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Abstract
This paper is concerned with complex dynamical behaviors of a simple unified SIR
and HIV disease model with a convex incidence and four real parameters. Due to the
complex nature of the disease dynamics, our goal is to explore bifurcations including
multistable states, limit cycles, and homoclinic loops in the whole parameter space.
The first contribution is the proof of the existence of multiple limit cycles giving rise
from Hopf bifurcation, which further induces bistable or tristable states because of
the coexistence of stable equilibria and periodic motion. Next, we propose that the
existence of Bogdanov–Takens (BT) bifurcation yields the bifurcation of homoclinic
loops, which provides a new mechanism for generating disease recurrence, for exam-
ple, the relapse–remission, viral blip cycles in HIV infection. Last, we present a novel
method for the derivation of the normal forms of codimension two and three BT bifur-
cations. The method is based on the simplest normal form theory from Yu’s previous
works.
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1 Introduction

Susceptible-infected-recovered epidemiological models are well-known to predict
possible disease outbreaks and design disease controls. But the complex disease
dynamics are rarely explored in whole parameter space analytically due to the com-
plexity of the model (including the model dimension and the number of parameters),
model reduction techniques, and the computation capacity. Therefore, before carrying
out the rigorousmathematical analysis, we first introduce the derivation of the simplest
two-dimensional models. The basic SIR compartment frame is described as follows
(Liu et al. 1986):

dS

dt
= λ − G(I , S) − d S + γ R,

dI

dt
= G(I , S) − (d + v) I ,

dR

dt
= v I − (d + γ ) R. (1)

We assume the per capita death rate is d for three population compartments, see
Earn et al. (2000). The newborns are all susceptibles and contribute to the susceptible
population at the rate of λ. The infection duration is v−1. The infection rate, G(I , S),
is a function in terms of both susceptible and infected populations. It follows from
Griffin (1995) that the recovered population gets lifelong immunity (so that γ = 0),
model (1) is reduced to a two-dimensional model, given by

dS

dt
= λ − G(I , S) − d S,

dI

dt
= G(I , S) − (d + v) I . (2)

Considering the global incidence rate function in further studies, for example, see
Korobeinikov and Maini (2005), Wang et al. (2010), Hethcote and van den Driessche
(1991), Liu et al. (1986), the infection rate takes a special case:

G(I , S) = h(I ) I S = (β0 + k I
1+m I

)
I S, (3)

where β0, k and m are positive constants, and thus the model (2) is rewritten as

dS

dt
= λ − (β0 + k I

1+m I

)
I S − d S,

dI

dt
= (

β0 + k I
1+m I

)
I S − (d + v) I . (4)

To simplify the analysis, we introduce the change of state variables, S = λ
d+v

X ,

I = λ
d+v

Y , and the time rescaling, t = 1
d+v

τ , into (4) to obtain the following

123



Journal of Nonlinear Science (2019) 29:2447–2500 2449

dimensionless model,

dX

dτ
= 1 − D X − (B + A Y

Y+C

)
X Y ,

dY

dτ
= (B + A Y

Y+C

)
X Y − Y , (5)

where the new parameters are defined as

A = k λ

m (d + v)2
, B = λβ0

(d + v)2
, C = d + v

m λ
, D = d

d + v
. (6)

All these parameters take positive real values.
Next, we consider a four-dimensional in-host HIV model which was developed by

van Gaalen and Wahl (2009) and used to study the viral blips phenomenon in Zhang
et al. (2013, 2014a, b). The model is described by the following ordinary differential
equations:

dx

dt
= λx − dx x − (1 − ε)β(r)xy,

dy

dt
= (1 − ε)β(r)xy − dy y,

dr

dt
= λr + ky − mar − drr ,

da

dt
= λa + α − par − daa, (7)

where x, y, r , and a represent the population densities of the uninfected CD4+
T cells, infected CD4+ T cells, reactive oxygen species (ROS), and antioxidants,
respectively. The constant λx is the production rate of CD4+ T cells, and dx x denotes
the death rate. The infectivity β(r) which plays an important role in the infection
process is modeled as a positive, increasing, and saturating function with respect to
the concentration of ROS, r ,

β(r) = b0 + r(bm − b0)

r + r1/2
, (8)

where b0 represents the infection rate in the ROS-absent case, while bm denotes the
maximum infection rate, and r1/2 is the ROS concentration at half maximum. Then,
(1 − ε)β(r)xy represents the rate at which uninfected cells become infected, where
ε ∈ (0, 1) is the effectiveness of drug therapy, and dy is the per capita death rate
of infected CD4+ T cells. The ROS are produced naturally at rate λr , and by the
infected cells at rate k y; but decay at rate dr r and are eliminated by interaction with
antioxidants at ratemar . Antioxidants are introduced into themodel via natural dietary
intake at a constant rate λa and through antioxidant supplementation at rate α, and are
eliminated from the system by natural decay at rate daa and by reacting with the ROS
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at rate par , where p is much smaller than m. All the parameters in (7) and (8) are
positive, and their typical values have been chosen with careful reference to clinical
studies, as given in van Gaalen and Wahl (2009), Zhang et al. (2014a, b).

We apply the quasi-steady state assumption (Flach and Schnell 2006; Korobeinikov
et al. 2005; Boie et al. 2016) to reduce the four-dimensional system (7) to a two-
dimensional system. To achieve this, we note from Zhang et al. (2013, 2014a, b) that
parameters λa , α, λr and k typically have much bigger values than other parameters in
the corresponding equations. Thus, a is obtained by solving the equation da

dt = 0 as

a = λa + α

da + p r
> 0, (r ≥ 0);

and analogously r from the equation dr
dt = 0 as

r = −
[
dadr+m(α+λa)−p(λr+ky)

]
+
√

[dadr+m(α+λa)−p(λr+ky)]2+4pdadr (λr+ky)
2 p dr

= 2da (λr+ky)

dadr+m(α+λa)−p(λr+ky)+
√

[dadr+m(α+λa)−p(λr+ky)]2+4pdadr (λr+ky)
> 0, (y ≥ 0).

(9)

Then, the above solutions a and r are substituted into the first two equations in system
(7) to obtain

dx

dt
= λx − dx x − β(y)xy,

dy

dt
= β(y)xy − dy y, (10)

where β(y) is derived from (1 − ε)β(r) with the use of (8) and (9), given by

β(y) = (1 − ε)
[
b0 + 2da(bm − b0)(λr + ky)

2da(λr + ky) + r̃1/2(y)

]
, (11)

in which r̃1/2(y) is defined as

r̃1/2(y) = r1/2
{
dadr + m(α + λa) − p(λr + ky)

+
√

[dadr + m(α + λa) − p(λr + ky)]2 + 4pdadr (λr + ky)
}

> 0, (y ≥ 0).

To reveal the complex disease dynamics, we focus on bifurcation analysis (i.e., on the
asymptotic behavior of the system when the system reaches its steady state). Noting
that the value of y is much smaller than that of x , see Zhang et al. (2013, 2014a, b),
we may further simplify the two-dimensional system (10) by taking the average value
of r̃1/2(y), given by

r̄1/2 = lim
h→∞

1
h

∫ h
0 r̃1/2(y) dy = r1/2 lim

h→∞
1
h

{[
dadr − pλr + m(α + λa)

]
h − 1

2 pkh2

+ 1

2
pk
[(
h + dadr + pλr − m(α + λa)

pk

)2
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Fig. 1 Simulation of system (10) showing the comparison on y using the original r̃1/2(y) (red color curve)
and r̄1/2 (blue color curve), with the parameter values used in Zhang et al. (2013, 2014a, b), Yu et al. (2016)
(Color figure online)

+4dadrm(α + λa)

p2k2
ln
(
2
(
h + dadr + pλr − m(α + λa)

pk

))]}

= 2dadrr1/2,

and obtain the new infectivity function,

β(y) = b + ay

y + c
, (12)

where

a = (1 − ε)drr1/2(bm − b0)

λr + drr1/2
, b = (1 − ε)(λr bm + drr1/2b0)

λr + drr1/2
, c = λr + drr1/2

k
,

(13)

all of them are positive since ε ∈ (0, 1) and bm > b0.
The verification of the averaging step is demonstrated by using the original function

r̃1/2(y) and the averaged function r̄1/2 to simulate system (10) with typical values in
Zhang et al. (2013, 2014a, b), Yu et al. (2016). The simulation comparison in Fig. 1a,
b indeed shows a very good agreement, which implies that the average is reliable and
yields very good approximation to the original system.

Finally, we introduce the scaling: x = λx
dy

X , y = λx
dy

Y , t = 1
dy

τ , and the new
defined parameters:

A = aλx

d2y
, B = λxb

d2y
, C = cdy

λx
, D = dx

dy
, (14)

to transform the model (10) into the dimensionless system (5). Thus, with appropri-
ate parameter values, the unified model (5) represents either an SIR epidemiological
model (susceptible and infected individuals) with parameters given in (6) or an in-host
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infection (susceptible and infected cells) model with parameters given in (14). It is
noted that the key difference between system (5) and the class of models studied in
Korobeinikov et al. (2005) is that the incidence function in system (5), ( B+AY

Y+C )XY , is
convex, while that considered in Korobeinikov et al. (2005) is concave.

Recently, the model (5) was considered by Yu et al. (2016) to demonstrate various
dynamics. However, a large part of the analysis, in particular on Hopf bifurcation
and Bogdanov–Takens bifurcation is restricted to a two-dimensional parameter space
with parameters B and D fixed. Moreover, some part of previous work in (Yu et al.
2016) are heavily dependent upon simulations. Therefore, in this contribution, we shall
explore dynamical behaviors of the model (5) in the full four-dimensional parameter
space, particularly for the analysis on Hopf and generalized Hopf bifurcations, and BT
bifurcation. In this paper, we will first give an analysis on dynamics and bifurcation of
system (5), which is different from that given in (Yu et al. 2016), and we then partic-
ularly focus on more generic dynamical study of the system in the four-dimensional
(A, B,C, D) parameter space. We will focus on the properties of multistable states,
limit cycles and homoclinic loops, showing complex behaviors in diseases. In partic-
ular, we use theory of Hopf and generalized Hopf bifurcations to prove the existence
of multiple limit cycles, giving rise to a different type of bistable or tristable states,
with coexistence of stable equilibria and periodic motion. Further, we will carry out
the analysis on the BT bifurcation to show homoclinic loop bifurcation, which leads
to a new mechanism of generating disease recurrence, that is, cycles of remission and
relapse such as the viral blips observed in HIV infection.

The rest of the paper is organized as follows. In the next section, we consider basic
solution properties of system (5), and study stability of and bifurcations from the
equilibrium solutions of this system. Hopf and generalized Hopf bifurcations will be
studied in detail in Sect. 3. In Sect. 4, BT bifurcation and homoclinic bifurcation are
investigated, giving rise to a new scenario/mechanism for generating recurrence. Sim-
ulations are given in Sects. 3 and 4 for various cases to confirm analytical predictions.
Finally, conclusions are drawn in Sect. 5.

2 Dynamics and Bifurcation of System (5)

In this section,we consider general solution properties of system (5), and study stability
and bifurcations of its equilibrium solutions. For convenience, define the parameter
space as

γ = (A, B,C, D) ∈ R4+, (15)

where R4+ means that all the four parameters take positive real values. Further, define
the trapping region,

	 = {(X ,Y )|X ≥ 0, Y ≥ 0, X + Y ≤ max
{
1, 1

D

}+ ε
}
, (16)

where 0 < ε � 1. Then it can be shown (Yu et al. 2016) that for any set of parameter
values belonging to γ , all solutions of system (5) are nonnegative provided initial
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conditions are taken nonnegative. Moreover, all solutions are attracted into 	 and so
bounded.

System (5) has two equilibrium solutions:

disease-free equilibrium : E0 = ( 1D , 0
)
,

endemic equilibrium : E1 = (X1,Y1
) = (X1, 1 − DX1

)
,

(17)

where X1 is determined from the equation,

F1(X) = D(A + B)X2 − (A + B + D + BC)X + C + 1 = 0. (18)

The solutions of F1(X) = 0 can be written as

X± = (A+B+D+BC)±√



2D(A+B)
, (19)

in which


 = (A + B + D + BC)2 − 4D(1 + C)(A + B)

= (A + B − D − BC)2 − 4C(A + B)(D − B). (20)

Further, define the reproduction number as

R0 = B

D
. (21)

Then the dynamical behavior of system (5) can be conveniently analyzed according to
R0 < 1, R0 > 1 and R0 = 1. Note that E0 is a boundary equilibrium (on the X -axis),
while E1 is a positive (an interior) equilibrium.

We choose D as the bifurcation parameter (which is fixed in the study Yu et al.
(2016)) and treat other parameters A, B and C as control parameters, then consider
the solution X(D) determined by the graph F1(X) = 0, as shown in the D-X plane
(see Fig. 2). It will be seen later that the relation between the control parameters
also plays an important role on bifurcation property and dynamical behavior of the
system.We define the saddle-node bifurcation point and transcritical bifurcation point,
respectively, as

(Ds, Xs) = (D−, Xs−) and (Dt , Xt ) = (B, 1
B

)
,

where Xs± = A+B+BC+D±
2(A+B)D± , D± = A + B + BC + 2AC

± 2
√
AC(1 + C)(A + B). (22)

Note that 
 = 0 at (D±, Xs±).
An elementary proof based on the function F1 leads to the following result for the

property of the solution X1.
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Lemma 2.1 In the D-X plane, the function X(D) has two horizontal asymptotes:
X = 0 and X = 1

A+B ; and two vertices at D = D±. The property of the function
X(D) is given in the following table.

X D X(D) monotonically

∈ (−∞, 0) ∈ (−∞, 0) ↘
∈ (0, Xs+) ∈ (D+, +∞) ↘
∈ (Xs+, 1

A+B ) ∈ (D+, +∞) ↗
∈ ( 1

A+B , Xs ) ∈ (−∞, Ds ) ↗
∈ (Xs , +∞) ∈ (0, Ds ) ↘

Therefore, the biologically meaningful equilibria (nonnegative solutions) are
defined as

E0 : (X0,Y0) = ( 1D , 0), for D > 0,
E1± : (X1,Y1) = (X±, Y±

) = (X±, 1 − DX±
)
, for 0 ≤ X± ≤ 1

D ,
(23)

where the condition 0 ≤ X± ≤ 1
D comes from Y1 = 1 − DX1 ≥ 0. This means that

the biological reasonable equilibrium solutions in Fig. 2a–d can only locate in the first
quadrant.

We have the following lemma.

Lemma 2.2 The disease-free equilibrium solution X0 = 1
D is a monotonic function

of D. The solution curves X0 and X1 have a unique intersection point at (D, X) =
(Dt , Xt ) = (B, 1

B ). The biologically meaningful endemic equilibrium solution X1

only exists for 1
A+B < X < 1

B and below the curve X = 1
D .Moreover, the equilibrium

solution X1 has a turningpoint at (D, X) = (Ds, Xs), which is above the curve X = 1
D

if A < BC, below the curve if A > BC, and on the curve if A = BC.

