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Abstract
We present a data-driven framework for extracting complex spatiotemporal patterns
generated by ergodic dynamical systems. Our approach, called vector-valued spectral
analysis (VSA), is based on an eigendecomposition of a kernel integral operator act-
ing on a Hilbert space of vector-valued observables of the system, taking values in
a space of functions (scalar fields) on a spatial domain. This operator is constructed
by combining aspects of the theory of operator-valued kernels for multitask machine
learningwith delay-coordinatemaps of dynamical systems. In contrast to conventional
eigendecomposition techniques, which decompose the input data into pairs of tempo-
ral and spatial modes with a separable, tensor product structure, the patterns recovered
by VSA can be manifestly non-separable, requiring only a modest number of modes
to represent signals with intermittency in both space and time. Moreover, the kernel
construction naturally quotients out dynamical symmetries in the data and exhibits an
asymptotic commutativity property with the Koopman evolution operator of the sys-
tem, enabling decomposition of multiscale signals into dynamically intrinsic patterns.
Application ofVSA to theKuramoto–Sivashinskymodel demonstrates significant per-
formance gains in efficient and meaningful decomposition over eigendecomposition
techniques utilizing scalar-valued kernels.

Keywords Spatiotemporal patterns · Dynamical systems · Spectral decomposition ·
Kernel methods · Koopman operators · Dynamical symmetries

Mathematics Subject Classification 28B05 · 35B36 · 37C80 · 37E99 · 37M10 · 47B34

Communicated by Paul Newton.

B Dimitrios Giannakis
dimitris@cims.nyu.edu

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-019-09548-1&domain=pdf
http://orcid.org/0000-0002-4220-0313
http://orcid.org/0000-0001-9946-3889


2386 Journal of Nonlinear Science (2019) 29:2385–2445

1 Introduction

Spatiotemporal pattern formation is ubiquitous in physical, biological, and engineered
systems, ranging frommolecular-scale reaction-diffusion systems, to engineering- and
geophysical-scale convective flows, and astrophysical flows, among many examples
(Cross and Hohenberg 1993; Ahlers et al. 2009; Fung et al. 2016). The mathemati-
cal models for such systems are generally formulated by means of partial differential
equations (PDEs), or coupled ordinary differential equations, with dissipation play-
ing an important role in the development of low-dimensional effective dynamics on
attracting subsets of the state space (Constantin et al. 1989). In light of this property,
many pattern-forming systems are amenable to analysis by empirical, data-driven
techniques, complementing the scientific understanding gained from first-principles
approaches.

Historically, many of the classical proper orthogonal decomposition (POD) and
principal component analysis (PCA) techniques for spatiotemporal pattern extraction
have been based on the spectral properties of temporal and spatial covariance operators
estimated from snapshot data (Aubry et al. 1991; Holmes et al. 1996). In singular
spectrum analysis (SSA) and related algorithms (Broomhead and King 1986; Vautard
and Ghil 1989; Ghil et al. 2002), combining this approach with delay-coordinate
maps of dynamical systems (Packard et al. 1980; Takens 1981; Sauer et al. 1991;
Robinson 2005; Deyle and Sugihara 2011) generally improves the representation of
the information content of the data in terms of a fewmeaningful modes.More recently,
advances in machine learning and harmonic analysis (Schölkopf et al. 1998; Belkin
and Niyogi 2003; Coifman et al. 2005; Coifman and Lafon 2006; Singer 2006; von
Luxburg et al. 2008; Berry and Harlim 2016; Berry and Sauer 2016) have led to
techniques for recovering temporal and spatial patterns through the eigenfunctions
of kernel integral operators (e.g., heat operators) defined intrinsically in terms of a
Riemannian geometric structure of the data. In particular, in a family of techniques
called nonlinear Laplacian spectral analysis (NLSA) (Giannakis andMajda 2012), and
independently in Berry et al. (2013), the diffusionmaps algorithm (Coifman and Lafon
2006) was combined with delay-coordinate maps to extract spatiotemporal patterns
through the eigenfunctions of a kernel integral operator adept at capturing distinct
and physically meaningful timescales in individual eigenmodes frommultiscale high-
dimensional signals.

At the same time, spatial and temporal patterns have been extracted from eigen-
functions of Koopman (Mezić and Banaszuk 2004; Mezić 2005; Rowley et al. 2009;
Giannakis et al. 2015; Williams et al. 2015; Brunton et al. 2017; Das and Giannakis
2019; Giannakis 2017) and Perron–Frobenius (Dellnitz and Junge 1999; Froyland
and Dellnitz 2000) operators governing the evolution of observables and probability
measures, respectively, in dynamical systems (Budisić et al. 2012; Eisner et al. 2015).
Koopman eigenfunction analysis is also related to the dynamic mode decomposi-
tion (DMD) algorithm (Schmid 2010) and linear inverse model techniques (Penland
1989). An advantage of these approaches is that they target operators defined intrin-
sically for the dynamical system generating the data, and thus able, in principle, to
recover temporal and spatial patterns of higher physical interpretability and utility in
predictivemodeling than kernel-based approaches. In practice, however, the Koopman
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and Perron–Frobenius operators tend to have significantly more complicated spectral
properties (e.g., non-isolated eigenvalues and/or continuous spectra) than kernel inte-
gral operators, hindering the stability and convergence of data-driven approximation
techniques. These issues were recently addressed through an approximation scheme
for the generator of the Koopman group with rigorous convergence guarantees (Gian-
nakis 2017; Das and Giannakis 2019), utilizing a data-driven orthonormal basis of
the L2 space associated with the invariant measure, acquired through diffusion maps.
There, it was also shown that the eigenfunctions of kernel integral operators defined
on delay-coordinate mapped data (e.g., the covariance and heat operators in SSA
and NLSA, respectively) in fact converge to Koopman eigenfunctions in the limit of
infinitely many delays, indicating a deep connection between these two branches of
data analysis algorithms.

All of the techniques described above recover from the data a set of temporal
patterns and a corresponding set of spatial patterns, sometimes referred to as “chronos”
and “topos” modes, respectively (Aubry et al. 1991). In particular, for a dynamical
system with a state space X developing patterns in a physical domain Y , each chronos
mode, ϕ j , corresponds to a scalar- (real- or complex-) valued function on X , and
the corresponding topos mode, ψ j , corresponds to a scalar-valued function on Y .
Spatiotemporal reconstructions of the data with these approaches thus correspond to
linear combinations of tensor product patterns of the form ϕ j ⊗ ψ j , mapping pairs
of points (x, y) in the product space � = X × Y to the number ϕ j (x)ψ j (y). For
a dynamical system possessing a compact invariant set A ⊆ X (e.g., an attractor)
supporting an ergodic invariantmeasure, the chronosmodes effectively become scalar-
valued functions on A, which may be of significantly smaller dimension than X ,
increasing the robustness of approximation of these modes from finite datasets.

Evidently, for spatiotemporal signals F(x, y) of high complexity, tensor product
patterns, with separable dependence on x and y, can be highly inefficient in capturing
the properties of the input signal. That is, the number l of such patterns needed to
recover F at high accuracy via a linear superposition

F ≈
l−1∑

j=0

ϕ j ⊗ ψ j (1)

is generally large, with none of the individual patterns ϕ j ⊗ψ j being representative of
F . In essence, the problem is similar to that of approximating a non-separable space-
time signal in a tensor product basis of temporal and spatial basis functions. Another
issue with tensor product decompositions based on scalar-valued eigenfunctions is
that in the presence of nontrivial symmetries, the recovered patterns are oftentimes
pure symmetry modes (e.g., Fourier modes in a periodic domain with translation
invariance), with minimal dynamical significance and physical interpretability (Aubry
et al. 1993; Holmes et al. 1996).

Here, we present a framework for spatiotemporal pattern extraction, called vector-
valued spectral analysis (VSA), designed to alleviate the shortcomings mentioned
above. The fundamental underpinning of VSA is that time-evolving spatial patterns
have a natural structure as vector-valued observables on the system’s state space, and
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thus data analytical techniques operating on such spaces are likely to offer maximal
descriptive efficiency and physical insight.We show that eigenfunctions of kernel inte-
gral operators on vector-valued observables, constructed by combining aspects of the
theory of operator-valued kernels (Micchelli and Pontil 2005; Caponnetto et al. 2008;
Carmeli et al. 2010) with delay-coordinate maps of dynamical systems (Packard et al.
1980; Takens 1981; Sauer et al. 1991; Robinson 2005; Deyle and Sugihara 2011):
(a) Are superior to conventional algorithms in capturing signals with intermittency
in both space and time; (b) Naturally incorporate any underlying dynamical symme-
tries, eliminating redundant modes and thus improving physical interpretability of the
results; (c) Have a correspondence with Koopman operators, allowing detection of
intrinsic dynamical timescales; and, (d) Can be stably approximated via data-driven
techniques that provably converge in the asymptotic limit of large data.

The plan of this paper is as follows. Section 2 introduces the class of dynamical
systems under study and provides an overview of data analysis techniques based on
scalar kernels. In Sect. 3, we present the VSA framework for spatiotemporal pattern
extraction using operator-valued kernels, and in Sect. 4 discuss the behavior of the
method in the presence of dynamical symmetries, as well as its correspondence with
Koopman operators. Section 5 describes the data-driven implementation of VSA.
In Sect. 6, we present applications to the Kuramoto–Sivashinsky (KS) PDE model
(Kuramoto and Tsuzuki 1976; Sivashinsky 1977) in periodic and chaotic regimes.
Our primary conclusions are described in Sect. 7. Technical results, descriptions of
basic properties of kernels and Koopman operators, pseudocode, and an overview of
NLSA are collected in six appendices.

2 Background

2.1 Dynamical System and Spaces of Observables

We begin by introducing the dynamical system and the spaces of observables under
study. The dynamics evolves by a C1 flow map �t : X → X , t ∈ R, on a mani-
fold X , possessing an ergodic, invariant, Borel probability measure μ with compact
support A ⊆ X . The system develops patterns on a spatial domain Y , which has
the structure of a compact metric space, supporting a finite Borel measure (volume)
ν. As a natural space of vector-valued observables, we consider the Hilbert space
H = L2(X , μ; HY ) of square-integrable functions with respect to the invariant mea-
sure μ, taking values in HY = L2(Y , ν). That is, modulo sets of μ-measure 0, the
elements of H are functions �f : X → HY , such that for any dynamical state x ∈ X ,
�f (x) is a scalar (complex-valued) field on Y , square-integrable with respect to ν. For
every such observable �f , the map t �→ �f (�t (x)) describes a spatiotemporal pattern
generated by the dynamics. Given �f , �f ′ ∈ H and g, g′ ∈ HY , the corresponding
inner products on H and HY are given by 〈 �f , �f ′〉H = ∫

X 〈 �f (x), �f ′(x)〉HY dμ(x) and
〈g, g′〉HY = ∫

Y g∗(y)g′(y) dν(y), respectively.
An important property of H is that it exhibits the isomorphisms

H 
 HX ⊗ HY 
 H�,
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where HX = L2(X , μ) and H� = L2(�, ρ) are Hilbert spaces of scalar-valued
functions on X and the product space � = X × Y , square-integrable with respect
to the invariant measure μ and the product measure ρ = μ × ν, respectively (the
inner products of HX and H� have analogous definitions to the inner product of HY ).
That is, every �f ∈ H can be equivalently viewed as an element of the tensor product
space HX ⊗ HY , meaning that it can be decomposed as �f = ∑∞

j=0 ϕ j ⊗ ψ j for some
ϕ j ∈ HX and ψ j ∈ HY , or it can be represented by a scalar-valued function f ∈ H�

such that �f (x)(y) = f (x, y). Of course, not every observable �f ∈ H is of pure tensor
product form, �f = ϕ ⊗ ψ , for some ϕ ∈ HX and ψ ∈ HY .

We consider that measurements �F(xn) of the system are taken along a dynamical
trajectory xn = �nτ (x0), n ∈ N, starting from a point x0 ∈ X at a fixed sampling
interval τ > 0 through a continuous vector-valued observation map �F ∈ H . We
also assume that τ is such that μ is an ergodic invariant probability measure of the
discrete-time map �τ .

2.2 Separable Data Decompositions via Scalar Kernel Eigenfunctions

Before describing the operator-valued kernel formalism at the core of VSA, we outline
the standard approach to separable decompositions of spatiotemporal data as in (1) via
eigenfunctions of kernel integral operators associated with scalar-valued kernels. In
this context, a kernel is a continuous bivariate function k : X × X → R, which assigns
a measure of correlation or similarity to pairs of dynamical states in X . Sometimes,
but not always, we will require that k be symmetric, i.e., k(x, x ′) = k(x ′, x) for all
x, x ′ ∈ X . Two examples of popular kernels used in applications (both symmetric)
are the covariance kernels employed in POD,

k(x, x ′) = 〈 �F(x) − F̄, �F(x ′) − F̄〉HY , F̄ =
∫

X

�F(x) dμ(x), (2)

and radial Gaussian kernels,

k(x, x ′) = exp

(
−‖ �F(x) − �F(x ′)‖2HY

ε

)
, ε > 0, (3)

which are frequently used in manifold learning applications. Note that in both of the
above examples the dependence of k(x, x ′) on x and x ′ is through the values of �F at
these points alone; this allows k(x, x ′) to be computable from observed data, without
explicit knowledge of the underlying dynamical states x and x ′. Hereafter, we will
always work with such “data-driven” kernels.

Associated with every scalar-valued kernel is an integral operator K : HX → HX ,
acting on f ∈ HX according to the formula

K f (x) =
∫

X
k(x, x ′) f (x ′) dμ(x ′). (4)
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If k is symmetric, then by compactness of A and continuity of k, K is a compact, self-
adjoint operator with an associated orthonormal basis {ϕ0, ϕ1, . . .} of HX consisting of
its eigenfunctions. Moreover, the eigenfunctions ϕ j corresponding to nonzero eigen-
values are continuous. These eigenfunctions are employed as the chronosmodes in (1),
each inducing a continuous temporal pattern, t �→ ϕ j (�

t (x)), for every state x ∈ X .
The spatial pattern ψ j ∈ HY corresponding to ϕ j is obtained by pointwise projection
of the observation map onto ϕ j , namely

ψ j (y) = 〈ϕ j , Fy〉HX , (5)

where Fy ∈ HX is the continuous scalar-valued function on X satisfying Fy(x) =
�F(x)(y) for all x ∈ X .

2.3 Delay-Coordinate Maps and Koopman Operators

A potential shortcoming of spatiotemporal pattern extraction via the kernels in (2)
and (3) is that the corresponding integral operators depend on the dynamics only
indirectly, e.g., through the geometrical structure of the set �F(A) ⊂ HY on which the
data is concentrated. Indeed, a well-known deficiency of POD, particularly in systems
with symmetries, is failure to identify low-variance, yet dynamically important patterns
(Aubry et al. 1993). As a way of addressing this issue, it has been found effective
(Broomhead and King 1986; Vautard and Ghil 1989; Ghil et al. 2002; Giannakis and
Majda 2012; Berry et al. 2013) to first embed the observed data in a higher-dimensional
data space through the use of delay-coordinate maps, and then extract spatial and
temporal patterns through a kernel operating in delay-coordinate space. For instance,
analogs of the covariance and Gaussian kernels in (2) and (3) in delay-coordinate
space are given by

kQ(x, x ′) = 1

Q

Q−1∑

q=0

〈 �F(�−qτ (x)) − F̄, �F(�−qτ (x ′)) − F̄〉HY , (6)

and

kQ(x, x ′) = exp

⎛

⎝− 1

εQ

Q−1∑

q=0

‖ �F(�−qτ (x)) − �F(�−qτ (x ′))‖2HY

⎞

⎠ , (7)

respectively, here Q ∈ N is the number of delays. The covariance kernel in (6) is
essentially equivalent to the kernel employed in multi-channel SSA (Ghil et al. 2002)
in an infinite-channel limit, and the Gaussian kernel in (7) is closely related to the
kernel utilized in NLSA (though the NLSA kernel employs a state-dependent distance
scaling akin to (19) ahead, as well as Markov normalization, and these features lead
to certain technical advantages compared to unnormalized radial Gaussian kernels).
See Appendix F for a description of NLSA.
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As is well known (Packard et al. 1980; Takens 1981; Sauer et al. 1991; Robinson
2005;Deyle and Sugihara 2011), delay-coordinatemaps can help recover the topologi-
cal structure of state space from partial measurements of the system (i.e., non-injective
observation maps), but in the context of kernel algorithms they also endow the ker-
nels, and thus the corresponding eigenfunctions, with an explicit dependence on the
dynamics. In Giannakis (2017) and Das and Giannakis (2019), it was established that
as the number of delays Q grows, the integral operators KQ associated with a family
of scalar kernels kQ operating in delay-coordinate space converge in operator norm,
and thus in spectrum, to a compact kernel integral operator K∞ on HX commuting
with the Koopman evolution operators (Budisić et al. 2012; Eisner et al. 2015) of the
dynamical system. The latter are the unitary operators Ut : HX → HX , t ∈ R, acting
by composition with the flow map,

Ut f = f ◦ �t ,

thus governing the evolution of observables in HX under the dynamics.
In the setting of measure-preserving ergodic systems, associated with Ut is a dis-

tinguished orthonormal set {z j } of observables z j ∈ HX consisting of Koopman
eigenfunctions (see Appendix A). These observables have the special property of
exhibiting time-periodic evolution under the dynamics at a single frequency α j ∈ R

intrinsic to the dynamical system,

Ut z j = eiα j t z j ,

even if the underlying dynamical flow �t is aperiodic. Moreover, every Koopman
eigenspace is one dimensional by ergodicity. Because commuting operators have
common eigenspaces, and the eigenspaces of compact operators corresponding to
nonzero eigenvalues are finite-dimensional, it follows that as Q increases, the eigen-
functions of KQ at nonzero eigenvalues acquire increasingly coherent (periodic or
quasiperiodic) time evolution associated with a finite number of Koopman eigenfre-
quencies α j . This property significantly enhances the physical interpretability and
predictability of these patterns, providing justification for the skill of methods such
as SSA and NLSA in extracting dynamically significant patterns from complex sys-
tems. Conversely, because kernel integral operators are generally more amenable to
approximation from data than Koopman operators (which can have a highly com-
plex spectral behavior), the operators KQ provide an effective route for identifying
finite-dimensional approximation spaces to stably and efficiently solve the Koopman
eigenvalue problem.

2.4 Differences Between Covariance and Gaussian Kernels

Before closing this section, it is worthwhile pointing out two differences between
covariance and Gaussian kernels, indicating that the latter may be preferable to the
former in applications.

First, Gaussian kernels are strictly positive and bounded below on compact sets.
That is, for every compact set S ⊆ X (including S = A), there exists a constant cS > 0
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such that k(x, x ′) ≥ cS for all x, x ′ ∈ S. This property allows Gaussian kernels to be
normalizable to ergodic Markov diffusion kernels (Coifman and Lafon 2006; Berry
andSauer 2016). In a dynamical systems context, an important property of such kernels
is that the corresponding integral operators always have an eigenspace at eigenvalue
1 containing constant functions, which turns out to be useful in establishing well-
posedness of Galerkin approximation techniques for Koopman eigenfunctions (Das
and Giannakis 2019). Markov diffusion operators are also useful for constructing
spaces of observables of higher regularity than L2, such as Sobolev spaces.

