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Abstract
Flapping flight dynamics is quite an intricate problem that is typically represented
by a multi-body, multi-scale, nonlinear, time-varying dynamical system. The unduly
simplemodeling and analysis of such dynamics in the literature has long obstructed the
discovery of some of the fascinating mechanisms that these flapping-wing creatures
possess. Neglecting the wing inertial effects and directly averaging the dynamics over
the flapping cycle are two major simplifying assumptions that have been extensively
used in the literature of flapping flight balance and stability analysis. By relaxing
these assumptions and formulating the multi-body dynamics of flapping-wing micro-
air-vehicles in a differential-geometric-control framework, we reveal a vibrational
stabilization mechanism that greatly contributes to the body pitch stabilization. The
discovered vibrational stabilization mechanism is induced by the interaction between
the fast oscillatory aerodynamic loads on the wings and the relatively slow body
motion. This stabilizationmechanismprovides an artificial stiffness (i.e., spring action)
to the body rotation around its pitch axis. Such a spring action is similar to that of
Kapitsa pendulumwhere the unstable inverted pendulum is stabilized through applying
fast-enough periodic forcing. Such a phenomenon cannot be captured using the overly
simplified modeling and analysis of flapping flight dynamics.

Keywords Differential-geometric-control · Flapping flight · Time-periodic systems ·
Vibrational stabilization · Multi-body dynamic

Mathematics Subject Classification 53Z05 · 93D99 · 34H15 · 76G25

Communicated by Paul Newton.

B Ahmed M. Hassan
ahmedmh@uci.edu

1 Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA

2 Henry Samueli Career Development Chair, Mechanical and Aerospace Engineering, University of
California, Irvine, CA 92697, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-018-9520-8&domain=pdf
http://orcid.org/0000-0002-0306-0098


1380 Journal of Nonlinear Science (2019) 29:1379–1417

1 Introduction

Biological flyers represent a gold mine of scientifically rich problems and a wellspring
of knowledge and inspiration for engineers and scientists. For example, some insects
can thrust up to five times their weights (Ellington 1984a), while others have been
observed to perform turning maneuvers of greater than 3000 deg/s, with less than a
30 ms delay (Deng et al. 2006), in situations that demand agility, such as chasing a
potential mate. In normal everyday flight, birds may experience up to 14 g acceler-
ations in super-maneuverable tasks (Rozhdestvensky and Ryzhov 2003), while the
maneuverability of the most advanced fighter airplanes cannot exceed 8–9 g. More-
over, birds and insects outperform jet airplanesmore than five times from a normalized
power consumption perspective (Rozhdestvensky andRyzhov 2003). This huge poten-
tial inspired engineers to design flapping-wing micro-air-vehicles (FWMAVs) (Wood
2008), mainly for reconnaissance and surveillance applications.

Indeed, flapping flight invokes and pushes the frontiers ofmechanical and aerospace
engineering disciplines. From an aerodynamic point of view, flapping flight creates
an unsteady, nonlinear flow field exploiting unconventional mechanisms to generate
lift. In fact, using classical aerodynamics, insect flight was deemed impossible for
decades (e.g., Norberg 1975; Dudley and Ellington 1990; Ellington 1995; Willmott
and Ellington 1997), as the required lift coefficients for balance are 2–3 times the
maximum lift coefficients achieved by conventional aerodynamics. Later, biologists
and engineers unraveled some of the unconventional lift mechanisms exploited by
insect and bird flight. A stabilized leading edge vortex, first introduced by Ellington
et al. (1996), forms the main unconventional lift mechanism that makes insect flight
possible. Computational fluid dynamic simulations show that the leading edge vortex
contributes 40% of the total lift for insects (Liu et al. 1998).

As the aerodynamics of flapping flight became mature, the flight dynamic analysis
followed promptly. To our knowledge, the first article on flapping flight dynamics
is that of Thomas and Taylor (2001). Flapping flight dynamics represents a multi-
body, nonlinear time-periodic (NLTP) dynamical system. Moreover, it is a multi-scale
dynamical system because of the concomitant two timescales: the fast timescale of
the flapping motion and the associated aerodynamic loads, and the relatively slow
timescale of the body motion. All these challenges make flapping flight dynamics an
intricate problem that necessitates a rigorous mathematical analysis.

Twomajor assumptions havebeen typically adopted in theflight dynamic analysis of
FWMAVs (Taha et al. 2012): neglecting thewing inertial effects and directly averaging
the dynamics over the flapping cycle. The first assumptionmight be justifiable because
themass of thewing is quite small when compared to that of the body (less than 5%Wu
et al. 2009). Moreover, adopting this assumption alleviates the problem’s complexity
and yields flight dynamic equations similar to those of conventional aircraft. As such,
most of the analyses in the literature of flapping flight dynamics and control have
neglected the wing inertial effects (Thomas and Taylor 2001; Taylor and Thomas
2002, 2003; Taylor and Zbikowski 2005; Khan and Agrawal 2007; Sun and Xiong
2005; Xiong and Sun 2008; Dietl and Garcia 2008a; Oppenheimer et al. 2011; Hussein
and Taha 2016; Tahmasian and Woolsey 2017). For more details about the effects of
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the wing’s inertia on the dynamics of flapping flight, the reader is referred to the review
articles (Taha et al. 2012; Orlowski and Girard 2012), and the references therein.

