of the breakdown of the curve in a geo-
metric way using the concept of isochrons (curves of constant phase) and phaseless
sets of the original limit cycle. For the model considered, the isochrons for the unper-
turbed limit cycle are shown in Fig. 11 (left). Notice that the unperturbed system has
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an unstable focus P for which the isochrons are not defined (the phaseless set). Now,
we consider the image of the curve �0 under the map Fpert introduced in (33), for
different values of A. Of course, the intersection of the curve �pert = Fpert(�0) with
the isochrons provides the new phases. For small values of A, �pert will intersect
all the isochrons transversally leading to every possible new phase in a one-to-one
correspondence (see Fig. 11a). Accordingly, the functions f A(θ) and gA(θ) are dif-
feomorphisms.

However, as A increases, there exists a value A∗ for which the curve �pert becomes
tangent to some isochrons, and therefore, the curve �pert intersects some isochrons
more than once (see Fig. 11b). Thus, the map gA is no longer one-to-one, which means
that DgA vanishes for certain phases, causing the loss of normal hyperbolicity and the
breakdown of the curve.

Clearly, the function gA for A = 0.95 shows a local maximum and minimum (see
Fig. 11b right), corresponding to an isochron tangency. When A is increased further,
the function gA splits into two. Indeed, the curve �pert will first intersect the phaseless
point P for a certain value A ≈ 1.035 (see Fig. 11c) and after that it will no longer
enclose the point P , so it will not cross all the isochrons of the limit cycle (see Fig. 11d).
The map gA will then be discontinuous at the point where the curve �pert intersects
the phaseless set. After that, the function gA will be continuous again when we take
modulus 1, but, of course, the images will not span the whole interval [0, 1). Regarding
the winding number classification for PRCs, defined as the number of times the curve
�pert traverses a complete cycle as defined by the isochrons of the unperturbed limit
cycle (Glass and Mackey 1988; Glass and Winfree 1984), for A ≈ 1.035 there is a
transition from a type 1 PRC to a type 0 PRC.

The modified parameterization method introduced in Sect. 4.2 allows for the com-
putation of the amplitude response curve (ARC) (see Algorithm 4.4). The ARCs for
the amplitude values considered in Fig. 11 are shown in Fig. 12. The ARC provides
information about how “far” in time the perturbation displaces the trajectory away
from the limit cycle. That is, the larger the value of the ARC, the longer it will take
for the displaced trajectory to relax back to the limit cycle (and therefore one should
consider a larger Trel).

Notice that when the curve�pert intersects the phaseless set (point P), which occurs
for a critical amplitude Ac ≈ 1.035, there exists a perturbed trajectory which never
returns to the limit cycle, and theARCwould show an essential discontinuity. Thus, for
smaller values of the amplitude A < Ac, the ARC shows a peak whose size increases
as the amplitude A is increased towards Ac (see Fig. 12a–c). However, for amplitude
values larger than Ac (Fig. 12d), the ARC peak decreases again with A, because �pert
moves away from the neighbourhood of the phaseless point P .

A similar phenomenon as discussed for theWC-Hopf occurs for theWC-SNIC and
ML-SNIC examples. The Morris–Lecar model near a Hopf bifurcation (ML-Hopf)
is slightly different, since in this case the phaseless set is larger compared to the
WC-Hopf case: it is a positive measure set bounded by an unstable limit cycle �u

which determines the basin of attraction of the equilibrium point lying in its interior
(see Fig. 13a). As in the WC-Hopf case, the invariant curve �A for the ML-Hopf
disappears due to an isochron tangency of �pert. Consistently with this tangency, �pert
for A = 33 crosses some isochrons more than once (see Fig. 13a and zoom in b) and
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Fig. 11 For different values of the amplitude (indicated in each panel), we show the isochrons of the
unperturbed limit cycle �0 for theWilson–Cowan model near a Hopf bifurcation (WC-Hopf), together with
the curves �pert (left) and the functions gA obtained with the modified parameterization method (right).
The amplitudes selected cover the breakdown of the curve �A and a transition from type 1 to type 0 PRCs
(see text)

as Fig. 13c, d shows, the function gA loses its monotonicity. Nevertheless, one can
still compute the PRC by means of Algorithm 4.2. By contrast, for larger amplitude
values, several points of �pert leave the basin of attraction of the stable limit cycle (see
Fig. 13a and zoom in b for A = 40). Thus, the PRC can no longer be computed even
with the modified method.
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Fig. 12 ARCs for the Wilson–Cowan model near a Hopf bifurcation (WC-Hopf) and different values of
the amplitude (same as in Fig. 11)

