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Abstract
Many real-world systems can be modeled as networks of interacting oscillatory units.
Collective dynamics that are of functional relevance for the oscillator network, such
as switching between metastable states, arise through the interplay of network struc-
ture and interaction. Here, we give results for small networks on the existence of
heteroclinic cycles between dynamically invariant sets on which the oscillators show
localized frequency synchrony. Trajectories near these heteroclinic cycles will exhibit
sequential switching of localized frequency synchrony: a population oscillators in
the network will oscillate faster (or slower) than others and which population has
this property sequentially changes over time. Since we give explicit conditions on
the system parameters for such dynamics to arise, our results give insights into how
network structure and interactions (which include higher-order interactions between
oscillators) facilitate heteroclinic switching between localized frequency synchrony.

Keywords Oscillator networks · Phase oscillators · Higher-order interactions · Weak
chimera · Symmetry · Heteroclinic cycle

Mathematics Subject Classification 34C15 · 34C28 · 34C37 · 34D06 · 37C29 · 37C80

1 Introduction

Networks of interacting oscillatory units can give rise to dynamics where the system
appears to be in onemetastable state before “switching” to another in a rapid transition.
Such dynamics are in particular believed to be of functional relevance for neuronal
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networks where one observes sequential switching between patterns involving local-
ized activity or synchrony (Ashwin and Timme 2005; Britz et al. 2010; Tognoli and
Scott Kelso 2014). One approach is to capture these dynamics on a macroscopic scale:
One assigns each pattern an activity variable whose dynamics are then described by
kinetic equations (Rabinovich et al. 2006). The resulting equations are of general-
ized Lotka–Volterra type which support stable heteroclinic cycles, that is, cycles of
hyperbolic equilibria which are connected by heteroclinic trajectories. The dynamics
near such heteroclinic cycles now resemble sequential switching dynamics of activity
patterns. Indeed, heteroclinic cycles and networks have been long studied in their own
right; see Weinberger and Ashwin (2018) for a recent review.

However, such a qualitative approach fails to capture the dynamics on the level of
single, nonlinearly interacting oscillators. In particular, it does not necessarily illu-
minate what ingredients of network topology and the interactions between oscillators
(Stankovski et al. 2017) facilitate switching dynamics. If one assumes weak coupling,
phase reduction provides a powerful tool to describe the dynamics of an oscillator
network; in this reduction, each oscillator is represented by a single phase variable
on the torus T := R/2πZ and the dynamics of the phases are described by a phase
oscillator network. Simple networks of globally and identically coupled phase iden-
tical oscillators support heteroclinic cycles and networks (Ashwin et al. 2007; Bick
et al. 2016). The equilibria involved in these cycles are phase-locking patterns with
oscillators in different clusters which have a constant phase difference. The symmetry
properties of these networks, however, imply that all oscillators rotate with the same
speed (frequency) on average—the network is globally frequency synchronized. In a
neural network, this corresponds to all neurons firing at the same average rate while
the exact timing of firing changes.

By contrast, even networks of identical phase oscillators that are organized into dif-
ferent populations can give rise to dynamics where frequency synchrony is local to a
population rather than global across thewhole network. In otherwords, the interactions
in a network of identical oscillators cause some units to evolve faster (or slower) than
others. Dynamically invariant sets with this property relate to “chimeras” (Panaggio
and Abrams 2015; Schöll 2016; Omel’chenko 2018) which have—as patterns with
localized frequency synchrony—been hypothesized to play a functional role in the
context of neuroscience (Shanahan 2010; Tognoli and Scott Kelso 2014; Bick and
Martens 2015). From a mathematical point of view, the notion of a weak chimera
(Ashwin and Burylko 2015; Bick and Ashwin 2016; Bick 2017) formalizes the def-
inition of a dynamically invariant set with localized frequency synchrony for finite
networks of identical phase oscillators.

Here we prove the existence of robust heteroclinic cycles between invariant sets
with localized frequency synchrony in small phase oscillator networks with higher-
order interactions. In contrast to attracting sets with localized frequency synchrony, the
dynamics here induce sequential switching dynamics:Which population of oscillators
oscillates at a faster (or slower) rate will change over time. These results are of interest
from several distinct perspectives. First, they illuminate how the interplay of network
structure and functional interactions between units gives rise to heteroclinic dynamics
in phase oscillator networks: We explicitly relate the network coupling parameters to
the existence of heteroclinic cycles. Second, the results highlight howhigher-order net-
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work interactions shape the (global) network dynamics; apart from higher harmonics
in the phase interaction function, the higher-order interactions also include nonaddi-
tive interactions between oscillator phases which arise naturally in phase reductions
of generically coupled identical oscillators (Ashwin and Rodrigues 2016) or other
resonant interactions (Komarov and Pikovsky 2013). Here, the interplay of higher-
order interactions and nontrivial network topology induces dynamics beyond (full)
synchrony. Third, our results provide new examples of heteroclinic cycles in network
dynamical systems relevant for applications. We highlight how these examples are
distinct from situations previously considered in the literature.

This work is organized as follows. In this paper, we build on results in a recent
brief communication (Bick 2018) to prove the existence of robust heteroclinic cycles
between localized frequency synchrony; in a companion paper (Bick and Lohse 2019)
we give a detailed discussion of the stability of such heteroclinic cycles (which may be
embedded into larger heteroclinic structures). The remainder of this paper is organized
as follows. In Sect. 2 we review some preliminaries on heteroclinic cycles and phase
oscillator networks. In Sect. 3 we show existence of a heteroclinic cycle between
localized patterns of frequency synchrony in networks consisting of three populations
of twooscillators. In Sect. 4we consider networkswhich consist of three populations of
three oscillators and show the existence of a heteroclinic cycle of localized frequency
synchrony; here, there are continua of saddle connections in two-dimensional invariant
subspaces. Finally, in Sect. 5, we give some numerical evidence that these phenomena
persist in networks with more generic interactions before giving some concluding
remarks.

2 Preliminaries

2.1 Heteroclinic Cycles

LetM be a smooth d-dimensional manifold and let X be a smooth vector field onM.
For a hyperbolic equilibrium ξ ∈ M let W s(ξ) and W u(ξ) denote its stable and
unstable manifold, respectively.

Definition 2.1 A heteroclinic cycle C consists of a finite number of hyperbolic equi-
libria ξq ∈ M, q = 1, . . . , Q, together with heteroclinic trajectories

[ξq → ξq+1] ⊂ W u(ξq) ∩ W s(ξq+1) �= ∅

where indices are taken modulo Q.