Second, if there exists a finite-dimensional linear subspace of HY containing the
image of A under �F , then the integral operator K associated with the covariance kernel
has necessarilyfinite rank (bounded aboveby thedimensionof that subspace), even if �F
is an injective map on A. This effectively limits the richness of observables that can be
stably extracted fromdata-driven approximations of covariance eigenfunctions. In fact,
it is awell-knownproperty of covariance kernels that every eigenfunctionϕ j at nonzero
corresponding eigenvalue depends linearly on the observation map; specifically, up
to proportionality constants, ϕ j (x) = 〈ψ j , �F(x)〉HY with ψ j given by (5), and the
number of such patterns is clearly finite if �F(x) spans a finite-dimensional linear space
as x is varied. On the other hand, apart from trivial cases, the kernel integral operators
associatedwithGaussian kernels have infinite rank (even if �F is non-injective), and if �F
is injective they have no zero eigenvalues. In the latter case, data-driven approximations
to the eigenfunctions of K provide an orthonormal basis for the full HX space. Similar
arguments alsomotivate the use ofGaussian kernels over polynomial kernels. In effect,
by invoking the Taylor series expansion of the exponential function, a Gaussian kernel
can be thought of as an “infinite-order” polynomial kernel.

3 Vector-Valued Spectral Analysis (VSA) Formalism

The main goal of VSA is to construct a decomposition of the observation map �F via
an expansion of the form

�F ≈
l−1∑

j=0

�Fj , �Fj = c j �φ j , (8)

where the c j and �φ j are real-valued coefficients and vector-valued observables in H ,
respectively. Along a dynamical trajectory starting at x ∈ X , every such �φ j gives
rise to a spatiotemporal pattern t �→ �φ j (�

t (x)), generalizing the time series t �→
ϕ j (�

t (x)) from Sect. 2.2. A key consideration in the VSA construction is that the
recovered patterns should not necessarily be of the form �φ j = ϕ j ⊗ ψ j for some
ϕ j ∈ HX and ψ j ∈ HY , as would be the case in the conventional decomposition
in (1). To that end, we will determine the �φ j through the vector-valued eigenfunctions
of an integral operator acting on H directly, as opposed to first identifying scalar-
valued eigenfunctions in HX , and then forming tensor products with the corresponding
projection-based spatial patterns, as in Sect. 2.2. As will be described in detail below,
the integral operator nominally employed by VSA is constructed using the theory of
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operator-valued kernels (Micchelli and Pontil 2005; Caponnetto et al. 2008; Carmeli
et al. 2010) for multitask machine learning, combined with delay-coordinate maps and
Markov normalization as in NLSA.

3.1 Operator-Valued Kernel andVector-Valued Eigenfunctions

Let B(HY ) be the Banach space of bounded linear maps on HY , equipped with the
operator norm. For our purposes, an operator-valued kernel is a continuous map l :
X × X → B(HY ), mapping pairs of dynamical states in X to a bounded operator on
HY . Every such kernel has an associated integral operator L : H → H , acting on
vector-valued observables according to the formula [cf. (4)]

L �f (x) =
∫

X
l(x, x ′) �f (x ′) dμ(x ′),

where the integral above is a Bochner integral (a vector-valued generalization of the
Lebesgue integral). Note that operator-valued kernels and their corresponding integral
operators can be viewed as generalizations of their scalar-valued counterparts from
Sect. 2.2, in the sense that if Y only contains a single point, then HY is isomorphic
to the vector space of complex numbers (equipped with the standard operations of
addition and scalar multiplication and the inner product 〈w, z〉C = w∗z), and B(HY )

is isomorphic to the space of multiplication operators on C by complex numbers. In
that case, the action l(x, x ′) �f (x ′) of the linear map l(x, x ′) ∈ B(HY ) on the function
�f (x ′) ∈ HY becomes equivalent to multiplication of the complex number f (x), where
f is a complex-valued observable in HX , by the value k(x, x ′) ∈ C of a scalar-valued
kernel k on X .

Consider now an operator-valued kernel l : X × X → B(HY ), such that for every
pair (x, x ′) of states in X , l(x, x ′) = Lxx ′ is a kernel integral operator on HY associated
with a continuous kernel lxx ′ : Y × Y → R with the symmetry property

lxx ′(y, y′) = lx ′x (y
′, y), ∀x, x ′ ∈ X , ∀y, y′ ∈ Y . (9)

This operator acts on a scalar-valued function g ∈ HY on the spatial domain via an
integral formula analogous to (4), viz.

Lxx ′g(y) =
∫

Y
lxx ′(y, y′)g(y′) dν(y′).

Moreover, it follows from (9) that the corresponding operator L on vector-valued
observables is self-adjoint and compact, and thus there exists an orthonormal basis
{ �φ j } of H consisting of its eigenfunctions,

L �φ j = λ j �φ j , λ j ∈ R.

Hereafter, we will always order the eigenvalues λ j of integral operators in decreasing
order starting at j = 0. By continuity of l and lxx ′ , and compactness of A and Y , every
eigenfunction �φ j at nonzero corresponding eigenvalue is a continuous function on X ,
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taking values in the space of continuous functions on Y . Such eigenfunctions can be
employed in the VSA decomposition in (8) with the expansion coefficients

c j = 〈�φ j , �F〉H =
∫

X
〈 �φ j (x), �F(x)〉HY dμ(x). (10)

Note that, as with scalar kernel techniques, the decomposition in (8) does not include
eigenfunctions at zero corresponding eigenvalue, for, to our knowledge, no data-
driven approximation schemes are available for such eigenfunctions. See Sect. 5 and
Appendix D for further details.

Because H is isomorphic as Hilbert space to the space H� of scalar-valued observ-
ables on the product space � = X × Y (see Sect. 2.1), every operator-valued kernel
satisfying (9) can be constructed from a symmetric scalar kernel k : � × � → R by
defining l(x, x ′) = Lxx ′ as the integral operator associated with the kernel

lxx ′(y, y′) = k(ω, ω′), ω = (x, y), ω′ = (x ′, y′). (11)

In particular, the vector-valued eigenfunctions of L are in one-to-one correspondence
with the scalar-valued eigenfunctions of the integral operator K : H� → H� associ-
ated with k, where

K f (ω) =
∫

�

k(ω, ω′) f (ω′) dρ(ω′). (12)

That is, the eigenvalues and eigenvectors of K satisfy the equation Kφ j = λ jφ j for
the same eigenvalues as those of L , and we also have

�φ j (x)(y) = φ j ((x, y)), ∀x ∈ X , ∀y ∈ Y . (13)

It is important to note that unless k is separable as a product of kernels on X and
Y , i.e., k((x, y), (x ′, y′)) = k(X)(x, x ′)k(Y )(y, y′) for some k(X) : X × X → R and
k(Y ) : Y ×Y → R, the �φ j will not be of pure tensor product form, �φ j = ϕ j ⊗ψ j with
ϕ j ∈ HX and ψ j ∈ HY . Thus, passing to an operator-valued kernel formalism allows
one to perform decompositions of significantly higher generality than the conventional
approach in (1).

3.2 Operator-Valued Kernels with Delay-Coordinate Maps

While the framework described in Sect. 3.1 can be implemented with a broad range
of kernels, VSA employs kernels leveraging the insights gained from SSA, NLSA,
and related techniques on the use of kernels operating in delay-coordinate space. That
is, analogously to the kernels employed by these methods that depend on the values
�F((x)), �F(�−τ (x)), . . . , �F(�−(Q−1)τ (x)) of the observation map on dynamical tra-
jectories, VSA is based on kernels on the product space � that also depend on data
observed on dynamical trajectories, but with the key difference that this dependence
is through the local values Fy(x), Fy(�

−τ (x)), . . . , Fy(�
−(Q−1)τ (x)) of the obser-

vation map at each point y in the spatial domain Y . Specifically, defining the family
of pointwise delay-embedding maps F̃Q : � → R

Q with Q ∈ N and
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F̃Q((x, y)) =
(
Fy(x), Fy(�

−τ (x)), . . . , Fy(�
−(Q−1)τ (x))

)
, (14)

we require that the kernels kQ : � × � → R utilized in VSA have the following
properties:

1. For every Q ∈ N, kQ is the pullback under F̃Q of a continuous kernel k̃Q :
R

Q × R
Q → R, i.e.,

kQ(ω, ω′) = k̃Q(F̃Q(ω), F̃Q(ω′)), ∀ω,ω′ ∈ �. (15)

2. The sequence of kernels k1, k2, . . . converges in H� ⊗ H� norm to a kernel k∞ ∈
H� ⊗ H�.

3. The limit kernel k∞ is invariant under the dynamics, in the sense that for all t ∈ R

and (ρ × ρ)-a.e. (ω, ω′) ∈ � × �, where ω = (x, y) and ω′ = (x ′, y′),

k∞((�t (x), y), (�t (x ′), y′)) = k∞(ω, ω′). (16)

We denote the corresponding integral operator on vector-valued observables in H cor-
responding to KQ , determined through (11), by LQ . As we will see below, operators
of this class can be highly advantageous for the analysis of signals with an intermittent
spatiotemporal character, as well as signals generated in the presence of dynamical
symmetries. In addition, the family LQ exhibits a commutativity with Koopman oper-
ators in the infinite-delay limit as in the case of SSA and NLSA.

Let ω = (x, y) and ω′ = (x ′, y′) with x, x ′ ∈ X and y, y′ ∈ Y be arbitrary points
in �. As concrete examples of kernels satisfying the conditions listed above,

kQ(ω, ω′) = 1

Q

Q−1∑

q=0

[
Fy(�

−qτ (x)) − F̄y
] [

Fy′(�−qτ (x ′)) − F̄y′
]
,

F̄y =
∫

X
Fy(x) dμ(x), (17)

and

kQ(ω, ω′) = exp

⎛

⎝− 1

εQ

Q−1∑

q=0

∣∣Fy(�
−qτ (x)) − Fy′(�−qτ (x ′))

∣∣2
⎞

⎠ , ε > 0, (18)

are analogs of the covariance and Gaussian kernels in (2) and (3), respectively, defined
on �. For the reasons stated in Sect. 2.4, in practice we generally prefer working with
Gaussian kernels than covariance kernels.Moreover, following the approach employed
in NLSA and in Berry and Harlim (2016), and Giannakis (2017), we consider a more
general class of Gaussian kernels than (18), namely

kQ(ω, ω′) = exp

⎛

⎝−aQ(ω)aQ(ω′)
εQ

Q−1∑

q=0

∣∣Fy(�−qτ (x)) − Fy′(�−qτ (x ′))
∣∣2

⎞

⎠ , ε > 0,

(19)
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where aQ : � → R is a continuous nonnegative scaling function. Intuitively, the role
of aQ is to adjust the bandwidth (variance) of the Gaussian kernel in order to account
for variations in the sampling density and time tendency of the data. The explicit
construction of this function is described in Appendix C.1. For the purposes of the
present discussion, it suffices to note that aQ(ω) can be evaluated given the values
of Fy on the lagged trajectory �−qτ (x), so that, as with the covariance and radial
Gaussian kernels, the class of kernels in (19) also satisfy (15). The existence of the
limit k∞ for this family of kernels, as well as the covariance kernels in (17), satisfying
the conditions listed above is established in Appendix C.3.

3.3 Markov Normalization

As a final kernel construction step, when working with a strictly positive, symmetric
kernel kQ , such as (18) and (19), we normalize it to a continuous Markov kernel pQ :
� × � → R, satisfying

∫
�
pQ(ω, ·) dρ = 1 for all ω ∈ �, using the normalization

procedure introduced in the diffusionmaps algorithm (Coifman andLafon 2006) and in
Berry and Sauer (2016); see Appendix C.2 for a description. Due to this normalization,
the corresponding integral operator PQ : H� → H� is an ergodic Markov operator
having a simple eigenvalue λ0 = 1 and a corresponding constant eigenfunction φ0.
Moreover, the range of PQ is included in the space of continuous functions of �.
While this operator is not necessarily self-adjoint (since the kernel pQ resulting from
diffusion maps normalization is generally non-symmetric), it can be shown that it is
related to a self-adjoint, compact operator by a similarity transformation. As a result,
all eigenvalues of PQ are real and admit the ordering 1 = λ0 > λ1 ≥ λ2 · · · .Moreover,
there exists a (non-orthogonal) basis {φ0, φ1, . . .} of H� consisting of eigenfunctions
corresponding to these eigenvalues, as well as a dual basis {φ′

0, φ
′
1, . . .} consisting

of eigenfunctions of P∗
Q satisfying 〈φ′

i , φ j 〉H� = δi j . As with their unnormalized
counterparts kQ , the sequence ofMarkov kernels pQ has awell-defined, shift-invariant
limit p∞ ∈ H� ⊗ H� as Q → ∞; see Appendix C.2 for further details.

The eigenfunctions φ j induce vector-valued observables �φ j ∈ H through (13),
which are in turn eigenfunctions of an integral operator PQ : H → H associated
with the operator-valued kernel determined via (11), applied to the Markov kernel
pQ . Similarly, the dual eigenfunctions φ′

i induce vector-valued observables �φ′
j ∈ H ,

which are eigenfunctions of P∗
Q satisfying 〈 �φ′

i ,
�φ j 〉H = δi j . Equipped with these

observables, we perform theVSAdecomposition in (8) with the expansion coefficients
c j = 〈�φ′

j ,
�F〉H . The latter expression can be viewed as a generalization of (10),

applicable for non-orthonormal eigenbases.

4 Properties of the VSA Decomposition

In this section, we study the properties of the operators KQ employed in VSA and their
eigenfunctions in two relevant scenarios in spatiotemporal data analysis, namely data
generated by systems with (i) dynamical symmetries, and (ii) nontrivial Koopman
eigenfunctions. These topics will be discussed in Sects. 4.2 and 4.3, respectively.
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We begin in Sect. 4.1 with some general observations on the topological structure of
spatiotemporal data in delay-coordinate space, and the properties this structure imparts
on the recovered eigenfunctions.

4.1 Bundle Structure of Spatiotemporal Data

In order to gain insight on the behavior of VSA, it is useful to consider the triplet
(�, BQ, πQ), where BQ = F̃Q(�) is the image of the product space � under the
delay-coordinate observationmap, andπQ : � → BQ is the continuous surjectivemap
defined as πQ(ω) = F̃Q(ω) for any ω ∈ �. Such a triplet forms a topological bundle
with �, BQ , and πQ playing the role of the total space, base space, and projection
map, respectively. In particular, πQ partitions � into equivalence classes

[ω]Q = π−1
Q (x) ⊆ �, (20)

called fibers, on which πQ(ω) attains a fixed value (i.e., ω̃ lies in [ω]Q if πQ(ω̃) =
πQ(ω)).

By virtue of (15), the kernel kQ is a continuous function, constant on the [·]Q
equivalence classes, i.e., for all ω,ω′ ∈ �, ω̃ ∈ [ω]Q , and ω̃′ ∈ [ω′]Q ,

kQ(ω, ω′) = kQ(ω̃, ω̃′). (21)

Therefore, since for any f ∈ H� and ω̃ ∈ [ω]Q ,

KQ f (ω) =
∫

�

kQ(ω, ω′) f (ω′) dρ(ω′) =
∫

�

kQ(ω̃, ω′) f (ω′) dρ(ω′) = KQ f (ω̃),

the range of the integral operator KQ is a subspace of the continuous functions
on �, containing functions that are constant on the [·]Q equivalence classes. Cor-
respondingly, the eigenfunctions φ j corresponding to nonzero eigenvalues (which
lie in ran KQ) have the form φ j = η j ◦ πQ , where η j are continuous functions in
the Hilbert space L2(BQ, πQ∗ρ) of scalar-valued functions on BQ , square-integrable
with respect to the pushforward of the measure ρ under πQ . We can thus conclude
that, if all eigenvalues λ j with j ≤ l − 1 are nonzero, the VSA-reconstructed sig-
nal from (8) (viewed as a scalar-valued function on �), lies in the closed subspace
ran KQ = span{φ j : λ j > 0} of H� spanned by functions that are constant on the
[·]Q equivalence classes. Note that ran KQ is not necessarily decomposable as a ten-
sor product of HX and HY subspaces.

Observe now that with the definition of the kernel in (19), the [·]Q equivalence
classes consist of pairs of dynamical states x ∈ � and spatial points y ∈ Y for
which the evolution of the observable Fy is identical over Q delays. While one can
certainly envision scenarios where these equivalence classes each contain only one
point, in a number of cases of interest, including the presence of dynamical symmetries
examined below, the [·]Q equivalence classes will be nontrivial, and as a result ran KQ

will be a strict subspace of H�. In such cases, the patterns recovered by VSA naturally
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factor out data redundancies, which generally enhances both robustness and physical
interpretability of the results. Besides spatiotemporal data, the bundle construction
described above may be useful in other scenarios, e.g., analysis of data generated by
dynamical systems with varying parameters (Yair et al. 2017).

4.2 Dynamical Symmetries

An important class of spatiotemporal systems exhibiting nontrivial [·]Q equivalence
classes is PDEmodels with equivariant dynamics under the action of symmetry groups
on the spatial domain (Holmes et al. 1996). As a concrete example, we consider a PDE
for a scalar field in HY , possessing a C1 inertial manifold, i.e., a finite-dimensional,
forward-invariant submanifold of HY containing the attractor of the system, ontowhich
every trajectory is exponentially attracted (Constantin et al. 1989). In this setting, the
inertial manifold plays the role of the state space manifold X . Moreover, we assume
that the full system state is observed, so that the observation map �F reduces to the
inclusion X ↪→ HY .

Consider now a topological group G (the symmetry group) with a continuous left
action �

g
Y : Y → Y , g ∈ G, on the spatial domain, preserving null sets with respect

to ν. Suppose also that the dynamics is equivariant under the corresponding induced

action �
g
X : X → X , �g

X (x) = x ◦ �
g−1

Y , on the state space manifold. This means that
the dynamical flow map and the symmetry group action commute,

�
g
X ◦ �t = �t ◦ �

g
X , ∀t ∈ R, ∀g ∈ G, (22)

or, in other words, if t �→ �t (x) is a solution starting at x ∈ X , then t �→ �t (�
g
X (x))

is a solution starting at �
g
X (x). Additional aspects of symmetry group actions and

equivariance are outlined in Appendix B. Our goal for this section is to examine the
implications of (22) to the properties of the operators KQ employed in VSA and their
eigenfunctions.

4.2.1 Dynamical Symmetries and VSA Eigenfunctions

We begin by considering the induced action �
g
� : � → � of G on the product space

�, defined as

�
g
� = �

g
X ⊗ �

g
Y .

This group action partitions � into orbits, defined for every ω ∈ � as the subsets
��(ω) ⊆ � with

��(ω) = {�g
�(ω) | g ∈ G}.