The second major assumption (directly averaging the dynamics over the flapping
cycle) has been refuted by Taha et al. (2014a, 2015) for hovering insects with a
relatively small flapping frequency (e.g., hawkmoth and cranefly). They showed that
despite the large ratio of the forcing flapping frequency to the natural frequency of
the body motion (30 for the hawkmoth and 50 for the cranefly), there is a strong
interaction between the system’s two timescales that considerably affects the flight
balance and stability. Specifically, the intuition that an averaged lift due to flapping
equal to the FWMAV’s weight ensures vertical balance at hover was interestingly
refuted by showing that the aerodynamic–dynamic interaction results in a negative
lifting mechanism. In addition, the interaction between the system’s two timescales
results in a vibrational stabilization phenomenon that is quite similar to the well-
known behavior of the Kapitsa pendulum (Kapitsa 1965): the unstable equilibrium
of the inverted pendulum is stabilized through open-loop vertical oscillations of the
pivot. These interactions are essentially neglected when direct averaging is used.

While pursuing the relaxation of those two assumptions, differential-geometric-
control theory is naturally invoked as a rigorous analysis tool. It is particularly
convenient for the analysis of multi-body, underactuated mechanical systems (Bullo
and Lewis 2004). Moreover, when combined with chronological calculus (Agrachev
and Gamkrelidze 1978), it provides constructive techniques for higher-order averag-
ing of NLTP systems (Sarychev 2001a, b; Vela 2003) and dealing with multi-scale
vibrational control systems (Bullo 2002). As such, the goal of this effort is to relax the
aforementioned simplifying assumptions and hence: (1) derive the full (five degrees
of freedom), multi-body, longitudinal flight dynamics of FWMAVs and cast it in a
differential-geometric-control framework; (2) combine differential-geometric-control
and averaging tools to rigorously and analytically investigate the balance and sta-
bility of flapping flight dynamics at hover; and (3) unravel the unconventional flight
dynamic behavior of flapping flight (e.g., vibrational stabilization and negative lifting)
and demonstrate the role of multi-body effects in such a behavior.

In this work, the full multi-body equations of motion governing the longitudinal
flight dynamics of FWMAVsnear hover are derived using the principle of virtual power
(Greenwood 2003). A relatively simple, analytical aerodynamic model that accounts
for the dominant contributions (e.g., leading edge vortex and rotational effects) is
adopted. Combining these twomodels (aerodynamic and dynamic), a nonlinear, multi-
body, time-varying, longitudinal flight dynamics model is developed, which captures
aerodynamic–dynamic interactions. A three-degrees-of-freedom (DOF) model that
resembles an experimental apparatus is then extracted from the full model as the
simplest, yet rich enough, multi-body, flapping flight dynamics model for differential-
geometric-control analysis. The geometric control–averaging tools are then applied
to the three-DOF model to reveal the role of wing–body dynamical interaction in
vibrational pitch stabilization for the insect/vehicle’s body. The vibrational pitch
stabilization mechanism is induced by the interaction between the fast, periodic, aero-
dynamic wing forces and the relatively slow body motion (aerodynamic–dynamic
interactions). Such a mechanism would have been entirely overlooked if direct aver-
aging techniques are applied instead. Moreover, the obtained analytical results are
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Fig. 1 A schematic diagram of a FWMAV hovering in a general orientation

verified through numerical periodic shooting and Floquet stability analysis. Finally,
a comparison is made with the corresponding single-body model to provide insights
into the multi-body effects.

2 Geometric-Control-OrientedModeling

2.1 Wing Kinematics

Figure 1 shows a schematic diagram of a FWMAV and its axis systems. Four reference
frames are required to study the flight dynamics of a rigid-wing FWMAV: an inertial
reference frame {xI, yI, zI}, a body-fixed reference frame {xb, yb, zb}, a stroke plane
reference frame {xs, ys, zs}, and a wing-fixed reference frame {xw, yw, zw} for each of
the flight vehicle’s wings. Because only longitudinal flight is considered in this work,
symmetric wing motions are assumed.

By convention, the xb-axis points forward defining the vehicle’s longitudinal axis,
the yb-axis points to starboard, and the zb-axis completes the right-handed frame.
The conventional yaw–pitch–roll (ψ-θ -φ) Euler angle sequence, traditionally used
with fixed-wing aircraft (Nelson 1989), is adopted here to describe the body’s inertial
orientation. Because this effort is focused on longitudinal flight dynamics, only the
body’s pitch angle θ is required.

The stroke plane is inclined to the horizontal plane with a stroke plane angle β.
That is, the stroke plane reference frame is obtained from the inertial frame through a
rotation by an angle β about the yI-axis. The wing-fixed frame is defined such that it is

123



Journal of Nonlinear Science (2019) 29:1379–1417 1383

aligned with the stroke plane frame at zero wing kinematic angles. The wing motion is
typically described using three Euler angles: the flapping angle ϕ (describing back and
forth motion along the stroke plane), the plunging angle ϑ (describing out of stroke
plane motion), and the pitching angle η (describing rotation of the wing about a chord
line). Consistent with observations of biological flyers (Weis-Fogh 1973; Ellington
1984a), the plunging motion is neglected (ϑ = 0).