Fig. 13 Phase space for the ML-Hopf showing the stable limit cycle �0, its isochrons, and the unstable
limit cycle �u determining the basin of attraction of a stable focus P . For different values of the amplitude,
we show (a) the curves �pert and (b) a zoom close to the isochron tangency. Panels (c) and (d) show the
functions gA obtained with the modified parameterization method for A = 20 (c) and A = 33 (d). For
A = 40 some points on �pert intersect the basin of attraction of the stable focus P , and the function gA
cannot be computed

6 Discussion

In this paper, we have introduced a new approach to PRCs based on the parameter-
ization method. The main idea of the method is to introduce a periodic perturbation
consisting of the actual perturbation followed by a relaxation time Trel that repeats
periodically. This periodic perturbation allows us to define the corresponding strobo-
scopic map FA of the periodically perturbed system. The main result of this paper is
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Theorem 3.2, where we prove the existence of an invariant curve �A for the map FA

and we link its internal dynamics f A with the PRC. The proof relies on the parame-
terization method, which defines an invariance equation for the invariant curve and its
internal dynamics (Cabré et al. 2005; Canadell and Haro 2014; Haro and de la Llave
2006, 2007), and provides a numerical algorithm to compute both.

Moreover, Theorem 3.2 establishes conditions for the existence of the invariant
curve �A. More precisely, although the range of amplitude values A for which the
invariant curve exists can be increased by considering a sufficiently large Trel, there is
a limitation established by the geometry of the isochrons. Indeed, whenever the curve
�pert (the displacement of the limit cycle due to the active part of the perturbation)
becomes tangent to some isochron of �0, the invariant curve �A loses its normally
hyperbolic properties and breaks down. Moreover, we explain how the isochrons of
the unperturbed system and the perturbation interact to shape the waveform of the
PRC as the amplitude of the perturbation increases.

Besides theoretical results, we present some strategies to compute the PRC. In Haro
et al. (2016), one can find algorithms that implement a quasi-Newton method to solve
the above-mentioned invariance equation. The method though relies on the existence
of an invariant curve. Nevertheless, as the PRC can be computed beyond the break-
down of the curve �A, we have developed a modified numerical method to compute
PRCs inspired by the parameterization method. This method solves a modified invari-
ance equation, which avoids the computation of the invariant curve (thus making the
computations faster) and is able to compute PRCs beyond the breakdown of the curve
�A and the transition from type 1 to type 0 PRCs. In addition, this algorithm com-
putes not only PRCs but also ARCs, which provide information about the effects of
the perturbation onto the amplitude variables (or alternatively, the displacement away
from the limit cycle). We show examples of the computed ARCs and the relationship
between its shape and the transitions experienced by the PRC.

In order to assess the validity of the method, we have applied it to two models
in neuroscience: a neural population model (Wilson–Cowan) and a single neuron
model (Morris–Lecar). Moreover, we have studied both models for values of the
parameters near two different bifurcations: Hopf and saddle node on invariant circle
(SNIC) bifurcations. Recall that PRCs are classified as types 1 or 2 according to
their shape, and this property is associated with a particular bifurcation: type 1 PRCs
mainly advance phase, and they are related to a SNIC bifurcation, while type 2 PRCs
can either advance or delay the phase, and they are related to a Hopf bifurcation
(Ermentrout 1996; Oprisan and Canavier 2002; Smeal et al. 2010). The numerical
examples presented show the evolution of both PRC types for large amplitude values.
In all the examples considered, the PRCs preserve its type as the amplitude increases,
but the phase shifts tend to augment.