Proof It is obvious that the function X = 1
D is monotonic with respect to D. It is easy

to show that the two curves X = 1
D and F1 = 0 have a unique intersection point by

solving F1(
1
D ) = 0, yielding D = B and thus X = 1

B , which results in a critical point
at (D, X) = (Dt , Xt ) = (B, 1

B ). The biologically meaningful solution curve X1 must
be below the curve X = 1

D since it requires DX± < 1, i.e., X± < X0. It is easy to see
from Fig. 2 that X1 > 1

A+B for D < Ds . More precisely, a direct computation shows
that

D < Ds ⇐⇒ A + B + BC − D > 2
√
4D(1 + C)(A + B) − 2AC > 0,

and then

X− > 1
A+B ⇐⇒ A + B + D + BC − √


 > 2D

⇐⇒ A + B + BC − D >
√


 ⇐⇒ AC > 0.
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•

•
•
•

Xt

Xs

Fig. 2 Bifurcation diagrams for system (5): a in the whole D-X plane; b in the biologically meaningful part
with A < BC ; c in the biologicallymeaningful part with A = BC ; and d in the biologicallymeaningful part
with A > BC , with E0 in red and E1 in blue, and stable in solid and unstable in dotted curves, respectively.
The green line in a, and black dotted lines in b–d denote the same asymptote X = 1

A+B to the biologically
meaningful solution X±, which satisfies X± ≤ X0 (Color figure online)

Now, we show that the part of solution X1 for D ≥ D+ is above the curve X = 1
D ,

see Fig. 2a. To achieve this, we only need to prove that X− > 1
D for 0 < X < 1

A+B
and D > D+, which is equivalent to

X− > 1
D ⇐⇒ BC + D − A − B >

√
(A + B + BC + D)2 − 4D(1 + C)(A + B)

⇐⇒ (D − B)C > 0,

which is true since D > D+ > A + B.
For the last conclusion in this lemma, since the two curves X0 = 1

D and X1 = X(D)

have a unique intersection point at (D, X) = (Dt , Xt ) = (B, 1
B ), it suffices to show

that Xs > Xt (or Xs < Xt ) if and only if A < BC (or A > BC). A direct calculation
yields that
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Xs − Xt = A+B+BC+Ds
2(A+B)Ds

− 1
B = − (A−BC) A (A+B+BC)

BDs

[
A(1+2C)(A+B)+(2A+B)

√
AC(1+C)(A+B)

] ,

which clearly shows that the conclusion holds, and the proof is complete. �
The three different cases for A < BC , A = BC and A > BC are depicted in

Fig. 2b–d, respectively. These figures are actually bifurcation diagrams for system
(5), but only the red curve and the part of the blue curve below the red cure are
biologically meaningful. The Ds , Dt and Dh denote the saddle node, transcritical
and Hopf bifurcations, respectively, and Dt = B, implying that at the transcritical
point R0 = 1. The difference on the conditions of A < BC and A > BC causes a
fundamental effect on the dynamics and stability of system (5). In particular, when
A > BC , the system exhibits bistable phenomena if R0 < 1 (i.e., D > B), which
may involve two stable equilibrium solutions E0 and E1−, or stable equilibrium E0
and stable limit cycles. This can not happen if A ≤ BC . The condition A = BC
distinguishes the system into two fundamental different types of bifurcations: forward
bifurcation when A ≤ BC , and the other backward bifurcation when A > BC .
Backward bifurcation usually exhibits more complex dynamical behaviors such as
bistable phenomena (Zhang et al. 2016). Biologically, the threshold value of the contact
rate at A = BC means that the interaction between X and Y produces sufficient
infection such that Y persists even there exists stable disease-free equilibrium E0.

Stability analysis on the equilibria of a two-dimensional dynamical system is usually
not difficulty. However, if the system contains multiple parameters, then it is not easy
to find the explicit stability conditions expressed in terms of the system coefficients.
For our purpose of studying stability and bifurcation of the equilibrium E1, define

IB = (0, 1
4

)
, Al = 4B2

1−4B , Au =
{

B (2B+√
B)

1−4B , if A ≤ BC,

+∞, if A > BC,

Cl2 = A−
√

A2(1−4B)−4AB2

2B , Cu1 = Cl2
B − ( AB + 1

)
, Cu2 = min

{ A
B ,Cu1

}
,

Cl1 = 2B(A+B)Cu1

2B(1+A+B)+A−
√

A2(1−4B)−4AB2
,

Dh = B
[
2(A+B)(A+B+BC)−C

(
A+

√
A2(1−4B)−4AB2

)]

(A+B)
[
A+2B−

√
A2(1−4B)−4AB2

] ,

v0 = − 1
4(A+B)D2/(

√



{
(A + B)

[
(A + B)(BC − D2) + 2BC2(B − D) − BCD

+ D2(D − BC − 2AC)
]+ B2C2(D + BC)

−[BC(A + B + BC) + (A + B)D2
]√



}

H1 = {B ∈ IB, A ∈ (Al , Au), C ∈ (Cl1,Cu1)
}
,

H2 = {B ∈ IB, A ∈ (Al ,+∞), C ∈ (Cl1,Cu2)
}
,

H3 = {B ∈ IB, A ∈ (Al ,+∞), C ∈ (Cl1,Cl2)
}
,

(24)

where Dh defines a Hopf critical point when D is treated as a bifurcation parame-
ter, and v0 (which is borrowed from the notation used in normal forms) denotes its
transversality condition with respect to D.

Then, we have the following result.
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Theorem 2.3 For system (5), the stability of equilibrium solutions and bifurcation
properties are given in the following table.

Equilibrium A ≤ BC A > BC

E0 GAS for D ≥ Dt GAS for D ≥ Ds , LAS for Dt < D < Ds
E1+ Saddle Saddle

Hopf at D = Dh H1
⋃

D ∈ (Dh , Dt ) H2
⋃

D ∈ (Dh , Ds )

E1−
LAS

Otherwise,
No Hopf

D ∈ (0, Dt ) D ∈ (0, Ds )

Bistable∗
States

No
H3
⋃

Dh ∈ (Dt,Ds)

(E0,E1) for D ∈ (Dh , Ds )

(E0,LC) for D ∈ (Dt , Dh)

where GAS, LAS and LC denote the Globally asymptotically stable, Locally asymptotically stable and
Limit cycle, respectively. Moreover, no limit cycles can bifurcate from homoclinic orbits if A ≤ BC

Note in Theorem 2.3 that for the bistable states involving limit cycles, the results
on the stability of limit cycles will be given in next section (see Theorems 3.2, 3.3,
3.4 and 3.5).

Proof The disease-free equilibrium, E0 = ( 1
D , 0), is a boundary equilibrium, located

on the X -axis. Evaluating the Jacobian matrix of system (5) at the E0 yields two
eigenvalues, ξ1 = −D and ξ2 = R0 − 1, showing that E0 is asymptotically stable (a
stable node) if R0 < 1 (i.e., D > Dt ) and unstable (a saddle) if R0 > 1 (i.e., D < Dt ).
To prove the global stability, first note that all trajectories are attracted into the trapping
region	. Secondly, if A ≤ BC , then when D ≥ B (i.e., R0 ≤ 1), there exists only one
stable equilibrium E0 on the boundary of 	, thus all trajectories converge to the stable
equilibrium E0. If A > BC , then when D > Ds (i.e., R0 < B

Ds
), there again exists

only one stable equilibrium E0 on the boundary of 	, thus all trajectories converge to
the stable equilibrium E0.

Next, for stability of the E1, we evaluate the Jacobian matrix of system (5) at the
endemic equilibrium E1 to obtain

J1 = J (E1) =
⎡

⎣
− 1

X1
− 1 − ACX1Y1

(Y1+C)2

1
X1

− D ACX1Y1
(Y1+C)2

⎤

⎦ , (25)

which, together with (19) and (20), in turn results in

det(J1) = − (1−DX1)
2D(A+B)(1−DX1+C)X1

√


[√


 ± (A + B + D + BC
)]

. (26)

If we first solve C from the equation F1 = 0 and then obtain the trace of J1 as

C = 1−DX1
1−BX1

[
(A + B)X1 − 1

]
,

Tr(J1) = − 1
AX1

{[
(A + B)X1 − 1

]
(BX1 − 1) + A

}
.

(27)
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Note that at the critical point R0 = 1 (i.e., D = B), X1 = X0 = 1
B .

We first consider the equilibrium E1+ : (X+,Y+). Since the term in the square
bracket of det(J1) (taking the positive sign) is positive, and the biologicallymeaningful
solution requires 0 < DX+ < 1, it is obvious that det(J1) < 0, implying that E1+ is
a saddle.

Now, for the equilibriumE1−, we only need to consider the biologically meaningful
solution E1− : (X−,Y−) in the first quadrant with 1

A+B < X− < 1
D (see Fig. 2b–d).

At the critical point D = Dt = B, X− = X0 = 1
B , with a zero eigenvalue at this

point, indicating that R0 = 1 is a transcritical bifurcation point, though E1− does
not biologically exist for R0 < 1. For stability of the E1−, first it is seen from (26)
that det(J1) > 0 since DX− < 1 and the term in the square bracket in (26) with the
negative sign is negative, and thus the stability is determined by the sign of Tr(J1).
Since X− > 1

A+B , DX− < 1, and X− < Xt = 1
B , yielding BX− < 1, C > 0 is

guaranteed. However, the term in the bracket of the trace Tr(J1) given in (27) can be
positive or negative for D ∈ (0, Dt ) if A ≤ BC (see Fig. 2b, c) or for D ∈ (0, Ds) if
A > BC (see Fig. 2d and note that when A > BC , E1+ is a saddle for D ∈ (Dt , Ds)).
This indicates that the only possible bifurcation from the E1− is Hopf bifurcation,
arising from a critical point at which Tr(J1) = 0. In order to determine the Hopf
critical point, we solve the two equations in (27) for D and X− to obtain

Dh = (A+B+BC)X−−(1+C)
X−[(A+B)X−−1] , (28)

where X− is given by

X− = A+2B−
√

A2(1−4B)−4AB2

2(A+B)B , (29)

which is positive when B ∈ IB = (0, 1
4 ) and A > Al = 4B2

1−4B . Substituting (29) into
(28) results in the expression of Dh given in (24). To find the transversality condition
v0, we solve F1 = 0 for X1, which is substituted into Tr(J1), and then take the
derivative of the resulting trace to obtain

1
2

∂ Tr(J1)
∂D

∣∣∣
E1−

= 1
2

∂
∂D

[
− 1

X1
+ ACX1(1−DX1)

(1+C−DX1)2

]
= v0,

where v0 is given in (24). In general, v0 �= 0, implying that Hopf bifurcation occurs
at the critical point D = Dh .

It is clear that no Hopf bifurcation occurs for Dh ≤ 0. To have Dh > 0, one more
condition is required from X− > 1+C

A+B+BC , which in turn yields 0 < C < Cu1 . So
when the above conditions are satisfied, we have Dh > 0. However, note that only
if Dh < Dt (i.e., X− < Xt ) when A ≤ BC , or Dh < Ds (i.e., X− < Xs) when
A > BC , then Dh > 0 defines a true Hopf critical point. Hence, we need to consider
two cases: A ≤ BC and A > BC .

(a) A ≤ BC . For this case, the disease-free equilibrium E0 is globally asymptotically
stable if R0 ≤ 1 (for which E1− does not biologically exist), and unstable if R0 > 1
(i.e., D < Dt ) for which E1− emerges to exist. To have a Hopf bifurcation from
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E1−, it needs X− < Xt = 1
B , which is easy to be proved by using (27) to obtain

BX− − 1 < 0 because of C > 0. On the other hand, the condition A ≤ BC ,
or C ≥ A

B , together with C < Cu1 yields C ∈ [ AB ,Cu1). Further, it requires that

Cu1 > A
B , yielding A < Au = B

(
2B+√

B
)

1−4B (for B ∈ IB). Hence, for this case,
Hopf bifurcation appears from the equilibrium E1− at the critical point D = Dh

if the parameters satisfy B ∈ IB , A ∈ (Al , Au), C ∈ (0,Cu1) and Dh ∈ (0, Dt ).
(b) A > BC . For this case, the turning point (D, X) = (Ds, Xs) is below the curve

X = 1
D and so X− must be below the curve X = 1

D as well. To have a Hopf
bifurcation, the condition, 1+C

A+B+BC < X− < Xs , needs to be satisfied for Dh > 0.

The condition for 1+C
A+B+BC < X− is obtained in part (a) as C < Cu1 , while

the condition for X− < Xs yields C > Cl1 . In addition, to determine if Hopf
bifurcation can occur for Dh ∈ (Dt , Ds), which may lead to bistable phenomenon
involving the stable equilibrium E0 and a stable limit cycle, we find another critical
point at the second intersection point of X− with the vertical line D = Dt , where
X− = 1+C

A+B . Then,
1+C
A+B < Xs yields the critical point Cl2 . Finally, we need

to ensure that A > BC for this case, which is guaranteed by simply defining
Cu2 = min

{ A
B , Cu1

}
. It is easy to show that Cl2 < A

B and Cl2 < Cu1 , implying
that Cl2 < Cu2 . Moreover, it can be shown that Cl1 < Cl2 , and thus we have
Cl1 < Cl2 < Cu2 . Therefore, for this case, Hopf bifurcation occurs from E1− at
the critical point D = Dh for the parameters satisfying B ∈ IB , A > Al and
C ∈ (Cl1,Cu2); and E1− is asymptotically stable for D ∈ (Dh, Ds). In particular,
when C ∈ (Cl1 ,Cl2) and Dh ∈ (Dt , Ds), bistable phenomena happen, with the
coexistence of stable equilibria E0 and E1− for D ∈ (Dh, Ds), and the coexistence
of stable equilibrium E0 and stable limit cycles for D ∈ (Dt , Dh). While when
C ∈ (Cl2 ,Cu) and Dh ∈ (0, Dt ), only stable equilibria E0 and E1− coexist for
D ∈ (Dt , Ds).

Finally, to prove that no limit cycles can bifurcate from homoclinic orbits if A ≤ BC ,
note that E0 becomes a saddle when A ≤ BC . If a limit cycle bifurcates from a
homoclinic orbit, there must exist a homoclinic loop which connects E0, i.e., leaving
the E0 along the unstable manifold and return to it along the stable manifold. But we
know that stable manifold of the E0 is the X -axis which is an invariant manifold of the
system. Thus, connecting the unstable manifold to the stable manifold must violate
the uniqueness of the solutions of the system, and so it is not possible to have limit
cycles bifurcating from homoclinic orbits when A ≤ BC .

The proof for Theorem 2.3 is complete. �

3 Hopf and Generalized Hopf Bifurcations

In this section, we consider bifurcation of limit cycles due to Hopf and generalized
Hopf bifurcations. In particular, we shall consider the existence ofmultiple limit cycles
due to generalized Hopf bifurcation and prove that the maximal number of limit cycles
is two for the whole four-dimensional γ parameter space. All Hopf bifurcations occur
from the equilibrium E1−, which can be classified into three categories according to
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R0 = 1, R0 < 1 and R0 > 1, namely D = B, D > B and D < B, respectively. Since
the treatment for the cases R0 < 1 and R0 > 1 are similar, we will combine the latter
two cases as one: R0 �= 1. Also, the treatment is same for A ≤ BC and A > BC , we
will not distinguish the two cases.

3.1 Case R0 = 1 (D = B)

When R0 = 1 (or D = B), system (5) is in a critical situation, i.e., the two equilibria E0
andE1 exchange their stability at the critical point and complex dynamics of the system
happens on the center manifold which is characterized by a single zero eigenvalue (the
other eigenvalue is −B).

Since in general we treat D as a bifurcation parameter and define Dt = B, to avoid
confusing in this subsection we let D = B and choose B as a bifurcation parameter.
Then, when D = B (i.e., at R0 = 1), the equilibrium solutions become

E1+ = E0 = ( 1B , 0
)

and E1− = ( 1+C
A+B , A−BC

A+B

)
,
(
B ≤ A

C

)
, (30)

where the existence condition A ≥ BC also guarantees Y1− ≥ 0 and X1− ≤ 1
B . Note

that when A = BC , the equilibrium E1− ≡ E1 also coincides with E0, at which a
bifurcation occurs. For this case, we define a new reproduction number as

Bt = A

C
. (31)

Then, E1 emerges to exist for B < Bt , which requires A > BC . In order to study the
stability of E0, we need to find the center manifold at the critical point.