For simplicity, we write C = (ξ1, . . . , ξQ). If M is a quotient of a higher-
dimensional manifold and C is a heteroclinic cycle in M, we also call the lift of C a
heteroclinic cycle.

While heteroclinic cycles are in general a nongeneric phenomenon, they can be
robust in dynamical systems with symmetry. Let � be a finite group which acts onM.
For a subgroup H ⊂ � define the set Fix(H) = { x ∈ M | γ x = x ∀γ ∈ H } of points
fixed under H ; any Fix(H) is invariant under the flow generated by X . For x ∈ M
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let �x = { γ x | γ ∈ � } denote its group orbit and �(x) = { γ ∈ � | γ x = x } its
isotropy subgroup. Now assume that the smooth vector field X is �-equivariant vector
field onM, that is, the action of the group commutes with X .

Now let C = (ξ1, . . . , ξQ) be a heteroclinic cycle with the following properties. For
an isotropy subgroup �q ⊂ � write Pq = Fix(�q). Now suppose that there exist �q

(and thus Pq ) such that ξq , ξq+1 ∈ Pq , ξq+1 is a sink in Pq , and [ξq → ξq+1] ⊂ Pq .
ThenC is robustwith respect to�-equivariant perturbations of X , that is,�-equivariant
vector fields close to X will have a heteroclinic cycle close to C; see Krupa (1997) for
details.

2.1.1 Dissipative Heteroclinic Cycles

Trajectories close to a heteroclinic cycle can show switching dynamics: Qualitatively
speaking, the trajectory will spend time close to one saddle ξq before a rapid transition
to ξq+1. This is in particular the case when the heteroclinic cycle is attracting (in
some sense); see for example Weinberger and Ashwin (2018) for a more elaborate
discussion.

Here we consider a criterion where we expect attraction in some sense based on the
local attraction properties at a hyperbolic equilibrium ξ . Letλ( j) denote the eigenvalues
of the linearization of X at ξ ordered such that

Re λ(1) ≤ · · · ≤ Re λ(l) < 0 < Re λ(l+1) ≤ · · · ≤ Re λ(d).

The saddle value (or saddle index) ν(ξ) = − Re λ(l)

Re λ(d) compares the rates of mini-
mal attraction and maximal expansion close to ξ ; cf. Shilnikov et al. (1998) and
Afraimovich et al. (2016). In particular, we say that ξ is dissipative if ν(ξ) > 1. For a
heteroclinic cycle C = (ξ1, . . . , ξQ), write νq := ν(ξq).

Definition 2.2 A heteroclinic cycle C is dissipative if ν(C) := ∏
q νq > 1.

Intuitively speaking, a heteroclinic cycle is dissipative if there is more contraction
of phase space than expansion close to the saddle points. Obviously, a heteroclinic
cycle is dissipative if all its equilibria are dissipative. Subject to suitable additional
assumptions, we may expect a dissipative heteroclinic cycle to be asymptotically
stable:

Proposition 2.3 (See Krupa and Melbourne 1995) Suppose that � is finite and let C
be a dissipative heteroclinic cycle in R

d such that

W u(ξq) �
{
ξq

} ⊂
⋃

γ∈�

W s(γ ξq+1).

In other words, the entire unstable manifold of one saddle is contained in the stable
manifold of the next saddle. Then C is asymptotically stable.

Here we restrict ourselves to show the existence of dissipative heteroclinic cycles;
we address the problem of stability explicitly in the companion paper (Bick and Lohse
2019).
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2.1.2 Cyclic Heteroclinic Chains

Definition 2.1 of a heteroclinic cycle makes no assumptions on the number of het-
eroclinic trajectories between equilibria. Indeed, if there are unstable manifolds of
dimension larger than one, there may be continua of heteroclinic trajectories. In that
case, the question about stability is more challenging as discussed by Ashwin and
Chossat (1998), in particular because the condition in Remark 2.3 does not allow any
set of points (however small) on the unstable manifold of one saddle to lie outside of
the stable manifold of the next saddle.

We recall some definitions given by Ashwin and Chossat (1998), adapted to our
setting. Suppose that C is a heteroclinic cycle. We say that there is a (directed) edge
between ξp, ξq ∈ C if

Cpq := (W u(ξp) ∩ W s(ξq)) �
{
ξp, ξq

} �= ∅.

This defines a directed graphG(C). Let G̃(C) :=G(C)/� denote the quotient obtained
by identifying vertices and connections on the same group orbits. The graph G̃(C) is
cyclic if each vertex has unique edges entering and leaving it.

Definition 2.4 For a heteroclinic cycle C define the associated heteroclinic chain

H(C) =
⋃

(ξp,ξq )∈C2

(
W u(ξp) ∩ W s(ξq)

)
.

If G̃(C) is cyclic then H(C) is a cyclic heteroclinic chain.

In contrast to Definition 2.1, the heteroclinic chain associated to a heteroclinic cycle
now contain all heteroclinic trajectories which connect individual equilibria. Note that
heteroclinic chains do not need to be closed in M: Some part of W u(ξq) for some q
may lie outside of the heteroclinic chain.

2.2 Phase Oscillator Networks with Nonpairwise Interactions

Consider M populations of N phase oscillators where θσ,k ∈ T denotes the phase of
oscillator k in population σ . Hence, the state of the oscillator network is determined
by θ = (θ1, . . . , θM ) ∈ TNM where θσ = (θσ,1, . . . , θσ,N ) ∈ TN is the state of
population σ . Let g2, g4 : T → R be smooth 2π -periodic functions and

G4(θτ ;φ) = 1

N 2

N∑

m,n=1

g4(θτ,m − θτ,n + φ). (1)

Now consider the phase oscillator network where the phases of individual oscillators
evolve according to
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θ̇σ,k = ω +
∑

j �=k

(
g2(θσ, j − θσ,k) − K−G4(θσ−1; θσ, j − θσ,k)

+ K+G4(θσ+1; θσ, j − θσ,k)
) (2)

whereω is the intrinsic frequency of each oscillator1. For these network dynamics, the
phase interactions within populations are determined by the coupling (or phase inter-
action) function g2 evaluated at phase differences of oscillator pairs. By contrast, the
interactions between populations, given by (1), are mediated by the nonpairwise inter-
action function g4 evaluated at linear combination of four of the oscillators’ phases.
The parameter K− > 0 determines the coupling strength to the previous population,
whereas K+ > 0 determines the coupling strength to the previous population. Here
we assume K := K− = K+ > 0 for simplicity. For g4 = cos, the equations (2)
approximate the dynamics of a phase oscillator networks with mean-field mediated
bifurcation parameters up to rescaling of time as outlined in Bick (2018).