As with the subsets [ω]Q ⊆ � from (20) associated with delay-coordinate maps, the
G-orbits on � form equivalence classes, consisting of points connected by symmetry
group actions (as opposed to having common values under delay-coordinate maps).
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In general, these two sets of equivalence classes are unrelated, but in the presence of
dynamical symmetries, they are, in fact, compatible, as follows:

Proposition 1 If the equivariance property in (22) holds, then for every ω ∈ �, the
G-orbit ��(ω) is a subset of the [ω]Q equivalence class. As a result, the following
diagram commutes:

� �

BQ

�
g
�

πQ
πQ

Proof Let x(y) denote the value of the dynamical state x ∈ X ⊂ HY at y ∈ Y . It
follows from (22) that for every t ∈ R, g ∈ G, x ∈ X , and y ∈ G,

�t (�
g
X (x))(�g

Y (y)) = �
g
X (�t (x))(�g

Y (y)) = �
g−1

X (�
g
X (�t (x)))(y) = �t (x)(y).

Therefore, since �F is an inclusion (i.e., Fy(x) = x(y)), setting ω = (x, y) ∈ �, we
obtain

πQ(ω) = F̃Q(ω) =
(
Fy(x), Fy(�

−τ (x)), . . . , Fy(�
−(Q−1)τ (x))

)

=
(
x(y),�−τ (x)(y), . . . , �−(Q−1)τ (x)(y)

)

=
(
�
g
X (x)(�g

Y (y)),�−τ (�
g
X (x))(�g

Y (y)), . . . , �−(Q−1)τ (�
g
X (x))(�g

Y (y))
)

= F̃Q(�
g
�(ω)) = πQ(�

g
�(ω)). ��

We thus conclude from Proposition 1 and (21) that the kernel kQ is constant on
G-orbits,

kQ(�
g
�(ω), �

g′
�(ω′)) = kQ(ω, ω′), ∀ω,ω′ ∈ �, ∀g, g′ ∈ G, (23)

and therefore the eigenfunctions φ j corresponding to nonzero eigenvalues of KQ are
continuous functions with the invariance property

φ j ◦ �
g
� = φ j , ∀g ∈ G.

This is one of the key properties of VSA, which we interpret as factoring the symmetry
group from the recovered spatiotemporal patterns.

4.2.2 Spectral Characterization

In order to be able to say more about the implication of the results in Sect. 4.2.1 at
the level of operators, we now assume that the group action �

g
� preserves the measure

ρ. Then, there exists a unitary representation of G on H�, whose representatives are
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unitary operators Rg
� : H� → H� acting on functions f ∈ H� by composition with

�
g
�, i.e., R

g
� f = f ◦ �

g
�. Another group of unitary operators acting on H� consists

of the Koopman operators, Ũ t : H� → H�, which we define here via a trivial lift
of the Koopman operators Ut on HX , namely Ũ t = Ut ⊗ IHY , where IHY is the
identity operator on HY ; see Appendix A for further details. In fact, the map t �→ Ũ t

constitutes a unitary representation of the Abelian group of real numbers (playing the
role of time), equipped with addition as the group operation, much like g �→ Rg

� is a
unitary representation of the symmetry group G. The following theorem summarizes
the relationship between the symmetry group representatives and the Koopman and
kernel integral operators on H�.

Theorem 2 For every g ∈ G and t ∈ R, the operator Rg
� commutes with KQ and Ũ t .

Moreover, every function in the range of KQ is invariant under Rg
�, i.e., R

g
�KQ = KQ.

Proof The commutativity between Rg
� and Ũ t is a direct consequence of (22). To

verify the claims involving KQ , we use (23) and the fact that �
g
� preserves ρ to

compute

KQ f (ω) =
∫

�

kQ(ω, ω′) f (ω′) dρ(ω′)

=
∫

�

kQ(ω, �
g
�(ω′)) f (�g

�(ω′)) dρ(ω′)

=
∫

�

kQ(�
g−1

� (ω), ω′) f (�g
�(ω′)) dρ(ω′)

=
∫

�

kQ(�
g′
�(ω), ω′) f (�g

�(ω′)) dρ(ω′)

= Rg′
� KQRg

� f (ω),

where g and g′ are arbitrary, and the equalities hold for ρ-a.e. ω ∈ �. Setting g′ =
g−1 in the above, and acting on both sides by Rg

�, leads to Rg
�KQ = KQRg

�, i.e.,[Rg
�, KQ] = 0, as claimed. On the other hand, setting g to the identity element of G

leads to KQ = Rg′
� KQ , completing the proof of the theorem. ��

Because commuting operators have common eigenspaces, Theorem 2 establishes
the existence of two sets of common eigenspaces associated with the symmetry group,
namely common eigenspaces between Rg

� and KQ and those between Rg
� and Ũ t . In

general, these two families of eigenspaces are not compatible since Ũ t and KQ many
not commute, so for now we will focus on the common eigenspaces between Rg

� and
KQ which are accessible via VSA with finitely many delays. In particular, because
Rg

�KQ = KQ , and every eigenspace Wl of KQ at nonzero corresponding eigenvalue
λl is finite-dimensional (by compactness of that operator), we can conclude that theWl

are finite-dimensional subspaces onto which the action of Rg
� reduces to the identity.

In other words, the eigenspaces of KQ at nonzero corresponding eigenvalues are finite-
dimensional trivial representation spaces of G, and every VSA eigenfunction φ j is
also an eigenfunction of Rg

� at eigenvalue 1.
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At this point, one might naturally ask to what extent these properties are shared
in common between VSA and conventional eigendecomposition techniques based on
scalar kernels on X . In particular, in the measure-preserving setting for the product
measure ρ = μ × ν examined above, it must necessarily be the case that the group
actions �

g
X and �

g
Y separately preserve μ and ν, respectively, thus inducing unitary

operators Rg
X : HX → HX and Rg

Y : HY → HY , defined analogously to Rg
�. For a

variety of kernels k(X)
Q : X × X → R that only depend on observed data through inner

products and norms on HY (e.g., the covariance and Gaussian kernels in Sect. 2.2),
the unitarity of Rg

X and Rg
Y implies that the invariance property

k(X)
Q (�

g
X (x), �g

X (x ′)) = k(X)
Q (x, x ′) (24)

holds for all g ∈ G and x, x ′ ∈ X . Moreover, proceeding analogously to the proof
of Theorem 2, one can show that Rg

X and the integral operator K (X)
Q : HX → HX

associated with k(X)
Q commute, and thus have common eigenspaces W (X)

l , λ(X)
l �= 0,

which are finite-dimensional invariant subspaces under Rg
X . Projecting the observation

map �F onto W (X)
l as in (5), then yields a finite-dimensional subspace W (Y )

l ⊂ HY ,

which is invariant under Rg
Y , and thus W (X)

l ⊗ W (Y )
l ⊂ H� is invariant under Rg

�.

The fundamental difference between the representation of G on W (X)
l ⊗ W (Y )

l and
that on the Wl subspaces recovered by VSA, is that the former is generally not trivial,
i.e., in general, Rg

� does not reduce to the identity map on W (X)
l ⊗ W (Y )

l . A well-
known consequence of this is that the corresponding spatiotemporal patterns ϕ j ⊗ ψ j

from (1) become pure symmetry modes (e.g., Fourier modes in dynamical systems
with translation invariance), hampering their physical interpretability.

This difference betweenVSAand conventional eigendecomposition techniques can
be traced back to the fact that on X there is no analog of Proposition 1, relating equiva-
lence classes of points with respect to delay-coordinate maps and group orbits on that
space. Indeed, Proposition 1 plays an essential role in establishing the kernel invariance
property in (23), which is stronger than (24) as it allows action by two independent
group elements. Equation 23 is in turn necessary to determine that KQRg

� = KQ in
Theorem 2. In summary, these considerations highlight the importance of taking into
account the bundle structure of spatiotemporal data when dealing with systems with
dynamical symmetries.

4.3 Connection with Koopman Operators

4.3.1 Behavior of Kernel Integral Operators in the Infinite-Delay Limit

As discussed in Sect. 4.2, in general, the kernel integral operators KQ do not commute
with the Koopman operators Ũ t , and thus these families of operators do not share
common eigenspaces. Nevertheless, as we establish in this section, under the condi-
tions on kernels stated in Sect. 3.2, the sequence of operators KQ has an asymptotic
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commutativity property with Ũ t as Q → ∞, allowing the kernel integral operators
from VSA to approximate eigenspaces of Koopman operators.

In order to place our results in context, we begin by noting that an immediate con-
sequence of the bundle construction described in Sect. 4.1 is that if the support of the
measure ρ, denoted M ⊆ �, is connected as a topological space, then in the limit of no
delays, Q = 1, the image of M under the delay-coordinate map F̃1 is a closed interval
inR, and correspondingly the eigenfunctions φ j are pullbacks of orthogonal functions
on that interval under F̃1. In particular, because F̃1 is equivalent to the vector-valued
observation map, in the sense that �F(x)(y) = F̃1((x, y)), the eigenfunctions φ j of
the Q = 1 operator corresponding to nonzero eigenvalues are continuous functions,
constant on the level sets of the input signal. Therefore, in this limit, the recovered
eigenfunctions will generally have comparable complexity to the input data, and thus
be of limited utility for the purpose of decomposing complex signals into simpler pat-
terns. Nevertheless, besides the strict Q = 1 limit, theφ j should remain approximately
constant on the level sets of the input signal for moderately small values Q > 1, and
this property should be useful in a number of applications, such as signal denoising and
level set estimation [note that data-driven approximations to φ j become increasingly
robust to noise with increasing Q (Giannakis 2017)]. Mathematically, in this small-Q
regime VSA has some common aspects with nonlocal averaging techniques in image
processing (Buades et al. 2005).

Wenow focus on the behavior ofVSA in the infinite-delay limit,where the following
is found to hold.

Theorem 3 Under the conditions on the kernels kQ stated in Sect. 3.2, the associated
integral operators KQ converge as Q → ∞ in operator norm, and thus in spectrum,
to the integral operator K∞ associated with the kernel k∞. Moreover, K∞ commutes
with the Koopman operator Ũ t for all t ∈ R.

Proof Since kQ and k∞ all lie in H� ⊗ H�, KQ and K∞ are Hilbert–Schmidt integral
operators. As a result, the operator norm ‖KQ − K∞‖ is bounded above by ‖kQ −
k∞‖H�⊗H� , and the convergence of ‖KQ − K∞‖ to zero follows from the fact that
limQ→∞‖kQ −k∞‖H�⊗H� = 0, as stated in the conditions in Sect. 3.2. To verify that
K∞ and Ũ t commute, we proceed analogously to the proof of Theorem 2, using the
shift invariance of k∞ in (16) and the fact that �̃t = �t ⊗ IY preserves the measure
ρ to compute

K∞ f (ω) =
∫

�

k∞(ω, ω′) f (ω′) dρ(ω′)

=
∫

�

k∞(ω, �̃t (ω′)) f (�̃t (ω′)) dρ(ω′)

=
∫

�

k∞(�̃−t (ω), ω′) f (�̃t (ω′)) dρ(ω′)

= Ũ−t K∞Ũ t f (ω),
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where the equalities hold for ρ-a.e. ω ∈ �. Pre-multiplying these expressions by Ũ t

leads to

[Ũ t , K∞] = Ũ t K∞ − K∞Ũ t = 0,

as claimed. ��
Theorem 3 generalizes the results in Giannakis (2017) and Das and Giannakis

(2019), where analogous commutativity properties between Koopman and kernel inte-
gral operators were established for scalar-valued observables in HX . By virtue of the
commutativity between K∞ and Ũ t , at large numbers of delays Q, VSA decomposes
the signal into patterns with a coherent temporal evolution associated with intrinsic
frequencies of the dynamical system. In particular, being a compact operator, K∞ has
finite-dimensional eigenspaces, Wl , corresponding to nonzero eigenvalues, whereas
the eigenspaces of Ũ t are infinite-dimensional, yet are spanned by eigenfunctions
with a highly coherent (periodic) time evolution at the corresponding eigenfrequen-
cies α j ∈ R,

Ũ t z̃ j = eiα j t z̃ j , z̃ j ∈ H�;

see Appendix A.1 for further details. The commutativity between K∞ and Ũ t

allows us to identify finite-dimensional subspaces Wl of H� containing distinguished
observables which are simultaneous eigenfunctions of K∞ and Ũ t . As shown in
Appendix A.2, these eigenfunctions have the form

z̃ jl = z jl ⊗ ψ jl , j ∈ {1, . . . , dimWl}, (25)

where z jl is an eigenfunction of the Koopman operator Ut on HX at eigenfrequency
α jl , andψ jl a spatial pattern in HY . Note that here we use a two-index notation, z jl and
α jl , for Koopman eigenvalues and eigenfrequencies, respectively, to indicate the fact
that they are associated with theWl eigenspace of K∞. We therefore deduce from (25)
that in the infinite-delay limit, the spatiotemporal patterns recovered by VSA can be
factored into a separable, tensor product form similar to the conventional decompo-
sition in (1) based on scalar kernel algorithms. It is important to note, however, that
unlike (1), the spatial patterns ψ jl in (25) are not necessarily given by linear projec-
tions of the observation map onto the corresponding scalar Koopman eigenfunctions
z jl ∈ HX [called Koopman modes in the Koopman operator literature (Mezić 2005)].
In effect, taking into account the intrinsic structure of spatiotemporal data as vector-
valued observables allows VSA to recover more general spatial patterns than those
associated with linear projections of observed data.

Another consideration to keep in mind (which applies for many techniques uti-
lizing delay-coordinate maps besides VSA) is that K∞ can only recover patterns in
a subspace D� of H� associated with the point spectrum of the dynamical system
generating the data (i.e., the Koopman eigenfrequencies; see Appendix A.1). Dynam-
ical systems of sufficient complexity will exhibit a nontrivial subspaceD⊥

� associated
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with the continuous spectrum, which does not admit a basis associated with Koop-
man eigenfunctions. One can show via analogous arguments to Das and Giannakis
(2019) that D⊥

� is, in fact, contained in the nullspace of K∞, which is a potentially
infinite-dimensional space not accessible from data. Of course, in practice, one always
works with finitely many delays Q, which in principle allows recovery of patterns in
D⊥

� through eigenfunctions of KQ , and these patterns will not have an asymptotically
separable behavior as Q → ∞ analogous to (25).

In light of the above, we can conclude that increasing Q from small values will
impart changes to the topology of the base space BQ , and in particular the image of
the support M of ρ under πQ , but also the spectral properties of the operators KQ . On
the basis of classical delay-embedding theorems (Sauer et al. 1991), one would expect
the topology of πQ(M) to eventually stabilize, in the sense that for every spatial point
y ∈ Y the set Ay = A×{y} ⊆ M will map homeomorphically under πQ for Q greater
than a finite number (that is, topologically, πQ(Ay) will be a “copy” of A). However,
apart from special cases, KQ will continue changing all the way to the asymptotic
limit Q → ∞ where Theorem 3 holds.

Before closing this section, we also note that while VSA does not directly provide
estimates of Koopman eigenfrequencies, such estimates could be computed through
Galerkin approximation techniques utilizing the eigenspaces of KQ at large Q as
trial and test spaces, as done elsewhere (Giannakis et al. 2015; Giannakis 2017; Das
and Giannakis 2019) for scalar-valued Koopman eigenfunctions. A study of such
techniques in the context of vector-valued Koopman eigenfunctions (equivalently,
eigenfunctions in H�) is beyond the scope of this work, though it is expected that their
well-posedness and convergence properties should follow from fairly straightforward
modification of the approach in the references cited above.

4.3.2 Infinitely Many Delays with Dynamical Symmetries

As a final asymptotic limit of interest, we consider the limit Q → ∞ under the
assumption that a symmetry groupG acts on H� via unitary operators Rg

�, as described
in Sect. 4.2. In that case, the commutation relations

[Rg
�, Ũ t ] = [Rg

�, K∞] = [K∞, Ũ t ] = 0

imply that there exist finite-dimensional subspaces of H� spanned by simultaneous
eigenfunctions of Rg

�, Ũ
t , and K∞. We know from (25) that these eigenfunctions,

z̃ jl , are given by a tensor product between a Koopman eigenfunction z jl ∈ HX and a
spatial pattern ψ jl ∈ HY . It can further be shown (see Appendix B.2) that z jl and ψ jl

are eigenfunctions of the unitary operators Rg
X and Rg

Y , i.e.,

Rg
X z jl = γ

g
X , jl z jl , Rg

Yψ jl = γ
g
Y , jlψ jl , |γ g

X , jl | = |γ g
Y , jl | = 1,

and moreover the eigenvalues γ
g
X , jl and γ

g
Y , jl satisfy γ

g
X , jlγ

g
Y , jl = 1. In particular, we

have Rg
� = Rg

X ⊗ Rg
Y , and the quantity γ

g
�, jl = γ

g
X , jlγ

g
Y , jl is equal to the eigenvalue

of Rg
� corresponding to z̃ jl , which is equal to 1 by Theorem 2.
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In summary, every simultaneous eigenfunction z̃ jl of K∞, Ũ t , and Rg
� is charac-

terized by three eigenvalues, namely (i) a kernel eigenvalue λl associated with K∞;
(ii) a Koopman eigenfrequency α jl associated with Ũ t ; and (iii) a spatial symmetry
eigenvalue γ

g
Y , jl (which can be thought of as a “wavenumber” on Y ).

5 Data-Driven Approximation

In this section, we consider the problem of approximating the eigenvalues and eigen-
functions of the kernel integral operators employed in VSA from a finite dataset
consisting of time-ordered measurements of the vector-valued observable �F . Specif-
ically, we assume that available to us are measurements �F(x0), �F(x1), . . . , �F(xN−1)

taken along an (unknown) orbit xn = �nτ (x0) of the dynamics at the sampling inter-
val τ , starting from an initial state x0 ∈ X . We also consider that each scalar field
�F(xn) ∈ HY is sampled at a finite collection of distinct points y0, y1, . . . , yS−1 in
Y . We will exclude the trivial case that the support A of the invariant measure μ is
a fixed point by assumption. Given such data, and without assuming knowledge of
the underlying dynamical flow and/or state space geometry, our goal is to construct
a family of operators, whose eigenvalues and eigenfunctions converge, in a suitable
sense, to those of KQ , in an asymptotic limit of large data, N , S → ∞. In essence,
we seek to address a problem on spectral approximation of kernel integral operators
from an unstructured grid of points (xn, ys) in �.