2.2 Equations of Motion

Since the two wings move symmetrically, the equations of motion are defined in terms
of five generalized coordinates: q = [x , z , θ , ϕ , η]∗, where * denotes transpose,
and x and z are the inertial coordinates of the body center of mass along the xI and zI
axes, respectively. We use the principle of virtual power (Greenwood 2003) to derive
the equations of motion

∑

i=b,w
[mi (v̇i + ρ̈ci ) − f i ] · ∂vi

∂q̇ j
+ [ḣi + miρci × v̇i − M i ] · ∂ωi

∂ q̇ j
= 0,

j = {1, . . . , 5}, (1)

where mi is the mass of the i th rigid body, vi is the inertial velocity vector of its
reference point (the reference points of the body and wing frames are the body’s
center of gravity and the wing’s hinge root, respectively), ρci is the vector pointing
from the reference point of the i th rigid body to its center of gravity, ωi and hi are
the angular velocity vector of the i th rigid body with respect to the inertial frame and
the corresponding angular momentum vector, respectively, and f i and M i are the
external force and moment vectors applied on the i th rigid body at its reference point.
As such, the equations of motion can be written in an abstract form as

[M(q)
]

⎛

⎜⎜⎜⎜⎝

u̇
ẇ

θ̈

ϕ̈

η̈

⎞

⎟⎟⎟⎟⎠
+ (C(q, q̇)

) = [
Raero

]

⎛

⎜⎜⎜⎜⎝

Fx
Fz
Mx

My

Mz

⎞

⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎝

0
0
0
1
0

⎞

⎟⎟⎟⎟⎠
τϕ +

⎛

⎜⎜⎜⎜⎝

0
0

cosϕ

0
1

⎞

⎟⎟⎟⎟⎠
τη, (2)

where u = ẋ , w = ż are the body inertial velocity components, M(q) is the inertia
matrix, C(q, q̇) represents Coriolis and centripetal effects, Raero relates the aerody-
namic loads (Fx , Fz , Mx , My , and Mz) in the wing frame to the generalized forces,
and τϕ and τη are the wing flapping and pitching control torques, respectively. The
details of the derivation of Eq. (2) are given in “Appendix A.”

2.3 Aerodynamic Model

We extend the aerodynamic model, used in our earlier work (Taha et al. 2013a, 2014b)
which is based on Refs. Taha et al. (2013b, 2014c), Berman and Wang (2007), to a
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more general setting that is convenient for aerodynamic–dynamic interactions. This
model accounts for the dominant contributions (i.e., leading edge vortex (LEV) and
rotational contributions) using a quasi-steady, strip theory formulation.

Dickinson et al. (1999) showed that for ultra-low Reynolds numbers, where insects
operate (Re =200–4000), there is almost no stall; the lift has a smooth variation with
the angle of attack. Berman and Wang (2007) showed that the steady lift coefficient
due to a stabilized LEV can be simply written as

CL = A sin 2α,

where α is the angle of attack. Taha et al. (2014c) provided a means to estimate
the coefficient A in terms of the aspect ratio using the extended lifting line theory
(Schlichting and Truckenbrodt 1979). Insects wings, similar to delta wings, experience
LEVs, and hence, the flow separates at the leading edge losing the leading edge
suction force (Polhamus 1966; Taha et al. 2014c). As such, the drag is given by CD =
CL tan α (Polhamus 1966; Taha et al. 2014c). Therefore, the resultant aerodynamic
force is almost normal to the wing surface (i.e., Cz = −2A sin α). That is, the shear
contribution is minimal as shown in the experimental study of Dickinson et al. (1999)
and the computational results of Wang (2000) and Ramamurti and Sandberg (2002).
It should be noted that this crude (quasi-steady) modeling of the LEV might affect the
overall stability characteristics of the combined flow-vehicle dynamics because of the
interaction between the two dynamical systems: LEV dynamics and the associated
flow on the one hand and the body–wing dynamics on the other hand. However,
this simplistic modeling is adopted due the lack of richer dynamical models that
capture LEV dynamic stability characteristics in a compact form that allows geometric
nonlinear analysis of the interaction between the flow and the vehicle dynamics. For
more insights into the insects LEV dynamic stability characteristics, the reader is
referred to the following articles and the references therein (Ellington et al. 1996;
Birch and Dickinson 2001; Birch et al. 2004).

As such, a two-dimensional airfoil undergoing a translational motion with velocity
components Vx and Vz in thewing frame and a rotational pitchingmotionωy , as shown
in Fig. 2, is subjected to the following forces (Taha et al. 2013b, 2014c; Berman and
Wang 2007; Hussein and Canfield 2017; Hussein et al. 2016)

F ′
x = πρc�xVzωy

F ′
z = − 1

2ρa0cV
2 sin α − πρc�xVxωy

, (3)

where c is the chord length, �x is the distance between the pitching axis (hinge line)
and the three-quarter chord point, a0 is the two-dimensional lift curve slope that will
be replaced by the three-dimensional lift curve slope when integrating over the whole
wing, V 2 = V 2

x + V 2
z , and the angle of attack is given by α = tan−1 Vz

Vx
. It should be

noted that the added mass terms are neglected in Eq. (3) because their net effects on
the flight dynamics were found to be minimal as shown in our previous effort (Taha
et al. 2014b).