2.2.1 Symmetries and Invariant Sets

Let SN denote the symmetric group of permutations of N symbols and write ZM =
Z/MZ. For a single oscillator population, the subset

S :=
{

(φ1, . . . , φN ) ∈ TN
∣
∣
∣
∣ φk = φk+1

}

(3)

corresponds to phases being in full phase synchrony and

D :=
{

(φ1, . . . , φN ) ∈ TN
∣
∣
∣
∣ φk+1 = φk + 2π

N

}

(4)

denotes a splay phase configuration—typically we call any element of the group
orbitSNDa splay phase. For a network of interacting populations,we use the shorthand
notation

θ1 · · · θσ−1Sθσ+1 · · · θM =
{

θ ∈ TMN
∣
∣
∣ θσ ∈ S

}
(5a)

θ1 · · · θσ−1Dθσ+1 · · · θM =
{

θ ∈ TMN
∣
∣
∣ θσ ∈ D

}
(5b)

to indicate that population σ is fully phase synchronized or in splay phase. We extend
the notation to intersections of the sets (5). Consequently, S · · · S (M times) is the set
of cluster states where all populations are fully phase synchronized and D · · ·D the
set where all populations are in splay phase.

The network interactions in (2), which include nonpairwise coupling, induce sym-
metries. More precisely, the equations (2) are (SN × T)M � ZM -equivariant. Each

1 Without loss of generality, we may set ω to any value by going into a suitable co-rotating frame.
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copy of T acts by shifting all oscillator phases of one population by a common con-
stant while SN permutes its oscillators. The action of ZM permutes the populations
cyclically. These actions do not necessarily commute.

To reduce the phase-shift symmetryTM , we rewrite (2) in terms of phase differences
ψσ,k := θσ,k+1 − θσ,1, k = 1, . . . , N − 1. Hence, with ψσ ∈ TN−1 we also write for
example ψ1S · · · S (or simply ψS · · · S if the index is obvious) to indicate that all but
the first population is phase synchronized.

The symmetries yield invariant subspaces on TMN for the dynamics given by (2).
In particular, the SN permutational symmetries within each population imply that the
sets (5) are invariant (Ashwin and Swift 1992). Moreover, any set of the form θ1 · · · θM
with θσ ∈ {S,D} is an equilibrium relative to the continuous TM symmetry, that is,
the corresponding ψ1 · · ·ψM is an equilibrium in the reduced dynamics.

2.2.2 Frequencies and Localized Frequency Synchrony

Suppose that M > 1 and let θ : [0,∞) → TMN be a solution of (2) with initial
condition θ(0) = θ0.While θ̇σ,k(t) is the instantaneous angular frequency of oscillator
(σ, k), define the asymptotic average angular frequency of oscillator (σ, k) by

�σ,k(θ
0) := lim

T→∞
1

T

∫ T

0
θ̇σ,k(t)dt . (6)

Here we assume that these limit exists for all oscillators, but this notion can be gener-
alized to frequency intervals; see also Bick and Ashwin (2016) and Bick (2017).

Definition 2.5 A connected flow-invariant set A ⊂ TMN has localized frequency syn-
chrony if for any θ0 ∈ A we have �σ,k = �σ and there exist indices σ �= τ such
that

�σ �= �τ . (7)

Remark 2.6 Note that a chain-recurrent set A with localized frequency synchrony is a
weak chimera as defined by Ashwin and Burylko (2015).

Lemma 2.7 (Theorem 1 in Ashwin and Burylko 2015) The system symmetries imply
�σ,k = �σ, j .

3 Heteroclinic Cycles for Two Oscillators per Population

In this section, we show the existence of robust heteroclinic cycles for networks of
M = 3 populations of N = 2 oscillators. Let g2, g4 : T → R denote the 2π -periodic
coupling functions which govern the interactions within and between populations as
above. With

G̃4(θτ ;φ) = 1

4

(
g4(θτ,1 − θτ,2 + φ) + g4(θτ,2 − θτ,1 + φ)

)
(8)
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the network dynamics (2) can be written as

θ̇σ,1 = ω + g2(θσ,2 − θσ,1) − K G̃4(θσ−1; θσ,2 − θσ,1) (9a)+ K G̃4(θσ+1; θσ,2 − θσ,1),

θ̇σ,2 = ω + g2(θσ,1 − θσ,2) − K G̃4(θσ−1; θσ,1 − θσ,2) (9b)+ K G̃4(θσ+1; θσ,1 − θσ,2).

By reducing the TM symmetry, we obtain the dynamics of the phase differences as

ψ̇σ = 2ĝ2(ψσ ) − K

2

(
ĝ4(ψσ−1 + ψσ ) + ĝ4(ψσ − ψσ−1)

)

+ K

2

(
ĝ4(ψσ+1 + ψσ ) + ĝ4(ψσ − ψσ+1)

)
(10)

where ĝ�(ϑ) = 1
2 (g�(−ϑ) − g�(ϑ)), � ∈ {2, 4}, are odd. For ĝ� we have ĝ′

�(ϑ) =
−g′

�(ϑ).
The phase space of (9) is organized by invariant subspaces as sketched in Fig. 1. For

completeness, we characterize SSS and DDD before we focus on sets with localized
frequency synchrony.

In the reduced dynamics (10), both SSS and DDD are equilibria. The equilibrium
SSS = (0, 0, 0) lies in the intersection of the invariant subspacesψSS, SψS, and SSψ .
On these subspaces, the dynamics are given by

ψ̇ = 2ĝ2(ψ). (11)

Thus, the linear stability of SSS is determined by the triple eigenvalue

λSSS = −2g′
2(0) (12)

which correspond to a perturbation separating the phases of one population. Similarly,
DDD = (π, π, π) lies in the intersection of the invariant subspaces ψDD, DψD,
and DψD. On these invariant subspaces, the dynamics are determined by

ψ̇ = 2ĝ2(ψ), (13)

as well. Linearizing at ψ = π yields

λDDD = −2g′
2(π) (14)

which determines the stability of DDD. In the full system (9), there are three additional
zero eigenvalues for eigenvectors along the group orbit of the phase-shift symmetry.
Note that the linear stability of SSS and DDD is fully determined by the pairwise
coupling g2 within populations.
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(a) (b)

Fig. 1 Networks of M = 3 oscillator populations with dynamics given by (2) give rise to relative equilibria
(SSS, . . . ) which are connected by invariant subspaces (lines). a indicates the dynamics on each invariant
subspace: for N = 2 the dynamics on dotted lines the dynamics are (13), on broken lines by (16), and on
solid lines by (17). b shows a heteroclinic cycle between these equilibria

3.1 Saddle Invariant Sets with Localized Frequency Synchrony

For the remainder of this section, we will consider (8) with interaction given by the
coupling functions

g2(ϑ) = sin(ϑ + α2) − r sin(2(ϑ + α2)), (15a)

g4(ϑ) = sin(ϑ + α4). (15b)

These interactions include higher harmonics; in particular, for r > 0 the calculations
above imply that both SSS and DDD are linearly stable. Moreover, for α := α2 =
α4 − π

2 we obtain the same parametrization as in Bick (2018) and Bick and Lohse
(2019).