5.1 Data-Driven Hilbert Spaces and Kernel Integral Operators

An immediate consequenceof the fact that the dynamics is unknown is that the invariant
measureμ defining theHilbert space HX = L2(X , μ) is also unknown (arguably, apart
from special cases,μwould be difficult to explicitly determine even if�t were known).
This means that instead of HX we only have access to a finite-dimensional Hilbert
space HX ,N = L2(X , μN ) associatedwith the samplingmeasureμN = ∑N−1

n=0 δxn/N
on the trajectory XN = {x0, . . . , xN−1}, where δxn is the Dirac probability measure
supported at xn ∈ X . Since μ is not supported at a fixed point, it follows by ergodicity
of �τ and continuity of t �→ �t that all points in XN are distinct for μ-a.e. starting
state x0. The analysis that follows will thus only treat the case of distinct sampled
states xn . In that case, HX ,N consists of equivalence classes of functions on X having
common values on the finite set XN ⊂ X , and is equipped with the inner product
〈 f , g〉HX ,N = ∑N−1

n=0 f ∗(xn)g(xn)/N . Because every such equivalence class f is
uniquely characterized by N complex numbers, f (x0), . . . , f (xN−1), corresponding
to the values of one of its representatives on XN , HX ,N is isomorphic toCN , equipped
with a normalized Euclidean inner product. Thus, we can represent every f ∈ HX ,N

by an N -dimensional column vector f = ( f (x0), . . . , f (xN−1))
� ∈ C

N , and every
linear operator T : HX ,N → HX ,N by an N × N matrix T such that T f is equal
to the column-vector representation of T f . In particular, associated with every scalar
kernel k : X × X → R is a kernel integral operator KN : HX ,N → HX ,N , acting on
f ∈ HX ,N according to the formula (cf. (4))
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KN f (xm) =
∫

X
k(xm, xn) dμN (xn) = 1

N

N−1∑

n=0

k(xm, xn) f (xn). (26)

This operator is represented by an N × N kernel matrix K = [k(xm, xn)/N ].
In the setting of spatiotemporal data analysis, one has to also take into account

the finite sampling of the spatial domain, replacing HY = L2(Y , ν) by the S-
dimensional Hilbert space HY ,S = L2(Y , νS) associated with a discrete measure
νS = ∑S−1

s=0 βs,Sδys . Here, the βs,S are positive quadrature weights such that given
any continuous function f : Y → C, the quantity

∑S−1
s=0 βs,S f (ys) approximates∫

Y f dν. For instance, if ν is a probability measure, and the sampling points ys are
equidistributed with respect to ν, a natural choice is uniform weights, βs,S = 1/S.
The space HY ,S is constructed analogously to HX ,N , and similarly we replace
H� = L2(�, ρ) by the NS-dimensional Hilbert space H�,NS = L2(�, ρNS), where
ρNS = μN × νS = ∑N−1

n=0
∑S−1

s=0 βs,Sδωns/N and ωns = (xn, ys). As a Hilbert
space, H�,NS is isomorphic to the space HNS = L2(X , μN ; HY ,N ) of vector-valued
observables, which is the data-driven analog of H , as well as the tensor product space
HX ,N ⊗ HY ,S (cf. Sect. 2.1). Given a kernel kQ : � × � → R satisfying the condi-
tions in Sect. 3.2, there is an associated integral operator KQ,NS : H�,NS → H�,NS ,
defined analogously to (26) by

KQ,NS f (ωmr ) =
∫

�

kQ(ωmr , ωns) dρNS(ωns), (27)

and represented by the (NS) × (NS) matrix K with elements

Kmr ,ns = kQ(ωmr , ωns)/(NS).

Solving the eigenvalue problem for KQ,NS (which is equivalent to the matrix eigen-
value problem for K ) leads to eigenvalues λNS, j ∈ R and eigenfunctions φNS, j ∈
H�,NS , the latter, represented by column vectors φ

j
∈ R

NS with elements equal

to φNS, j (ωns). We consider λNS, j and φNS, j as data-driven approximations to the
eigenvalues and eigenfunctions λ j and φ j , respectively, of the integral operator in (12)
associated with the kernel kQ . The convergence properties of this approximation will
be made precise in Sect. 5.2.

A similar data-driven approximation can be performed for operators based on the
Markov kernels pQ from Sect. 3.3, which is our preferred class of kernels for VSA.
However, in this case the kernels pQ,NS : �×� → R associatedwith the approximat-
ing operators PQ,NS on H�,NS are Markov-normalized with respect to the measure
ρNS , i.e.,

∫
�
pQ,NS(ω, ·) dρNS = 1, so they acquire a dependence on N and S. As

with the eigenvalues of PQ , the eigenvalues λNS, j of PQ,NS are real, and admit the
ordering 1 = λNS,0 > λNS,1 ≥ λNS,2 ≥ · · · ≥ λNS,NS−1. Moreover, there exists
a basis of H�,NS consisting of corresponding eigenvectors, φNS, j , as well as a dual
basis with elements φ′

NS, j such that 〈φ′
NS,i , φNS, j 〉H�,NS = δi j . Further details on this

construction and its convergence properties can be found in Appendix D.
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The φNS, j and φ′
NS, j have associated vector-valued functions �φNS, j and �φ′

NS, j ,
respectively, in HNS , which we employ to perform a decomposition of the observation
map �F analogous to (8), viz.

�F ≈
l−1∑

j=0

�FNS, j , �FNS, j = cNS, j �φNS, j , cNS, j = 〈�φ′
NS, j ,

�F〉HNS . (28)

Here, the reconstructed signal
∑l−1

j=0
�FNS, j converges to �F in the limit of l = NS− 1

in HNS norm; this is equivalent to pointwise convergence on the sampled dynamical
states xn ∈ X and spatial points in ys ∈ Y . Moreover, as we will see in Sect. 5.2, if all
eigenvalues λNS, j with j ≤ l − 1 are nonzero, �FNS,l has a continuous representative,
which can be evaluated at arbitrary x ∈ X and y ∈ Y . A pseudocode implementation of
the full VSApipeline for the class ofMarkov kernels pQ,NS is included inAppendix E.

5.2 Spectral Convergence

For a spectrally consistent data-driven approximation scheme, we would like to able
to establish that, as N and S increase, the sequence of eigenvalues λNS, j of KNS

converges to eigenvalue λ j of K , and for an eigenfunction φ j of K corresponding to
λ j there exists a sequence of eigenfunctions φNS, j of KNS converging to it. While
convergence of eigenvalues can be unambiguously understood in terms of conver-
gence of real numbers, in the setting of interest here a suitable notion of convergence
of eigenfunctions (or, more generally, eigenspaces) is not obvious, since φNS, j and
φ j lie in fundamentally different spaces. That is, there is no natural way of map-
ping equivalence classes of functions with respect to ρNS (i.e., elements of H�,NS)
to equivalence classes of functions with respect to ρ (i.e., elements of H�), allow-
ing one, e.g., to establish convergence of eigenfunctions in H� norm. This issue
is further complicated by the fact, that in many cases of interest, the support A
of the invariant measure μ is a non-smooth subset of X of zero Lebesgue mea-
sure (e.g., a fractal attractor), and the sampled states xn do not lie exactly on A
(as that would require starting states x0 drawn from a measure zero subset of X ,
which is not feasible experimentally). In fact, the issues outlined above are com-
mon to many other data-driven techniques for analysis of dynamical systems besides
VSA (e.g., POD and DMD), yet are oftentimes not explicitly addressed in the litera-
ture.

Here, followingDas andGiannakis (2019), we take advantage of the fact that, by the
assumed continuity of VSA kernels, every kernel integral operator KQ : H� → H�

from Sect. 3.2 can be also be viewed as an integral operator on the space C(V) of
continuous functions on any compact subset V ⊂ � containing the support of ρ.
This integral operator, denoted by K̃Q : C(V) → C(V), acts on continuous functions
through the same integral formula as (12), although the domains and codomains of KQ

and K̃Q are different. It is straightforward to verify that every eigenfunction φ j ∈ H�

of KQ at nonzero eigenvalue λ j has a unique continuous representative φ̃ j ∈ C(V),
given by
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φ̃ j (ω) = 1

λ j

∫

�

kQ(ω, ω′)φ j (ω
′) dρ(ω′), (29)

and φ̃ j is an eigenfunction of K̃Q at the same eigenvalue λ j . Assuming further that V
also contains the supports of themeasures ρNS for all N , S ≥ 1,we can define K̃Q,NS :
C(V) → C(V) analogously to (27). Then, every eigenfunction φNS, j ∈ H�,NS of
KQ,NS at nonzero corresponding eigenvalue λNS, j has a continuous representative
φ̃NS, j , with

φ̃NS, j (ω) = 1

λ j

∫

�

kQ(ω, ω′)φNS, j (ω
′) dρNS(ω

′), (30)

which is an eigenfunction of K̃Q,NS at the same eigenvalue λNS, j .
As is well known, the space C(V) equipped with the uniform norm ‖ f ‖C(V) =

maxω∈V | f (ω)| becomes a Banach space, and it can further be shown that K̃Q,NS and
K̃Q are compact operators on this space. In otherwords,C(V) canbeused as a universal
space to establish spectral convergence of K̃Q,NS to K̃Q , using approximation tech-
niques for compact operators on Banach spaces (Chatelin 2011). Von Luxburg et al.
(2008) use this approximation framework to establish convergence results for spectral
clustering techniques, and their approach can naturally be adapted to show that, under
natural assumptions, K̃Q,NS indeed converges in spectrum to K̃Q . In Appendix D, we
prove the following result:

Theorem 4 Suppose that V ⊆ � is a compact set containing the supports of ρ and
the family of measures ρNS, and assume that ρNS converges weakly to ρ, in the sense
that

lim
N ,S→∞

∫

�

f dρNS =
∫

�

f dρ, ∀ f ∈ C(�). (31)

Then, for every nonzero eigenvalue λ j of KQ, including multiplicities, there exist
positive integers N0, S0 such that the eigenvalues λNS, j of KQ,NS with N ≥ N0 and
S ≥ S0 converge, as N , S → ∞, to λ j . Moreover, for every eigenfunction φ j ∈ H� of
K corresponding to λ j , there exist eigenfunctions φNS, j of KQ,NS corresponding to
λNS, j , whose continuous representatives φ̃NS, j from (30) converge uniformly on V to
φ̃ j from (29). Moreover, analogous results hold for the eigenvalues and eigenfunctions
of the Markov operators PQ,NS and PQ.

A natural setting where the conditions stated in Theorem 4 are satisfied are
dynamical systems with compact absorbing sets and associated physical measures.
Specifically, for such systems we shall assume that there exists a Lebesgue measur-
able subset U of the state space manifold X , such that (i) U is forward-invariant, i.e.,
�t (U) ⊆ U for all t ≥ 0; (ii) the topological closure U is a compact set containing
the support of μ; (iii) U has positive Lebesgue measure in X ; and (iv) for any start-
ing state x0 ∈ U , the corresponding sampling measures μN converge weakly to μ,
i.e., limN→∞

∫
X f dμN = ∫

X f dμ for all f ∈ C(X). Invariant measures exhibiting

123



Journal of Nonlinear Science (2019) 29:2385–2445 2409

Properties (iii) and (iv) are known as physical measures (Young 2002); in such cases,
the set U is called a basin ofμ. Clearly, Properties (i)–(iv) are satisfied if�t : X → X
is a flow on a compact manifold with an ergodic invariant measure supported on
the whole of X , but are also satisfied in more general settings, such as certain dis-
sipative flows on noncompact manifolds [e.g., the Lorenz 63 system on X = R

3

(Lorenz 1963)]. Assuming further that the measures νS associated with the sampling
points y0, . . . , yS−1 and the corresponding quadrature weights β0,S, . . . , βS−1,S on
the spatial domain Y converge weakly to ν, i.e., limS→∞

∫
Y g dνS = ∫

Y g dν for every
g ∈ C(Y ), the conditions in Theorem 7 are met with V = U × Y , and the measures
ρNS constructed as described in Sect. 5.1 for any starting state x0 ∈ U . Under these
conditions, the data-driven spatiotemporal patterns φNS, j recovered by VSA converge
for an experimentally accessible set of initial states in X .

6 Application to the Kuramoto–SivashinskyModel

6.1 Overview of the Kuramoto SivashinskyModel

The KS model, originally introduced as a model for wave propagation in a dissipative
medium (Kuramoto and Tsuzuki 1976), or laminar flame propagation (Sivashinsky
1977), is one of the most widely studied dissipative PDE models displaying spa-
tiotemporal chaos. On a one-dimensional spatial domain Y = [0, L], L ≥ 0, the
governing evolution equation for the real-valued scalar field u(t, ·) : Y → R, t ≥ 0 is
given by

u̇ = −u∇u + �u − �2u, (32)

where ∇ and � = −∇2 are the derivative and (positive definite) Laplace operators on
Y , respectively. In what follows, we always work with periodic boundary conditions,
u(t, 0) = u(t, L), ∇u(t, 0) = ∇u(t, L), …, for all t ≥ 0.

The domain size parameter L controls the dynamical complexity of the system. At
small values of this parameter, the trivial solution u = 0 is globally asymptotically
stable, but as L increases, the system undergoes a sequence of bifurcations, marked by
the appearance of steady spatially periodic modes (fixed points), then traveling waves
(periodic orbits), and progressively more complicated solutions leading to chaotic
behavior for L � 4 × 2π (Greene and Kim 1988; Arbruster et al. 1989; Kevrekidis
et al. 1990; Cvitanović et al. 2009; Takeuchi et al. 2011).

A fundamental property of the KS system is that it possesses a global compact
attractor, embedded within a finite-dimensional inertial manifold of class Cr , r ≥ 1
(Foias et al. 1986, 1988; Constantin et al. 1989; Jolly et al. 1990; Chow et al. 1992;
Robinson 1994). That is, there exists a Cr submanifold X of the Hilbert space HY =
L2(Y , ν) with ν set to the Lebesgue measure, which is invariant under the dynamics,
and to which the solutions u(t, ·) are exponentially attracted. This means that after the
decay of initial transients, the effective degrees of freedom of the KS system, bounded
above by the dimension of X , is finite. Dimension estimates of inertial manifolds
(Robinson 1994; Jolly et al. 2000) and attractors (Tajima and Greenside 2002) of the
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KS system as a function of L indicate that the system exhibits extensive chaos, i.e.,
unbounded growth of the attractor dimension with L . As is well known, analogous
results to those outlined above are not available for many other important models of
complex spatiotemporal dynamics such as the Navier-Stokes equations.

For our purposes, the availability of strong theoretical results and rich spatiotempo-
ral dynamics makes the KSmodel particularly well-suited to test the VSA framework.
In our notation, an inertial manifold X of the KS system will act as the state space
manifold X , which is embedded in this case in HY . Moreover, the compact invariant
set Awill be a subset of the global attractor supporting an ergodic probability measure,
μ. On X , the dynamics is described by a Cr flow map �t : X → X , t ∈ R, as in
Sect. 2.1. In particular, for every initial condition x0 ∈ X , the orbit t �→ x(t) = �t (x0)
with t ≥ 0 is the unique solution u(t, ·) = x(t) to (32) with initial condition x0. While
in practice the initial data will likely not lie on X , the exponential tracking property
of the dynamics ensures that for any admissible initial condition u ∈ HY there exists
a trajectory x(t) on X to which the evolution starting from u converges exponentially
fast.

As stated in Sect. 5.2, for data-driven approximation purposes, we will formally
assume that the measureμ is physical. While, to our knowledge, there are no results in
the literature addressing the existence of physical measures (with appropriate modifi-
cations to account for the infinite state space dimension) specifically for theKS system,
recent results (Lu et al. 2013; Lian et al. 2016) on infinite-dimensional dynamical sys-
tems that include the class of dissipative systems in which the KS system belongs to
indicate that analogs of the assumptions made in Sect. 5.2 should hold.

Another important feature of the KS system is that it admits nontrivial symmetry
group actions on the spatial domain Y , which have played a central role in bifurcation
studies of this system (Greene and Kim 1988; Arbruster et al. 1989; Kevrekidis et al.
1990; Cvitanović et al. 2009). In particular, it is a direct consequence of the structure
of the governing equation (32) and the periodic boundary conditions that if u(x, t)
is a solution, then so are u(x + α, t) and u(−x, t), where α ∈ R. As discussed
in Sect. 4.2, this implies that the dynamics on the inertial manifold is equivariant
under the actions induced by the orthogonal group O(2) and the reflection group
on the circle. In particular, under the assumption that the O(2) action preserves μ,
the theoretical spatial patterns recovered by POD and comparable eigendecomposition
techniqueswould be linear combinations of finitelymany Fouriermodes (Holmes et al.
1996), which are arguably non-representative of the complex spatiotemporal patterns
generated by the KS system. We emphasize that the existence of symmetries does not
necessarily imply that they are inherited by data-driven operators for extracting spatial
and temporal patterns constructed from a single orbit of the dynamics, since, e.g., the
ergodic measure sampled by that orbit may not be invariant under the symmetry
group action. While studies have determined that this type of symmetry breaking
indeed occurs at certain dynamical regimes of the KS system (Aubry et al. 1993), the
presence of symmetries still dominates the leading spatial patterns recovered by POD
and comparable eigendecomposition techniques utilizing scalar-valued kernels.
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6.2 Analysis Datasets

In what follows, we present applications of VSA to data generated by the KSmodel in
the regimes L = 12, 18, 22, and 94. The former two are periodic regimes, exhibiting a
travelingwave associatedwith a stable limit cycle (L = 12), and an oscillatory solution
likely corresponding to a homoclinic trajectory associated with an unstable fixed point
(L = 18). See Figure 3.2 in Kevrekidis et al. (1990) for a bifurcation diagram that
includes these regimes, where α = L2/π2 is used as the bifurcation parameter; the
cases L = 12 and 18 correspond to α ≈ 14.6 and 32.3, respectively. The regimes
at L = 22 and 94 exhibit spatiotemporal chaos, with heteroclinic orbits within O(2)
families of fixed points playing an important dynamical role (Arbruster et al. 1989).
These two chaotic regimes have been investigated extensively in the literature (e.g.,
Cvitanović et al. 2009; Takeuchi et al. 2011).

We have integrated the KS model using the publicly available MATLAB code
accompanying Cvitanovic et al. (2016). This code is based on a Fourier pseudospectral
discretization and utilizes a fourth-order exponential time-differencing Runge-Kutta
integrator appropriate for stiff problems. Throughout, we use 65 Fourier modes (which
is equivalent to a uniform grid on Y with S = 65 gridpoints and uniform quadrature
weights, ws,S = 1/S), and a timestep of τ = 0.25 natural time units. Each of the
experiments described below starts from initial conditions given by setting the first
four Fourier coefficients to 0.6 and the remaining 61 to zero. Before collecting data
for analysis, we let the system equilibrate near its attractor for a time interval of 2500
natural time units.We compute spatiotemporal patterns using the eigenfunctionsφNS, j

of the data-driven Markov operator PQ,NS as described in Sect. 5. This operator is
constructed using the family of kernels kQ,NS in (47), in conjunctionwith the diffusion
maps normalization in (50) to obtain the Markov kernel pQ,NS . Note that kQ,NS and
pQ,NS are data-driven approximations of kQ and pQ from (19) and (44), respectively.
Further information on numerical implementation, including explicit formulas for the
kernels and pseudocode, can be found in Appendix E.