To account for aerodynamic–dynamic interaction, the body’s motion variables (u,
w, and θ̇ ) and the aerodynamic inputs (Vx , Vz , and ωy) should be interconnected as
shown in Fig. 3. As such, the velocity of a wing section that is at a distance r from the
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Fig. 2 A schematic diagram of an airfoil section undergoing translational and rotational motion

Fig. 3 A schematic diagram of the aerodynamic–dynamic interaction in a FWMAV

wing root is written as

V (w)(r) = [Rws][Rβ ]V (I)
w + ω(w)

w × r jw, (4)

where [Rws] and [Rβ ] (given in “Appendix A”) are the rotation matrices from the
stroke plane frame to the wing frame and from the inertial frame to the stroke plane
frame, respectively. Also, V (I)

w is the wing velocity vector in the inertial frame, and
ω

(w)
w is the wing angular velocity vector in the wing frame. Since the body motion (u,

w, and θ̇ ) is evolving with a quite slower timescale than that of the wing, the term
(V 2 sin α) in Eq. (3) could be approximated linearly with respect to the body states as
follows

V 2 sin α = V 2 Vz
|V | = |V | Vz � (|V | Vz)

∣∣∣∣
0
+

3∑

i=1

∂(|V | Vz)
∂xi

∣∣∣∣
x ′
i s=0

�xi , (5)

where x ′
i s are the body states; u, w, and θ̇ . Hence, we obtain

V 2 sin α = r2 sin η ϕ̇ |ϕ̇| + u

(
2 r cosβ sin η cosϕ |ϕ̇| + r sin β cos η |ϕ̇|

)
+
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+w

(
r cosβ cos η |ϕ̇| − 2 r sin β sin η cosϕ |ϕ̇|

)
+

+ r θ̇ |ϕ̇|
(

−r cos η sin ϕ + 2 xh sin β sin η cos θ cosϕ

− 2 xh cosβ sin η sin θ cosϕ +
− xh cosβ cos η cos θ − xh sin β cos η sin θ

)
, (6)

where xh is the distance from the vehicle’s center of mass to the root of the wing hinge
line (i.e., the intersection of the hinge line with the xb-axis), as shown in Fig. 1.

The time-varying aerodynamic loads (in the wing frame) can then be written as

⎛

⎜⎜⎜⎜⎝

Fx (x)

Fz(x)

Mx (x)

My(x)

Mz(x)

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

Fx0
Fz0
Mx0
My0
Mz0

⎞

⎟⎟⎟⎟⎠
+

⎡

⎢⎢⎢⎢⎣

Fxu Fxw Fxq
Fzu Fzw Fzq
Mxu Mxw Mxq
Myu Myw Myq
Mzu Mzw Mzq

⎤

⎥⎥⎥⎥⎦

⎛

⎝
u
w

θ̇

⎞

⎠ +

⎛

⎜⎜⎜⎜⎝

Fxnl
Fznl
Mxnl
Mynl
Mznl

⎞

⎟⎟⎟⎟⎠
, (7)

where the terms (aerodynamic derivatives) in Eq. (7) are given in “Appendix B.” It
should be noted that the aerodynamic derivatives here are not normalized by masses
and inertias, in contrast to the conventional aerodynamic derivatives commonly used
in flight dynamics literature (Nelson 1989; Etkin 1996).

As explained above, the aerodynamic loads generated by the wing oscillatory
motion are represented as functions of the wing states (ϕ, η, ϕ̇, and η̇) as well as
body states (u, w, θ , and θ̇ ), in addition to the stroke plane angle β. As such, the inter-
action between the body motion and the generated aerodynamic loads by the wing can
be accounted for, which is explained in Fig. 3. For given input torques and aerodynamic
loads, the dynamic equations of motion (2), or equivalently (32–36), can be integrated
to update the body motion variables (u, w, and θ ) and the wing flapping variables (η
and ϕ). Together, they dictate the motion of each airfoil section with respect to the
surrounding quiescent air, represented by Vx , Vz , and ωy . These air speeds, in turn,
completely determine the aerodynamic loads according to Eqs. (3) or (7). Accounting
for such an interaction between the aerodynamic loads and the body motion allows
for a more accurate and heuristic trim and stability analysis.

2.4 Three-DOF Flight Dynamic Model for Geometric Control Analysis

While the developed model (2, 7) is amenable to differential-geometric-control tools,
we opt to demonstrate such tools on a simpler, yet rich enough, model, not to obscure
the details of these tools with the complexity of the full model. In particular, we
consider the minimal degrees of freedom required to demonstrate the vibrational pitch
stabilization phenomenon. As such, we consider twoDOF for the body: body’s vertical
motion z and pitching angle θ , and one DOF for the wing: the flapping angle ϕ. The
body forward motion is restricted, and the wing pitching angle η is assumed to have
a piecewise constant variation, commonly used in flapping flight dynamics literature,
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Fig. 4 The experimental setup developed in Taha et al. (2018) to verify the vibrational pitch stabilization
phenomenon

e.g., Schenato et al. (2003), Doman et al. (2010), Oppenheimer et al. (2011), Taha
et al. (2013c, d)

η(t) =
{

αm, ϕ̇ > 0

π − αm, ϕ̇ < 0
,

whereαm is themean angle of attack over the up/down stroke.As such,we have sin η =
sin αm and cos η = cosαm sign(ϕ̇). This multi-body, three-DOF model resembles
(locally at the hovering equilibrium) a laboratory experiment apparatus (Taha et al.
2018) that has been developed to verify the results. In this laboratory experiment,
however, the body vertical motion is transformed into pendulum rotation, as shown in
Fig. 4.