3.1.1 Center Manifold Reduction and Stability Analysis

We first use the center manifold theory to find the differential equation describing
dynamics on the center manifold, and then discuss the stability of E0. To achieve this,
we first introduce an affine transformation, given by

(
X
Y

)
=
( 1

B
0

)
+
[

1 1
−B 0

](
u1
u2

)
, (32)

into (5) with D = B to obtain a system,

du1
dτ

= Bu1u2 − 1

C
(A − BC) u21 − AB

C
u21u2 + · · · ,

du2
dτ

= −Bu2 + B(B − 1)u1u2 + 1

C
(A − BC)(1 − B)u21 + AB

C
(1 − B)u21u2 + · · · ,

(33)

whose linear part is in Jordan canonical form with eigenvalues 0 and −B. To find
the center manifold, let u2 = h(u1) = ηu21 + O(u31) and then use (33) to find η =
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(1−B)(A−BC)
BC . Therefore, the center manifold up to second order is given by

WC = {(u1, u2
) ∣∣ u2 = (1−B)(A−BC)

BC u21 + O(u31)
}
,

and the differential equation describing the dynamics on the center manifold is given
by

du1
dτ

= 1
C (A − BC)

[− u21 + (1 − B) u31 + O(u41)
]
. (34)

Since when D = B, the system still has three free parameters A, B and C , we will
give a brief analysis on the dynamics and bifurcation of the systemwhen R0 = 1. Now
system has only two equilibria E0 and E1, given in (30). Note that for this critical case,
Y = 1− BX still holds and the equilibrium solution X1 for E1, given by X1 = 1+C

A+B ,
is monotonically decreasing as B increases, indicating that no backward bifurcation
can occur, and so bistable equilibria are not possible. Define

Bh = A(C−A)

A+C2 . (35)

Then, we have the following theorem for this critical case.

Theorem 3.1 For system (5), when R0 = 1 (i.e., D = B), the disease-free equilibrium
E0 is globally asymptotically stable for B > Bt and unstable for B < Bt for which
E1 emerges to exist. E1 is asymptotically stable for B < Bt if A ≥ C; and Hopf
bifurcation occurs from E1 at B = Bh if A < C for which E1 is asymptotically stable
for Bh < B < Bt and unstable for B < Bh.

Proof For the stability of the equilibrium E0, linearization does not work since one
eigenvalue is zero. However, we can apply Eq. (34) to study its stability because
(u1, u2) represents small perturbation from this equilibrium. Since Y = −Bu1, Y
decreases from a positive initial point if u1 is increasing, implying that Y is stable and
converges to zero. It follows from (34) that u1 is increasing if A < BC , or B > Bt .
Recall that the X -axis is invariant and this trajectory converges to E0 along the X -axis.
Therefore, E0 is a degenerate stable node when B > Bt , and a degenerate saddle
when B < Bt . Note that E1 does not exist for B > Bt , and there exists only one stable
equilibrium E0 on the boundary of the trapping region 	, and thus all trajectories
converge to E0, implying that E0 is globally asymptotically stable for B > Bt .

To find the stability of the E1, evaluating the Jacobian of (5) when D = B at E1
yields the trace and determinant as

Tr(J1) = (C2+A)(Bh−B)
A(1+C)

and det(J1) = C2(B−Bh)2

A(1+C)
> 0.

Hence, the equilibrium E1 is asymptotically stable if max{0, Bh} < B < Bt . Hopf
bifurcation occurs from E1 at B = Bh , if Bh > 0, and E1 is unstable for B ∈ (0, Bh).

�
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Fig. 3 Bifurcation diagram for
system (5) when R0 = 1
(D = B)

Bh Bt B0

X

X0

X1

X0

Further, transforming (33) with (34) back to the original coordinates (X ,Y ), we
obtain the equations describing the dynamics on the center manifold, given by

dX

dτ
= 1 − BX − 1

B Y + (1 − B) XY − A−BC
CB2 Y 2 + · · · ,

dY

dτ
= A−BC

CB2

[
B + (1 − B)Y

]
Y 2 + · · · ,

(36)

which clearly indicates that for small positive initial conditions, Y converges to zero
if A < BC , i.e., B > Bt . Moreover, the non-trivial equilibrium solution of (36), given
by (X ,Y ) = (1 − A

C(B−1)2
, B
B−1

)
, shows that the graph (1 − X)(B − 1)2 = A

C in the
B-X plane does not have a turning point, again indicating that no backward bifurcation
can occur. The bifurcation diagram for this special case is shown in Fig. 3.

3.1.2 Hopf Bifurcation

For convenience, define a subset in the γ -parameter space,

γ1 = {γ |C = (ρ + 1)A, 0 < B < 1
ρ+1 , ρ > 0

}
, (37)

and let

Ā =
√

ρ4+4ρ2(ρ+1)2+4(ρ+1)− ρ2

2(ρ+1)[ ρ2(ρ+1)+1]

= 2
√

ρ4 + 4ρ2(ρ + 1)2 + 4(ρ + 1) + ρ2
∈ (0, 1), (ρ > 0). (38)

Then, we have the following result.

Theorem 3.2 For system (5), when R0 = 1, Hopf bifurcation occurs from the equilib-
rium E1 at the critical point B = Bh, if the parameter values are taken from the set
γ1. The bifurcation is supercritical (or subcritical) if A > Ā (or A < Ā), and a family
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of bifurcating limit cycles is stable (unstable), enclosing an unstable (a stable) focus
at E1.

Proof First, the necessary conditions for having a Hopf bifurcation from E1 are
obtained from the Hopf critical condition Bh > 0 and B < Bt as C > A > BC ,
yielding 0 < B < 1. Further, let C = (ρ + 1)A (ρ > 0), under which the above
two conditions become 0 < B < 1

ρ+1 . In order to apply normal form theory to calcu-
late the first-order focus value (or the first Lyapunov constant), we first multiply the
equations in (5) by Y +C > 0 and then introduce the affine transformation, given by

(
X
Y

)
=
( 1+C

A+B
A−BC
A+B

)
+
[

1 0
−CA

C2+(1+C)A
−Cωc

C2+(1+C)A

](
u1
u2

)
, (39)

where ωc = A
C

√
(1 + C)A, into the resulting equations to yield a system to be

expanded around (u1, u2) = (0, 0) up to third-order terms. Next, we apply the Maple
program for computing the normal forms associated with Hopf and generalized Hopf
bifurcations (Yu 1998) to the new system to obtain the normal form in polar coordinates
up to third-order terms as follows:

dr

dτ
= r

[
v0 μ + v1 r

2 + O(r4)
]
,

dθ

dτ
= ωc + t0 μ + t1 r

2 + O(r4), (40)

where μ = Bh − B, is a perturbation parameter, and v0 and v1 are the zero-order
and the first-order focus values. The first equation of (40) can be used to perform
bifurcation analysis and the sign of v1 determines whether the Hopf bifurcation is
supercritical or subcritical. The values v0 and t0 can be found from a linear analysis,
while v1 and t1 are obtained by applying the Maple program. The calculation shows
that

v0 = − (A+C2)2

2AC(1+C)
, t0 = − (A+C2)2

C2
√

(1+C)A
, (41)

and the output from the Maple program gives v1 and t1 as

v1 = −A3C2

8(A+AC+C2)(C2+A)2

[
(ρ + 1)(ρ3 + ρ2 + 1)A2 + ρ2A − 1

]
(42)

and

t1 = − A3C
√

(1+C)A
24(1+C)(A+AC+C2)(C2+A)2

[
(ρ + 1)2(ρ4 + 12ρ3 + 20ρ2 + 13ρ + 5)A3

+ (ρ + 1)(10ρ3 + 44ρ2 + 45ρ + 13)A2 + (25ρ2 + 45ρ + 21)A + 13
]
.

It is easy to verify that when A > Ā (or A < Ā), v1 < 0 (or v1 > 0), yielding
a supercritical (subcritical) Hopf bifurcation and so the bifurcating limit cycles are
stable (unstable). �
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Fig. 4 A stable limit cycle of system (5) when R0 = 1 for A = 6937
65600 , C = 96

205 , B = D = 73
625 : a phase

portrait with the red and green color curves denoting the simulation and the estimation from normal form
(with amplitude r ≈ 0.5954), respectively; and b the time history of the stable limit cycle (Color figure
online)

To illustrate the theoretical result, we present a simulation using the following
parameter values:

A = 6937
65600 , C = 96

205 , D = B = 73
625 = 0.1168, (43)

yielding Bh ≈ 0.117947 at which Tr(J1) = 0 (or v0 μ = 0), as well as v0 ≈
− 0.726539 and v1 ≈ −0.002351, indicating that the Hopf bifurcation is supercritical
and the bifurcating limit cycle is stable. To estimate the amplitude of the limit cycle,
we note that μ = Bh − B = 0.001147, which implies that B is decreasing to pass the
Hopf critical point Bh as v0 < 0 indicates. Thus, it is easy to use the truncated normal
form v0μ+ v1r2 to obtain the estimate of the amplitude of the bifurcating limit cycle
as r ≈ 0.5954. The simulation of this stable limit cycle is shown in Fig. 4a as the red
curve, and the green curve in the same figure denotes the first-order approximation
of the analytical prediction, which is obtained by using the transformation (39), the
normal form (40) togetherwith (41) aswell as the following additional transformation,

u1 = r cos(ωct), u2 = −r sin(ωct).

The simulation shows an excellent agreement with the analytical prediction.

3.1.3 Multiple Limit Cycles Bifurcation

In the previous subsection, we have shown that system (5) always exhibits limit cycles
due to Hopf bifurcation. But it is limited to a single limit cycle for a given set of
parameter values. Now, we want to ask: for what feasible parameter values in the γ1
set, we can obtain maximal number of limit cycles bifurcating from the Hopf critical
point near the equilibrium E1? Here, “feasible” means that the values of the chosen
parameters must be positive and the equilibrium solution for the chosen parameter
values must be also positive. Bifurcation of multiple limit cycles here is related to the
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so-called generalized Hopf bifurcation. The condition for a generalized Hopf bifur-
cation is that at least the first-order focus value vanishes, i.e., v1 = 0. When more
focus values vanish, the generalized Hopf bifurcation is more degenerate and more
limit cycles can bifurcate from the critical point. More precisely, we rewrite the first
equation of (40) as

dr

dτ
= r

[
v0 μ + v1 r

2 + · · · + vk−1 r
2k−2 + vk r

2k + O(r2k+2)
]
,

where all the focus values vi ’s are expressed in terms of the system parameters. If
we can find the conditions on k parameters, say, μ = (μ1, μ2, . . . , μk), such that
v0 = v1 = · · · = vk−1 = 0, but vk �= 0, at the critical point defined by μc =
(μ1c, μ2c, . . . , μkc) and

rank

[
∂(v0, v1, . . . , vk−1)

∂(μ1, μ2, . . . , μk)

]

μ=μc

= k,

then k limit cycles can bifurcate from the critical point near the equilibrium by using
appropriate perturbations on μ. More details on the topic of bifurcation of limit cycles
can be found, for example, in the book Han and Yu (2012).

For multiple limit cycles bifurcation when R0 = 1, we have the following theorem.

Theorem 3.3 For system (5), when R0 = 1, there exist feasible parameter values in
the set γ1 such that maximal two small-amplitude limit cycles can bifurcate from the
endemic equilibrium E1 due to generalized Hopf bifurcation. The outer limit cycle is
stable while the inner one is unstable, and both of them enclose the stable equilibrium
E1.

Proof To prove this theorem, we need to compute the focus values up to v3 since there
are two free parameters A and C . However, we will show that v3 is not needed since
no feasible parameter values can be chosen such that v2 = 0. Actually, taking A = Ā
we have v1 = 0, and then v2 is obtained from the Maple program (Yu 1998) as

v2 = − 4ρ2(ρ+1)2C4 Ā7

192(1+C)(C2+ Ā)4(C2+ Ā+ ĀC)4(ρ3+ρ2+1)6

[
7ρ14 + 54ρ13

+ 182ρ12 + 384ρ11 + 656ρ10 + 998ρ9

+ 1269ρ8 + 1344ρ7 + 1303ρ6 + 1110ρ5 + 791ρ4

+ 527ρ3 + 276ρ2 + 117ρ + 54

+ Ā (ρ + 1)(4ρ15 + 33ρ14 + 127ρ13 + 315ρ12

+ 565ρ11 + 821ρ10 + 1071ρ9 + 1272ρ8

+ 1262ρ7 + 1153ρ6 + 966ρ5 + 656ρ4 + 449ρ3

+ 234ρ2 + 90ρ + 54)
]

< 0, for ρ > 0.

This clearly shows that there are no feasible parameter values that can yield three limit
cycles. There exist infinitely many solutions for the existence of two limit cycles since
there are two free parameters, as long as the conditions satisfy v1 = 0 with v2 < 0. �
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Fig. 5 Two limit cycles of system (5) when R0 = 1 with A = 0.2095365226, C = 0.5 and B =
D = 0.1324446775: a the phase portrait with the simulations in red and blue colors and the normal form
predictions in green color (with amplitudes r1 ≈ 0.1839 and r2 ≈ 0.3067); and b the time history of the
stable (outer) limit cycle (Color figure online)

To give an example to demonstrate the bifurcation of two limit cycles, we take
ρ = 1.397661 · · · , which gives A = Ā = 0.208536 · · · , C = 0.5, and B = Bh =
0.132553 · · · , resulting in v0 = v1 = 0 and v2 = − 0.000222 · · · < 0, as expected.
Then, we perturb the parameters A and B such that v1 > 0, v0 < 0 and |v0| � v1 �
|v2|, and so two limit cycles can be obtained. More precisely, let A = 0.208536 + ε1
and B = Bh + ε2, where ε1 = 10−3 and ε2 = −7 × 10−6, which yield A =
0.209536, B = 0.132444 and

v0μ = − 0.731036 × 10−6, v1 = 0.293971 × 10−4, v2 = − 0.229863 × 10−3.

(44)

Note that ε2 < 0 again implies that B is decreasing to pass the Hopf critical point Bh

since v0 ≈ − 0.672163 < 0. Thus, the truncated normal form equation v0μ+ v1 r2 +
v2 r4 = 0 has two real roots: r1 ≈ 0.1839 and r2 ≈ 0.3067, which approximate the
amplitudes of the two limit cycles. Since v2 < 0, the outer limit cycle is stable while
the inner one is unstable, and the equilibrium solution at this critical point is a stable
focus.

The simulation, shown in Fig. 5, takes the exact parameter values:

A = 0.2095365226, C = 0.5, D = B = 0.1324446775.

The simulated phase portrait is shown in Fig. 5a where the stable (the larger one)
and unstable (the smaller one) limit cycles are denoted by the red and blue curves,
respectively.Analytic predictions based on the normal form are also shown in Fig. 5a as
the green curves. It indeed indicates a good agreement between the simulations and the
analytic predictions. Figure 5b depicts the time history of the stable (outer) limit cycle.
Note that the simulation for the unstable limit cycle (or the unstable periodic motion)
is obtained by using a negative time step in a fourth-order Runge–Kutta integration
scheme.
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3.2 Case R0 �= 1

When R0 �= 1 (i.e., D �= Dt = B), the Hopf bifurcation conditions are given in
Theorem 2.3, and the critical point is defined in (24) as Dh . However, unlike the case
R0 = 1 considered in the previous subsection, using the explicit solution of X− will
cause difficulty in computing the focus values (or the normal form), in particular for
higher-order focus values. Thus, instead of using the explicit expression X−, we use
the parameter A to solve the equation F1 = 0 and then use the parameter D to solve
the trace of the Jacobian of the system to obtain

A = (1−BX−)(1+C−DX−)
X−(1−DX−)

and D = Dh = 1+C(1−X−+BX2−)

X− , (45)

where D = Dh denotes a Hopf critical point. Note that solving X− from (45) yields
the solution X− given in (29). It follows from A > 0 that 1 − X− + BX2− < 0.