In the L = 12, 18, and 22 experiments, we also compare the VSA results with spa-
tiotemporal patterns computed via POD/PCA andNLSA (see Sect. 2 andAppendix F).
The POD and NLSA methods are applied to the same KS data as VSA, and in the
case of NLSA we use the same number of delays. The POD patterns are computed
via (1), whereas those from NLSA are obtained via a procedure originally introduced
in the context of SSA (Ghil et al. 2002). This procedure involves first reconstructing in
delay-coordinate space through (1) applied to the observation map F̃Q from (14), and
then projecting down to physical data space by averaging over consecutive delay win-
dows; see Appendix F for additional details. Empirically, this reconstruction approach
is known to be more adept at capturing propagating signals than direct reconstruction
of the observation map F via (1), though in the KS experiments discussed below the
results from the two-step NLSA/SSA reconstruction and direct reconstruction are very
similar.

Before presenting our results, we recall that the patterns from all three methods are
ordered in decreasing order of the corresponding eigenvalue of the kernel integral oper-
ator employed.We also note that since the vector-valued eigenfunctions fromVSA are
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directly interpretable as spatiotemporal patterns (see Sect. 3), and the VSA decompo-
sition from (8) is given by linear combinations of eigenfunctions with scalar-valued
coefficients c j , comparing VSA eigenfunctions with POD and NLSA spatiotemporal
patterns (which are formed by products of scalar-valued eigenfunctions of the corre-
sponding kernel integral operators with spatial patterns) is meaningful. However, our
depicted VSA eigenfunctions do not include multiplication by c j , and therefore these
comparisons are to bemade only up to scale. To assess the efficacy of the VSA patterns
in reconstructing the input signal, we compute their “fractional explained variances”,
|〈 �FNS, j , �F〉HNS |2/‖ �F‖2HNS

, where �FNS, j is the reconstructed pattern from (28), asso-
ciated with eigenfunction φNS, j . Similarly, in the case of NLSA and PODwe compute
|〈 �FNLSA, j , �F〉HNS |2/‖ �F‖2HNS

and |〈 �FPOD, j , �F〉HNS |2/‖ �F‖2HNS
, where �FNLSA, j and

�FPCA, j are the NLSA- and POD-reconstructed patterns [see (56) and (1)], respec-
tively. Note that because the spatiotemporal patterns from VSA and NLSA are not
necessarily orthogonal on HNS , the explained variances from individual eigenfunc-
tions are not necessarily additive, but they nevertheless provide a useful quantification
of the degree of correlation between a given eigenfunction and the input signal. For
simplicity, for the rest of this section we will drop the N and S subscripts from our
notation for φNS, j .

6.3 Results and Discussion

We begin by presenting VSA results obtained from a dataset of N = 1000 samples
at L = 22, using a small number of delays, Q = 15. According to Sect. 4.3.1, at this
small Q value, VSA is expected to yield eigenfunctions φ j , which are approximately
constant on the level sets of the input signal, and, with increasing j , capture smaller-
scale variations in the directions transverse to the level sets. As is evident in Fig. 1, the
leading three nonconstant eigenfunctions, φ1, φ2, and φ3, indeed display this behavior,
featuringwavenumbers 2, 3, and 4, respectively, in the directions transverse to the level
sets. This behavior continues for eigenfunctions φ j with higher j . The corresponding
fractional explained variances are 0.91, 5.2 × 10−4, and 0.016, respectively, which
demonstrates that even the one-term (l = 1) reconstruction via (8) captures most of
the signal variance.

Next, we consider a dataset at the traveling-wave regime, L = 12, also with N =
1000 samples, analyzed using Q = 150 delays. The raw data and representative VSA
eigenfunctions from this analysis, as well as NLSA and POD results, are displayed
in Fig. 2. In this traveling-wave regime, the level sets of the signal (Fig. 2a) coincide
with orbits on � under the action �

g
� associated with the O(2) symmetry group of the

KS model (see Sect. 4.2). As a result, by Proposition 1, we expect the eigenfunctions
φ j to be constant on the level sets of the input signal (i.e., the characteristics of
the traveling wave). Indeed, as is evident from Fig. 2b, the traveling wave that the
KS model develops at L = 12 is well captured by VSA eigenfunction φ2. This
eigenfunction forms a twofold degenerate pair with φ1 (not shown), which exhibits
a traveling wave similar to the one in φ2, but shifted by 90◦ in phase. The fractional
explained variances due to φ1 and φ2 are 0.45 and 0.32, respectively. In contrast, due
their tensor product structure, the POD reconstructions cannot represent a traveling
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Fig. 1 Raw data (a) and representative VSA eigenfunctions φ j (b–d) for the KS model with L = 22, using
Q = 15 delays. Notice that the patterns are approximately constant on the level sets of the raw data

mode through individual eigenfunctions. Instead, as shown in Fig. 2a, b, the two
leading POD reconstructions are products of spatial Fourier modes of wavenumber
2π/L with temporal sinusoids at the frequency of theKS travelingwave. The fractional
explained variances due to these patterns are 0.33 and 0.32, respectively. Turning now
to theNLSA results, the reconstruction based on the leading nonconstant eigenfunction
from this method (Fig. 2c) is able to capture the traveling-wave characteristic of the
signal due to the delay-averaging employed in the reconstruction procedure, despite
the method utilizing a scalar-valued kernel as POD. As in the case of VSA, the second
nonconstant NLSA pattern exhibits a traveling wave, 90◦ out-of-phase with the pattern
in Fig. 2c. The fractional explained variances due to the first and second nonconstant
NLSA eigenfunctions are both numerically equal to 0.40, at two significant figures.

Results fromVSA,NLSA, andPODapplied to our second periodic regime, L = 18,
are shown in Fig. 3. As with the L = 12 experiments, these results were obtained
from a dataset of N = 1000 samples, using Q = 150 delays in the case of VSA and
NLSA. As shown in Fig. 3a, the periodic solution at L = 18 has the structure of a
pair of standing oscillatory patterns, each pair comprising of a bimodal spatial profile
taking both positive and negative values. Based on results in the bifurcation study in
Kevrekidis et al. (1990), it is likely that this pattern is the outcome of a homoclinic
orbit associated with an unstable steady state with a wavenumber-4π/L spatial profile
[see, e.g., the α = 27.16 pattern in Kevrekidis et al. (1990, Figure 2.1)]. The leading
patterns fromVSAandNLSA, shown inFig. 3b, c, respectively, are consistentwith this
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Fig. 2 Raw data (a) and representative spatiotemporal patterns obtained through VSA (b), NLSA (c, d),
and POD (e, f) from the KS model with L = 12, using Q = 150 delays

behavior as they clearly capture a stationary pattern consistent with the unstable fixed
point expected in this regime. In addition to the stationary patterns, VSA and NLSA
both recover families of patterns featuring localized traveling waves, which exhibit an
apparent amplitude modulation from the stationary patterns. The steady and traveling
patterns from VSA (NLSA) explain 0.46 and 0.005 (0.26 and 0.002) of the signal
variance. It is worthwhile noting that Kevrekidis et al. (1990) report unstable traveling-
wave solutions in this dynamical regime, although they do not provide visualizations
of these solutions that one could compare Fig. 3 with. The two leading patterns from
POD (Fig. 3d, e) resemble superpositions of the stationary and traveling patterns from
VSA/NLSA, with a fractional explained variance of 0.75 and 0.005, respectively.

Next, we consider longer datasets with N = 10,000 samples (2500 natural time
units), at L = 22 and 94, analyzed using Q = 500 delays. The raw data and repre-
sentative VSA eigenfunctions from these analyses, as well as NLSA and POD results
for L = 22, are displayed in Figs. 4 and 5, respectively. Figure 6 highlights a portion
of the raw data and VSA eigenfunctions for L = 22 over an interval spanning 1000
time units.

At large Q, we expect the eigenfunctions from VSA to lie approximately in finite-
dimensional subspaces of the Hilbert space H of vector-valued observables associated
with the point spectrum of the Koopman operator, thus acquiring timescale separation.
This is clearly the case in the L = 22 eigenfunctions in Figs. 4 and 6, where φ1 is
seen to capture the evolution of wavenumber-4π/L structures, whereas φ10 and φ15
recover smaller-scale traveling waves embedded within the large-scale structures with
a general direction of propagation either to the right (φ10) or left (φ15). The fractional
explained variances associated with eigenfunctions φ1, φ10, and φ15 are 0.23, 0.047,
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Fig. 3 Raw data (a) and representative spatiotemporal patterns obtained through VSA (b), NLSA (c, d),
and POD (e, f) from the KS model with L = 18, using Q = 150 delays. Note that the NLSA eigenfunction
associated with the pattern in d is a constant (as it is the leading eigenfunction of an ergodic Markov
operator; see Appendix F), but nevertheless produces a pattern with nonconstant spatial structure since the
signal in a has spatially nonconstant time mean

and 0.017, respectively. As expected, these values are smaller than the 0.91 value due to
eigenfunction φ1 for Q = 15 in Fig. 1b, but are still fairly high despite the intermittent
nature of the input signal. Ranked with respect to fractional explained variance, φ1,
φ10, and φ15 are the first, fourth, and fifth among the Q = 200 VSA eigenfunctions.
Qualitatively, the spatiotemporal evolution of eigenfunction φ2 in Figs. 4b and 6b is
consistent with heteroclinic connections within an O(2) family of unstable equilibria
at L = 22 (Arbruster et al. 1989). Observe, in particular, that eigenfunction φ2 at
L = 22 resembles a perturbed version of φ2 at L = 18 (Fig. 3b) associated with
homoclinic dynamics. Similarly, the traveling-wave eigenfunctions φ10 and φ15 at
L = 22 (Figs. 4c, d and 6c, d) loosely resemble perturbed versions of φ10 at L = 18
(Fig. 3c).

In contrast, while the patterns from NLSA successfully separate the slow and fast
timescales in the input signal [as expected theoretically at large Q (Giannakis 2017;
Das and Giannakis 2019)], they are significantly less efficient in capturing its salient
spatial features. Consider, for example, the leading two NLSA patterns shown in
Fig. 4e, f. These patterns are clearly associated with the O(2) family of wavenumber-
4π/L structures in the raw data, but because they have a low rank, they are unable
to represent the intermittent spatial translations of these patterns produced by chaotic
dynamics in this regime. Their fractional explained variances are 0.13 and 0.15, respec-
tively. Qualitatively, it appears that the NLSA patterns in Fig. 4e, f isolate periods
during which the wavenumber-4π/L structures are quasistationary and translated rel-
ative to each other by L/4. In other words, it appears that NLSA captures the unstable
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Fig. 4 Raw data (a) and representative spatiotemporal patterns obtained through VSA (b–d), NLSA (e–h),
and POD (i, j) from the KS model with L = 22, using Q = 500 delays. The VSA pattern in b captures an
O(2) family of unstable equilibria through an individual eigenfunction. Notice themanifestly non-separable
character of this pattern with respect to the spatial and temporal coordinates. The patterns in c, d capture
smaller-scale waves embedded within the structures in b. The NLSA patterns in e–h exhibit a low-rank,
separable behavior in space and time, and while they appear to capture the characteristic timescales of the
large- (e, f) and small-scale structures (g, h), they are not representative of the intermittent character of
the signal in space. The POD patterns in i, j exhibit low-rank structure as the NLSA patterns, but also mix
timescales

equilibria that the system visits in the analysis time period through individual patterns,
but does not adequately represent the transitory behavior associated with heteroclinic
orbits connecting this family of equilibria.Moreover, due to the presence of the contin-
uous O(2) symmetry, a complete description of the spatiotemporal signal associated
with the wavenumber-4π/L structures would require several modes. In contrast, VSA
effectively captures this dynamics through a small set of leading eigenfunctions.

As can be seen in Fig. 4i, j, POD would also require several modes to capture
the wavenumber-4π/L unstable equilibria, but in this case the recovered patterns
also exhibit an appreciable amount of mixing of the slow timescale characteristic of
this family with faster timescales. Modulo this high-frequency mixing, the first POD
pattern (Fig. 4i) appears to resemble the first NLSA pattern (Fig. 4f). The fractional
explained variance of the leading two POD patterns, amounting to 0.23 and 0.22,
respectively, is higher than the corresponding variances from NLSA, but this is not
too surprising given their additional frequency content.

To summarize, the results at L = 22 demonstrate that NLSA improves upon POD
in that it achieves timescale separation through the use of delay-coordinate maps,
and VSA further improves upon NLSA in that it quotients out the O(2) symme-
try of the system, allowing efficient representation of intermittent space-time signals
associated with heteroclinic dynamics in the presence of this symmetry. In separate
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Fig. 5 As in Fig. 4a–d, but for the KS system with L = 94. b Vector-valued eigenfunctions capturing an
O(2) family of unstable equilibria. c–f Traveling-wave patterns

calculations, we have verified that the L = 22 VSA patterns are robust under cor-
ruption of the data by i.i.d. Gaussian noise of variance up to 40% of the raw signal
variance.

Turning now to the L = 94 experiments, it is evident from Fig. 5a that the dynami-
cal complexity in this regime is markedly higher than for L = 22, as multiple traveling
and quasistationary patterns can now be accommodated in the domain, resulting in
a spatiotemporal signal with high intermittency in both space and time. Despite this
complexity, the recovered eigenfunctions (Fig. 5b–f) decompose the signal into a
pattern φ1 that captures the evolution of unstable fixed points and the heteroclinic
connections between them, and other patterns, φ3, φ5, φ8, and φ11, dominated by
traveling waves. The fractional explained variances associated with these patterns are
6.0 × 10−3 (φ1), 0.020 (φ3), 0.040 (φ5), 0.067 (φ8), and 0.066 (φ11); that is, in this
regime the traveling-wave patterns are dominant in terms of explained variance. In
general, the variance explained by individual eigenfunctions at L = 94 is smaller
than those identified for L = 22, consistent with the higher dynamical complexity
of the former regime. It is worthwhile noting that L = 94 eigenfunction φ1 bears
some qualitative similarities with the covariant Lyapunov vector (CLV) patterns iden-
tified at a nearby (L = 96) KS regime in Takeuchi et al. (2011) (see Fig. 2 of that
reference). Other VSA patterns also display qualitatively similar features to φ1 and
to CLVs. While such similarities are intriguing, they should be interpreted with cau-
tion as the existence of connections between VSA and CLV techniques is an open
question.
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Fig. 6 As in Fig. 4a–d, but for the time interval [1625, 2625], highlighting the features of the small-scale
waves in c, d

7 Conclusions

We have presented a method for extracting spatiotemporal patterns from complex
dynamical systems, which combines aspects of the theory of operator-valued kernels
for machine learning with delay-coordinate maps of dynamical systems. A key ele-
ment of this approach, called vector-valued spectral analysis (VSA), is that it operates
directly on spaces of vector-valued observables appropriate for dynamical systems
generating spatially extended patterns. This allows the extraction of spatiotemporal
patterns through eigenfunctions of kernel integral operators with far more general
structure than those captured by pairs of temporal and spatial modes in conven-
tional eigendecomposition techniques utilizing scalar-valued kernels. In particular,
our approach enables efficient and physically meaningful decomposition of signals
with intermittency in both space and time, while naturally factoring out dynamical
symmetries present in the data. By incorporating delay-coordinate maps, the recov-
ered patterns lie, in the asymptotic limit of infinitelymany delays, in finite-dimensional
invariant subspaces of observables associated with the point spectrum of the Koopman
operator of the system. This endows these patterns with high dynamical significance
and the ability to decompose multiscale signals into distinct coherent modes. We
demonstrated with applications to the KS model in periodic and chaotic regimes that
VSA recovers dynamically significant patterns, such as traveling waves and unstable
steady states. The method also provides representations of intermittent patterns, such
as heteroclinic orbits associated with translation families of unstable fixed points and
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traveling waves, with significantly higher skill than comparable eigendecomposition
techniques operating on spaces of scalar-valued observables.

As future research directions, it would be fruitful to explore applications of VSA
to systems with non-Abelian group actions on the spatial domain; e.g., geophysical
systems on the 2-sphere and molecular systems observed through scattering, both
admitting SO(3) group actions. Moreover, the present formulation is based on delay-
coordinatemaps performed pointwise in the spatial domain, but one could also imagine
variants of the approach utilizing patches, as frequently done in image processing.
Another avenue of future research would be to use the eigenfunctions recovered by
VSA as basis functions to represent the action of the Koopman operator on vector-
valued observables, as done in Berry et al. (2015) and Zhao and Giannakis (2016) in
the case of scalar-valued observables. Such data-driven representations of Koopman
operators could be employed in spatiotemporal predictive models, with potentially
improved skill due to the natural incorporation of dynamical symmetries.We anticipate
the current VSA framework, as well possible future extensions, to be applicable across
a broad range of disciplines dealing with complex spatiotemporal data, including
climate dynamics (Wang et al. 2019) and neuroscience (Marrouch et al. 2018).
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A Koopman Operators on Scalar- and Vector-Valued Observables

A.1 Basic Properties of Koopman Operators and Their Eigenfunctions

In this appendix, we outline some of the basic properties of the Koopman operator
Ut acting on scalar-valued observables in HX and its lift Ũ t acting on scalar-valued
observables in H� (and, by the isomorphism H 
 H�, on vector-valued observables
in H ). Additional details on these topics can be found in one of the many references
in the literature on ergodic theory, e.g., Sinai (2000), Budisić et al. (2012) and Eisner
et al. (2015).

We begin by noting that for the class of C1 measure-preserving dynamical systems
on manifolds studied here (see Sect. 2.1), the group U = {Ut }t∈R of Koopman oper-
ators is a strongly continuous unitary group. This means that for every f ∈ HX , the
map t �→ Ut f is continuous with respect to the HX norm at every t ∈ R. By Stone’s
theorem, strong continuity of U implies that there exists an unbounded, skew-adjoint
operator V : D(V ) → HX with dense domain D(V ) ⊂ HX , called the generator of
U , such that Ut = etV . This operator completely characterizes Koopman group. Its
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action on an observable f ∈ D(V ) is given by

V f = lim
t→0

f ◦ �t − f

t
,

where the limit is taken with respect to the HX norm. If f is a differentiable function
in C1(X), then V f = v( f ), where v is the vector field of the dynamics.

A distinguished class of observables in HX are the eigenfunctions of the generator
of the Koopman group. Every such eigenfunction, z j , satisfies the equation

V z j = iα j z j ,

where α j is a real frequency, intrinsic to the dynamical system. In the presence of
ergodicity (assumed here), all eigenvalues of V are simple, and eigenfunctions corre-
sponding to distinct eigenvalues are orthogonal. Moreover, the eigenfunctions can be
normalized so that |z j (x)| = 1 for μ-almost every (a.e.) x ∈ X . That is, Koopman
eigenfunctions of ergodic dynamical systems can be normalized to take values on the
unit circle in the complex plane, much like the functions eiωt in Fourier analysis.

Every eigenfunction z j of V at eigenvalue iα j is also an eigenfunction of Ut ,
corresponding to the eigenvalue �t

j = eiα j t . This means that along an orbit of the
dynamical system, z j evolves purely by multiplication by a periodic phase factor, viz.