In the following we estimate the asymptotic average frequencies of DSS, DDS,
SDS, SDD, SSD, DSD, and DSS. Note that it suffices to consider DSS, DDS since
the latter four are their images under the ZM action which permutes populations.

Lemma 3.1 The setsDSS,DDS and their images under the ZM symmetry have local-
ized frequency synchrony as subsets of TMN if

|2 sin(α2)| − 2K > 0. (C�N2)

Proof By Lemma 2.7 we have �σ = �σ,k for all k = 1, . . . , N , that is, all oscillators
within a single population have the same asymptotic average angular frequency.

If the populations are uncoupled, K = 0, we have �1(θ
0) = ω + g2(0) for

θ0 ∈ Sψ2ψ3 and �2(θ
0) = ω + g2(π) for θ0 ∈ ψ1Dψ3. This implies that for

K ≥ 0 and coupling (15) we have |g2(0) − g2(π)| − 2K = |2 sin(α2)| − 2K ≤∣
∣�1(θ

0) − �2(θ
0)

∣
∣ for θ0 ∈ SDψ3. Consequently, DSS, DDS and their symmetric

counterparts have localized frequency synchrony on TMN if (C�N2) is satisfied. 
�
Note that this is clearly only a sufficient condition; it suffices for our purpose but

can be improved by evaluating the asymptotic average angular frequencies explicitly.
As SSS and DDD, the sets DSS, DDS are equilibria for the reduced system (10)

with DSS = (π, 0, 0), DDS = (π, π, 0). On the invariant subspace DψS, we have

ψ̇ = 2ĝ2(ψ) + K (ĝ4(ψ) − ĝ4(ψ + π)) (16)
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and on ψDS we have dynamics

ψ̇ = 2ĝ2(ψ) + K (ĝ4(ψ + π) − ĝ4(ψ)). (17)

To obtain the linear stability of DSS, linearize (13) at ψ = π , (16) at ψ = 0, and (17)
at ψ = 0. With coupling (15) this gives

λDSS1 = 2 cos(α2) + 4r cos(2α2), (18a)

λDSS2 = −2K cos(α4) − 2 cos(α2) + 4r cos(2α2), (18b)

λDSS3 = 2K cos(α4) − 2 cos(α2) + 4r cos(2α2). (18c)

for the linear stability of the first, second, and third population, respectively. Similarly,
linearizing (17) at ψ = π , (16) at ψ = π , and (13) at ψ = 0, we obtain

λDDS1 = −2K cos(α4) + 2 cos(α2) + 4r cos(2α2), (19a)

λDDS2 = 2K cos(α4) + 2 cos(α2) + 4r cos(2α2), (19b)

λDDS3 = −2 cos(α2) + 4r cos(2α2). (19c)

for the eigenvalues which determine the linear stability of DDS.

3.2 Heteroclinic Cycles

In the previous section, we evaluated the local properties of the dynamically invariant
sets DSS and DDS. Heteroclinic cycles require conditions on the local stability as well
as the existence of global saddle connections.

Lemma 3.2 Suppose that

λDSS3 < 0 < λDSS2 , λDDS2 < 0 < λDDS1 . (CλN2’)

Then the network (9) with M = 3 populations of N = 2 phase oscillators with
dynamics (9) and coupling functions (15) has a heteroclinic cycle

C2 = (DSS,DDS,SDS,SDD,SSD,DSD).

Proof We first show that there is a heteroclinic connection [DSS → DDS]. Note
that (CλN2’) implies W u(DSS),W s(DDS) ⊂ ψDS. To show that W u(DSS) ∩
W s(DDS) �= ∅, consider the dynamics on DψS: For the coupling functions (15)
the dynamics (16) on DψS evaluate to

ψ̇ = −2 cos(α2) sin(ψ) + 2r cos(2α2) sin(2ψ) − 2K cos(α4) sin(ψ)

= sin(ψ)(ADψS + BDψS cos(ψ)),
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where ADψS = −2K cos(α4) − 2 cos(α2), BDψS = 4r cos(2α2). Since λDSS2 =
ADψS + BDψS and λDDS2 = −ADψS + BDψS, conditions (CλN2’) yield

±BDψS < ADψS.

Consequently, given (CλN2’), there are no equilibria on DψS other than the point
where sin(ψ) = 0—these correspond to DSS and DDS. Hence there is a heteroclinic
connection [DSS → DDS].

Similarly, to show that there is [DDS → SDS], note that by (CλN2’) we have
W u(DDS),W s(SDS) ⊂ ψDS. The dynamics (17) on ψDS are

ψ̇ = −2 cos(α2) sin(ψ) + 2r cos(2α2) sin(2ψ) + 2K cos(α4) sin(ψ)

= sin(ψ)(AψDS + BψDS cos(ψ)).

By (CλN2’) and the Z3 symmetry, we have

±BψDS < AψDS.

as above.This implies that there is a heteroclinic connection [DDS → SDS] if (CλN2’)
holds. 
�
Remark 3.3 Note that here the local conditions (CλN2’) suffice to guarantee the exis-
tence of global saddle connections. This indicates that more than two harmonics are
needed for generic bifurcation behavior; cf. Corollary 1 in Ashwin et al. (2016).

By replacing (CλN2’) with a stricter set of conditions, we immediately obtain the
following statement.

Lemma 3.4 The heteroclinic cycle C2 is dissipative if

λDSS3 < λDSS1 < 0 < λDSS2 ,

λDDS2 < λDDS3 < 0 < λDDS1 ,
(CλN2)

and

νDSS = −λDSS1

λDSS2

> 1, νDDS = −λDDS3

λDDS1

> 1. (CνN2)

This leads to the main result of this section.