3.2.1 Hopf Bifurcation

To study Hopf bifurcation which arises from the equilibrium E1−, we use the Hopf
bifurcation conditions given in Theorem 2.3 to define a subset γ2 in the γ -parameter
space as

γ2 = {γ ∣∣ B ∈ IB, A ∈ (Al , Au), C ∈ (Cl ,Cu), D ∈ (0, 1
2

)}
, (46)

where

IB = (0, 1
4

)
, Cl = Cl1 , Cu =

{
Cu1 , if A ≤ BC,

Cu1 , if A > BC,

and Al , Au , Cl1 , Cu1 and Cu2 are defined in (24). Then for the parameter values taken
from γ2, Hopf bifurcation occurs at the critical point D = Dh .

We have the following theorem for Hopf bifurcation when R0 �= 1.

Theorem 3.4 For system (5), when R0 �= 1 and the parameter values are taken from
the γ2 set, Hopf bifurcation occurs from the equilibrium E1− at the critical point Dh.
The bifurcation is supercritical (subcritical) if the first-order focus value v1 is negative
(positive), and a family of bifurcating limit cycles is stable (unstable), enclosing the
unstable (stable) focus E1−.

Proof First, note that the equilibrium solution satisfies Y− = 1 − DX− > 0 (i.e.,
0 < X− < 1

D ), and 1 − X− + BX2− < 0 yields

1−√
1−4B
2B < X− < 1+√

1−4B
2B , 0 < B < 1

4 .

Under these conditions, the frequency at the Hopf bifurcation point can be obtained
as

ωc = (1−DX−)(1−BX−)

−1+X−−BX2−

√
X−(1 − D − DX−). (47)
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The condition ωc > 0 yields 0 < X− < 1
D − 1 (0 < D < 1), and so we have

1−√
1−4B
2B < X− < min

( 1+√
1−4B
2B , 1

D − 1
)
, 0 < B < 1

4 . (48)

Further, note that

1 − BX− > 1 − 1+√
1−4B
2 = 1−√

1−4B
2 = 2B

1+√
1−4B

> B,

and X− > 1−√
1−4B
2B = 2

1+√
1−4B

∈ (1, 2) �⇒ 1
D − 1 > 1 �⇒ D < 1

2 .

So the condition (48) becomes

1−√
1−4B
2B < X− < min

( 1+√
1−4B
2B , 1

D − 1
)
, 0 < B < 1

4 , 0 < D < 1
2 . (49)

Summarizing the above conditions defines the subset γ2. Note that if the equilibrium
solution X− > 1

D − 1, then it follows from (47) that the E1− is a saddle point, rather
than an elementary center.

Now, multiplying Y + C to system (5) and applying the transformation,

(
X
Y

)
=
(

X−
1 − DX−

)
+
[

1 0
−1

1+X− − ωc
C(1+X−)(1−BX−)

](
u1
u2

)
,

to the resulting system yields a system with its linear part in Jordan canonical form,
and then using the Maple program (Yu 1998), we obtain the first focus value, given
by

v1 = −1

8X(1 + X)(1 − BX)(1 − D − DX)(−1 + X − BX2)
{
(1 + X)2(1 − BX)2(1 − X + BX2)C2

+ [(X + 3)(1 − X + BX2)2 + (3BX + 2X + B − 4)(1 − X + BX2)

+ 3 − B − 4BX
]
C + 1

}
, (50)

where X = X−. Note that v1 can be positive or negative for taking suitable parameter
values, and its sign determines the stability of bifurcating limit cycles. In order to
determine the critical condition such that v1 = 0. We substitute X− given in (29) into
(50) to obtain an equation which is equivalent to v1 = 0:

Fv1 = A2B2[(1 + B)2 + (B + 2)A
]2
C4 + A

[
2(B − 1)(B2 + 10B − 2)A4

+ 2(B − 1)(3B3 + 29B2 + 3B − 2)A3

+ (6B5 + 48B4 − 42B3 − 36B2 + 5B + 1)A2

+ 2B(B5 + 6B4 − 12B3 − 18B2 − 2B + 1)A − 2B3(B + 3)(B + 1)2
]
C3

+ [(B2 + 14B − 3)A6 + 2(26B2 + 2B3 + 4B − 3)A5

+ (6B4 + 68B3 + 19B2 + 14B − 6)A4
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+ (4B5 + 32B4 − 20B3 + 54B2 + B − 2)A3

+ B(B5 − 2B4 − 49B3 + 48B2 + 20B − 3)A2

− 2B2(2B4 + 10B3 − 10B2 − 11B + 1)A + B4(B + 3)2
]
C2

− (A + B)
[
2(B − 1)A5

+ 2(B + 1)(4B − 1)A4 + 2(6B3 + 14B2 + 4B − 1)A3

+ (8B4 + 28B3 + 16B2 + 4B − 1)A2

+ 2B2(B3 + 3B2 + 3)A − 2B4(B + 3)
]
C + (A + B)6

= 0. (51)

Therefore, for any values given in B ∈ IB and A ∈ (Al , Au), we can use (51) to
solve for C and then use (24) to get Dh . Further, we again use (24) to verify if these
obtained parameter values satisfy C ∈ (Cl ,Cu); and if Dh ∈ (0, Dt ) when A ≤ BC ,
or Dh ∈ (0, Ds) when A > BC . If all the conditions are satisfied, we have identified
the critical point such that v1 = 0. In next subsection, we will present a different
method to investigate multiple limit cycles bifurcation. �

To this end, before considering multiple limit cycle bifurcation, we present several
numerical examples to show supercritical and subcritical Hopf bifurcations, arising
from the equilibrium E1−.
(1) Taking D = Dh = 1

10 and B = 7
64 gives R0 > 1 (i.e., D < B). Using (48) we

obtain 8
7 < X− < 8, and choose, for instance, X− = 7, and use (45) to obtain

C = 96
205 and then A = 225

2624 . For these parameter values, we have v1 = − 23
17220

which indicates that the Hopf bifurcation is supercritical and the bifurcating limit
cycle is stable. More precisely, it can be shown by using (45) and (50) that for
D = 1

10 and B = 7
64 , we have v1 < 0 if X− ∈ ( 87 , 2.419645) ∪ (6.017355, 8);

and v1 > 0 if X− ∈ (2.419645, 6.017355).
(2) Choosing D = Dh = 1

10 and B = 9
100 yields R0 < 1 (i.e., D > B), and

10
9 < X− < 9. We take X− = 4, and similarly use (45) and (50) to find C = 5

13 ,
A = 256

975 , and v1 = 431
133120 . Thus, the Hopf bifurcation is subcritical and the

bifurcating limit cycle is unstable. As a matter of fact, we can also use (45) and
(50) to show that for D = 1

10 and B = 9
100 , v1 < 0 if X− ∈ ( 109 , 2.116127); and

v1 > 0 if X− ∈ (2.116127, 9).

However, it is noted that all the parameter values of A, B and C in the above
examples belong to the category A > BC . This suggests that it is pretty easy to
find Hopf bifurcation when A > BC . Now we want to find Hopf bifurcation when
A ≤ BC . We use the conditions on B and A defined in γ2 and then apply (51) to
determine the value of parameter C . We will give a couple of examples to show that
for the case A < BC , v1 can also be positive or negative. Let B = 0.05 ∈ (0, 0.25).
We take A = 0.0156 ∈ (Al , Au) = (0.0125, 0.020225). Then we solve (51) for C to
obtain two positive solutions:C = 0.097104 · · · andC = 0.461628 · · · , both of them
are located in the interval (Cl ,Cu) = (Cl1,Cu1) = (0.031912, 0.564006). However,
only the second solution satisfies v1 = 0. Thus, we choose two values for C : C =
0.458 < 0.461628 · · · and C = 0.476 > 0.461628 · · · , both of them yield A < BC .
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Fig. 6 A stable limit cycle of system (5) for R0 > 1 (A > BC) with A = 225
2624 , C = 96

205 , B = 7
64 and

D = 51
500 : a phase portrait with the red and green curves denoting the simulation and the estimation from

normal form (with amplitude r ≈ 0.2958), respectively; and b the time history of the stable limit cycle
(Color figure online)

For the former, the Hopf critical point is given by Dh = 0.011272 < 0.05 = Dt , and
we obtain v1 = 0.381609 × 10−6 > 0, showing a subcrtical Hopf bifurcation; while
for the latter, the Hopf critical point is Dh = 0.009358 < 0.05 = Dt , and the first-
order focus value becomes v1 = −0.149416 × 10−5 < 0, indicating a supercritical
Hopf bifurcation.

The above examples indicate that Hopf bifurcations can be either supercritical or
subcritical for both cases A ≤ BC and A > BC , implying that two limit cycles
are possible to occur from the equilibrium E1−, which will be considered in the next
subsection by using a different method.

For simulation, we give two examples, one for R0 > 1 and one for R0 < 1.

(i) For R0 > 1, we choose A = 225
2624 , B = 7

64 and C = 96
205 . Then, Dh = 1

10
under which Tr(J) = 2v0 μ = 0 (due to μ = 0), where v0 = 0.058427 > 0. As
shown in above, v1 = − 23

17220 , indicating that the Hopf bifurcation is supercritical
and the bifurcating limit cycle is stable. To achieve a stable limit cycle, we need to
perturb some parameter such that μ > 0, yielding v0μ > 0. We add the perturbation
μ = 1

500 to D so that D = 1
10 + μ = 51

500 , for which v1 is unchanged, and obtain
v0μ ≈ 0.000116854. Then the truncated normal form equation, v0μ + v1r2 = 0
gives an estimation for the amplitude of the stable limit cycle as r ≈ 0.2958. The
comparison between the analytical prediction (the green curve) and the simulation
(the red curve) is depicted in Fig. 6a, which again shows an excellent agreement and
the time history of the stable limit cycle is given in Fig. 6b.

(ii) For R0 < 1, we again choose Dh = 1
10 , but B = 3

32 < Dh . If we choose A = 121
1440

and C = 16
75 , and get v1 = 3

3850 > 0, indicating that this case is a subcritical Hopf
bifurcation and the bifurcating limit cycle is unstable. Since v0 = 0.581928 > 0, in
order to obtain this unstable limit cycle, we take μ = − 1

2000 and let D = 1
10 + μ =

199
2000 , yielding v0μ ≈ − 0.0002910, showing that the equilibrium E1 is a stable focus
and the limit cycle is unstable. The estimation of the amplitude of the unstable limit

123



Journal of Nonlinear Science (2019) 29:2447–2500 2471

 0.1

 0.2

 0.3

 0.4

 0.5

 6  6.5  7  7.5  8

Y

X
(a)

 0

 2

 4

 6

 8

 1.9999x107  1.99995x107  2x107

t
(b)

•

X

Y

E1−

Fig. 7 An unstable limit cycle of system (5) for R0 < 1 (A > BC) with A = 121
1440 , C = 16

75 , B = 3
32 and

D = 199
2000 : a phase portrait with the red and green curves denoting the simulation and the estimation from

normal form (with amplitude r ≈ 0.6111), respectively; and b the time history of the unstable limit cycle
(Color figure online)

cycle can be found from the normal form as r ≈ 0.6111. The simulation is shown in
Fig. 7a, where the unstable limit cycle (in red color) is obtained by using a negative
time step in the numerical integration scheme. The green curve again denotes the
normal form prediction, showing a good prediction even for a pretty large unstable
limit cycle. Figure 7b shows the time history of the unstable limit cycle.

3.2.2 Multiple Limit Cycles Bifurcation

Since it has been shown in previous subsection that v1 can be positive or negative
by taking appropriate parameter values, it implies that v1 can be zero and more limit
cycles may bifurcate from the Hopf critical point. This is a more challenging task since
the system contains four free parameters and in general it may exhibit at most four
limit cycles. However, we will show that four and three limit cycles are not possible
due to the physical restriction on the parameters, and there can still exist maximal two
limit cycles even now it allows B �= D. For this case, we obtain the focus values v2, v3
and v4 in terms of the parameters B, D and X−. We omit the lengthy expressions of
these focus values for brevity. We have the following theorem for this case.

Theorem 3.5 For system (5), when R0 �= 1, there exist feasible parameter values in
the γ2 set such that maximal two small-amplitude limit cycles can bifurcate from the
endemic equilibrium E1− due to generalized Hopf bifurcation. The outer limit cycle is
stable while the inner one is unstable, and both of them enclose the stable equilibrium
E1−.
Proof Here, we use the parameters A andC to solve the equation F1 = 0 and the trace
of the Jacobian of the system to get

A = (1−BX−)2

−1+X−−BX2−
and C = 1−DX−

−1+X−−BX2−
, (52)

Note that −1 + X− − BX2− > 0 under the condition (49).
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Since now there are three free variables B, D and X− in the expressions of the
focus values vi (i ≥ 1), the best expected result is to find the conditions such that
v1 = v2 = v3 = 0, but v4 �= 0, which implies possible existence of four limit cycles.
We first consider whether there exist three limit cycles, i.e., to find the solutions such
that v1 = v2 = 0, but v3 �= 0. v1 is given in (50). Eliminating B from the two equations
v1 = 0 and v2 = 0 we obtain B = BN

BD
, where

BN = 4D3(4D2 − 9D + 3)X7 + 12D2(2D3 − 6D2 + 9D − 3)X6

− D(17D4 − 51D3 − 34D2

+ 102D − 36)X5 − 2(20D5 − 84D4 + 145D3 − 59D2

− 12D + 6)X4 − (13D5 − 75D4

+ 240D3 − 316D2 + 132D − 6)X3

+ 2(D5 − 7D4 + 15D3 + 28D2 − 54D + 18)X2

− (D − 1)(8D3 − 43D2 + 48D + 6)X − 6(2 − D)(1 − D)2,

BD = 4D3(4D2 − 9D + 3)X8 + 6D2(5D3 − 17D2 + 20D − 6)X7

− 2D(5D4 − 6D3 − 62D2

+ 69D − 18)X6 − (45D5 − 224D4 + 289D3 − 34D2

− 60D + 12)X5 − (20D5 − 162D4

+ 472D3 − 441D2 + 114D + 6)X4

+ (D5 + 2D4 − 101D3 + 308D2 − 237D + 42)X3

− (14D4 − 88D3 + 79D2 + 48D − 42)X2 − (1 − D)(25D2

− 69D + 6)X − 12(1 − D)2, (53)

and a resultant:

R12 = DX(1 + X)(1 − DX)(1 − D − DX) R12a R12b,

where

R12a = D(1 − X)2 − X + 2,

R12b = 12D2(3D − 1)X4 + 24D(2D2 − 4D + 1)X3

+(13D3 − 55D2 + 84D − 12)X2

−(1 − D)(D2 + 30D + 24)X + 15(1 − D)2. (54)

Note in the above expressions that X = X−. It is seen from (49) that 1 < 1−√
1−4B
2B <

X− < 1
D − 1 for which the E1− is an elementary center; and the E1− is a saddle if

X− > 1
D − 1.