Ut z j (x) = z j (�
t (x)) = eiα j t z j (x),

where the equality holds for μ-a.e. x ∈ X . This property makes Koopman eigen-
functions highly predictable observables, which warrant identification from data. In
general, the evolution of any observable f lying in the closed subspaceDX = span{z j }
of HX spanned by Koopman eigenfunctions has the closed-form expansion

Ut f =
∑

j

eiα j t c j z j , c j = 〈z j , f 〉HX . (33)

This shows that the evolution of observables inDX can be characterized as a countable
sum of Koopman eigenfunctions with time-periodic phase factors.

Koopman eigenvalues and eigenfunctions of ergodic systems also have an important
group property, namely, if z j and zk are eigenfunctions of V at eigenvalue iα j and iαk ,
respectively, then the product z j zk is also an eigenfunction, corresponding to the eigen-
value i(α j +αk). Thus, the eigenvalues and eigenfunctions of the Koopman generator
form groups, with addition of complex numbers and multiplication of complex-valued
functions acting as the group operations, respectively. If, in addition, these groups are
finitely generated, there exists a collection of rationally-independent eigenfrequencies
α̃1, . . . , α̃l , such that every eigenfrequency has the form α j = ∑l

k=1 jk α̃k , where
j = ( j1, . . . , jl) is a vector of integers. Moreover, the Koopman eigenfunction cor-
responding to eigenfrequency α j is given by z j = z̃ j11 · · · z̃ jll , where z̃1, . . . , z̃l are
the eigenfunctions corresponding to α̃1, . . . , α̃l , respectively. It follows from these
facts in conjunction with (33) that the evolution of every observable in DX can then
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be determined given knowledge of finitely many Koopman eigenfunctions and their
corresponding eigenfrequencies.

Yet, despite these attractive properties, in typical systems, not every observable will
admit a Koopman eigenfunction expansion as in (33), that is, DX will generally be a
strict subspace of HX . In such cases, we have the orthogonal decomposition

HX = DX ⊕ D⊥
X , (34)

which is invariant under the action ofUt for all t ∈ R. For observables in the orthogonal
complement D⊥

X of DX dynamical evolution is not determined by (33), but rather by
a spectral expansion involving a continuous spectrum (intuitively, an uncountable set
of frequencies). This evolution exhibits the characteristic behaviors associated with
chaotic dynamics, such as decay of temporal correlations. In particular, it can be
shown that for any f ∈ D⊥

X and g ∈ HX , the quantity
∫ t
0 |〈g,Us f 〉HX | ds/t vanishes

as |t | → ∞.
We now turn to the unitary group Ũ = {Ũ t }t∈R associated with the Koopman

operators Ũ t on H�. As stated in Sect. 4.2.2, these operators are obtained by a trivial lift
Ũ t = Ut⊗IHY of theKoopmanoperators on HX ; equivalently,we have Ũ t f = f ◦�̃t ,
where �̃t = �t ⊗ IY , and IY is the identity map on Y . The group Ũ is generated by
the densely-defined, skew-adjoint operator Ṽ : D(Ṽ ) → H�,

Ṽ f = lim
t→0

f ◦ �̃t − f

t
, (35)

which is an extension of V ⊗ IHY . Moreover, analogously to the decomposition in (34),
there exists an orthogonal decomposition

H� = D� ⊕ D⊥
�, D� = DX ⊗ HY , D⊥

� = D⊥
X ⊗ HY ,

which is invariant under Ũ t for all t ∈ R. It is straightforward to verify that the
eigenvalues of Ũ t are identical to those ofUt , i.e., �t = eαt for some eigenfrequency
α ∈ R, and every eigenfunction z̃ at eigenvalue �t has the form

z̃ = z ⊗ ψ, (36)

where z ∈ HX is an eigenfunction ofUt at the same eigenvalue (unique up to normal-
ization by ergodicity), and ψ an arbitrary spatial pattern in HY .

A.2 Common Eigenfunctions with Kernel Integral Operators

We now examine the properties of common eigenfunctions between the Koopman
operators Ũ t on H� and the kernel integral operators K∞ from Theorem 3 with which
they commute. In particular, let z̃ ∈ H� be an eigenfunction of Ũ t at eigenvalue �t .
Then,

Ũ t K∞ z̃ = K∞Ũ t z̃ = �t K∞ z̃, (37)
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which implies that K∞z is also an eigenfunction of Ũ t at the same eigenvalue. As
stated in Appendix A.1, the eigenvalues of Ũ t are identical to those of the Koopman
operatorUt on HA. However, unlike those ofUt , the eigenvalues of Ũ t are not simple,
and we cannot conclude that K∞ z̃ = λz̃ for some number λ, i.e., it is not necessarily
the case that z̃ is also an eigenfunction of K∞ (despite the fact that (37) implies
that every eigenspace of Ũ t is invariant under K∞). In fact, the eigenspaces of Ũ t

are infinite-dimensional, and there is no a priori distinguished set of spatiotemporal
patterns in each eigenspace.

To identify a distinguished set of spatiotemporal patterns associated with Koopman
eigenfunctions, we take advantage of the fact that K∞ is a compact operator with
finite-dimensional eigenspaces corresponding to nonzero eigenvalues. For each such
eigenspace, there exists an orthonormal basis consisting of simultaneous eigenfunc-
tions of K∞ and Ũ t . To verify this explicitly, let Wl ⊂ H� be the eigenspace of K∞
corresponding to eigenvalue λl �= 0, and f an arbitrary element of Wl . Since

K∞Ũ t f = Ũ t K∞ f = λl Ũ
t f ,

we can conclude that Ũ t f ∈ Wl , i.e., thatWl is a finite-dimensional invariant subspace
of H� under Ũ t . Choosing an orthonormal basis {φ1l , . . . , φmll} for this space, where
ml = dimWl , we can expand f = ∑ml

j=1 c jφ jl with c j = 〈φ jl , f 〉H� , and compute

Ũ t f =
ml∑

i, j=1

φil Ũi j c j , Ũi j = 〈φil , Ũ
tφ jl〉H�. (38)

By unitarity of Ũ t , theml×ml matrixUwith elements Ũi j is unitary, and therefore uni-
tarily diagonalizable. Let then {v j }ml

j=1 with v j = (v1 j , . . . , vml j )
� be an orthonormal

basis of Cml consisting of eigenvectors of U, and �t
1l , . . . , �

t
ml l

be the correspond-
ing eigenvalues. It is a direct consequence of (38) that the set {z̃1l , . . . , z̃ml l} with
z̃ jl = ∑ml

k=1 vk jφkl is an orthonormal basis of Wl consisting of Koopman eigenfunc-
tions corresponding to the eigenvalues �t

jl , which must thus be given by � jl = eiα jl t

for some Koopman eigenfrequency α jl ∈ R. Since every element of Wl is an eigen-
function of K∞, we conclude that the z̃ jl are simultaneous eigenfunctions of Ũ t and
K∞.

B Symmetry Group Actions

B.1 Basic Definitions

Let G be a topological group with a left action on the spatial domain Y . By that, we
mean that there exists a map �Y : G × Y → Y with the following properties:

1. �Y is continuous, and �Y (g, ·) : Y → Y is a homeomorphism for all g ∈ G.
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2. �Y is compatible with the group structure ofG, that is, for all y ∈ Y and g, g′ ∈ G,

�Y (gg′, y) = �Y (g, �Y (g′, y)),

and �Y (e, y) = y, where e is the identity element of G.

Given g ∈ G, we abbreviate the map �Y (g, ·) : Y → Y by �
g
Y . Note that the

(continuous) inverse of this map is given by �
g−1

Y .
Assume now that �

g
Y preserves null sets with respect to the measure ν. Then, the

action of G on Y induces a continuous left action on the Hilbert space HY such that

the action map �
g
HY

: HY → HY sends u ∈ HY to u ◦ �
g−1

Y . Assuming, further, that
the state space manifold X is a subset of HY (as done in Sect. 4.2), G is considered
to be a dynamical symmetry group if the following hold for all g ∈ G (e.g., Holmes
et al. 1996):

1. X ⊂ HY is invariant under �
g
HY

. Thus, we obtain a left group action �
g
X on X by

restriction of �HY .
2. �

g
X is differentiable for all g ∈ G, and the vector field v generating the dynamics

�t : X → X is invariant under the pushforward map �
g
X∗ associated with �

g
X .

That is, for every g ∈ G, x ∈ X , and f ∈ C1(X), we have

�
g
X∗(v|x )( f ) = v|�g

X (x)( f ),

or, equivalently,

v|x ( f ◦ �
g
X ) = v|�g

X (x)( f ).

Note that the well-definition of �
g
X∗ as a map on vector fields relies on the fact that

�
g
X is a diffeomorphism (which is in turn a consequence of the fact that �

g
X is a

differentiable group action).

B.2 Common Eigenfunctions with Koopman Operators

In this section, we examine the structure of common eigenfunctions between the
Koopman operator Ũ t = Ut ⊗ IHY on H� and the unitary representatives Rg

� =
Rg
X ⊗ Rg

Y of the symmetry group G from Sect. 4.2.2, under the assumption that Ut

commutes with Rg
X (which is equivalent to Ũ t commuting with Rg

�). As noted in
Appendix A.1, every eigenfunction z̃ of Ũ t has the form z̃ = z ⊗ ψ , where z is an
eigenfunction of Ut corresponding to a simple eigenvalue �t , and ψ a spatial pattern
in HY . As result, because Ut and Rg

X commute, we have

Ut Rg
X z = Rg

XU
t z = �t Rg

X z, (39)

which shows that Rg
X z lies in the same Koopman eigenspace as z. Thus, since all

eigenspaces of Ut are one dimensional, and Rg
X is unitary, there exists a complex
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number γ
g
X with |γ g

X | = 1 such that

Rg
X z = γ

g
X z; (40)

in other words, z is an eigenfunction of Rg
X at eigenvalue γ

g
X . Note that the γ

g
X are not

necessarily simple eigenvalues.
Next, the commutativity between Ũ t and Rg

�, in conjunction with (40), leads to

Rg
� z̃ = (Rg

X ⊗ Rg
Y )(z ⊗ ψ) = (γ

g
X z) ⊗ (Rg

Yψ),

which implies that z̃ is an eigenfunction of Rg
� if and only if ψ is an eigenfunction of

Rg
Y . The Rg

� eigenvalue corresponding to z̃ is then given by

γ
g
� = γ

g
Y /γ

g
X ,

where γ
g
Y is the Rg

Y eigenvalue corresponding to ψ . Further, because Rg
X is unitary,

we have

γ
g
� = γ

g
Y γ

g∗
X = γ

g
Y γ

g−1

X .

We have thus obtained a characterization of the common eigenspaces of Ũ t and Rg
�.

C Construction and Properties of VSA Kernels

In this appendix, we describe in detail some aspects of the VSA kernel construc-
tion, namely the choice of distance scaling function for the kernels kQ in (19)
(Appendix C.1), and the normalization procedure to obtain the Markov kernels pQ
(Appendix C.2). We also establish some results on the behavior of these kernels in the
limit of infinite delays, Q → ∞ (Appendix C.3). Throughout, M = A × Y ⊆ � will
denote the compact support of the measure ρ.

C.1 Choice of Scaling Function

The distance scaling function aQ is based on the corresponding function introduced
in Giannakis (2017), which has dependencies on both the local sampling density and
time tendency of the data, as follows.

C.1.1 Local Density Function

Let k̄Q : � × � → R denote the unscaled Gaussian kernel from (18), and K̄Q :
H� → H� the corresponding integral operator. Following Berry and Harlim (2016),
we define the function

σQ = K̄Q1� =
∫

�

k̄Q(·, ω) dρ(ω), (41)
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which is continuous, strictly positive, and bounded away from zero on compact sets.
It is a standard result from the theory of kernel density estimation that if M is a
smooth, m-dimensional Riemannian manifold, and the delay-coordinate observation
map F̃Q : � → R

Q from (14) is an embedding of M into R
Q , then, as ε → 0,

the quantity σ̄Q(ω) = σQ(ω)/(2πεm/2) converges for every ω ∈ M to the density
dρ
dvol (ω) of the measure ρ with respect to the Riemannian measure vol on M induced
by the embedding. Moreover, σ̄Q has physical dimension (units) of length−m , and as

a result σ̄
−1/m
Q assigns a characteristic length at each point in M . Here, we do not

assume that M has the structure of a smooth manifold, so we will not be taking ε → 0
limits. However, due to the exponential decay of k̄Q(ω, ω′) with respect to distance in
delay-coordinate space RQ , we can still interpret σQ from (41) as a local density-like
function.

C.1.2 Phase Space Velocity

Throughout this section, we will assume that the pointwise observation map Fy :
X → R is of class C2 for every y ∈ Y , which is equivalent to assuming that the
vector-valued observation map �F lies in the space C2(X;C(Y )). This assumption is
natural for a wide class of observation maps encountered in applications. In particular,
it implies that the “energy” of the signal, expressed in terms of the Koopman generator
Ṽ from Appendix A as

∫
�
|Ṽ ( �F)|2 dρ is finite. Under this condition, the phase space

speed function ξQ : � → C, defined as

ξ2Q(x, y) = 1

Q

Q−1∑

q=0

ζ 2(�−qτ (x), y), x ∈ X , y ∈ Y , (42)

where

ζ(x, y) = |Ṽ Fy(x)| =
∣∣∣∣limt→0

Fy(�
t (x)) − Fy(x)

t

∣∣∣∣ ,

is continuously differentiable with respect to x . Note that ξQ(x, y) may vanish, e.g.,
if y lies in the boundary of Y and �F obeys time-independent boundary conditions.
In the special case Q = 1, ξQ will also vanish at local maxima/minima of the signal
with respect to time. Phase space speed functions analogous to ξQ were previously
employed in NLSA (Giannakis and Majda 2012) and related kernel (Giannakis 2015)
and Koopman operator techniques (Giannakis 2017). For reasons that will be made
clear below, we will adopt the approach introduced in Giannakis (2017, Section 6),
which utilizes ξQ in such a way so that if ξQ(ω) is zero, then aQ(ω) vanishes too.

C.1.3 Scaling Function

With the density and phase space speed functions from Appendices C.1.1 and C.1.2,
respectively, we define the continuous scaling function
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aQ = (
σQξQ

)γ
, (43)

where γ is a positive parameter. This definition is motivated by Giannakis (2017),
where it was shown that an analogous scaling function employed in scalar-valued
kernels for ergodic dynamical systems on compact Riemannian manifolds can be
interpreted, for an appropriate choice of γ and in a suitable limit of vanishing kernel
bandwidth parameter ε, as a conformal change of Riemannian metric that depends on
the vector field of the dynamics.More specifically, aMarkov operator analogous to PQ
from Sect. 3.3 was shown to approximate the heat semigroup generated by a Laplace–
Beltrami operator associated with this conformally transformed metric. In Giannakis
(2017), this change of geometry was associated with a rescaling of the vector field
of the dynamics [i.e., a time change of the dynamical system (Katok and Thouvenot
2006)] that was found to significantly improve the conditioning of kernel algorithms
if the system has fixed points. In particular, for a dataset consisting of finitely many
samples, the sampling of the state space manifold near a fixed point will become
highly anisotropic, as most of the near neighbors of datapoints close to the fixed point
will lie along the sampled orbit of the dynamics (which is a one-dimensional set),
and the directions transverse to the orbit will be comparatively undersampled. The
latter is because the phase speed of the system becomes arbitrarily small near a fixed
point, meaning that most geometrical nearest neighbors of a data point in its vicinity
will lie on a single orbit. Choosing the scaling function (analogous to aQ) such that
it vanishes at the fixed point is tantamount to increasing the bandwidth 1/aQ of the
kernel by arbitrarily large amounts, thus improving sampling in directions transverse
to the orbit.

While the arguments above are strictly valid only in the smooth manifold case (as
they rely on ε → 0 limits), aQ in (43) should behave similarly in regions of the product
space � where the rate-of-change of the observed data [measured by ξQ in (42)] is
small. As stated in Sect. 3.1, ξQ can vanish or be small not only at fixed points of the
dynamics on X , but also at points y ∈ Y where the observable Fy is constant or nearly
constant (e.g., near domain boundaries).

What remains for a complete specification of aQ is to set the exponent parameter γ .
According to Giannakis (2017), if M is anm-dimensional manifold embedded inRQ ,
the Riemannian metric associated with PQ for the choice γ = 1/m has compatible
volume form with the invariant measure of the dynamics, in the sense that the cor-
responding density dρ

dvol is a constant. Moreover, the induced metric is also invariant
under a class of conformal changes of observation map FQ . In practice, M will not be
a smooth manifold, but we can still assign to it an effective dimension by examining
the dependence of the kernel integrals κ = ∫

�×�
k̄Q dρ × dρ (or the corresponding

data-driven quantity κNS = ∫
�×�

k̄Q dρNS × dρNS , where the measures ρNS are
defined in Sect. 5) as a function of the bandwidth parameter ε. As shown in Coifman
et al. (2008) and Berry and Harlim (2016), d log κ/d log ε can be interpreted as an
effective dimension at a scale associated by the bandwidth parameter ε. This moti-
vates an automatic bandwidth tuning procedure where ε is chosen as the maximizer of
that function, and the corresponding maximum value m̂ provides an estimate of M’s
dimension.
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Here, we nominally set γ = 1/m̂ with m̂ determined via the method just described.
The results presented in Sect. 6 are not too sensitive with respect to changes of γ

around that value. In fact, for the systems studied here, the results remain qualitatively
robust even if the velocity-dependent terms are not included in aQ and aQ,N . That is,
qualitatively similar results can also be obtained using the scaling function aQ = σ

γ

Q ,
which is continuous even if F is not continuously differentiable.

C.2 Markov Normalization

Following the approach taken inNLSAalgorithms and inBerry et al. (2013),Giannakis
et al. (2015), Giannakis (2017) and Das and Giannakis (2019), we will construct a
Markov kernel pQ : � × � → R from a strictly positive, symmetric kernel kQ :
� × � → R, meeting the conditions in Sect. 3.2, by applying the normalization
procedure introduced in the diffusion maps algorithm (Coifman and Lafon 2006) and
further developed in the context of general exponentially decaying kernels in Berry
and Sauer (2016). For that, we first compute the functions

vQ = KQ1�, uQ = KQ(1�/vQ),

where 1� is the function on � equal to 1 at every point. By the properties of kQ and
compactness of the support of ρ, both vQ and uQ are continuous, positive functions
on �, bounded away from zero on compact sets. We then define the kernel pQ by

pQ(ω, ω′) = kQ(ω, ω′)
uQ(ω)vQ(ω′)

, (44)

and the Markov property follows by construction. In Berry and Sauer (2016), the
division of kQ(ω, ω′) by uQ(ω) and vQ(ω′) to form pQ(ω, ω′) is referred to as left
and right normalization, respectively. Because vQ and uQ are positive and bounded
away from zero on compact sets, pQ is continuous.