Theorem 3.5 The network of M = 3 populations of N = 2 phase oscillators with
dynamics (9) and coupling functions (15) supports a robust dissipative heteroclinic
cycle

C2 = (DSS,DDS,SDS,SDD,SSD,DSD)

between dynamically invariant sets with localized frequency synchrony.
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Proof Note that if (CλN2’)—or (CλN2)—holds, the heteroclinic trajectories in
Lemma 3.2 are source-sink connections in an invariant subspace forced by symmetry.
Hence, to prove the assertion it suffices to show that there are indeed parameter values
such that (C�N2), (CλN2), and (CνN2) are satisfied simultaneously.

Let (α2, α4) = (π
2 , π) and r > 0. Set λu := λDSS2 = λDDS1 , λ> := λDSS1 = λDDS3 ,

λ� := λDSS3 = λDDS2 . The stability conditions (CλN2) thus reduce to

λu = −4r + 2K > 0 (20a)

λ> = −4r < 0 (20b)

λ� = −4r − 2K < 0 (20c)

which are satisfied for

0 < r <
1

2
K . (21)

Then λu > 0 > λ> > λ� and the saddle values ν = νDSS = νDDS of the equilibria
evaluate to

ν = −λ>

λu
= 2r

K − 2r

and thus (CνN2), that is, ν > 1, holds for

1

4
K < r (22)

Finally, for α2 = π
2 Condition (C�N2) is equivalent to K < 1.

In summary, for (α2, α4) = (π
2 , π) the conditions (C�N2), (CλN2), and (CνN2),

hold simultaneously if

0 < K < 4r < 2K < 2 (23)

which completes the proof. 
�
Again, conditions (C�N2), (CλN2), and (CνN2) for the existence of a dissipative

robust heteroclinic cycle are sufficient. Figure 2 illustrates the region in parameter
space that is given by these conditions.

Remark 3.6 For C2 set ξ1 = DSS, ξ2 = DDS, . . . , ξ6 = DSD. We have W u(ξq) �{
ξq

} ⊂ W s(ξq+1) and thus the heteroclinic chain associated with C2 is closed.

4 Heteroclinic Cycles for Three Oscillators per Population

We now consider phase oscillator networks (2) with more than two oscillators per
population. Throughout this section, assume that M = 3 and N = 3 and suppose that
the phase interaction given by the coupling functions
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Fig. 2 The parameter values where Conditions (C�N2), (CλN2), and (CνN2) hold are contained in the
shaded area; here α4 = π is fixed. Identical vertical lines indicate the same parameter values across (a, b).
The points (α2, r , K ) = ( π

2 , 1
2 , 7

10 ) and (α2, r , K ) = ( π
2 − 1

5 , 1
2 , 7

10 ) are plotted in all panels

g2(φ) = sin(φ + α2) − r(a2 sin(2(φ + α2)) + sin(6(φ + α2))), (24a)

g4(φ) = sin(φ + α4). (24b)

If the populations are uncoupled, K = 0, then for α = α2 = α4 − π
2 = π

2 and r > 0
there is bistability between S and D in each population (Ashwin and Swift 1992).

In this section, we show that there are dissipative robust heteroclinic cycles for
networks of M = 3 populations of N = 3 oscillators with coupling (24). Indeed, we
proceed as before and derive conditions for which there are heteroclinic source-sink
connections on invariant subspaces forced by symmetry. The resulting heteroclinic
networkwill be robust. Thus, for the remainder of the sectionwe set (α2, α4) = (π

2 , π)

rather writing down the conditions in full generality.
A stability analysis of the phase configurations SSS and DDD can be done as in

the previous section. Moreover, we restrict ourselves to DSS and DDS because of
symmetry.

4.1 Local Dynamics

We first establish conditions for DSS and DDS to be invariant sets with localized
frequency synchrony which are suitable saddles in the reduced system.

Lemma 4.1 The setsDSS,DDS and their images under the ZM symmetry have local-
ized frequency synchrony as subsets of TMN if

4K < 9. (C�N3)

Proof The proof is essentially the same as for Lemma 3.1. Frequency synchrony with
populations is given by Lemma 2.7.

For K = 0 we have �1(θ
0) = ω + 2g2(0) = ω + 2 for θ0 ∈ Sψ2ψ3 and

�2(θ
0) = ω + g2(2π/3) + g2(4π/3) = ω − 1 for θ0 ∈ ψ1Dψ3. This implies that for

K ≥ 0 and coupling (24) we have 3 − 4
3K ≤ ∣

∣�1(θ
0) − �2(θ

0)
∣
∣ Thus DSS, DDS

have localized frequency synchrony on TMN if (C�N3) is satisfied. 
�
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Lemma 4.2 In the reduced system, the equilibria DSS, DDS are hyperbolic saddles
with two-dimensional unstable manifold if

0 < 10r < K . (CλN3)

Proof The linearization at DSS yields eigenvalues

λDSS1 = −15r ± 3

2
i, (25a)

λDSS2 = −24r + 3K , (25b)

λDSS3 = −24r − 3K (25c)

which correspond to the stability of the phase configuration of the first, second, and
third population, respectively.

Similarly, for the linearization of the vector field at DDS we have

λDDS1 = −15r + 3

2
K ± 3

2
i, (26a)

λDDS2 = −15r − 3

2
K ± 3

2
i, (26b)

λDDS3 = −24r (26c)

which govern the linear stability of the phase configuration of the first, second, and
third population, respectively.

Thus, we have hyperbolic saddles with two-dimensional unstable manifold if 0 < r
and

min
{
Re(λDDS1 ),Re(λDSS2 )

}
= −15r + 3

2
K > 0,

which is equivalent to (CλN3), as asserted. 
�
Note that expansion at DSS is determined by the double real eigenvalue λDSS2 forced

by symmetry. The eigenvalues of the linearization (25) and (26) also give insight into
the local bifurcations as parameters are varied. For example, DDS undergoes a Hopf
bifurcation as the parameter r goes through zero.

4.2 Global Dynamics

In the previous section we established the existence of suitable saddle invariant sets.
To obtain a heteroclinic cycle, these invariant sets have to be joined by a heteroclinic
trajectory.