To find the roots of R12, first letting R12a = 0 gives two real solutions:

X±− = 1
2D

(
1 + 2D ± √

1 − 4D
)
, for 0 < D ≤ 1

4 . (55)
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It is easy to show that X+− > 1
D − 1 for 0 < D < 1

4 , and at D = 1
4 , X

+− = X−− = 3,
leading toBTbifurcation. Thus, X+− is not a feasible solution for bifurcation ofmultiple
limit cycles from a Hopf critical point. Moreover, it can be verified that the solution
X−− together with the solution B = BN

BD
results in v1 = v2 = v3 = v4 = · · · = 0,

implying that this is a center condition. As a matter of fact, the above solution X−−
yields

A = 1
1+D , B = D

1+D , C = 1 + D, D ∈ (0, 1
4

]
, (56)

under which (5) is an integrable system having the first integral,

F(X ,Y ) = X + Y + ln
(

Y 1+D

|1−DX−XY |
)

. (57)

Note that this integral system belongs to the case A > BC . We will not discuss this
integral system further in this study.

Next, we consider the factor R12b and will show that R12b = 0 does not have
feasible solutions to yield three limit cycles. First, for the solution B = BN

BD
and the

equation R12b = 0, a more precise upper bound for D can be obtained by considering
the restriction B ∈ (0, 1

4 ) on the solution B = BN
BD

. To achieve this, we may use the

two equations R12b = 0 and B = BN
BD

= 1
4 to solve X and D, yielding the maximal

value Dmax = 0.252605 · · · . Thus, we only need to consider the values of D in the
interval D ∈ (0, Dmax) for the case of three limit cycles. Further, we want to prove
that R12b = 0 does not have real solutions for X ∈ (1, 1

D − 1). It is easy to verify that
for D ∈ (0, Dmax),

R12b|X→−∞ = −∞,

R12b|X=0 = 15(1 − D)2 > 0,
R12b|X=1 = −21 + 72D − 119D2 + 98D3 < 0,
R12b|X= 1

D −1 = −10(1 − D)2 < 0,

R12b|X→∞ = −∞,

which shows that the polynomial R12b has at least one real root for X < 0 and at least
one real root for 0 < X < 1. Then, if the R12b has four real roots, then at most two real
roots for X > 1. In fact, by using Sturm’s theorem, we can show that the polynomial
R12b always has four real solutions for X ∈ (−∞,∞) with D ∈ (0, Dmax). An
example is shown in Fig. 8. However, since R12b < 0 at X = 1, X = 1

D − 1 and
X = +∞, the number of the roots of R12b which can occur for X > 1 must be even,
i.e., either two or zero, one is not possible.

More precisely, we can show that exactly one real root of R12b is in the interval
X ∈ (−∞, 0) and one real root in the interval X ∈ (0, 1). Thus, two real roots must
appear in the interval X ∈ (1,∞), and they must both appear either in the interval
X ∈ (1, 1

D − 1) or in the interval X ∈ ( 1
D − 1,∞) due to R12b < 0 at X = 1,

X = 1
D − 1 and X = ∞. In the following, we will show that the two real roots must

locate in the interval X ∈ ( 1
D − 1,∞). To achieve this, consider the derivative,
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Fig. 8 Graph R12b(X) for
D = 0.2 with two vertical lines
(in green color) at X = 1 and
X = 1

D − 1, respectively (Color
figure online)

1

1
D −1

X1c X2c

X3c
•◦

dR12b
dX = − 48D2(1 − 3D)X3 + 72D(1 − 4D + 2D2)X2

+ 2(13D3 − 55D2 + 84D − 12)X − (1 − D)(24 + 30D + D2),

whose discriminant is

Disc = − 1
746496D6(1−3D)4

(
432 − 2592D + 12744D2 − 43200D3 + 56979D4

+ 80784D5 − 421418D6 + 397326D7 + 5556D8 − 171736D9 + 1425D10
)
.

It can be shown that Disc < 0 for D ∈ (0, 0.34), and thus dR12b
dX has (maximal) three

distinct real solutions in X ∈ (−∞,∞) for any value of D ∈ (0, Dmax). Further, for
D ∈ (0, Dmax) we have

dR12b
dX

∣∣∣
X→−∞ = +∞,

dR12b
dX

∣∣∣
X=0

= − (1 − D)(24 + 30D + D2) < 0,
dR12b
dX

∣∣∣
X=1

= − 48 + 234D − 417D2 + 315D3 < 0,
dR12b
dX

∣∣
∣
X= 1

D −1
= (1 − D)(24 − 44D + 25D2) > 0,

dR12b
dX

∣∣∣
X→∞ = −∞,

where dR12b
dX

∣∣∣
X=1

< 0 is due to dR12b
dX

∣∣∣
X=1,D=0

= −48 < 0, dR12b
dX

∣∣∣
X=1,D=Dmax

=
−10.421481 · · · < 0, and d

dD

( dR12b
dX

∣∣∣
X=1

) = 234 − 834D + 945D2 > 0 for D ∈
(0, Dmax). Therefore, the three real critical roots, Xic, of

dR12b
dX are located in the

intervals, X1c ∈ (−∞, 0), X2c ∈ (1, 1
D − 1) and X3c ∈ ( 1

D − 1,∞), respectively,
yielding localmaximumof R12b at X = Xic, i = 1, 3, and localminimumat X = X2c
(see black circles in Fig. 8). Moreover, by noticing

R12b|X=1 < 0, R12b|X= 1
D −1 < 0, dR12b

dX

∣∣
∣
X=1

< 0, dR12b
dX

∣∣
∣
X= 1

D −1
> 0,
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we know that R12b < 0 for X ∈ (1, 1
D − 1). Now, it is easy to see the distribution

of the four real roots of R12b: one in the interval X ∈ (−∞, 0), one in the interval
X ∈ (0, 1), and two in the interval X ∈ (1,∞), see the circles in Fig. 8.

Summarizing the above results indicates that there are no feasible parameter values
in the γ2 set, which can yield three limit cycles. Hence, the best result is two limit
cycles. The existence of two limit cycles for R0 �= 1 is obvious since we have already
shown that there are two limit cycles for the case R0 = 1 which has restriction D = B.

The remaining question is about the sign of v2. Because we have shown that the
maximal number of limit cycles is two for feasible parameter values, v2 must keep
the sign unchanged for feasible parameter values; otherwise, we have found solutions
such that v2 = 0. To determine the sign of v2, we only need to use a special solution
under which v1 = 0 and then find the sign of v2. We take B = 1

8 which yields Al = 1
8 ,

and then choose A = 1
4 > Al and use (29) to obtain X− = 4. Next, using (51) to

solve C we obtain C = 9+√
481

50 , which satisfies A > BC . Further, we use (24) or

(28) to get Dh = 41−√
481

200 , and finally substitute these parameter values into v2 and

ωc to obtain v2 =
√
481−191
1228800 < 0 and ω2

c = 253+17
√
481

3125 > 0. This indicates that v2 is
always negative for feasible parameter values when v1 = 0. Therefore, like the case
R0 = 1, if there exist two limit cycles bifurcating from a Hopf critical point for the
case R0 �= 1, the outer one must be stable. �

Now, we present several simulations of multiple limit cycles bifurcation from a
Hopf critical point, for R0 > 1 and R0 < 1 with either A > BC or A < BC .

(1) First, consider R0 > 1 with A > BC . We choose D = 1
10 , B = 7

64 and then
use (45) and (50) to obtain X− = 6.017354 · · · . Further, it follows from (52)
that A = 0.110556 · · · and C = 0.376772 · · · for which v0μ = v1 = 0 and
v2 = − 0.000100 · · · < 0, indicating that the larger one of the two limit cycles
is stable, as expected. In order to have an unstable smaller limit cycles and stable
equilibrium E1, we need perturbations such that v1 > 0 and v0μ < 0 satisfying
−v0μ � v1 � −v2. To achieve this, we choose perturbations such that A =
0.110934 and C = 0.376594, which results in v0μ = −0.889 × 10−7, v1 ≈
0.0000101, and v2 ≈ − 0.000103, yielding the approximate amplitudes of the
two limit cycles: r1 ≈ 0.098849 and r2 ≈ 0.297144. As depicted in Fig. 9a, the
simulations given in red color (for the stable limit cycle) and blue color (for the
unstable limit cycle) agree very well with the analytic predictions in green color.
The time history of the stable (outer) limit cycle is shown in Fig. 9b. This example
clearly indicates a bistable phenomenon involving a stable equilibrium and a stable
(outer) limit cycle with an unstable (inner) limit cycle as their separatory.

(2) Next, consider R0 < 1with A > BC . Similarlywe choose B = 3
32 < D = 1

10 and
then get X− = 8.129787 · · · , yielding A = 0.060591 · · · and C = 0.200338 · · ·
for which v0μ = v1 = 0 and v2 = −0.000182 · · · < 0, implying that the
larger one of the two limit cycles is stable. Then, we add perturbations to the
parameters A andC to obtain A = 0.06085981 andC = 0.20023941,which yields
v0μ = −0.17779 × 10−6, v1 ≈ 0.0000196, and v2 ≈ −0.0001863, from which
we obtain the amplitudes of the two limit cycles as r1 ≈ 0.1003 and r2 ≈ 0.3081.
These two limit cycles (see Fig. 10a) are similar to those shown in Fig. 9a for
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Fig. 9 Two limit cycles of system (5) for R0 > 1 (A > BC) with A = 0.110934, B = 0.109375,
C = 0.376594 and D = 0.1, showing a bistable phenomenon: a phase portrait with the red/blue and green
color curves denoting the simulations and the estimations from normal form (with amplitudes r1 ≈ 0.0989
and r2 ≈ 0.2971), respectively; and b the time history of the stable (outer) limit cycle (Color figure online)

R0 > 1, but for this case R0 < 1, the phase portrait is different since the system
in addition has a stable node at E0 besides a saddle point at E

+
1 and a stable focus

at E−
1 . Thus, this example indeed shows a tristable phenomenon with two stable

equilibria (one node and one focus) and one stable limit cycle (another limit cycle
is unstable, as a separatory between the stable focus and the stable limit cycle).
The simulations (in red/blue color) and analytical predictions (in green color) are
shown in Fig. 10a, again indicating a good agreement. The time history of the
stable (outer) limit cycle is depicted in Fig. 9b.

(3) Note that the above two examples belong to the category A > BC . The easiness
of finding feasible parameter values for two limit cycles when A > BC indeed
shows that the system is more likely to exhibit bistable or even tristable complex
dynamics. For an illustration, we give an example to satisfy A < BC , yielding
bistable phenomenon. As discussed above, we may take B = 0.05 and A =
0.0156, and then use (51) to find C = 0.461627 · · · and (24) to obtain D = Dh =
0.010886 · · · such that v0 = v1 = 0 and v2 = −0.771730 · · · × 10−5 < 0,
as expected. Further, taking perturbations on C and D as C = 0.4616276809 −
0.005 = 0.4566276809 and D = 0.011418264 + 0.00000005 = 0.011418314,
for which we have v0μ = − 0.513018 × 10−7, v1 ≈ 0.190025 × 10−5 and
v2 ≈ − 0.797500 × 10−5. Thus the truncated normal form equation yields the
approximations for the amplitudes of the two limit cycles: r1 ≈ 0.1065 and r2 ≈
0.4764. The simulations and analytic predictions as depicted in Fig. 11 show a
good agreement. For this case, bistable phenomenon appears to involve a stable
equilibrium and a stable periodic motion.

The results obtained in this section, in particular for Theorems 3.3 and 3.5, indicate
that regardless whether R0 = 1 or R0 �= 1, system (5) can always exhibit complex
dynamics includingdifferent types of bistability or even tristablity, due tomultiple limit
cycles arising fromHopf bifurcation. This suggests that the real situation could be very
complex, showing the coexistence of a stable disease-free equilibrium, stable endemic
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equilibria, and even stable oscillatingmotion, all of which are possible depending upon
the initial conditions.

3.3 Recurrence Phenomenon (Viral Blips)

It has been shown in Zhang et al. (2013, 2014a, b),Yu et al. (2016) that the recurrence
phenomenon can often appear in many disease models. It is characterized by short
episodes of high viral reproduction, separated by long periods of relative quiescence.
This recurrent pattern is observed in many persistent infections, including the “viral
blips” observed during chronic infection with the human immunodeficiency virus
(HIV). In fact, the model (5) considered in this paper indeed shows recurrence behav-
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ior for a very large parameter region, see Zhang et al. (2013, 2014a, b) in which how
this phenomenon occurs is discussed using dynamical system theory. Mathematically
speaking, such “slow-fast” motion is a special type of limit cycles. However, it has
been shown that such “slow-fast” motion cannot be analyzed by the well-known geo-
metric singular perturbation theory (GSPT). It has been proposed that if the following
conditions hold:

P1: there exists at least one equilibrium solution;
P2: there exists a saddle-node or transcritical bifurcation;
P3: there is a Hopf bifurcation; and
P4: there is a “window” between the Hopf bifurcation point and the saddle-

node/transcritical bifurcation point in which oscillation continuously exists,

then the system exhibits relaxtion-type slow-fast motions. Note that Hopf bifurcation
is necessary since it is the source of oscillations. To verify these conditions for higher-
dimensional dynamical systems, identifying Hopf bifurcation (condition P3) becomes
crucial.

However, although such slow-fast oscillations are closely related to Hopf bifurca-
tion, Hopf bifurcation cannot be used to predict or estimate such motions because
normal form theory is no longer applicable for such a large perturbation, that is, such
special bifurcating limit cycles are far away from the equilibrium. To illustrate this
fact, we give simulations for three different cases: R0 = 1, R0 > 1 and R0 < 1.

First we consider R0 = 1. For this case, we use the same values of A and C given
in (43), yielding the same Bh , v0 and v1 as that example shown in Fig. 4, but change
B and D to D = B = 1

10 . For a comparison, we still use the normal form to estimate
the amplitude of the oscillation. Here, μ = Bh − B = 0.017947, and so the truncated
normal form gives the approximation of the amplitude as r ≈ 2.3551, which is very
large, implying that the Hopf bifurcation theory and associated normal form are no
longer applicable. The simulation is depicted in Fig. 12a as the red curve, where the
green curve again denotes the normal form estimate, which indeed shows a very large
deviation from the simulation, even with a negative part, implying that normal form
theory is no longer applicable. The simulated time history given in Fig. 12b clearly
shows the recurrence infection (viral blips) phenomenon, and this recurrence for the
case R0 = 1 was not considered in Zhang et al. (2013, 2014a, b), Yu et al. (2016).

For the case R0 > 1, we take the perturbation on A as μ = 1
50 so that A =

225
2624 +μ = 6937

65600 , and again takeC = 96
205 and D = 1

10 . Note that this set of parameter
values (except B) is exactly the same as that for the case R0 = 1, see Fig. 12. Now we
apply the truncated normal form to obtain r ≈ 2.4778, which is again very large and
normal form theory is not applicable. The simulated phase portrait is given in Fig. 13a
(see the red colored curve) and the green curve in this figure shows the normal form
prediction, indicating a large discrepancy. The simulated time history given in Fig. 13b
again shows the recurrence infection.

Finally for the case R0 < 1, we again choose D = 1
10 , but B = 3

32 < D. If
we choose A = 121

1440 and C = 16
75 , then we have v1 = 3

3850 > 0. To estimate the
amplitude of this unstable limit cycle, we take μ = 1

50 and let A = 121
1440 + μ = 749

7200 ,
yielding r ≈ 1.9346. The simulation is shown in Fig. 14, where the unstable limit
cycle is obtained by using a negative time step in a numerical integration scheme.
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Again, the green curve denotes the normal form prediction, showing a large difference
from simulation. This recurrence for R0 < 1 was also not studied in Zhang et al.
(2013, 2014a, b), Yu et al. (2016).