In general, a kernel of the class in (44), is not symmetric, and as a result the
corresponding integral operator PQ : H� → H� is not self-adjoint. Nevertheless, by
symmetry of kQ , PQ is related to a self-adjoint compact operator P̂Q : H� → H� by a
similarity transformation. In particular, let f be a bounded function in L∞(�, ρ), and
T f : H� → H� the corresponding multiplication operator by f . That is, for g ∈ H�,
T f g is the function equal to f (ω)g(ω) for ρ-a.e. ω ∈ �. Defining P̂Q : H� → H�

as the self-adjoint kernel integral operator associated with the symmetric kernel

p̂Q(ω, ω′) = kQ(ω, ω′)
ŵQ(ω)ŵQ(ω′)

, ŵQ = √
uQvQ, (45)

one can verify that P̂Q can be obtained from PQ through the similarity transformation

P̂Q = TwQ ◦ PQ ◦ T−1
wQ

, wQ = √
uQ/vQ . (46)
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Due to (46), PQ and P̂Q have the same eigenvalues λ j , which are real by self-
adjointness of P̂Q , and thus admit the ordering 1 = λ0 > λ1 ≥ λ2 ≥ · · · since
PQ is ergodic and Markov. Moreover, by compactness of PQ and P̂Q , the eigenvalues
have a single accumulation point at zero, and the eigenspaces corresponding to the
nonzero eigenvalues are finite-dimensional.

Since P̂Q is self-adjoint and real, there exists an orthonormal basis {φ̂ j }∞j=0 of

H� consisting of real eigenfunctions φ̂ j of P̂Q corresponding to λ j . Moreover, the
eigenfunctions corresponding to nonzero eigenvalues are continuous by the assumed
continuity of kernels and compactness ofM . In addition, due to (46), for every element
φ̂ j of this basis, the continuous functions φ j = TwQ φ̂ j = wQ φ̂ j and φ′

j = T−1
wQ

φ̂ j =
φ̂ j/wQ are eigenfunctions of PQ and P∗

Q , respectively, corresponding to the same
eigenvalue λ j . The sets {φ j }∞j=0 and {φ′

j }∞j=0 are then (non-orthogonal) Riesz bases
of H� satisfying the bi-orthogonality relation 〈φ′

i , φ j 〉H� = δi j . In particular, every
f ∈ H� can be uniquely expanded as f = ∑∞

j=0 c jφ j with c j = 〈φ′
j , f 〉H� , and we

have PQ f = ∑∞
j=0 λ j c jφ j .

C.3 Behavior in the Infinite-Delay Limit

In this section, we establish that the covariance and Gaussian kernels kQ in (17)–(19),
as well as the Markov kernels in Sect. 3.3, converge to well-defined, shift-invariant
limits in the infinite-delay (Q → ∞) limit, in accordance with the conditions for
VSA kernels listed in Sect. 3.2. Since all of these kernels are based on distances
between datapoints in delay-coordinate space under the maps F̃Q from (14), we begin
by considering the family of distance-like functions dQ : � × � → R, with Q ∈ N

and

dQ(ω, ω′) = 1

Q1/2 ‖F̃Q(ω) − F̃Q(ω′)‖RQ .

This family of functions has the following important property:

Proposition 5 Suppose that the sampling interval τ is such that there exists no eigen-
frequency α j of the generator V such that eiα j τ = 1. Then, the sequence d1, d2, . . .
converges in H� × H� norm to a τ -independent limit d∞ ∈ H� ⊗ H�, satisfying
Ũ t ⊗ Ũ t d∞ = d∞ for all t ∈ R.

Proof Let ω = (x, y) and ω′ = (x ′, y′) with x, x ′ ∈ X and y, y′ ∈ Y be arbitrary
points in �. The H� ⊗ H� convergence of dQ to d∞ follows from the Von Neumann
mean ergodic theorem and the fact that

d2Q(ω, ω′) = 1

Q

Q−1∑

q=0

|Fy(�
−qτ (x)) − Fy′(�−qτ (x ′))|2

= 1

Q

Q−1∑

q=0

d21 (�̃
−qτ (ω), �̃−qτ (ω′))
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is a Birkhoff average under the product dynamical system �̃qτ ⊗ �̃qτ on � × � of
the function d21 : � × � → R, which is bounded on the compact support of the
corresponding invariant measure ρ × ρ.

Next, let {Ũ t⊗Ũ t }t∈R be the strongly continuous unitary group induced by �̃t×�̃t .
Denote the generator of this group by V̂ . To establish τ -independence and invariance
of d∞ under Ũ t ⊗ Ũ t , it suffices to show that d∞ lies in the nullspace of V̂ . Indeed,
by invariance of infinite Birkhoff averages, we have Ũ τ ⊗ Ũ τd∞ = d∞, i.e., d∞ is
an eigenfunction of Ũ τ ⊗ Ũ τ at eigenvalue 1, and by the condition on τ stated in the
proposition and the fact that Ut , Ũ t , and Ũ t ⊗ Ũ t have the same eigenvalues (see
Appendix A), this implies that d∞ is an eigenfunction of V̂ at eigenvalue zero. ��

Note that the condition on τ in Proposition 5 holds for Lebesgue almost every
τ ∈ R, as the set of Koopman eigenfrequencies α j is countable.

An immediate consequence of Proposition 5 is that given any continuous shape
function h : R → R, the kernel kQ : � × � → R with kQ(ω, ω′) = h(dQ(ω, ω′))
satisfies the conditions listed in Sect. 3.2. In particular, setting h to a Gaussian shape
function, h(s) = e−s2/ε , with ε > 0, shows that the Gaussian kernel in (18) has the
desired properties. That the covariance kernel in (17) also has these properties follows
from an analogous result to Proposition 5 applied directly to the kernel kQ , which in
this case is equal to a Birkhoff average of k1.

Next, we turn to the family of kernels in (19) utilizing scaled distances. These
kernels have the general form

kQ(ω, ω′) = h(aQ(ω)aQ(ω′)dQ(ω, ω′)),

where h : R → R is continuous, so by Proposition 5, the required properties will
follow if it can be shown that the sequence of scaling functions a1, a2, . . . converges
in H� norm to a bounded function a∞ ∈ L∞(�, ρ). That this is indeed the case for the
choice of scaling functions described in Appendix C.1 follows from the facts that (i)
the local density function σQ in (41) is itself derived from an unscaled Gaussian kernel
k̄Q , which was previously shown to meet the required conditions, and (ii) the phase
space velocity function ξQ from (42) is equal to a Birkhoff average of a continuous
function.

Finally, the class of Markov kernels from Sect. 3.3 meets the necessary conditions
because the diffusion maps normalization function vQ is a continuous function deter-
mined by action of KQ on a constant function, thus converging as Q → ∞ to a
Ũ t -invariant function by the previous results on kQ , and similarly uQ is determined
by action of KQ on 1/vQ (see Appendix C.2).

D Data-Driven Approximation

In this appendix, we present a proof of Theorem 4 for the most general class of integral
operators on H� studied in this paper, namely the Markov operators PQ associated
with the kernels kQ : � × � → R from (19) utilizing the distance scaling functions
aQ in Appendix C.1, followed by Markov normalization as described in Sect. 3.3
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and Appendix C.2. The convergence results for the operators not employing distance
scaling and/or Markov normalization follow by straightforward modification of the
arguments below.

D.1 Data-DrivenMarkov Kernels

Because the distance scaling functions aQ involve integrals with respect to ρ and time
derivatives, in a data-driven setting we must work with kernels kQ,NS : �×� → R+
approximating kQ , where

kQ,NS(ω, ω′) = exp

⎛

⎝−aQ,NS(ω)aQ,NS(ω
′)

εQ

Q−1∑

q=0

∣∣Fy(�qτ (x)) − Fy′(�qτ (x ′))
∣∣2

⎞

⎠ ,

(47)

ω = (x, y), ω′ = (x ′, y′), and aQ,NS ∈ C(�) are scaling functions approximating
aQ .

Our construction of aQ,NS follows closely that of aQ in (43), that is, we set

aQ,NS = (σQ,NSξQ,N )γ ,

where γ is the same exponent parameter as in (43), and σQ,NS and ξQ,N are continuous
functions approximating σQ and ξQ , respectively. To construct σQ,NS , we introduce
the integral operator K̄Q,NS : H�,NS → H�,NS ,

K̄Q,NS f (ω) =
∫

�

k̄Q(ω, ω′) f (ω′) dρNS(ω
′),

where k̄Q denotes the unscaled Gaussian kernel as in (41), and define

σQ,NS = K̄Q,NS1� = 1

N

N−1∑

n=0

S−1∑

s=0

k̄Q(·, ωns)ws,S . (48)

Moreover, following Giannakis and Majda (2012), Giannakis (2015), and Giannakis
(2017), in the data-driven setting we approximate the function ζ used in the definition
of ξQ in (42) by a continuous function ζτ : � → R that provides a finite-difference
approximation of ζ with respect to the sampling interval τ . As a concrete example,
we consider a first-order, backward difference scheme,

ζτ (x, y) =
∣∣Fy(x) − Fy(�

−τ (x))
∣∣

τ
, x ∈ X , y ∈ Y , (49)

which, under the assumed differentiability properties of Fy (see Appendix C.1.2),
converges as τ → 0 to ζ , uniformly on compact sets (in particular, V). We will
also consider that the sampling interval is specified as a function τ(N ) such that
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τ(N ) → 0 and Nτ(N ) → ∞ as N → ∞. With this assumption, the limit N → ∞
corresponds to infinitely short sampling interval (required for convergence of finite-
difference schemes) and infinitely long total sampling time (required for convergence
of ergodic averages). We define ξQ,N as the function resulting by substituting ζ by
ζτ(N ) in (42). As we will establish in Appendix D.5, with these definitions, and under
weak convergence of the measures ρNS in (31), aQ,NS converges to aQ uniformly on
the compact set V .

Next, we construct the Markov kernels pQ,NS : � × � → R of the operators
PQ,NS : H�,NS → H�,NS in the statement of the theorem by applying diffusion
maps normalization to kQ,NS as in Appendix C.2, viz.

pQ,NS(ω, ω′) = kQ,NS(ω, ω′)
uQ,NS(ω)vQ,NS(ω′)

,

vQ,NS = KQ,NS1�, uQ,NS = KQ,NS

(
1�

vQ,NS

)
.

(50)

where KQ,NS is the kernel integral operator on H�,NS associated with kQ,NS . Note
that uQ,NS and vQ,NS are positive, continuous functions on �, bounded away from
zero on compact sets.

D.2 Proof of Theorem 4

We will need the important notion of compact convergence of operators on Banach
spaces (von Luxburg et al. 2008; Chatelin 2011).

Definition 6 A sequence of bounded operators Tn : E → E on a Banach space E is
said to converge compactly to a bounded operator T : E → E if Tn converges to T
pointwise (i.e., Tn f → T f for all f ∈ E), and for every bounded sequence of vectors
fn ∈ E , the sequence gn = (Tn − T ) fn has compact closure (equivalently, gn has a
convergent subsequence).

Compact convergence is stronger than pointwise convergence, but weaker than con-
vergence in operator norm. For our purposes, it is useful as it is sufficient to imply
convergence of isolated eigenvalues of bounded operators (Chatelin 2011), and hence
convergence of nonzero eigenvalues of compact operators and their corresponding
eigenspaces. In particular, Theorem 4 is a corollary of the following theorem, proved
in Appendix D.3:

Theorem 7 Under the assumptions of Theorem 4, the following hold:

(a) P̃Q,NS and P̃Q are both compact operators on C(V). As a result, their nonzero
eigenvalues have finite multiplicities, and accumulate only at zero.

(b) As N , S → ∞, P̃Q,NS converges compactly to P̃Q.
(c) λ j is a nonzero eigenvalue of P̃Q if and only if it is a nonzero eigenvalue of PQ.

Moreover, if φ j is an eigenfunction of PQ corresponding to that eigenvalue, then
φ̃ j ∈ C(V) with
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φ̃ j (ω) = 1

λ j

∫

�

pQ(ω, ω′)φ j (ω
′) dρ(ω′) (51)

is an eigenfunction of P̃Q corresponding to the same eigenvalue. Analogous results
hold for every nonzero eigenvalue of λNS, j , of P̃Q,NS, and corresponding eigen-
functions φNS, j and φ̃NS, j of PQ,NS and P̃Q,NS, respectively, where

φ̃NS, j (ω) = 1

λNS, j

∫

�

pQ,NS(ω, ω′)φNS, j (ω
′) dρNS(ω

′). (52)

To verify that Theorem 7 indeed implies Theorem 4 (with KQ replaced by PQ and
KQ,NS by PQ,NS), note that since the eigenvalue λ j in the statement of Theorem 4
is nonzero, it follows from Theorem 7(c) that it is an eigenvalue of P̃Q , and that φ̃ j

from (51) is a corresponding eigenfunction.Moreover, since, by Theorem 7(b), P̃Q,NS

converges to P̃Q compactly (and thus in spectrum for nonzero eigenvalues Chatelin
2011), there exist N0, S0 ∈ N such that the j-th eigenvalues λNS, j of P̃Q,NS are all
nonzero for N ≥ N0 and S ≥ S0, and thus, by Theorem 7(c), they are eigenvalues
of PQ,NS converging to λ j , as claimed in Theorem 4. The existence of eigenfunc-
tions φNS, j of PQ,NS corresponding to λNS, j , such that φ̃NS, j from (52) converges
uniformly to φ̃ j is shown in Das and Giannakis (2019). This completes our proof of
Theorem 4.

D.3 Proof of Theorem 7

Our proof of Theorem 7 draws heavily on the spectral convergence results on data-
driven kernel integral operators established in von Luxburg et al. (2008) and Das and
Giannakis (2019), though it requires certain modifications appropriate for the class
of kernels in (19) utilizing scaled distances, which, to our knowledge, have not been
previously discussed. In what follows, we provide explicit proofs of Claims (a) and
(b) of the theorem; Claim (c) is a direct consequence of the definition of φ̃NS, j in (52).
Throughout this section, all operators will act on the Banach space of continuous
functions on V equipped with the uniform norm, ‖·‖C(V). Therefore, for notational
simplicity, we will drop the tildes from our notation for P̃Q and P̃Q,NS . We will also
drop S subscripts representing the number of sampled points in the spatial domain
Y , with the understanding that N → ∞ limits correspond to S → ∞ followed by
N → ∞ limits.

D.4 Proof of Claim (a)

Let d̄ : �×� → R be any metric on�. We begin by establishing the following result
on the kernel pQ :

Lemma 8 The map ω �→ pQ(ω, ·) is a continuous map from V to C(V), that is, for
any ε > 0, there exists δ > 0 such that for all ω,ω′ ∈ V satisfying d̄(ω, ω′) < δ,
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‖pQ(ω, ·) − pQ(ω′, ·)‖C(V) < ε.

Proof Suppose that the claim is not true. Then, there exists ε > 0 and sequences
ωn, ω

′
n ∈ V , such that, as n → ∞, d̄(ωn, ω

′
n) → 0 and ‖pQ(ωn, ·) −

pQ(ω′
n, ·)‖C(V) > ε. As a result, there exists ω′′

n ∈ V such that |pQ(ωn, ω
′′
n) −

pQ(ω′
n, ω

′′
n)| > ε. However, this contradicts the fact that pQ is continuous since

(ωn, ω
′′
n) ∈ V × V converges to (ω′

n, ω
′′
n). ��

We now return to the proof of Claim (a). First, that PQ,N is compact follows
immediately from the fact that it has finite rank. Showing that PQ is compact is
equivalent to showing that for any bounded sequence fn ∈ C(V), the sequence gn =
PQ fn has a limit point in the uniform norm topology. Since V is compact, it suffices
to show that gn is equicontinuous and bounded; in that case, the existence of a limit
point of gn is a consequence of the Arzelà–Ascoli theorem. Indeed, for any ω ∈ V ,
we have

|gn(ω)| =
∣∣∣∣
∫

�

pQ(ω, ω′) fn(ω′) dρ(ω′)
∣∣∣∣

≤
∫

�

|pQ(ω, ω′) fn(ω′)| dρ(ω′)

≤ ‖pQ‖C(V×V)‖ fn‖C(V)

≤ ‖pQ‖C(V×V)B,

where B = supn‖ fn‖C(V). This shows that gn is uniformly bounded. Similarly, we
have

|gn(ω) − gn(ω
′)| ≤ ‖pQ(ω, ·) − pQ(ω′, ·)‖C(V)‖ fn‖C(V),

and the equicontinuity of {gn} follows from Lemma 8. It therefore follows from the
Arzelà–Ascoli theorem that gn has a limit point, and thus that PQ is compact, as
claimed.

D.5 Proof of Claim (b)

According to Definition 6, we must first show that for every f ∈ C(V), PQ,N f
converges to PQ f in the uniform norm, that is, we must show that limN→∞ ηN = 0,
where

ηN = ‖PQ,N f − PQ f ‖C(V).

Defining the Markov kernel p̂Q,N : � × � → R+,

p̂Q,N (ω, ω′) = kQ(ω, ω′)
uQ,N (ω)vQ,N (ω′)

, (53)
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and the operators P̃Q,N : C(V) → C(V) and P̂Q,N : C(V) → C(V) with

P̃Q,N f =
∫

�

pQ(·, ω) f (ω) dρN (ω), P̂Q,N f =
∫

�

p̂Q,N (·, ω) f (ω) dρN (ω),

we have

ηN ≤ ‖PQ f − P̃Q,N f ‖C(V) + ‖P̃Q,N f − P̂Q,N f ‖C(V)

+‖P̂Q,N f − PQ,N f ‖C(V). (54)

That is, we can bound ηN by a sum of contributions due to (i) errors in approximating
integrals with respect to the invariant measure ρ by the sampling measure ρN (the first
term in the right-hand side); (ii) errors in approximating the left and right normalization
functions uQ and vQ by their data-driven counterparts, uQ,N and vQ,N , respectively
(the second term in the right-hand side); and (iii) errors in approximating the kernel
kQ by the data-driven kernel kQ,N (the third term in the right-hand side).

We first consider the first term,

‖PQ f − P̃Q,N f ‖C(V) = max
ω∈V

|P̃Q,N f (ω) − PQ f (ω)|.

By the weak convergence of the measures ρN to ρ (see (31)) in conjunction with the
continuity of pQ , it follows that P̃Q,N f (ω) converges to PN f (ω), pointwise with
respect to ω ∈ V; however, it is not necessarily the case that the convergence is
uniform. For the latter, we need the stronger notion of a Glivenko–Cantelli class.

Definition 9 Let E : C(V) → C and EN : C(V) → C be the expectation operators
with respect to the measures ρN and ρ, respectively, i.e.,

E f =
∫

�

f dρ, EN f =
∫

�

f dρN , f ∈ C(V).

Then, a set of functions F ∈ C(V) is said to be a Glivenko–Cantelli class if

lim
N→∞ sup

f ∈F
|E f − EN f | = 0.

Note, in particular, that if the set

F1 = {pQ(ω, ·) f (·) | ω ∈ V}

can be shown to be a Glivenko–Cantelli class, then it will follow that ‖P̃Q,N f −
PQ f ‖C(V) vanishes as N → ∞. That this is indeed the case follows from vonLuxburg
et al. (2008, Proposition 11).

Next, we turn to the second and third terms in (54). To bound these terms, we first
establish convergence of the data-driven distance scaling functions aQ,N to aQ .
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Lemma 10 Restricted to V , the scaling functions aQ,N from Appendix C.1 converge
uniformly as N → ∞ to aQ.