In this work, we havemainly developed the theory and numerical examples for two-
dimensional systems. However, the underlying theorems and numerical algorithms
have an straightforward extension for the case n > 2 that we plan to explore in detail
in future work.
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A Appendix: Numerical Algorithms

In this section, we review the numerical algorithms introduced in Haro et al. (2016)
to compute the parameterization of an invariant curve �A of a given map F := FA

as well as the dynamics on the curve, i.e. f := F |�A . We present the algorithms in
a format that is ready for numerical implementation, and we refer the reader to Haro
et al. (2016), Pérez-Cervera et al. (2018) for more details.

The method to compute the invariant curve consists in looking for a map K : T →
R
2 and a scalar function f : T → T satisfying the invariance equation

F(K (θ)) = K ( f (θ)). (63)

In order to solve Eq. (63) by means of a Newton-like method, one needs to compute
alongside the invariant normal bundle of K , denoted by N , and its linearized dynamics
�N , which satisfy the invariance equation

DF(K (θ))N (θ) = DK ( f (θ))�N (θ). (64)

Thus, the main algorithm provides a Newton method to solve Eqs. (63) and (64)
altogether. More precisely, at step i of the Newton method one computes successive
approximations Ki , f i , Ni and �i

N of K , f , N and �N , respectively. The algorithm
is stated as follows:

Algorithm A.1 Main Algorithm to Solve Equations (63), (64). Given K (θ), f (θ),
f −1(θ), N (θ) and �N (θ), approximate solutions of Eqs. (63) and (64), perform the
following operations:

1. Compute the corrections 
K (θ) and 
 f (θ) by using Algorithm A.2.
2. Update K (θ) ← K (θ) + 
K (θ) f (θ) ← f (θ) + 
 f (θ).
3. Compute the inverse function f −1(θ) using Algorithm A.3.
4. Compute DK (θ) and D f (θ).
5. Compute the corrections 
N (θ) and 
N (θ) by using Algorithm A.5.
6. Update N (θ) ← N (θ) + 
N (θ) �N (θ) ← �N (θ) + 
N (θ).
7. Compute E = F ◦ K − K ◦ f and repeat steps 1–6 until E is smaller than the

established tolerance.

Next, we provide the sub-algorithms for Algorithm A.1.

Algorithm A.2 Correction of theApproximate Invariant Curve.Given K (θ), f (θ),
f −1(θ) N (θ) and �N (θ), approximate solutions of Eqs. (63) and (64), perform the
following operations:
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1. Compute E(θ) = F(K (θ)) − K ( f (θ)).

2. Compute P( f (θ)) =
(
DK ( f (θ))|N ( f (θ))

)
.

3. Compute η(θ) =
(

ηT (θ)

ηN (θ)

)
= − (P( f (θ)))−1E(θ).

4. Compute f −1(θ) using Algorithm A.3.
5. Solve for ξ the equation ηN ( f −1(θ)) = �N ( f −1(θ))ξ( f −1(θ)) − ξ(θ) by using

Algorithm A.4.
6. Set 
 f (θ) ← −ηT (θ).
7. Set 
K (θ) ← N (θ)ξ(θ).

Algorithm A.3 Refine f−1(θ). Given a function f (θ), its derivative D f (θ) and an
approximate inverse function f −1(θ), perform the following operations:

1. Compute e(θ) = f ( f −1(θ)) − θ .
2. Compute 
 f −1(θ) = − e(θ)

Df ( f −1(θ))
.

3. Set f −1(θ) ← f −1(θ) + 
 f −1(θ).
4. Repeat steps 1–3 until e(θ) is smaller than a fixed tolerance.

Algorithm A.4 Solution of a fixed point equation. Given an equation of the form
B(θ) = A(θ)η(g(θ))−η(θ) with A, B, g known and ‖A‖ < 1, perform the following
operations:

1. Set η(θ) ← B(θ).
2. Compute η(g(θ)).
3. Set η(θ) ← A(θ)η(g(θ)) + η(θ).
4. Repeat steps 2 and 3 until |A(θ)η(g(θ))| is smaller than the established tolerance.
Algorithm A.5 Correction of the stable normal bundle.Given K (θ), f (θ), N (θ) and
�N (θ), approximate solutions of Eqs. (63) and (64), perform the following operations:

1. Compute EN (θ) = DF(K (θ))N (θ) − �N (θ)N ( f (θ)).
2. Compute P( f (θ)) = (DK ( f (θ)) N ( f (θ))).

3. Compute ζ(θ) =
(

ζT (θ)

ζN (θ)

)
= −(P( f (θ)))−1EN (θ).