Both DSS and DDS lie in the two-dimensional invariant subspace DψS and DDS
while SDS lie in the two-dimensional invariant subspace ψDS. Because of the per-
mutational symmetry within populations, the dynamics on both DψS and ψDS
are S3-equivariant. As discussed in the context of Lemma 2.7, this implies that the
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phase ordering within each population is preserved. Hence it suffices to consider the
dynamics on (the closure of) the invariant simplex, commonly referred to as the canon-
ical invariant region,

C:=
{

ψ = (ψ1, ψ2) ∈ T2 | 0 < ψ1 < ψ2 < 2π
}

for the phase differences; cf. Ashwin and Swift (1992) and Ashwin et al. (2016). The
phase configuration S = (0, 0), where all oscillators are phase synchronized, lies on
the boundary ∂C of C and the splay phase configuration D = ( 2π

3 , 4π
3

)
is its centroid

as illustrated in Fig. 3a. For a function F : C → R let ‖F‖C denote the sup norm on C.
The vector field for the dynamics of (2) with coupling (24) and α2 = π

2 , α4 = π

can now be evaluated explicitly. Write

X0(ψ) =
(
cos(ψ1 − ψ2) − cos(ψ2)

cos(ψ2 − ψ1) − cos(ψ1)

)

, (27a)

XK (ψ) =
(
sin(ψ1 − ψ2) + sin(ψ2) + 2 sin(ψ1)

sin(ψ2 − ψ1) + 2 sin(ψ2) + sin(ψ1)

)

, (27b)

Xr (ψ) =

⎛

⎜
⎜
⎝

sin(6(ψ2 − ψ1)) + sin(2(ψ2 − ψ1)) − sin(6ψ2)

− sin(2ψ2) − 2 sin(6ψ1) − 2 sin(2ψ1)

sin(6(ψ1 − ψ2)) + sin(2(ψ1 − ψ2)) − 2 sin(6ψ2)

− 2 sin(2ψ2) − sin(6ψ1) − sin(2ψ1)

⎞

⎟
⎟
⎠ . (27c)

The dynamics on DψS are given by

ψ̇ = X0(ψ) + r Xr (ψ) + K XK (ψ) (28)

and the dynamics on ψDS are given by

ψ̇ = X0(ψ) + r Xr (ψ) − K XK (ψ). (29)

The first term describes interaction within each population given by the first harmonic
only, the second term is the intra-population interaction through higher harmonics,
and the third term is interactions arising through the coupling between populations.

Lemma 4.3 Suppose that the stability condition (CλN3) holds. Then there are hetero-
clinic trajectories [DSS → DDS] and [DDS → SDS] if

15r < K . (CψN3)

Proof First note that the dynamics of the uncoupled system, K = 0, without higher
harmonics, r = 0, is integrable (on both DψS and ψDS) since the quantity

V (ψ1, ψ2) = sin

(
ψ1

2

)

sin

(
ψ2

2

)

sin

(
ψ2 − ψ1

2

)

(30)
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(a) (b) (c)

Fig. 3 The dynamics on the invariant subspaces DψS and ψDS are determined by the dynamics on C. The
boundary ∂C is composed of ψ1 = 0, ψ2 = 0, and ψ1 = ψ2 (black lines) which intersect in S (solid
dot). The splay configuration D (hollow dot) is the centroid of C. a shows equipotential lines of V , given
by (30), that are dynamically invariant if r = K = 0. b shows R(ψ) (red positive, blue negative), and
we have ‖R(ψ)‖C < 15. c shows the dynamics on DψS for r = 0.01, K = 0.16. There are additional
equilibrium points (squares) on ∂C whose unstable manifolds (dotted lines) lie in the stable manifold of D.
A heteroclinic trajectory between S and D is depicted in blue (Color figure online)

is preserved; see also Ashwin et al. (2016). (Some level sets of V are depicted in
Fig. 3a.) That is, we have

V̇ := 〈grad V , ψ̇〉 = 〈grad V , X0〉 = 0.

Note that V > 0 on C, it vanishes on its boundary ∂C and takes a unique maxi-
mum V (D) at D.

We will first consider the dynamics on DψS and show that there is a source-sink
heteroclinic trajectory [DSS → DDS]. By assumption (CλN3), we have that DSS
is a source in DψS with W u(DSS) ⊂ DψS. In the following, we derive conditions
on K and r such that V is a (Lyapunov-like) potential function on C which guarantee
that V is strictly increasing along trajectories in C. Thus, any trajectory in C converges
to D ∈ C which yields a heteroclinic trajectory [DSS → DDS].

Now consider nontrivial coupling between populations, K > 0, while higher har-
monics are absent, r = 0. Using trigonometric identities we have

V̇ = K 〈grad V , XK 〉 = K (V (ψ) + V (2ψ)). (31)

The potential V increases along trajectories if V̇ > 0 on C � D. Rearranging terms,
V̇ > 0 is equivalent to

1 >
V (2ψ)

V (ψ)
= −2 cos(ψ2 − ψ1) − 2 cos(ψ2) − 2 cos(ψ1) − 2=: Q(ψ) (32)

forψ ∈ C�D. The function Q has a unique maximum on C atψ = Dwith Q(D) = 1.
Thus, V̇ > 0, and trajectories in C approach D asymptotically.

We now show that this property persists for r > 0 sufficiently small. We have

V̇ = K 〈grad V , XK 〉 + r〈grad V , Xr 〉
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and by the calculations above, we know that 〈grad V , XK 〉 only vanishes for ψ ∈
∂C ∪ D. The condition V̇ > 0 on C � D is equivalent to

K

r
> − 〈grad V , Xr 〉

〈grad V , XK 〉 =: R(ψ). (33)

Note that any singularity of R is removable since 〈grad V , Xr 〉 also vanishes on C�D
at the same order. Hence, R(ψ) is a bounded function on C and evaluating minima
and maxima on C yields ‖R‖C < 15; cf. Fig. 3b. This implies that V̇ > 0 on C �D if

15r < K .

which yields a heteroclinic connection between the source S and the sink D on DψS.
The proof that there is a robust heteroclinic trajectory [DDS → SDS] in ψDS is

analogous. We have W u(DDS) ⊂ ψDS and a heteroclinic trajectory [DDS → SDS]
is a trajectory connecting the source D and sink S on ψDS. Thus, it suffices to show
that V̇ < 0 on C � D. Note that the vector fields (28) and (29) only differ by the sign
of K . We proceed as above and in the last step the condition V̇ < 0 is equivalent to

K

r
> −R(ψ).

Again, ‖R‖C < 15 implies that if

15r < K

we have a robust heteroclinic connection between the source D and the sink S onψDS.

�

In fact, Lemma 4.3 implies the existence of a heteroclinic cycle

C3 = (DSS,DDS,SDS,SDD,SSD,DSD). (34)

Lemma 4.4 Suppose that the assumptions of Lemma4.3 hold. Theheteroclinic cycleC3
is dissipative if

K < 18r . (CνN3)

Proof In order to get dissipativity of the cycle, we need to control the product of the
saddle values. More precisely, the cycle is dissipative if

νDSSνDDS =
(

15r

3K − 24r

) (
24r

3
2K − 15r

)

> 1.