Proof It follows from the definition of aQ and aQ,N in (43) that for all ω ∈ V ,

|aQ,N (ω) − aQ(ω)| = |σQ,N (ω)ξQ,N (ω) − σQ(ω)ξQ(ω)|γ
≤ (|σQ,N (ω) − σQ(ω)||ξQ,N (ω)| + |σQ(ω)||ξQ,N (ω) − ξQ(ω)|)γ .

Thus, since ξQ,N converges uniformly to ξQ by continuous differentiability of the
observation map F on the compact set V (see Appendix C.1.2), aQ,N will converge
uniformly to aQ if σQ,N converges uniformly to σQ . Indeed, because

|σQ,N (ω) − σQ(ω)| = |Ek̄Q(ω, ·) − EN k̄Q(ω, ·)|,

this will be the case if the set

F2 = {k̄Q(ω, ·) | ω ∈ V}

is a Glivenko–Cantelli class. This follows from similar arguments as those used to
establish that F1 is Glivenko–Cantelli. ��

Lemma 10, in conjunction with the continuity of the kernel shape function used
throughout this work (see Sect. 3.1), implies the following:

Corollary 11 The data-driven kernel kQ,N converges uniformly to kQ; that is,

lim
N→∞‖kQ,N − kQ‖C(V×V) = 0.

We now proceed to bound the second term in (54), ‖P̃Q,N f − P̂Q,N f ‖C(V). It fol-
lows from the definition of the kernels pQ,N and p̂Q,N via (50) and (53), respectively,
that

‖P̃Q,N f − P̂Q,N f ‖C(V)

≤ ‖kQ‖C(V×V)‖ f ‖C(V)

∥∥∥∥
1

uQ,N ⊗ vQ,N
− 1

uQ ⊗ vQ

∥∥∥∥
C(V×V)

.

By our assumptions on kernels stated in Sect. 3.2, the functions uQ , vQ , uQ,N , and
vQ,N are bounded away from zero on V , uniformly with respect to N . Therefore, there
exists a constant c > 0, independent of N , such that

‖P̃Q,N f − P̂Q,N f ‖C(V) ≤ c‖kQ‖C(V×V)‖ f ‖C(V)‖uQ ⊗ vQ − uQ,N ⊗ vQ,N ‖C(V×V)

= c‖kQ‖C(V×V)‖ f ‖C(V)‖uQ − uQ,N ‖C(V)‖vQ − vQ,N ‖C(V).

Observe now that

‖vQ − vQ,N ‖C(V) = max
ω∈V

|vQ(ω) − vQ,N (ω)|
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= max
ω∈V

|EkQ(ω, ·) − EN kQ,N (ω, ·)|
≤ max

ω∈V
|EkQ(ω, ·) − EN kQ(ω, ·)| + max

ω∈V
|EN

(
kQ,N (ω, ·) − kQ(ω, ·))|

≤ max
ω∈V

|EkQ(ω, ·) − EN kQ(ω, ·)| + ‖kQ,N − kQ‖C(V×V).

Since ‖kQ,N − kQ‖C(V×V) converges to zero by Corollary 11, it follows that

lim
N→∞‖vQ − vQ,N‖C(V) = 0 (55)

if it can be shown that

F3 = {kQ(ω, ·) | ω ∈ V}

is a Glivenko–Cantelli class. The latter can be verified by means of similar arguments
as those used to establish that F1 is Glivenko–Cantelli. Equation (55), in conjunc-
tion with the fact that ‖uQ − uQ,N‖C(V) is bounded, is sufficient to deduce that
limN→∞‖P̃Q,N f − P̂Q,N f ‖C(V) = 0.

We now turn to the third term in (54), ‖P̂Q,N f − PQ,N f ‖C(V). We have

‖P̂Q,N f − PQ,N f ‖C(V×V) ≤ ‖ p̂Q,N − pQ,N‖C(V×V)‖ f ‖C(V),

and it follows from the definitions of p̂Q,N and pQ,N , in conjunction with the fact that
the normalization functions uQ,N and vQ,N are both uniformly bounded away from
zero, that there exists a constant c such that

‖P̂Q,N f − PQ,N f ‖C(V×V) ≤ c‖kQ − kQ,N‖C(V×V)‖ f ‖C(V).

Thus, the convergence of ‖P̂Q,N f − PQ,N f ‖V to zero follows from Corollary 11.
In summary, we have shown that ‖PN f − P̃Q,N f ‖C(V), ‖P̃Q,N f − P̂Q,N f ‖C(V),

and ‖P̂Q,N f − PQ,N f ‖C(V) all converge to zero, which is sufficient to conclude that
limN→∞ ηN = 0, and that that PQ,N f converges to PQ f . According to Definition 6,
it remains to show that for any bounded sequence fN ∈ C(V), the sequence gN =
(PQ,N − PQ) fN has a limit point. This can be proved by an Arzelà–Ascoli argument
as in the proof of Claim (a) in conjunction with Glivenko–Cantelli arguments as in
the proof of pointwise convergence above. We refer the reader to von Luxburg et al.
(2008, Proposition 13) for more details. This completes our proof of Claim (b).

E Numerical Implementation and Pseudocode

In this appendix, we describe the numerical procedure used to obtain the VSA results
in Sect. 6, and provide pseudocode for the main steps. This implementation uses
the variable-bandwidth Gaussian kernels and diffusion maps normalization described
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in Appendix C. Implementations using other kernels and/or normalizations can be
performed similarly.

The starting point of the procedure is a spatiotemporal signal Fys (xn), with
n ∈ {−Q + 1, . . . , N }, s ∈ {0, . . . , S − 1}, as in Sect. 5. Here, we have taken
the time-indexing of the data to start at n = −Q in anticipation of the fact that
we will be performing delay-coordinate maps with Q delays via (14) and first-order
finite-differences via (49). We have split the entire procedure to compute the VSA
eigenvalues and eigenfunctions (λNS, j , φNS, j ), and perform the decomposition of the
signal in (28), into five algorithms. Algorithms 1–3 are auxiliary algorithms for delay
embedding (Algorithm1) and computation of the phase speeds ξQ,N (Algorithm2) and
densities σQ,NS (Algorithm 3) from Appendix D.1. Then, in Algorithm 4, we employ
the output of Algorithms 1–3 to evaluate the VSA kernel kQ,NS in (47), and solve the
eigenvalue problem associated with the Markov operator PQ,NS from Appendix D.1
to obtain the eigenpairs (λNS, j , φNS, j ) and the dual eigenvectors φ′

NS, j . In Algo-
rithm 5, the eigenfunctions from Algorithm 4 are employed to carry out the signal
decomposition in (28), in terms of the patterns �Fj ∈ HNS .

Note that the operator PQ,NS is related to a self-adjoint operator P̂Q,NS : H�,NS →
H�,NS by a similarity transformation analogous to (46). In Algorithm 4, we take
advantage of this structure by first computing the eigenvalues and eigenvectors of
P̂Q,NS (which can be done with higher efficiency and stability through the use of
specialized solvers for symmetric problems), and then acting on these eigenvectors
by a diagonal operator to obtain eigenvectors of PQ,NS . In accordance with Sect. 5.1,
P̂Q,NS is represented by an (NS) × (NS) matrix P̂ with elements

P̂mr ,ns = p̂Q,NS(ωmr , ωns)/(NS),

m, n ∈ {0, . . . , N − 1}, r , s ∈ {0, . . . , S − 1}, ωns = (xn, ys),

where p̂Q,NS is a symmetric kernel analogous to p̂Q in (45). Moreover, the eigen-
vectors φNS, j and φ̂NS, j of PQ,NS and P̂Q,NS are represented by NS-dimensional
column vectors φ

j
and φ̂

j
, respectively, with elements φ j,ns = φNS, j (ωns) and

φ̂ j,ns = φ̂NS, j (ωns). The dual eigenvectors φ′
NS, j and vector-valued patterns �FNS, j

are similarly represented by column vectors φ′
j
and F j inR

NS , respectively. Note that

our usage of double indices to label matrix and vector elements (e.g., P̂mr ,ns) implies
that an ordering has been chosen for the time-space index pairs (n, s).

As is common practice, we take advantage of the exponential decay of Gaussian
kernels to approximate P̂ by a sparsematrix, whose sparsity is controlled by an integer
neighborhood parameter knn ≤ NS (approximately equal to the number of nonzero
elements in each row of P̂). In the experiments in Sect. 6, knn/(NS)was typically 0.01.
Algorithms 3 and 4 both employ an automatic procedure to tune the Gaussian kernel
bandwidth parameter ε, introduced in Coifman et al. (2008) and further refined in
Berry and Harlim (2016). See Appendix A in Berry et al. (2015) for further details. In
what follows, we will use the shorthand notations Fns = Fys (xn) and F̃ns = F̃Q(ωns)

for the values of the raw and delay-embedded signal [the latter, given by (14)]. We
will also abbreviate ξns = ξQ,N (ωns) and σns = σQ,NS(ωns).
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Algorithm 1 (Delay embedding)

• Inputs

– Number of delays Q
– Spatiotemporal signal Fns ∈ R, n ∈ {−Q+1, . . . , N −1}, s ∈ {0, . . . , S−1}

• Outputs

– Delay-embedded data vectors F̃ns ∈ R
Q , n ∈ {−1, . . . , N − 1}, s ∈

{0, . . . , S − 1}
• Steps

1. Set F̃ns = (
Fns, Fn−1,s, . . . , Fn−Q+1,s

)�.

Algorithm 2 (Phase space speed)

• Inputs

– Delay-embedded vectors F̃ns from Algorithm 1
– Sampling interval τ > 0

• Outputs

– Phase space speeds ξns ≥ 0, n ∈ {0, . . . , N − 1}, s ∈ {0, . . . , S − 1}
• Steps

1. Set ξns = ‖F̃ns − F̃n−1,s‖2/(τQ1/2).

Algorithm 3 (Density estimation)

• Inputs

– Delay-embedded vectors F̃ns from Algorithm 1
– Neighborhood parameter knn ≤ NS
– Candidate bandwidth parameter values {ε−b, . . . , εb}, with b ∈ N and εi = 2i

• Outputs

– Densities σns > 0, n ∈ {0, . . . , N − 1}, s ∈ {0, . . . , S − 1}
– Estimated dimension m̂

• Steps

1. For every m, n ∈ {0, . . . , N − 1}, r , s ∈ {0, . . . , S − 1}, compute the pairwise
distances

dmr ,ns = ‖F̃mr − F̃ns‖2/Q1/2.

2. If dmr ,ns is not among the knn smallest values of neither {dmr ,i j }i, j nor
{dns,i j }i, j , set dmr ,ns = ∞.
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3. For each i ∈ {−b, . . . , b}, compute the kernel sum κi = ∑N−1
m,n=0

∑S−1
r ,s=0

K̄ (i)
mr ,ns/(NS)2, where

K̄ (i)
mr ,ns = exp(−d2mr ,ns/εi ).

4. Choose i ∈ {−b + 1, . . . , b − 1} that maximizes

κ ′
i = (log κi+1 − κi−1)/(log εi+1 − εi−1).

5. With i determined from Step 4, set m̂ = 2κ ′
i and σns = ∑N−1

m=0
∑S−1

r=0 K̄ (i)
ns,mr .

Algorithm 4 (VSA eigenfunctions)

• Inputs

– Delay-embedded vectors F̃ns from Algorithm 1
– Phase space speeds ξns from Algorithm 2
– Densities σns and dimension m̂ from Algorithm 3
– Neighborhood parameter knn ≤ NS
– Candidate bandwidth parameter values {ε0, . . . , εb−1} with εi = 2i

– Number l ≤ N of eigenfunctions to compute

• Outputs

– Eigenvalues λ0, λ1, . . . , λl−1 ≤ 1 and corresponding eigenvectors φ
0
, . . . ,

φ
l−1

∈ R
NS

– Dual eigenvectors φ′
0
, . . . , φ′

l−1
∈ R

NS

• Steps

1. For every n ∈ {0, . . . , N −1}, s ∈ {0, . . . , N −1}, compute the scaling factors
ans = (σnsξns)

−1/m̂ .
2. For every m, n ∈ {0, . . . , N − 1}, r , s ∈ {0, . . . , S − 1}, compute the scaled

pairwise distances

d̃mr ,ns = amrans‖F̃mr − F̃ns‖2/Q1/2.

3. If d̃mr ,ns is not among the knn smallest values of neither {d̃mr ,i j }i, j nor
{d̃ns,i j }i, j , set d̃mr ,ns = ∞.

4. Using the same method as Steps 3 and 4 of Algorithm 3, select the band-
width parameter εi ∈ {ε−b+1, . . . , εb−1} for the kernel values k(i)

mr ,ns =
exp(−d̃2mn,rs/εi ).

5. Using i from Step 4, and for every n ∈ {0, . . . , N − 1}, s ∈ {0, . . . , S − 1},
compute the normalization coefficients

vns =
N−1∑

m=0

S−1∑

r=0

k(i)
ns,mr , uns =

N−1∑

m=0

S−1∑

r=0

k(i)
ns,mr/vmr , ŵns = √

unsvns,
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wns = √
uns/vns .

6. Using i from Step 4, form the (NS) × (NS) symmetric kernel matrix P̂ with
elements

P̂mr ,ns = k(i)
mr ,ns

N Sŵmr ŵns
, m, n ∈ {0, . . . , N − 1}, r , s ∈ {0, . . . , S − 1}.

7. Set λ0, . . . , λl−1 to the l largest eigenvalues of P̂ . Compute corresponding
eigenvectors φ̂

0
, . . . , φ̂

l−1
, normalized such that ‖φ̂

j
‖2 = NS.

8. Form the diagonal matrixW withWns,ns = wns . For every j ∈ {0, . . . , l−1},
set φ

j
= W φ̂

j
and φ′

j
= W−1φ̂

j
.

Algorithm 5 (Signal decomposition)

• Inputs

– Spatiotemporal signal F̃ns ∈ R, n ∈ {0, . . . , N − 1}, s ∈ {0, . . . , S − 1}
– Eigenvectors φ

0
, . . . , φ

l−1
and dual eigenvectors φ′

0
, . . . , φ′

l−1
from Algo-

rithm 4

• Outputs

– Spatiotemporal patterns F0, . . . , Fl−1 ∈ R
NS

• Steps

1. Assemble the spatiotemporal signal into a column vector F = [Fns] ∈ R
NS .

2. For each j ∈ {0, . . . , l − 1}, compute the expansion coefficient c j =
φ′
j
�F/(NS), and set F j = c jφ j

.

All numerical experiments in this work were carried out using a MATLAB code,
running on a medium-scale Linux cluster. Pairwise distances were computed in brute
force, though the moderate dimensionality of the data (equal to the number of delays
Q) as treated by VSA could potentially enable the efficient use of approximate nearest
neighbor algorithms (Arya et al. 1998; Jones et al. 2011), leading to a significant cost
reduction in that step. The eigenvalue problem for P̂ was solved using MATLAB’s
eigs iterative solver, which is based on implicitly restarted Arnoldi methods in the
ARPACK library (Lehoucq et al. 1998).

F Overview of NLSA

In this appendix we summarize the kernel construction and spatiotemporal reconstruc-
tion procedure utilized in NLSA. Additional details and pseudocode for this method
can be found in Giannakis and Majda (2012) and Giannakis (2017).

First, the NLSA kernel construction parallels closely the VSA construction
described in Appendix C, with the difference that in NLSA all kernels and their asso-
ciated eigenfunctions are defined on state space X , as opposed to the product space
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� = X × Y . More specifically, NLSA is based on kernels k(X)
Q : X × X → R of the

form [cf. (3)]

k(X)
Q (x, x ′) = exp

(
−a(X)

Q (x)a(X)
Q (x ′)d2Q(x, x ′)

ε

)
,

d2Q(x, x ′) = 1

Q

Q−1∑

q=0

‖ �F(�−qτ (x)) − �F(�−qτ (x ′))‖2HY
,

where Q ∈ N is the number of delays, ε a positive bandwidth parameter, and aQ :
X → R a continuous nonnegative scaling function. Among the different choices for
that function studied in Giannakis and Majda (2012) and Giannakis (2017), here we
work with

a(X)
Q (x) = (σ

(X)
Q (x)ξ (X)

Q (x))γ , σ
(X)
Q (x) =

∫

X
e−d2Q(x,x ′)/ε dμ(x ′),

ξ
(X)
Q (x) = 1

Q

Q−1∑

q=0

‖Ṽ �F(�−qτ (x))‖2HY
,

where γ is a real parameter. This function has a similar structure as aQ in (43),
and γ is chosen as described in Appendix C.1.3. Equipped with this kernel, NLSA
proceeds by applying diffusionmaps normalization to obtain an ergodicMarkov kernel
p(X)
Q : X × X → R, with

p(X)
Q (x, x ′) = k(X)

Q (x, x ′)

u(X)
Q (x)v(X)

Q (x ′)
, v

(X)
Q (x) =

∫

X
k(X)
Q (x, x ′) dμ(x ′),

u(X)
Q (x) =

∫

X

k(X)
Q (x, x ′)

v
(X)
Q (x ′)

dμ(x ′),

and computing the eigenvalues and eigenfunctions (λ
(X)
j , ϕ j ) of the corresponding

Markov operator P(X)
Q : HX → HX . Dual eigenfunctions ϕ′

i ∈ HX satisfying
〈ϕ′

i , ϕ j 〉HX = δi j are also computed analogously to the φ′
i in VSA (see Sect. 3.3).

The NLSA eigenfunctions ϕ j define temporal patterns of the system (see Sect. 2.2).
To construct corresponding spatiotemporal patterns, �FNLSA, j ∈ H , the method
employs the reconstruction procedure introduced in SSA (Ghil et al. 2002), suitably
modified to account for non-orthogonality of the eigenfunctions. This involves first
computing the family of spatial patterns ψ

(q)
j ∈ HY with ψ

(q)
j (y) = 〈ϕ′

j ,U
qτ Fy〉HX ,

q ∈ Z, and then reconstructing according to the formula

�F ≈
l−1∑

j=0

�FNLSA, j , �FNLSA, j = 1

Q

Q−1∑

q=0

Uqτ ϕ j ⊗ ψ
(−q)
j . (56)

123



2442 Journal of Nonlinear Science (2019) 29:2385–2445

As l → ∞,
∑l

j=0
�FNLSA, j converges to the observation map �F in H norm. Unlike

the standard reconstruction approach in (1), the reconstructed patterns �FNLSA, j are not
necessarily of pure tensor product form, and can span instead up to a Q-dimensional
subspace of H . Moreover, the �FNLSA, j are not necessarily H -orthogonal. Neverthe-
less, the fact that the �FNLSA, j are derived from the eigenfunctions ϕ j associated with a
scalar-valued kernel, subjects them to similar shortcomings in the presence of symme-
tries as those described in Sect. 4.2. In practical applications, the patterns �FNLSA, j ∈ H
are replaced by their counterparts in the data-driven Hilbert space HNS with obvious
modifications.
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