The three-DOF model can be written as

M (q; sign(ϕ̇)) q̈ + f c(q, q̇) = f aero + g τφ, (8)

where M is the inertia matrix, f c represents Coriolis and centripetal effects, f aero
represents the aerodynamic loads, g is the input vector field, and τφ is the input torque.
To simplify the mathematical expressions and help achieve self-pitch trim at hover,
now on, we set the parameter xh = 0 (the distance from the vehicle’s center of mass
to the root of the wing hinge line). As such, M, f c, f aero, and g in system (8) are
written as

M =
⎡

⎣
mv M12 M13
M21 M22 M23
0 0 Iyb

⎤

⎦ , (9)
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where

M12 = −rcg cosϕ sin θ − c̄d̂ cosαm sign(ϕ̇) sin ϕ sin θ

M13 = c̄d̂ cosαm cos θ cosϕ sign(ϕ̇) − c̄d̂ sin αm sin θ − rcg cos θ sin ϕ

M21 = −mwrcg cosϕ sin θ − c̄d̂ mw cosαm sign(ϕ̇) sin ϕ sin θ

M22 = − 1
2 Ixw cos2 αm − 1

2 Izw sin2 αm + IF
2 + Ixw+Izw

2
M23 = 1

2 Iyw sign(ϕ̇) sin 2αm sin ϕ

,

f c =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−θ̇2
(
c̄d̂ sin αm cos θ + c̄d̂ cosαm sin θ sign(ϕ̇) cosϕ − rcg sin θ sin ϕ

)

− 2θ̇ ϕ̇

(
c̄d̂ cosαm cos θ sign(ϕ̇) sin ϕ + rcg cos θ cosϕ

)

+ ϕ̇2
(
rcg sin θ sin ϕ − c̄d̂ cosαm sin θ sign(ϕ̇) cosϕ

)
− gmv

− θ̇w

(
c̄d̂ mw cosαm cos θ sign(ϕ̇) sin ϕ + mwrcg cos θ cosϕ

)

+ wϕ̇

(
mwrcg sin θ sin ϕ − c̄d̂ mw cosαm sin θ sign(ϕ̇) cosϕ

)

+ θ̇2
(

1
2 cos

2 αm Iyw sin ϕ cosϕ + 1
2 sin

2 αm(Ixw − Izw ) sin ϕ cosϕ

+ 1
2 (−Ixw − Izw ) sin ϕ cosϕ + 1

2 Iyw sin 2ϕ

)

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

f aero =
⎡

⎣
−Fx (sin αm cos θ + cosαm sin θ sign(ϕ̇) cosϕ) − Fz (sin αm sin θ cosϕ − cosαm cos θ sign(ϕ̇))

sin αmMx − cosαmMz sign(ϕ̇)

− cosαmMx sign(ϕ̇) sin ϕ + My cosϕ − sin αmMz sin ϕ

⎤

⎦ ,

(11)

g =
⎡

⎢⎣
0

1

0

⎤

⎥⎦ , (12)

where Fx , Fz , Mx , My , and Mz are the aerodynamic forces and moments represented
in the wing frame, as shown in Eq. (7), IF is the flapping moment of inertia defined as
IF = Ixw sin2 αm + Izw cos2 αm , c̄ is the mean aerodynamic chord of the wing, and d̂
and rcg are the distances from the wing reference point (hinge point at the root section)
to the wing center of mass along the negative xw-axis and the yw-axis respectively.

The three-DOF model (8) is then written in the standard nonlinear control-affine
form

ẋ = Z(x) + Y(x) τϕ(t), (13)

where the state vector x is [q q̇]∗ = [z ϕ θ w ϕ̇ θ̇ ]∗, and the vector fields Z(x)

and Y(x) are written as

Z(x) =
[

q̇

M−1( f aero − f c)

]
, Y(x) =

[
0

M−1g

]
.

The geometric control and averaging tools are then combined to rigorously investigate
the balance and stability of theNLTP system (13) and unravel the unconventional flight
dynamic behavior of flapping flight (e.g., vibrational stabilization). The next section
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Fig. 5 An illustration of the
difference between fixed point
and periodic orbit

x1

x2

x1

x2

fixed point x0 periodic orbit xT (t)

outlines the most important geometric control and averaging tools that will be used in
this analysis.

3 Combined Geometric Control–Averaging Analysis Tools

Analysis of NLTP systems requires different set of tools than those used for nonlinear
time-invariant (NLTI) systems. The essential difference between NLTP and NLTI
systems emanates from the fact that an equilibrium state of NLTP systems is generally
represented by a periodic orbit (PO), as opposed to a fixed point for NLTI systems.
That is, at equilibrium, every state of the NLTP system takes a periodic sequence of
values with some time period T . Figure 5 shows a simple illustration of difference
between fixed point and periodic orbit equilibrium in a two-dimensional state space.

Stability analysis of NLTP flapping-wing dynamics could be performed on the
original time-periodic system by numerically capturing a periodic orbit associated
with a certain equilibrium condition and analyzing its linear stability through Floquet
theorem (Dietl and Garcia 2008a; Wu and Sun 2012; Stanford et al. 2013). How-
ever, very little insights into stabilizing/destabilizing mechanisms could be obtained
through this purely numerical approach. On the other hand, a time-invariant version
of the NLTP flapping-wing dynamics could be obtained through averaging techniques
(reviewed next). As such, the periodic orbit representing equilibrium is converted into
a fixed point, around which the system could be linearized. Stability analysis is then
easily performed for the linear time-invariant (LTI) system via eigenvalue analysis.
Furthermore, utilizing the simple and tractable form of LTI systems, the stability of
linearized, time-invariant, flapping-wing dynamics could be analytically scrutinized.
Hence, insights into different stabilizing/destabilizing mechanisms (e.g., stiffness or
damping) could be gained.