The above three examples for the three different cases: R0 > 0, R0 = 0 and R0 < 0
exhibit the recurrence phenomenon, which cannot be predicted by normal form theory
or analyzed by using geometric singular perturbation theory. However, we have shown
that the slow-fast motions can be induced from Hopf bifurcation if the four conditions
P1–P4 are satisfied. This provides a mechanism to generate the recurrence behavior in
diseasemodels and has been discussed in Zhang et al. (2013, 2014a, b). In next section,
we will provide another new mechanism of generating recurrence from homoclinic
loops arising from BT bifurcation.
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4 Bogdanov–Takens (BT) Bifurcations

In this section, we study Bogdanov–Takens (BT) bifurcation in system (5), which is
characterized by a critical point associated with double-zero eigenvalues. First, BT
bifurcation cannot occur (1) at the equilibrium E0 = ( 1

D , 0) with eigenvalues −D and
R0−1, because only one eigenvalue can be zero when R0 = 1; (2) at E1+ because it is
a saddle for all parameter values according to the result from Theorem 2.3; and (3) at
E1− when R0 ≥ 1, since the determinant of its Jacobian is positive if the trace equals
zero. Therefore, BT bifurcation can only occur at E1− when R0 < 1, at which the
Hopf critical point coincides with the saddle-node point, i.e., Dh = Ds . For example,
in Fig. 2d, Dh approaches and collides with Ds .

First, we derive the parameter conditions for the occurrence of double-zero eigen-
values, that is, Tr(J1) = det(J1) = 0; or the collision of the Hopf and saddle-node
bifurcations, namely (Dh, Xh) = (Ds, Xs). Noting from (26) that Tr(J1) = 0 yields

 = 0, we solve 
 = 0 and Tr(J1)|E1− = 0 for A and B to obtain

A = A0 ≡ D(C+D)2

C(1−D)2
, B = B0 ≡ D[C(1−2D)−D2]

C(1−D)2
. (58)

The positiveness of B0 requires

C > D2

1−2D and 0 < D < 1
2 . (59)

We then define a two-dimensional parameter hypersurface,

S : {γ | A = A0, B = B0, C > D2

1−2D , 0 < D < 1
2

}
. (60)
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System (5) undergoes a BT bifurcation if its paramerers (A, B,C, D) ∈ S. The
projections of S into the A–B–C space and A–B–D space are shown in Fig. 15a, b,
respectively.

To analyze the BT bifurcation, the first step is usually to find the normal form of
the dynamical system and then use the normal form to determine the codimension
and unfolding of the BT bifurcation. The general idea of the derivation of normal
forms is introducing nonlinear transforms on state variables together with neces-
sary time rescaling. The derivation is standard for codimension-2 BT bifurcation at
the BT bifurcation point without unfolding/bifurcation parameter. However, even for
codimension-2 BT bifurcation, the normal form computation becomes much more
complicated when bifurcation parameters are involved. For codimension-3 BT bifur-
cation, the computation burden is even heavier. The 6-step transformations approach
developed by Dumortier et al. (1987) becomes a standard method and applied by
researchers to find the parametric normal form for codimension-3 BT bifurcation.
Some cases of codimension-4 BT bifurcation have been discussed in the literature
(e.g., see Li and Rousseau 1989) by using a similar multiple-step transformation
method to find the normal form. Multiple-step transformation method is tedious and
yet hard to verify. Besides, the transformation between the original variables and the
new variables in the last step of transformations is difficult to achieve. We are not
aware of any work on developing one-step transformation and obtain explicit expres-
sions for the transformation between the original variables and new variables.We have
used the simplest normal theory (e.g., see Yu (1999); Yu and Leung (2003); Gazor and
Yu (2010, 2012); Gazor and Moazeni (2015)) to develop a one-step transformation
approach to find the parametric simplest normal form and associated transformations.
Our new method not only gives the direct relation between original variables (includ-
ing both state and parameter variables) but also yields results which can be easily
verified. Programs based on a computer algebra system, Maple, and the new method
and algorithm will be available in one of our forthcoming papers.
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In order to determine the codimension of the BT bifurcation, we first find the
equilibrium E1−, under the conditions given in (58), as

E1− = ( 1D − 1, D
)
, for D ∈ (0, 1

2

)
.

and then introducing the following change of state variables,

(
X
Y

)
=
( 1

D − 1
D

)
+
[ 1

D−1 0
D

1−D 1

](
u1
u2

)
, (61)

into (5) we obtain

du1
dτ

= u2 + f (u1, u2),
du2
dτ

= f (u1, u2), (62)

where

f (u1, u2)

= −[Du1 + (1 − D)u2]{D(1 + C)[D(1 − D)u1 + Du21 + (1 − D)u1u2] − C(1 − D)3u2}
(1 − D)3[(1 − D)(C + D) + Du1 + (1 − D)u2]

(63)

Now, expanding f (u1, u2) in Taylor series around (u1, u2) = (0, 0) and applying the
simplest normal form theory, we introduce the following seventh-order near-identity
nonlinear transformation,

u1 = x1 +
7∑

i+ j=2

ai j x
i
1x

j
2 , u2 = x2 +

7∑

i+ j=2

bi j x
i
1x

j
2 , (64)

where ai j and bi j are constant coefficients, expressed in terms of C and D, and the
time rescaling

τ = [1 + C
2(1−D)(C+D)

x1 + x31
]
τ1, (65)

into (62) to obtain the following simplest normal form up to seventh-order terms:

dx1
dτ1

= x2 + O(|(x1, x2)|8),
dx2
dτ1

= a1 x21 + a2 x1x2 + a3 x31 x2 + a4 x41 x2 + a5 x61 x2 + O(|(x1, x2)|8).
(66)
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Comparing the above simplest normal form with the conventional normal form (e.g.,
see Guckenheimer and Holmes (1993),

dx1
dτ1

= x2 + O(|(x1, x2)|n+1),

dx2
dτ1

=
n∑

k=2

ak x
k
1 + bk x

k−1
1 x2 + O(|(x1, x2)|n+1),

(67)

it is seen that the simplest normal form (66) has less half of the terms in the conventional
normal form (67).

Further, introducing the transformation,

x1 → x1, x2 + O(|(x1, x2)|8) → x2,

into (66), we obtain

dx1
dτ1

= x2,

dx2
dτ1

= a1 x21 + a2 x1x2 + a3 x31 x2 + a4 x41 x2 + a5 x61 x2 + O(|(x1, x2)|8),
(68)

where the coefficients ai ’s are given in terms of C and D. In particular,

a1 = − (1+C)D3

(C+D)(1−D)3
and a2 = D[C(1−3D)−D(1+D)]

(C+D)(1−D)3
. (69)

It is obvious that a1 < 0 due to 0 < D < 1
2 , and it is easy to show that

a2 < 0 for D ∈ [ 13 , 1
2

)
, or if C ∈ ( D2

1−2D ,
D(1+D)
1−3D

)
for D ∈ (0, 1

3

)
,

a2 > 0 if C >
D(1+D)
1−3D for D ∈ (0, 1

3

)
,

a2 = 0 if C = D(1+D)
1−3D for D ∈ (0, 1

3

)
.

(70)

Therefore, if a2 �= 0, i.e., when 1
3 ≤ D < 1

2 or 0 < D < 1
3 with C �= D(1+D)

1−3D , the BT
bifurcation is codimension 2.

When C = C0 = D(1+D)
1−3D , (0 < D < 1

3 ), a2 = 0, and a1, a3, a4 and a5 become

a1 = − D2

2(1−D)2
, a3 = (1−4D)D(1+D)

8(1−D)5
, a4 = − (1−4D)D(1+D)(1−11D)

64(1−D)7
,

a5 = (1−4D)D(68480D5+3206517D4+2472332D3−837530D2−107396D+60077)
7741440(1−D)11

.
(71)

It can be seen that a1 < 0, and a3 �= 0 for D �= 1
4 . More precisely, we have

a3 = (1−4D)D(1+D)

8(1−D)5

⎧
⎨

⎩

> 0 if 0 < D < 1
4 ,= 0 if D = 1

4 ,

< 0 if 1
4 < D < 1

3 .

(72)
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Thus, when D ∈ (0, 1
4 )
⋃

( 14 ,
1
3 ), the BT bifurcation is codimension 3.

When D = 1
4 , a3 = a4 = a5 = 0. In fact, at this critical value, we obtain C0 = 5

4 ,
yielding A0 = 4

5 and B0 = 5
4 , which satisfy the center condition (56). That is, under

these parameter values, system (5) is an integral system with the first integral (57),
having a nilpotent point at (X ,Y ) = (3, 1

4 ). We shall not discuss this special case in
this paper. Finally, note that a necessary condition for the existence of the equilibrium
E1− is 
 > 0, which is equivalent to


1 = A + B − D − BC − 2
√
C(A + B)(D − B) > 0. (73)

Summarizing the above results we have the following theorem.

Theorem 4.1 For system (5), when R0 < 1 (i.e., D > B) and 
1 > 0 (so A > BC),
BT bifurcation occurs from the endemic equilibrium E1− : ( 1

D − 1, D) at the critical

point (A, B) = (A0, B0) = ( D(C+D)2

C(1−D)2
,
D[C(1−2D)−D2]

C(1−D)2

)
, with C > D2

1−2D , D ∈ (0, 1
2 ).

Moreover, the BT bifurcation is

(i) codimension 2 if D ∈ [ 13 , 1
2 ) or D ∈ (0, 1

3 ) with C �= D(1+D)
1−3D ; and

(ii) codimension 3 if C = D(1+D)
1−3D with D ∈ (0, 1

4 )
⋃

( 14 ,
1
3 ).

In the following two subsections, we will consider the two BT bifurcations with
condimensions 2 and 3, respectively.

4.1 Codimension-2 BT Bifurcation

Suppose the condition (i) in Theorem 4.1 holds, under which a2 �= 0. To obtain the
normal form with unfolding, we introduce the parameter transformation,

A = A0 + μ1, B = B0 + μ2, (74)

together with the change of state variables (61), into (5) and expanding the resulting
system around the critical point (u1, u2, μ1, μ2) = (0, 0, 0, 0) yields

du1
dτ

= u2 + f2(u1, u2, μ) + O(|(u1, u2, μ)|3),
du2
dτ

= f2(u1, u2, μ) + O(|(u1, u2, μ)|3),
(75)

where μ = (μ1, μ2) and f2 as follows:

f2 = (1 − D)2
[

D
C+D μ1 + μ2

]

+
[
D[CD+(2C+D)(1−2D)]

(C+D)2
μ1 + (1 − 2D) μ2

]
u1

+ (1 − D)2
[

2C+D
(C+D)2

μ1 + 1
D μ2

]
u2 − (1+C) D3

(C+D)(1−D)3
u21

+ D[C(1−2D)−D]
(1−D)2(C+D)

u1u2 + C
C+D u22.
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It should be pointed out that even the recurrence infection (viral blips) phenomenon
has been studied in Zhang et al. (2013, 2014a, b), no detailed dynamical analysis
is given for the two-dimensional model (5). In our later work (Yu et al. 2016), BT
bifurcation is discussed with two pairs of parameter values on B and D, that is,
(B, D) = ( 27

500 ,
57

1000 ) and ( 27
500 ,

87
1000 ). Therefore, the BT critical point is completely

determined by the parameters A = A(B, D) and C = C(B, D). In fact, only two BT
critical points on S are considered in (Yu et al. 2016):

(A, B,C, D) = ( 3078507
206879500 ,

27
500 ,

61731
827518 ,

57
1000

)
,
( 118428267
2237439500 ,

27
500 ,

219501
8949758 ,

57
1000

)
.

The dynamical behaviors from Yu et al. (2016) is limited. To get a global dynamical
behavior in the whole parameter space, this paper studies the whole feasible parameter
region near S. Instead of fixing A, C and D in Zhang et al. (2013, 2014a, b) or B and
D in Yu et al. (2016), this paper studies all parameter set (A, B,C, D) ∈ S in (60). In
addition, bifurcation diagrams are given in terms of parameters A = A0(C, D) and
B = B0(C, D) to show the global influence of control parameters C and D on the
system’s dynamical behavior.

Next, we apply the parametric simplest normal form theory (Yu and Leung 2003;
Gazor and Yu 2010, 2012; Gazor and Moazeni 2015) to get the parametric normal
form (up to second order) via the transformations of state variables and parameters.
Note that unlike the series of transformations applied in many articles in the literature,
here we only need to use one transformation to obtain the normal form. In general,
the transformation is not unique, but in order to obtain the simplest parameterization,
we use the following change of state variables,

u1 = 1
a1

[
−y1 − (1−D)2[D+C(1−D)]

2(1+C)D3 ξ1 + D2(1+C)
(1−D)(C+D)

ξ2 − C(2−3D)+D(1−2D)
D(C+D)

ξ2y1

− (1−D)[D(C+D)−C(1−D2)]
2D3(1+C)

y21 + (1−D)3[C2(4D2+D+1)+CD(3D+4)+D2]
6D5(1+C)2

y1y2

− (1−D)3[C2(3D3−3D2+7D−3)+2CD(D2+4D−2)+D2(3D−1)]
8D6(1+C)2

y22

]
,

u2 = 1
a1

[
−y2 + ξ1 − (1−D)3[C2(D3+D2−9D+3)+4CD(D2−4D+1)+D2(1−5D)]

4D6(1+C)2
ξ1(ξ1 − y2)

+ D(1−3D)+2C(1−2D)
D(C+D)

ξ2(ξ1 − y2) + y21 + (1−D)3C
D3(1+C)

y1y2

− (1−D)3[C2(2D2−D−1)+CD(3D−4)−D2]
6D5(1+C)2

(ξ y1 + y22 )
]
,

(76)

and then obtain the following simplest parameterization,

μ1 = − (1−D)(C+D)2

D4(1+C)
ξ1 + 2D(1+C)(C+D)

C(1−D)2
ξ2,

μ2 = − 2(1+C)D2

C(1−D)2
ξ2 − D(1+C)

(1−D)(C+D)
ξ22 .

(77)

Implicit function theorem implies that local perturbations on ξ1 and ξ2 near the critical
poin (ξ1, ξ2) = (0, 0) is topologically equivalent to local perturbations on μ1 and μ2
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near (μ1, μ2) = (0, 0) since

det
[

∂(μ1,μ2)
∂(ξ1,ξ2)

]
= 2(C+D)2

CD2(1−D)
+ O(ξ) �= 0 for small ξ = (ξ1, ξ2).

Under the above transformations (76) and (77), (75) becomes

dy1
dτ

= y2 + O(|(y1, y2, ξ)|3),
dy2
dτ

= ξ1 + ξ2 y2 + y21 − a2
a1

y1y2 + O(|(y1, y2, ξ)|3),

where a1 and a2 are given in (69). To remove the higher-order terms O(|(y1, y2, ξ)|3)
in the first equation of the above equations, we introduce an additional transformation:

y1 = x1, y2 + O(|(y1, y2, ξ)|3) = x2,

into the above equations to obtain the normal form with unfolding up to second-order
terms:

dx1
dτ

= x2,

dx2
dτ

= ξ1 + ξ2 x2 + x21 − a2
a1

x1x2 + O(|(x1, x2, ξ)|3),
(78)

where the coefficient − a2
a1

not being normalized to ±1 is for us to easily see the effect
of the original parameters C and D. Note that − a2

a1
has the same sign of a2 due to

a1 < 0.
Now, we use the normal form (78) to analyze the codimension-2 BT bifurcation.