It is straightforward to verify that this condition is equivalent to (CνN3). 
�
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Note that the conditions (C�N3), (CλN3), (CψN3), and (CνN3) as given in Lem-
mas 4.1–4.4 are satisfied simultaneously for

0 <
1

18
K < r <

1

15
K <

3

20
. (35)

Moreover, the heteroclinic trajectories are source-sink connections in invariant sub-
spaces forced by symmetry. This proves the following result.

Theorem 4.5 The network of M = 3 populations of N = 3 phase oscillators with
dynamics (2) and coupling functions (24) has a robust dissipative heteroclinic cycleC3
between dynamically invariant sets with localized frequency synchrony.

4.3 Nonclosed Heteroclinic Chains

For networks of N = 3 oscillators per population, there are continua of heteroclinic
connections between equilibria. In particular, the heteroclinic chain associated withC3
contains all heteroclinic trajectories [DSS → DDS], [DDS → SDS]of trivial isotropy.
While the resulting associated heteroclinic chain H(C3) is cyclic, it is not closed. In
particular, the condition of Remark 2.3 is not satisfied.

To formalize this observation, we adapt some terminology that was recently intro-
duced in Ashwin et al. (2018).

Definition 4.6 Let C = (ξ1, . . . , ξQ) be a heteroclinic cycle and H(C) its associated
heteroclinic chain. An equilibrium

(i) ξq is complete in H(C) if W u(ξq) ⊂ H(C),
(ii) ξq is almost complete inH(C) ifW u(ξq)�H(C) is of measure zero (with respect

to the Lebesgue measure for any volume form on W u(ξq)),
(iii) ξq is equable inH(C) if there is a d = d(q) ∈ N such that for all p with Cqp �= ∅

the set Cqp is a manifold with dim(Cqp) = d.

Theheteroclinic chainH(C) is complete, almost complete, or equable if all its equilibria
are complete, almost complete, or equable, respectively.

Note that completeness relates to clean heteroclinic networks defined in Field
(2017). With these notions we obtain the following statement.

Theorem 4.7 For parameters satisfying (35) and r sufficiently small, the heteroclinic
chain H(C3) is cyclic, equable, and almost complete but not complete. The closure of
H(C3) is complete, but neither cyclic nor equable.

Proof Note that the heteroclinic chain H(C3) associated with C3 is cyclic—because
W u(DSS) ⊂ DψS and W u(DDS) ⊂ ψDS—and thus equable.

First, consider the invariant set DψS; it suffices to consider C as above. The invariant
set ∂C consists of points of nontrivial isotropy, i.e., �(θ) �= {id} for θ ∈ ∂C, and ∂C
has zero (Lebesgue) measure in C. SinceW u(DSS)∩∂C �= ∅ andW s(DDS)∩∂C = ∅,
the equilibrium DSS cannot be complete. Parametrize a side of ∂C by χ ∈ [0, 2π ]
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Fig. 4 The closure of the heteroclinic chain H(C3) is contained in the noncyclic heteroclinic chain H(Ccl)
shown here. The labels on the arrows denote the dimension of the set of heteroclinic connections; the
stability of ξψDS, ξDψS was evaluated for r = 0.01, K = 0.16. The graph G̃(C3) corresponds to the edges
corresponding to two-dimensional continua of heteroclinic trajectories

(for example χ = ψ1 = ψ2) where χ ∈ {0, 2π} corresponds to S ∈ ∂C; cf. Fig. 3.
The dynamics are given by

χ̇ = cos(χ) − 1 + 3r sin(6χ) + 3K sin(χ)

= 2 sin
(χ

2

) (
−2 sin

(χ

2

)
+ rT (χ) + 6K cos

(χ

2

))

where T (χ) is a trigonometric polynomial. Since K > 0 and r sufficiently small
by assumption, there are exactly three equilibria ξDψS on ∂C (which lie in the same
group orbit) with χ ≈ 2 arctan(3K ). These are of saddle type, attracting within ∂C
and transversely repelling (within DψS); see Fig. 3c. Therefore,

W u(DSS) ∩ W s(DDS) = C � �W u(ξDψS)

is two-dimensional and of full measure in W u(DSS). This implies that DSS is almost
complete.

Second, by evaluating the dynamics on ψDS one can show by a similar argument
that there are three equilibria ξψDS on ∂C. These are attracting transversely to ∂C and
repelling within ∂C. Consequently,

W u(DDS) ∩ W s(SDS) = C � �W s(ξψDS)

and DDS is almost complete. However, DDS is not complete since W s(ξψDS) ⊂
W u(DDS) is not contained in W s(SDS).

Finally, the closure of H(C3) now contains the complete heteroclinic cycle

Ccl = (DSS, ξDψS,DDS, ξψDS,SDS, ξSDψ,SDD, ξSψD,SSD, ξψSD,DSD, ξDSψ).

The heteroclinic chain H(Ccl) associated with Ccl contains H(C3) but is not cyclic nor
equable. Indeed, the graph G̃(Ccl) forH(Ccl) contains the noncyclic subgraph depicted
in Fig. 4. This completes the proof of the assertion. 
�

5 Dynamics of Networks with Noise and Broken Symmetry

The heteroclinic cycles lead to switching between localized frequency synchrony
which are observed in numerical simulations. First, define the Kuramoto order param-
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Fig. 5 The heteroclinic cycles CN induce switching of localized frequency synchrony in the oscillator
network (36) of M = 3 populations with K = 0.4, and noise strength η = 10−8. a shows the dynamics of
N = 2 oscillators for r = 0.1. b shows the dynamics of N = 3 oscillators for r = 0.023. The top row shows
the phase evolution of each oscillator (shading indicates the phase where black indicates θσ,k = π andwhite
θσ,k = 0). The bottom row shows the average instantaneous frequencies (lines) as well as the maximum
and minimum (shading) per population (colors). Because of the choice of co-rotating frame, the oscillators
appear static when they are synchronized and rapid changes from between black andwhite indicate a distinct
frequency; note that different synchronized populations are not necessarily synchronized to each other. A
“kink” in the order parameter dynamics in (b)—for example the yellow line at t ≈ 350—indicates that the
trajectory is passing by an equilibrium on ∂C (Color figure online)

eter of population σ as Zσ = 1
N

∑N
j=1 exp(iθσ,k) and let Rσ = |Zσ |. In particular,

Rσ ∈ [0, 1] encodes the level of synchrony in each population, that is, Rσ = 1 iff
θσ ∈ S and Rσ = 0 if θσ ∈ S.Write (2) as θ̇σ,k = Xσ,k(θ), settingω = −(N−1)g2(0)
without loss of generality such that oscillators appear stationary if phase synchronized
in the absence of interpopulation coupling. LetWσ,k be independentWiener processes
withmean zero and variance one. Since attracting heteroclinic cycles show exponential
slowing down of transition times between subsequent saddles, we solve the stochastic
differential equation

θ̇σ,k = Xσ,k(θ) + ηWσ,k, (36)

for η > 0 using XPP (Ermentrout 2002). As shown in Fig. 5, the dynamics exhibit
switching between localized frequency synchrony: Populations sequentially accelerate
and decelerate as the populations synchronize and desynchronize. The transition times
scale with the noise strength as expected (Stone and Armbruster 1999).