3.1 Averaging Theorem

The classical averaging theorem is a simple tool that could be used to convert a NLTP
system into a NLTI one. However, it possesses several limitations, which will be
discussed in the following subsections. Theorem 1 provides the formal statement of
the standard averaging theorem.

Theorem 1 Consider the NLTP system

ẋ(t) = εX(x(t), t), (14)
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where 0 < ε � 1 is a small perturbation scale, e.g., ε could be seen as the reciprocal
of the frequency when the system is subject to high-frequency forcing. Assuming that
X is a T -periodic vector field in t , the averaged dynamical system corresponding to
(14) is written as

ẋ(t) = εX(x(t)), (15)

where X(x(t)) = 1
T

∫ T
0 X(x(t), τ ) dτ . According to the averaging theorem (Gucken-

heimer and Holmes 2013; Sanders et al. 2007; Khalil 2002):

• If x(0)− x(0) = O(ε), then there exist b > 0 and ε∗ > 0 such that x(t)− x(t) =
O(ε) ∀t ∈ [0, b/ε] and ∀ε ∈ [0,ε∗].

• If x∗ is an exponentially stable equilibrium point of (15) and if ‖x(0) − x∗‖ < ρ

for some ρ > 0, then x(t) − x(t) = O(ε) ∀t > 0 and ∀ε ∈ [0,ε∗]. Moreover, The
system (14) has a unique, exponentially stable, T -periodic solution xT (t) with the
property ‖xT (t) − x∗‖ ≤ kε for some k.

Thus, the averaging approach allows converting a non-autonomous system into an
autonomous system.As such, if the equilibriumstate of theNLTPsystem is represented
by a periodic orbit xT (t), it reduces to a fixed point of the averaged dynamics. The
problem of ensuring a specific periodic orbit corresponding to a desired equilibrium
configuration is significantly simplified using the averaging approach, hence allowing
for analytical results.

One caveat here is that the averaging theorem requires the vector field X(x, t) to be
smooth in x. Unfortunately, the NLTP system (13) is not smooth in the state ϕ̇ because
of the absolute value function |ϕ̇|. In addition, the adopted approximation of the wing
pitching angle η results in the existence of the sign function sign(ϕ̇). We tackle both
issues bywriting |ϕ̇| = ϕ̇ sign(ϕ̇) and introducing a smooth approximation for the sign
function; sign(ϕ̇) ≈ h(ϕ̇) = (2/π) tan−1(n ϕ̇). We set an appropriate value of n such
that, in 1% of the ϕ̇ range around the origin, the approximate function h(ϕ̇) reaches
99%of the true value (± 1). Alternatively, a hyperbolic tangent sigmoid function could
be used as a smooth approximation for the sign function instead of the inverse tangent
one. For more details about the adopted smooth approximation, the reader is referred
to an earlier work by Taha et al. (2016).

3.2 Nonlinear Variation of Constants Formula (VOC)

The considered system (13) is not amenable to the averaging theorem (Theorem 1),
i.e., it is not written in the standard averaging form (14). The periodic forcing vector
field Y(x) τϕ(t) is of higher magnitude and faster timescale (i.e., high frequency) than
that of the dynamics (drift) vector field Z(x). Therefore, averaging theorem cannot
be directly applied to system (13). In fact, if direct averaging is applied to (13), the
time-periodic, zero-mean forcing vector field Y(x) τϕ(t) would completely vanish.
That is, the effects of the flapping-wing dynamics on the body would be completely
ignored. In order to resolve this issue, we utilize the nonlinear variation of constants
formula, which is a differential-geometric tool that is used to split the flow along two
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x0 δx0 = z(T )

flow along f + g

flow along g

Φf+g
0,T (x0) = Φg

0,T (δx0)

flow along F

Fig. 6 An illustration of the application of the VOC formula to system (16)

vector fields. As such, the averaged version of system (13) would be obtained through
a multi-step process that is explained next.

Consider a nonlinear system subjected to a high-frequency, high-amplitude, peri-
odic forcing in the form

ẋ(t) = f (x(t)) + 1

ε
g
(
x(t),

t

ε

)
, x(0) = x0, (16)

where 0 < ε � 1. The time-varying vector field (1/ε)g(x(t), t/ε) is assumed to be
periodic in its second argument with period T . The system (16) is not amenable to
direct averaging, i.e., is not in the form of (14), because f and g are not of the same
order. The VOC resolves this issue by approximating the flow φ

f+g
0,T (x0) (i.e., flow

along f + g for a period T starting at initial point x0) by a flow along the vector field
g staring at a different initial condition δx0. That is, φ

f+g
0,T (x0) = φ

g
0,T (δx0), where

the new initial point δx0 is obtained through the flow along a new vector field F that
is introduced by the VOC formula. Figure 6 shows a simple explanatory sketch for the
application of the VOC formula to the system (16). As such, the VOC formula allows
separation of the system (16) into two companion systems as follows (Agrachev and
Gamkrelidze 1978; Bullo and Lewis 2004)

ż(t) = F(z(t), t), z(0) = x0
ẋ(t) = g(x(t), t), x(0) = δx0 = z(t)

, (17)

where F is the pullback of the vector field f along the flow φ
g
t of the time-varying

vector field g. Using the chronological calculus formulation of Agrachev andGamkre-
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lidze (1978), Bullo (2002) showed that, for a time-invariant f and time-varying g, the
pullback vector field F(x(t), t) can be written as

F(x(t), t) = f (x(t)) +
∞∑
k=1

t∫

0
...

sk−1∫

0

(
adg(x(t), Sk )...adg(x(t), S1) f (x)

)
dsk ...ds1,

(18)

where adg f = [g, f ] is the Lie bracket between the two vector fields g and f and is
computed as [g, f ] = ∂ f

∂x g − ∂ g
∂x f (Nijmeijer and Van der Schaft 1990, PP. 23–72).