Note that the normal form (78) is in the standard form given in Guckenheimer and
Holmes (1993). Thus, we follow the approach described inGuckenheimer andHolmes
(1993) to obtain the following theorem.

Theorem 4.2 For system (5), with the conditions given in Theorem 4.1, codimension-2
BT bifurcation occurs for D ∈ [ 13 , 1

2 ), or for D ∈ (0, 1
3 ) with C �= D(1+D)

1−3D . Moreover,
three local bifurcations, with the representations of the bifurcation curves, are given
below.

(1) Saddle-node bifurcation occurs from the bifurcation curve:

SN = {(ξ1, ξ2) | ξ1 = 0
}
.

(2) Hopf bifurcation occurs from the bifurcation curve:

H =
{
(ξ1, ξ2) | ξ1 = − ( a1a2

)2
ξ22

}{
ξ2 > 0 (a2 < 0), subcritical,
ξ2 < 0 (a2 > 0), supercritical.
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2ξ

1ξ0

(a)

2ξ

1ξ0

(b)

Fig. 16 Bifurcation diagrams for the codimension-2 BT bifurcation based on the normal form (78): a
a2 < 0; and b a2 > 0

(3) Homoclinic orbit occurs from the bifurcation curve:

HL =
{
(ξ1, ξ2) | ξ1 = − 49

25

( a1
a2

)2
ξ22

}{
ξ2 > 0 (a2 < 0), unstable,
ξ2 < 0 (a2 > 0), stable.

The bifurcation diagrams for the codimsion-2 BT bifurcation are shown in Fig. 16.
Note that the above formulas for bifurcation curves given in terms of (ξ1, ξ2) can be
expressed in terms of μ1 and μ2 for the original system (5) by using (77).

The homoclinic loop in the BT bifurcation studied above implies a newmechanism
to generate the recurrence phenomenon, which is completely different from what
discussed in the previous section, based on the four conditions P1–P4 in Sect. 3.3.
Here, it is noted that the trajectory starting from a point on the homoclinic loop will
approach the saddle point either as τ → +∞ or τ → −∞. Consider the case that
a limit cycle near the homoclinic bifurcation curve is stable (see Fig. 16b), we can
see that the limit cycle moves extremely slowly near the saddle point but moves fast
when it is away. This yields a slow-fast motion which generates recurrence behavior.
The first three conditions for this mechanism are same as P1-P3, but the last condition
should be modified as

P∗
4: there exists Bogdanov–Takens bifurcation, leading to homoclinic loops near a

Hopf bifurcation.

We notice that the new recurrence-generating mechanism offers a small amplitude
of oscillation, or extremely slow convergence to the disease-free equilibrium. The
big difference between the mechanism discussed in the previous section and the new
mechanism is that the former yields very large oscillations in both amplitude and
frequency, while the latter only has significant change in frequency, but very little
variation in the amplitude. Patients with chronic infectionsmay undergo a short-period
of worse symptom.

To end this subsection, we present simulations for the codimension-2 BT bifurca-
tion. It has been shown that the BT bifurcation can occur only for R0 < 1 (i.e., for
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Fig. 17 Codimension-2 BT
bifurcation diagram around the
critical point (A, B,C, D) =
( 1
18 , 2

27 , 1
20 , 1

10 )
BT

subH
Δ<0

SF

UF

D < B). It should be also noted that in the neighborhood of the codimension-2 BT
critical point, there exists only one limit cycle from the Hopf bifurcation. To give a
more direct impression, here we shall use the original equation (5), rather than the
normal form (78), to perform the simulation. Since the perturbation parameters A and
B are given in terms of C and D, we choose (C, D) = ( 1

20 ,
1
10 ), then obtain the BT

critical point as (A, B) = ( 1
18 ,

2
27 ), then further have a1 = − 7

729 and a2 = − 50
729 , and

a2
a1

= 50
7 . The bifurcation diagram near the above critical point is shown in Fig. 17.

We can take perturbations on A and B such that A, B pass through the blue curve
from above, see Fig. 17. To investigate the effect of B on the BT bifurcation, we let
A = 1

18 + μ1, B = 2
27 + μ2, and fix μ1 = 1

20 .
Taking

μ2 = −0.028, −0.028301496, −0.03, −0.034, (79)

the four corresponding points (A, B,C, D) ∈ S locate from top to the bottom on the
blue vertical line segment in Fig. 17. Four corresponding simulations are shown in
Fig. 18a–d, respectively. We can use (77) to obtain ξ1 and ξ2 expressed in terms of μ2
as follows:

ξ1 = − 7
27000 + 7

1500 μ2 − 98
675 μ2

2, ξ2 = − 9
7 μ2 − 40μ2

2.

The simulations given in Fig. 17a–d correspond to the four phase portraits shown in
Fig. 18a. However, note that stability is reversed since the transformation given in (61)
yields

det

[ 1
D−1 0
D

1−D 1

]
= 1

D − 1
< 0, for D ∈ (0, 1

2

)
,

and thus the Hopf and homoclinic bifurcations exchange their positions. Moreover,
for the parameter values (A, B,C, D) = ( 1

18 ,
2
27 ,

1
20 ,

1
10 ), we can use (61), (76) and
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Fig. 18 Simulations of system (5) when A = 19
180 , C = 2

27 and D = 1
10 for a B = 0.0460740741,

showing convergence of the half-unstable manifold of the saddle point E1+ to the stable focus E1−; b
B = 0.0457725781, showing an unstable homoclinic loop enclosing a stable focus; c B = 0.0440740741,
showing stable focus E1− enclosed by an unstable limit cycle; and d B = 0.0400740741, showing an
unstable focus E1− with a trajectory connecting to half-stable manifold of the saddle point E1+

(77) to find the coordinates of the focus E1− and the saddle E1+ in the original system
(5), corresponding to the focus (x1, x2) = (−√−ξ1, 0) and the saddle (x1, x2) =
(
√−ξ1, 0), respectively, as

(
X−,Y−

) ≈
(
963
140 − 9

√
210
70 + ( 3247 − 783

√
210

980

)
μ2,

8011729
28000000

+ 14193
√
210

612500 − ( 717741200000 + 94149
√
210

245000

)
μ2

)
,

(
X+,Y+

) ≈
(
963
140 + 9

√
210
70 + ( 3247 − 783

√
210

980

)
μ2,

8011729
28000000

+ 14193
√
210

612500 − ( 717741200000 − 94149
√
210

245000

)
μ2

)
,
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which shows that

X+ − X− = 9
√
210

490

(
14 + 87μ2) > 0, Y− − Y+ = 9

√
210

612500

(
3154 − 52305μ2) > 0,

for the values of μ2 given in (79), as expected.

4.2 Codimension-3 BT Bifurcation

In this section, we consider the codimension-3 BT bifurcation under condition (ii)
in Theorem 4.1. To find the parametric normal form of BT bifurcation, a widely
used method was developed by Dumortier et al. (1987) which involves transformation
with six steps. In this paper, we present a one-step transformation method to reach the
parametric normal form. This novelmethod involves transformations on state variables
and parameters, as well as a time rescaling. To achieve this, let

A = 4D2

(1+D)(1−3D)
+ μ1, B = D

1+D + μ2, C = D(1+D)
1−3D + μ3, (80)

where D ∈ (0, 1
4 )
⋃

( 14 ,
1
3 ). We denoteμ = (μ1, μ2, μ3) and then apply (80) together

with (61) into (5) and expand the resulting system around the point (u1, u2, μ) =
(0, 0, 0) to obtain the following system:

du1
dτ

= u2 + f4(u1, u2, μ) + O(|(u1, u2, μ)|5),
du2
dτ

= f4(u1, u2, μ) + O(|(u1, u2, μ)|5),
(81)

where

f4 = F400(μ) + F310(μ) u1 + F301(μ) u2 + F220(μ) u21 + F311(μ) u1u2
+F302(μ) u22 + F130(μ) u31 + F121(μ) u21u2 + F112(μ) u1u

2
2 + F103(μ) u32

+ (1−3D)(1+D)

8(1−D)3

[
D2

(1−D)3
u41 + 2(2−3D)

(1−D)3
u31u2 + 6(1−2D)

(1−D)2
u21u

2
2

+ 2(2−5D)
D(1−D)

u1u32 + (1−3D)

D2 u42

]
,

in which Fki j are kth-degree polynomials in μ. Then, we employ the parametric
simplest normal form theory (Yu and Leung 2003; Gazor and Yu 2010, 2012; Gazor
and Moazeni 2015) to obtain the parametric normal form. More precisely, we apply
the following state variables transformation:

u1 = − 2(1−D)2

D2 y1 + (1−D)2(2D2+3D−3)
2D4 ξ1 + (1−D)2

D ξ2

+
∑

i+ j+k+l+m=2,3,4

U1i jklm y
i
1y

j
2 ξ k1 ξ l2ξ

m
3 ,

u2 = − 2(1−D)2

D2 y2 + 2(1−D)2

D2 ξ1 +
∑

i+ j+k+l+m=2,3,4

U2i jklm y
i
1y

j
2 ξ k1 ξ l2ξ

m
3 , (82)
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and a time rescaling:

τ → [
1 − 1+D

2D2 y1 + 1
6D ξ2 + D

3(1+D)
ξ3
]
τ, (83)

then obtain the parametric normal form,

dy1
dτ

= y2 + O(|y1, y2, ξ |5),
dy2
dτ

= ξ1 + ξ2 y2 + ξ3 y1y2 + y21 − b1 y
3
1 y2 + O(|(y1, y2, ξ)|5), (84)

where b1 = (1−4D)(1−D2)

D5 for D ∈ (0, 1
4 )
⋃

( 14 ,
1
3 ), and the parametrization is given

by

μ1 = 4(1−D)2(8D2−3D−1)
D2(1+D)(1−3D)2

ξ1 + 4D(1−D)

(1+D)(1−3D)2
ξ2 − 8D4(1−D)

(1+D)2(1−3D)2
ξ3,

+
∑

i+ j+k=2, 3

M1i jkξ
i
1ξ

j
2 ξ k3 ,

μ2 = − (1−D)(1−4D)

D2(1+D)
ξ1 − D

2(1+D)
ξ2 − D3

(1+D)2
ξ3 +

∑

i+ j+k=2,3

M2i jkξ
i
1ξ

j
2 ξ k3 ,

μ3 = − (1+D)(1−D)2(1−D+4D2)

D3(1−3D)2
ξ1 + 3(1+D)(1−D)2

2(1−3D)2
ξ2 − D2(1−D)2

(1−3D)2
ξ3

+
∑

i+ j+k=2,3

M3i jkξ
i
1ξ

j
2 ξ k3 − 2D5(72D5−36D4+33D3−3D2+15D−1)(1−D)2

9(1+D)3/(1−3D)4
ξ43 . (85)

Finally, introducing the transformation:

y1 = x1, y2 + O(|(y1, y2, ξ)|5) = x2,

into (84) yields the normal form with the unfolding up to fourth-order terms:

dx1
dτ

= x2,

dx2
dτ

= ξ1 + ξ2 x2 + ξ3 x1x2 + x21 − b1 x
3
1 x2 + O(|(x1, x2, ξ)|5). (86)

Note that the coefficient of y1 in the time rescaling (83),− 1+D
2D2 , is actually equivalent to

the coefficient of x1 in the time rescaling (65), C
2(1−D)(C+D)

= 1+D
4(1−D)2

, because there

is a scaling − 2(1−D)2

D2 for u1 and u2 in (82). In fact, 1+D
4(1−D)2

× (− 2(1−D)2

D2

) = − 1+D
2D2 .

For the same reason, we see that b1 = (1−4D)(1−D)2

D5 = − a3
a1

× (− 2(1−D)2

D2

)2, where
a1 and a3 are given in (71). Thus, due to a1 < 0, b1 has the same sign of a3, which is
positive for D ∈ (0, 1

4 ) and negative for D ∈ ( 14 ,
1
3 ). To examine the influence of D

on the system’s dynamics, we use b1 = (1−4D)(1−D)2

D5 without normalization.
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Further, it is easy to use (85) to verify that

det
[

∂(μ1,μ2,μ3)
∂(ξ1,ξ2,ξ3)

]
= − 8D(1−D)3

(1+D)(1−3D)3
+ O(ξ) �= 0 in D ∈ (0, 1

3 ) for small ξ,

which shows that near the critical point (A, B,C) = (A0, B0,C0), system (5) has the
same bifurcation set with respect to μ as system (86) has with respect to ξ , up to a
homeomorphism in the parameter space.

Now, based on the normal form (86), we can follow a similar procedure used for
analyzing the codimension-2 BT bifurcation to obtain the Hopf bifurcation surface
and homoclinic bifurcation surface in the ξ1–ξ2–ξ3 parameter space. To achieve this,
we first find the two equilibrium solutions E± as

E± = (x1±, 0), where x1± = ±√−ξ1 for ξ1 < 0. (87)

The Jacobian of (86) evaluated at E± is given by

J± =
[
0 1
2x1± ξ2 + ξ3x1± − b1x31±

]
, (88)

which indicates E1+ is a saddle, and E1− is focus or node. It is easy to see that the
plane

SN = {(ξ1, ξ2, ξ3) | ξ1 = 0
}
, (89)

excluding the origin in the parameter space is the saddle-node bifurcation surface.
Next, we consider Hopf bifurcation and generalized Hopf bifurcation from which

multiple limit cycles can occur. We have the following result.

Theorem 4.3 For system (86), Hopf bifurcation occurs from the equilibrium solution
E− at any point on the critical surface, defined by

H =
{
(ξ1, ξ2, ξ3)

∣
∣∣ ξ2 − (ξ3 + b1ξ1)

√−ξ1 = 0
}
. (90)

The generalized Hopf bifurcation occurs from the equilibrium solution E− at any
point on the critical line which is the intersection of the critical surface H and the
generalized critical surface GH, defined by

GH =
{
(ξ1, ξ2, ξ3)

∣∣∣ ξ3 + 3b1 ξ1 = 0
}
, (91)

yielding maximal two small-amplitude limit cycles, and outer one is stable (unstable)
if b1 > 0 (b1 < 0).

Proof It is easy to see from the Jacobian J− given in (88) that Hopf bifurcation can
occur from the equilibrium E1− at any point on the critical surface, defined by ξ2 +
ξ3x1−−b1x31− = 0,which canbewritten in the formof (90).Note that ignoring the term
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b1ξ1 and letting ξ3 = − a2
a1

in (90) yields the Hopf bifurcation curve, ξ1 = −( a1a2
)2ξ22 ,

given in Theorem 4.2, as expected.
To consider the generalized Hopf bifurcation and possible multiple limit cycles

bifurcating from the Hopf critical surface (90), we need to find the focus values.
Introducing the transformation,

x1 = −√−ξ1 + w1, x2 = ωc w2, where ωc =
√
2
√−ξ1, (ξ1 < 0),

into (86) yields the following system:

dw1

dτ
= ωc w2,

dw2

dτ
= −ωc w1 + 1

ωc
w2
1 + (ξ3 − 3b1

4 ω4
c

)
w1w2 + 3b1

2 ω2
cw

2
1w2 − b1 w3w2.

(92)

Then applying the Maple program (Yu 1998) we obtain the focus values:

v1 = 1
32ω2

c
(4ξ3 + 3b1ω4

c ) = 1
8ω2

c
(ξ3 − 3b1ξ1), v2|v1=0 = − 5b1

48ω2
c

�= 0.