From the point of view of a phase reduction of a general network of nonlinear
oscillators, the interaction terms in the phase oscillator network (2) are nongeneric.
Indeed, one would expect that nontrivial pairwise interaction terms would not only
be present within populations but also between populations. Here, we asses the effect
of forced symmetry breaking on the dynamics (2) in numerical simulations. More
specifically, define

123



Journal of Nonlinear Science (2019) 29:2547–2570 2567

Y sym
σ,k (θ) = 1

MN

M∑

τ=1

N∑

j=1

sin(θτ, j − θσ,k).

The function Y sym
σ,k is SMN equivariant and yields pairwise interactions between oscil-

lators between different populations. Let ι(σ, k) = (σ − 1)N + k be a linear indexing
for all oscillators. Define

Y asym
σ,k (θ) = 1

MN
sin(θι−1(ι(σ,k)+1) − θσ,k)

which yields additional pairwise interaction terms. For parameters δsym, δasym we now
consider the evolution of

θ̇σ,k = Xσ,k(θ) + δsymY
sym
σ,k (θ) + δasymY

asym
σ,k (θ) + ηWσ,k . (37)

Heteroclinic switching dynamics persist if the phase-shift symmetries are broken.
For δsym > 0, δasym = 0, the (SN × T)M � ZM symmetry of (2) is broken; if
� = (SM

N � ZM ) × T, then (37) is �-equivariant. In other words, rather than having
a phase-shift symmetry for each population, the system (37) has a single phase-shift
symmetry which acts by adding a constant phase to all MN oscillators. While this
breaks the invariant subspace structure that gave rise to the robust heteroclinic cycles,
we expect certain normally hyperbolic tori to persist for δsym > 0 sufficiently small.
More precisely, if

DSS = {
(θ1, θ2, θ3) ∈ TMN

∣
∣ θ1 ∈ D, θ2, θ3 ∈ S, θ2 = θ3

} ⊂ DSS

(and SDS and SSD are its images under the ZM symmetry action), then we expect
that invariant tori exist close to DSS, SDS, and SSD. Indeed, solving the system
numerically—as shown in Fig. 6—indicates that there is in fact a residual attracting
heteroclinic network which approaches DSS, SDS, and SSD.

With further forced symmetry breaking, δsym, δasym > 0, the phase oscillator net-
work (37) exhibits irregular switching of localized frequency synchrony even in the
absence of noise. These potentially chaotic dynamics arise close to the heteroclinic
networks CN , N = 2, 3, as shown in Fig. 7.

6 Discussion and Conclusions

Phase oscillator networks with higher-order interactions can give rise to heteroclinic
cycles between frequency synchrony; in numerical simulations these lead to sequential
acceleration and deceleration of oscillator populations. Indeed, because of dissipativ-
ity, we expect that the attractor of the deterministic system is a subset of the closure of
the associated heteroclinic chain. For networks of N = 2 oscillators in each population
we calculate the stability of the heteroclinic cycles and their bifurcations explicitly in
the companion paper (Bick and Lohse 2019). For N = 3 the unstable manifold of

123



2568 Journal of Nonlinear Science (2019) 29:2547–2570

θ3,2

θ3,1

θ2,2

θ2,1

θ1,2

θ1,1

−2

0

0 200 400 600

θ3,3

θ3,2

θ3,1

θ2,3

θ2,2

θ2,1

θ1,3

θ1,2

θ1,1

−3

0

0 200 400 600

O
sc
ill
at
or

(a)
θ̇ σ

,k
k

Time t Time t

(b)

Fig. 6 Switching between localized frequency synchrony persists for the network (37) as the phase-shift
symmetries are broken, δsym = 0.1; the other parameters are as in Fig. 5. Due to the attractive coupling
between populations, the synchronized populations now synchronize in phase with each other. In other
words, trajectories approach DSS, SDS, and SSD cyclically
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Fig. 7 Further symmetry breaking leads to deterministic, irregular cycling of localized frequency synchrony
for the dynamics of (37). Here δsym = 0.1 and δasym = 0.1δsym while noise is absent, η = 0; all other
parameters are as in Fig. 5

each saddle is (at least) two-dimensional and the assumptions to apply existing stabil-
ity results (Krupa and Melbourne 1995; Ashwin and Chossat 1998) are not satisfied.
We will address this question in future research.

Rather than assuming weak coupling between populations, the results presented
here rely on the symmetries induced by the nonpairwise higher-order network interac-
tion terms. Our numerical simulations for nearby vector fields where these symmetries
were broken indicated the persistence of some residual heteroclinic structure. In this
context, it would be desirable to extend the methods of forced symmetry breaking
(Sandstede and Scheel 1995; Chossat and Field 1995; Guyard and Lauterbach 1999)
to understand the bifurcation behavior for nearby network vector fields with generic
interactions.
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Numerical simulations indicate that switching dynamics between localized fre-
quency synchrony also arises in networks with M = 3 populations of N > 3 phase
oscillators (Bick 2018). Indeed, the methods used here are likely applicable to such
networks as well: Without higher harmonics, r = 0, the oscillators are sinusoidally
coupled and the phase spaceTMN is foliated by low-dimensional manifolds (Pikovsky
and Rosenblum 2011; Chen et al. 2017) on which we expect to have a similar potential
functions as in the proof of Lemma 4.3. While we cannot expect hyperbolicity in this
limit due to the degeneracy in the system, suitable network interaction terms with
higher harmonics, combined with an approach similar to Vlasov et al. (2016), could
give rigorous results to show the existence of heteroclinic networks.

In summary, heteroclinic switching dynamics between localized frequency syn-
chrony may arise in networks of identical phase oscillators with higher-order
interactions. Here we gave rigorous results for small oscillator networks, but we
anticipate similar approaches to be viable for larger networks. While the heteroclinic
switching observed here are distinct from those discussed in Komarov and Pikovsky
(2011), where large networks (N ≥ 1000) of nonidentical oscillators are considered,
it would be interesting to relate the two.
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