3.3 Averaging of of High-Amplitude Periodic Forcing

Since FWMAVs/insects experience high-amplitude, high-frequency periodic forcing
(i.e., in the form (16)). Applying the VOC formula before averaging is necessary to
obtain an averaged system that accounts for themulti-body andmulti-timescale effects.
The benefit of the VOC formula is that each of the systems in (17) is individually
amenable to the averaging theorem. That is,

˙̄z(t) = 1
T

∫ T
0 F(z(t), t) dt, z̄(0) = x0

˙̄x(t) = 1
T

∫ T
0 g(x(t), t) dt, x̄(0) = z̄(t)

. (19)

It should be noted that for the considered system (13), the time-periodic forcing vector
field Y(x) τϕ(t) is of zero mean. Hence, averaging after applying the VOC implies

x̄(t) = z̄(t), ˙̄z = F̄( z̄). (20)

Therefore, the averaged dynamics of the original system (16), or alternatively (13)
in our three-DOF FWMAV model, can be obtained just by averaging the pullback
vector field F(x(t), t). Therefore, Theorem 1 is extended next to high-frequency,
high-amplitude, periodically forced systems in the form of Eq. (16).

Theorem 2 Consider aNLTP system subject to a high-frequency, high-amplitude peri-
odic forcing (16). Assuming that g is a T -periodic in t , zero-mean vector field and
both f and g are continuously differentiable, the averaged dynamical system corre-
sponding to (16) is written as

ẋ(t) = εF(x(t)), (21)

where F(x(t)) = 1
T

∫ T
0 F(x(t), τ ) dτ , and F is the pullback of f along the flow φ

g
t

of the time-varying vector field g as explained in Eq. (18). Moreover,

• If x(0) = x(0), then there exist b > 0 and ε∗ > 0 such that x(t) − x(t) = O(ε)

∀t ∈ [0, b/ε] and ∀ε ∈ [0,ε∗].
• If x∗ is an exponentially stable equilibrium point of (21) and if ‖x(0) − x∗‖ < ρ

for some ρ > 0, then x(t)−x(t) = O(1) ∀t > 0 and ∀ε ∈ [0,ε∗]. Moreover, there
exists an ε1 > 0 such that ∀ε ∈ [0,ε1], the system (16) has a unique, T -periodic,
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locally asymptotically stable trajectory that takes values in an open ball of radius
O(1) centered at x∗.

The main difference between Theorem 1 (direct averaging) and Theorem 2 (VOC
and averaging) is that the former guarantees a periodic orbit that is O(ε) from the
corresponding fixed point of the averaged dynamics, while the latter allows for larger
variations O(1) from the fixed point. This relatively large amplitude admitted by
Theorem 2 is particularly useful in analyzing flapping flight while including wing
dynamics where the flapping angle ϕ becomes a state; the amplitude of the flapping
angle is typically around 60 degrees. Therefore, the application of the VOC formula is
essential in analyzing flapping flight, multi-body dynamics. We are emphasizing that
Theorem 1 is not a viable option in this case as direct averaging would yield trivial
results when applied to the three-DOF multi-body system (13); i.e., it would neglect
the entire effects of the flapping input vector field Y(x) τϕ(t).

4 Geometric Control and Averaging Analysis of FWMAVs

In this section, we use the geometric control and averaging tools explained in the
previous section to investigate the balance and stability of the three-DOFmodel derived
in Sect. 2. As explained earlier, the direct application of the averaging theorem to the
NLTP system (13), with zero-mean τϕ , yields trivial results (i.e., no effect of flapping
on the dynamics). Therefore, we apply theVOC formula before averaging to obtain the
pullback vector field (18), which accounts for the effects of the forcing vector field on
the dynamics (drift) vector filed. That is, the averaged dynamics will be determined
from Eq. (20). It should be noted that because of the mechanical structure of the
system (13) and the non-conservative forces (aerodynamic loads) being quadratic
in the generalized velocities, the integral series (18) of the pullback vector field is
expected to terminate after two terms (Bullo 2002). However, the essentially high-
order smooth approximation of the sign function hinders the termination after two
terms in this case. The pullback series of the system (13) terminates after three terms
and can be written as

F(x, t) = Z(x) + [Y , Z]

t∫

0

τϕ(s1) ds1 + ad2Y Z

t∫

0

s1∫

0

τϕ(s2) τϕ(s1) ds2 ds1

+ ad3Y Z

t∫

0

s2∫

0

s1∫

0

τϕ(s3)τϕ(s2) τϕ(s1) ds3 ds2 ds1, (22)

where adnY Z ≡ [Y , adn−1
Y Z].

4.1 Balance (Trim)

Unlike the simpler two-DOF model, which has been investigated in a previous effort
by the authors Hassan and Taha (2016, 2017a), a simple harmonic waveform (τϕ =
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U cosωt) for the the flapping torque cannot achieve balance for the three-DOF system
(8), or equivalently (13), where the body pitching angle θ is a state. The reason is that
a nonzero mean flapping angle may be required to adjust the center of pressure of the
aerodynamic forces with respect to the body center of gravity to achieve pitch trim.
Therefore, we suggest writing the input torque τϕ(t) as

τϕ(t) = U1 cosωt +U2 sinωt, (23)

where the resultant amplitude of the two sinusoids will be denoted by UR (i.e.,

UR =
√
U 2
1 +U 2

2 ). Note that this same objective could be achieved by using only one
harmonic with a phase shift. However, the adopted form (23) is easier to manipulate
during the variation of constants and averaging processes.