4. Solve for Q the equation D f −1(θ)ζT (θ) = Df −1(θ)�N (θ)Q( f (θ)) − Q(θ) by
using Algorithm A.4.

5. Set 
N (θ) ← ζN (θ).
6. Set 
N (θ) ← DK (θ)Q(θ).

Remark A.6 Since our functions are defined onT, wewill use Fourier series to compute
the derivatives and composition of functions.

Of course, the main algorithm requires the knowledge of an approximate solution
for Eqs. (63), (64). In our case, we can always use the limit cycle of the unperturbed
system as an approximate solution for the invariant curve. However, for the normal
bundle we cannot use the one obtained from the unperturbed limit cycle �0. The
following algorithm provides an initial seed for Algorithm A.1.
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Algorithm A.7 Computation of Initial Seeds. Given a planar vector field ẋ = X(x),
having an attracting limit cycle γ (t) of period T , perform the following operations:

1. Compute the fundamental matrix �(t) of the first variational equation along the
periodic orbit.

2. Obtain the characteristic multiplier λ �= 1 and its associated eigenvector vλ from
�(T ).

3. Set N (θ) ← �(T θ)vλeλθ .

4. Set �N (θ) ← e
λT ′
T .

5. Set K (θ) ← γ (T θ), DK (θ) = T X(γ (T θ)).
6. Set f (θ) ← θ + T ′

T , f −1(θ) ← θ − T ′
T , Df (θ) = 1.

Given a family of maps FA such that the solution for F0 is known (see Algo-
rithm A.7), it is standard to set a continuation scheme to compute the solutions for
the other values of A. Thus, assuming that the solution for A = A∗ is known, one
can take this solution as an initial seed to solve the equations for FA∗+h , with h small,
using the Newton-like method described in AlgorithmA.1. However, one can perform
an extra step to refine the initial seed values KA∗ and f A∗ for FA∗+h , described in
Algorithm A.8.

Algorithm A.8 Refine an Initial Seed. Given KA(θ), f A(θ), NA(θ) and �N ,A(θ),
solutions of Eqs. (63), (64) for F = FA, perform the following operations:

1. Compute E(θ) = ∂FA
∂A (KA(θ)).

2. Compute η(θ) =
(

ηT (θ)

ηN (θ)

)
= − (P( f A(θ)))−1E(θ).

3. Solve for ξ the equation ξ(θ) = �N ( f −1
A (θ))ξ( f −1

A (θ)) − ηN ( f −1
A (θ)) by using

Algorithm A.4.
4. Set KA+h(θ) ← KA(θ) + NA(θ)ξ(θ) · h, f A+h(θ) ← f A(θ) − ηT (θ) · h.
Remark A.9 The term ∂F

∂A (KA(θ)) is computed using variational equationswith respect
to the amplitude.

The numerical continuation scheme for our problem is described in the following
algorithm.

Algorithm A.10 Numerical Continuation. Consider a family of maps FA, such that
F0 is the time-T map of a planar autonomous system having a hyperbolic attracting
limit cycle of period T . Perform the following operations:

1. Compute solutions K0(θ), f0(θ), N0(θ) and�N ,0(θ) of Eqs. (63), (64) for F = F0
using Algorithm A.7.

2. Set A = 0.
3. Using KA, fA, NA, �N ,A compute an initial seed for FA+h using Algorithm A.8
4. Find solutions of Eqs. (63), (64) for F = FA+h using Algorithm A.1.
5. Set A ← A + h.
6. Repeat steps 3–5 until A reaches the desired value.
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