It is easy to find that v1 = 0 leads to

ξ3 = − 3b1 ξ1, (ξ1 < 0),

which defines the generalized Hopf critical surface (91). Since when v1 = 0, v2 �= 0,
at most two limit cycles can bifurcate from the E−1. Moreover, simple perturbations
on ξ3 for v1 and ξ2 for v0 yield |v0| � |v1| � |v2|, implying that two limit cycles do
occur, with the outer one stable (unstable) if b1 > 0 (b1 < 0). �

It should benoted that the above result on the number of small-amplitude limit cycles
bifurcating from the Hopf critical surface (90), near the codimension-3 BT bifurcation
point, agrees with that for the general original system (5), given in Theorems 3.3 (for
R0 = 1) and 3.5 (for R0 �= 1), but the proof here is much simpler.

Now, we turn to consider the homoclinic bifurcation surface as well as the degen-
erate homoclinic bifurcation points on the surface by following the method described
in Han and Yu (2012). For this part, we have the following theorem.

Theorem 4.4 For system (86), homoclinic bifurcation can occur from the critical sur-
face, defined by

HL =
{
(ξ1, ξ2, ξ3)

∣∣∣ ξ2 − 5
7

(
ξ3 + 103

55 b1 ξ1
)√−ξ1 = 0

}
, (93)

and the degenerate homoclinic bifurcation occurs from any point on the critical line
which is the intersection of the critical surfaceHL and the degenerate critical surface
DHL, defined by

DHL =
{
(ξ1, ξ2, ξ3)

∣
∣∣ ξ2 + (ξ3 + b1 ξ1

)√−ξ1 = 0
}
, (94)

leading to bifurcation of two limit cycles.
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Proof We use the method given in Han and Yu (2012) to prove the theorem. We first
introduce the following scaling:

x1 = ε
2
5 w1, x2 = ε

3
5 w2, ξ1 = ε

4
5 ν1, ξ2 = ε

6
5 ν2,

ξ1 = ε
4
5 ν3, τ1 = ε

1
5 τ, (0 < ε � 1), (95)

into (86) we obtain

dw1

dτ1
= w2,

dw2

dτ1
= ν1 + w2

1 + ε (ν2w2 + ν3w1w2 − b1w
3
1w2) ≡ ν1 + w2

1 + ε q(w1, w2, ν),

(96)

where ν = (ν1, ν2, ν3). The system (96)
∣
∣
ε=0 is a Hamiltonian system. In order to have

the Hamiltonian function given in the form of that in (Han and Yu 2012), we introduce
a further transformation,

w1 = ν̄1 + z1, w2 = √2ν̄1 z2, τ2 = √2ν̄1 τ1, ν1 = −ν̄21 (ν̄1 > 0), (97)

into (96) to yield

dz1
dτ2

= z2,

dz2
dτ2

= z1 + 1
2ν̄1

z21 + ε√
2ν̄1

[
(ν2 + ν̄1 ν3 − b1ν̄31)z2 + (ν3 − 3b1ν̄21 )z1z2

− 3b1ν̄1z
2
1z2 − b1z

3
1z2)

]

≡ z1 + 1
2ν̄1

z21 + ε q(z1, z2, ν̄), (98)

where ν̄ = (ν̄1, ν2, ν3).
System (98)

∣∣
ε=0 is a Hamiltonian system with two equilibrium solutions:

Ẽ− = (−2ν̄1, 0) and Ẽ0 = (0, 0), (99)

with Ẽ− and Ẽ0 being center and saddle, respectively. These two equilibria correspond
to the E± defined in (87). The Hamiltonian function is

H(z1, z2) = 1
2 (z22 − z21) − 1

6ν̄1
z31, (100)

and the homoclinic orbit connecting E0 is given by

�0 : H(z1, z2) = 1
2 (z22 − z21) − 1

6ν̄1
z31 = H(0, 0) = 0, (101)
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and H(−2ν̄1, 0) = − 2
3 ν̄21 . Thus, any closed orbit of the Hamiltonian system (98)

∣∣
ε=0

inside �0 can be described by

�h : H(z1, z2, h) = 1
2 (z22 − z21) − 1

6ν̄1
z31 − h = 0, h ∈ (− 2

3 ν̄21 , 0
)
. (102)

Now the Abelian integral or the (first-order) Melnikov function for the perturbed
system (98) can be written as

M(h, ν) =
∮

�h

q(z1, z2, ν) dz1 − p(z1, z2, ν) dz2 |ε=0 (p = 0)

=
∮

�h

q(z1, z2, ν) |ε=0 dz1 =
∮

�h

Hz2q(z1, z2, ν) |ε=0 dt

= 1√
2ν̄1

∮

�h

z22
[
ν2 + ν̄1 ν3 − b1ν̄

3
1 + (ν3 − 3b1ν̄

2
1 )z1 − 3b1ν̄1z

2
1 − b1z

3
1

]
dt .

(103)

If we consider bifurcation of limit cycles around the center E−, we may expand
the M(h, v) in h for − 2

3 ν̄21 < h � 1, which is equivalent to using the method of
focus values or normal forms (Tian and Yu 2018), and the same result as that given in
Theorem 4.3 will be obtained.

In the following, we consider the limit cycles bifurcating from the homoclinic
orbit �0. We use the method and formulas given in Han and Yu (2012) to expand the
Melnikov function M(h, ν) for 0 < −h � 1 to obtain

M(h, ν) = C0(ν) + C1(ν) h ln |h| + C2(ν) h

+C3(h) h2 ln |h| + · · · , (0 < −h � 1), (104)

where

C0(ν) = 1√
2ν̄1

∮

�0

z22
[
ν2 + ν̄1 ν3 − b1ν̄

3
1 + (ν3 − 3b1ν̄

2
1 )z1 − 3b1ν̄1z

2
1 − b1z

3
1

]
dt,

C1(ν) = a10 + b01, (105)

in which a10 and b01 are the coefficients in the functions p(z1, z2, ν) and q(z1, z2, ν),
given by

a10 = 0, b01 = 1√
2ν̄1

(ν2 + ν̄1 ν3 − b1ν̄
3
1). (106)

To compute C0(ν), introducing the parametric transformation:

z1(t) = −3 sech2(t), z2(t) = 3 ν̄21sech
2(t) tanh(t), (107)

into C0(ν) we obtain

C0(ν) = 1√
2ν̄1

∫ ∞

−∞
[
ν2 + ν̄1 ν3 − b1ν̄

3
1 + (ν3 − 3b1ν̄

2
1 )z1 − 3b1ν̄1z

2
1 − b1z

3
1

]
z22 dt,

= 1√
2ν̄1

∫ ∞

−∞
[
ν2 + ν̄1 ν3 − b1ν̄

3
1 + (ν3 − 3b1ν̄

2
1 )z1 − b1z

3
1

]
z22 dt,
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= 1√
2ν̄1

∫ ∞

−∞
[
ν2 + ν̄1 ν3 − b1ν̄

3
1 − 3 (ν3 − 3b1ν̄

2
1 ) sech

2(t) + 27 b1 sech
6(t)
]

× 9 ν̄41 sech
4(t) tanh2(t) dt

= 1√
2ν̄1

× 12
5 ν̄21

[
ν2 − 5

7 ν̄1 ν3 − 103
77 b1ν̄31

]
= 6ν̄1

√
2ν̄1

5

[
ν2 − 5

7 ν̄1 ν3 − 103
77 b1ν̄31

]
.

(108)

Finally, we express C0(ν) and C1(ν) in terms of the original perturbation parameters
ξ j by using

ν̄1 = √−ν1 =
√

−ε−4/5 ξ1 = ε−2/5
√−ξ1, ν2 = ε−6/5ξ2, ν3 = ε−4/5ξ3,

as

C0(ξ) = 6ν̄1
√
2ν̄1

5 ε−6/5
[
ξ2 − 5

7 (ξ3 + 103
55 b1ξ1)

√−ξ1

]
,

C1(ξ) = 1√
2ν̄1

[
ξ2 + (ξ3 + b1ξ1)

√−ξ1
]
.

(109)

Hence, the homoclinic bifurcation surface is defined by C0(ξ) = 0, leading to the
equationHL given in (93). Again note that ignoring the term b1ξ1 and letting ξ3 = − a2

a1

in C0(ξ) = 0 yields the homoclinic curve, ξ1 = − 49
25

( a1
a2

)2
ξ22 , which is exactly the

same as that given in Theorem 4.2 for the codimension-2 BT bifurcation, as expected.
Further, degenerate homoclinic bifurcation happens at C1(ξ) = 0, which defines
another critical surface DHL given in (94). �

It is obvious that system (86) has no equilibria for ξ1 > 0. So the bifurcation
surfaces are in the half space ξ1 ≤ 0, implying that the bifurcation diagram of system
(86) is a cone, which can be represented by its intersection with the 2-sphere,

Sσ = {(ξ1, ξ2, ξ3) | ξ21 + ξ22 + ξ23 = σ 2, 0 < σ � 1
}
. (110)

The intersection curve of the Hopf bifurcation surface (90) and the 2-sphere (110) can
be described as

Hcurve

=
{
(ξ2, ξ3)

∣
∣∣ ξ2 =

[
ξ3 − b1

(
σ 2 − ξ22 − ξ23

) 1
2
](

σ 2 − ξ22 − ξ23
) 1
4 , ξ22 + ξ23 ≤ σ 2

}
,

(111)

which is shown in Fig. 19 as the blue curve. Similarly, we can find the intersection
curve of the homoclinic bifurcation surface (93) and the 2-sphere (110) as

HLcurve

=
{
(ξ2, ξ3)

∣
∣∣ ξ2 = 5

7

[
ξ3 − 103

55 b1
(
σ 2 − ξ22 − ξ23

) 1
2
](

σ 2 − ξ22 − ξ23

) 1
4 , ξ22 + ξ23 ≤ σ 2

}
,

(112)
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which is also shown in Fig. 19 as the green curve.
The intersection point of the Hopf and homoclinic bifurcation curves, denoted by

C (see Fig. 19), can be obtained from the following equations:

C : ξ2 = 24
11 b1ξ1

√−ξ1, ξ3 = 13
11 b1ξ1, f (ξ1) = ξ1 +

√
σ 2 − ξ22 − ξ23 = 0 �⇒ ξ1.

(113)

Similarly, the GH denotes the intersection point of the Hopf bifurcation (in blue) and
the generalized Hopf bifurcation (in pink) curves, and DHL denotes the intersection
point of the homoclinic bifurcation (in green) and the degenerate homoclinic bifurca-
tion (in brown) curves. These two points are shown in Fig. 19, determined from the
following equations:

GH :
{

ξ2 = − 2b1 ξ1
√−ξ1, ξ3 = − 3 b1ξ1,

f (ξ1) = ξ1 +
√

σ 2 − ξ22 − ξ23 = 0 �⇒ ξ1,
(114)

and

DHL : ξ2 = 4
11 b1ξ1

√−ξ1, ξ3 = − 15
11 b1ξ1,

f (ξ1) = ξ1 +
√

σ 2 − ξ22 − ξ23 = 0 �⇒ ξ1. (115)

As an example, taking D = 0.2499, which yields b1 = 0.230923, and σ = 0.1, we
obtain

C = (ξ2, ξ3)C = (− 0.014847,− 0.026036), for ξ1 = − 0.095403,
GH = (ξ2, ξ3)GH = (0.010790, 0.056614), for ξ1 = − 0.081721,

DHL = (ξ2, ξ3)DHL = (− 0.002473,− 0.030026), for ξ1 = − 0.095354,

as shown in Fig. 19a.
The two points GH and DHL correspond to the Melnikov function M(h, ν) given

in (103) satisfying M(h, ν) = Mh(h, ν) = 0 at h = − 2
3 ν̄21 and h = 0, respectively.

In fact, for each value of h ∈ (− 2
3 ν̄21 , 0), one can find a point corresponding to

M(h, ν) = Mh(h, ν) = 0. These points form a curve connecting the two points
GH and DHL and tangent to the Hopf bifurcation curve at the point GH and to the
homoclinic bifurcation curve at the point DHL. This curve is usually called double
limit cycle bifurcation curve, denoted as DLC. The existence of this curve is proved
by Dumortier et al. (1987), but no explicit formula or computational method given
to determine the curve. Figure 19a is an exact bifurcation diagram for D = 0.2499
and σ = 0.1, where the double limit cycle bifurcation curve DLC is not shown since
it is too close to the Hopf and homoclinic bifurcation curves. In order to clearly see
the bifurcations we show a schematic general bifurcation diagram in Fig. 19b with
associated phase portraits for b1 > 0 and 0 < σ � 1. The case b1 < 0 can be easily
obtained from Fig. 19b as a reflection of this figure with stability changed.
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ξ3

•DHL

ξ2•C

•GH

ξ3

ξ2

S2

S1

C

SN SN

H

HL

DHL

DLC
GH

(b)(a)

Fig. 19 Bifurcation curves for the codimension-3 BT bifurcation based on the normal form (86), displayed
in the intersection of the cone and the 2-sphere ξ21 + ξ22 + ξ23 = σ 2, with red color for saddle-node, blue for
Hopf and green for homoclinic, respectively: a with D = 0.2499 and σ = 0.1, where the intersection point
of the pink and blue curves is the degenerate Hopf bifurcation, and the intersection point of the brown and
green curves denotes the degenerate homoclinic loop bifurcation; and b a schematic bifurcation diagram
for b1 > 0 (i.e., a3 > 0) (Color figure online)

We summarize the results for the codimension-3 BT bifurcation as follows (see
Fig. 19b).

(a) Saddle-node bifurcation occurs along the circle, ξ22 + ξ23 = σ 2, excluding the two
points S1 and S2, while the two points S1 and S2 correspond to the BT bifurcation
of condimension two.

(b) Hopf bifurcation appears along the H curve excepting the point GH, while the
point GH represent the generalized Hopf bifurcation.

(c) Homoclinic bifurcation happens along the HL curve excluding the point DHL,
while the DHL point denotes the degenerate homoclinic bifurcation.

(d) Double limit cycle bifurcation occurs along the curve DLC, which connects the
two points GH and DHL and is tangent to the curves H and HL at these two points,
respectively.

5 Conclusions

In this contribution, we have provided a fairly complete dynamical analysis on a two-
dimensional disease model, which can be used for either in-host disease modeling or
epidemiologic modeling. In particular, we explored the dynamical behaviors of the
system in a full four-dimensional parameter space. In particular, we have shown that
when the reproduction number R0 is varied near R0 = 1, the system exhibits rich
dynamical behaviors, including equilibrium solutions which exchange their stability
at the transcritical point R0 = 1. Both Hopf and generalized Hopf bifurcations can
occur regardless of whether R0 < 1 or R0 ≥ 1, and yield bistability or even tristability,
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showing that a simple model can still catch certain types of complexity in a disease
model. This new type of bistability or tristability reveals a more complex but more
realistic situation: The predicted state may not necessarily be an equilibrium (either
the disease-free equilibrium or the endemic equilibrium), but may also involve disease
periodic oscillation. This implies that the infective individuals and removed individuals
are not necessarily fixed, but in a more realistically, mutually stable periodic motion.

Our study in this paper has also indicated that when R0 < 1, the system can have
BT bifurcation leading to more complex dynamical behavior such as homoclinic orbit
bifurcation. The analysis is based on the parametric normal form for BT bifurcation.
We developed a novel computational method to derive the normal form for BT bifur-
cation of codimension two and three via one-step general nonlinear transformation.
The homoclinic loop bifurcation, arising from BT bifurcation provides a new sce-
nario/mechanism for generating recurrence, which is characterized by a special type
of oscillation with slow and fast motions on the trajectories. This new mechanism is
different with the one proposed in Zhang et al. (2013, 2014a, b).
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