Using the input waveform in Eq. (23), the averaged dynamics [i.e., the averaged
pullback vector field (22)] is obtained as

˙̄x = F̄(x̄) = Z(x̄) + U2

ω
[Y , Z] (x̄) +

(
U 2
1 + 3U 2

2

4 ω2

)
ad2Y Z(x̄)

+
(
31U 2

1U2 + 5U 3
2

12 ω3

)
ad3Y Z(x̄). (24)

In order to achieve balance at hovering, we solve for the trim input torque amplitudes,
U1t and U2t , along with a fixed point x̄0 that ensure ˙̄x = 0. Now on, we consider
the hawkmoth insect for this analysis whose morphological parameters are given in
“Appendix D.” As such, we obtain

U1t = 0.97 U †

U2t = 0.24 U †

x̄0 = [0 7.12◦ 0 0 0 0]∗
, (25)

where the subscript t denotes trim/balance condition at hover, U † is the input torque
amplitude needed to balance the two-DOF model (Hassan and Taha 2016, 2017a) at
hover using a simple harmonic waveform, and is defined as

U † =
√
2 gI 2Fω2

kL
,

where kL is a constant that depends on the vehicle parameters

kL = ρ CLα I21 sin αm cosαm

2 mv
.

It should be noted that the resultant trim input torque amplitude (URt =
√
U 2
1t

+U 2
2t
)

is equal to U †. That is, the flapping torque amplitude required to maintain the hover-
ing equilibrium for the considered three-DOF system (13) is the same as that of the
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previously analyzed two-DOF system (Hassan and Taha 2016, 2017a); only phase
shift is required to achieve pitch trim as explained earlier.

4.2 Stability Analysis

Now, that balance/trim at the hovering equilibrium has been ensured for the averaged
system (24), a linearized version of the averaged dynamics could be obtained at the
hovering fixed point (25). Having an LTI version of the NLTP system (13) at hover
would: (i) significantly simplify stability analysis: it can be analyzed by checking
eigenvalues; and (ii) allow us to obtain analytical (or semi-analytical) results and gain
insights into various stabilizing/destabilizing mechanisms.

To obtain an LTI representation of the NLTP dynamics (13), we evaluate the Jaco-
bian matrix, A, of the averaged nonlinear dynamics (24) at the hovering trim point
(U1t = 0.97U †, U2t = 0.24U †, z̄ = 0, ϕ̄ = 7.12◦, θ̄ = 0, w̄ = 0, ¯̇ϕ = 0, ¯̇θ = 0).
As such, we obtain

d

dt

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z̄

ϕ̄

θ̄

w̄

¯̇ϕ
¯̇θ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= [A](x̄) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 − 0.19 4.7 − 4.05 0.0002 0.1

0 − 19 − 621.98 − 0.85 − 9.55 0.005

0 6093 − 72.96 269.22 − 5.42 − 1.54

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z̄

ϕ̄

θ̄

w̄

¯̇ϕ
¯̇θ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)

where [A] =
[

∂ F̄
∂ x̄

] ∣∣∣∣
x̄0

.

Investigating the eigenvalues of the linearized system (26), we find

eigenvalues(A) = − 33.85 ± 31.9 i, 28.31 ± 30.8 i, − 4.05, 0,

which indicates an unstable averaged system due to the complex–conjugate pair
(28.31±30.8 i) having positive real parts. This implies that a feedback control would
be needed to stabilize this system at the hovering equilibrium. This result is consis-
tent with many of the previous analyses in the literature (Sun and Xiong 2005; Xiong
and Sun 2008; Taylor and Thomas 2002; Sun et al. 2007; Taha et al. 2014b; Cheng
and Deng 2011) that concluded the hovering equilibrium of FWMAVs/insects to be
open-loop unstable.

4.3 Stability Characterization

Thanks to the simultaneous analytical tractability and mathematical rigor of the
geometric control–averaging tools, the stability of the NLTP system (13) could be
investigated on a deeper level through scrutinizing the correspondent LTI system. The
linearization of the averaged system (24) at the hovering fixed point x̄0 can be written
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abstractly as

A = ∂ F̄
∂ x̄

∣∣∣∣
x̄0

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 A42 A43 A44 A45 A46

0 A52 A53 A54 A55 A56

0 A62 A63 A64 A65 A66

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (27)

where the analytical expressions of the elements of the matrix A are shown in detail
in “Appendix C.”

Since the open-loop instability at the hovering equilibrium of FWMAVs/insects has
been mostly attributed to the lack of body pitch stiffness (Sun and Xiong 2005; Xiong
and Sun 2008; Taylor and Thomas 2002; Sun et al. 2007; Taha et al. 2014b; Cheng
and Deng 2011). It is of great interest to scrutinize the stability derivative A63 which
represents body pitch stiffness: it corresponds to a pitching moment resulting from a
pitch angle disturbance. The stability derivative A63 can be analytically written as

A63 = 1

I 2F Iybmvω2
CLαmwρ cosαm

(
cosαm

(
c̄d̂

(
I11k

(
−5.23IFU2ω + 0.06U 2

1 + 0.18U 2
2

)

+ I12
(
3.9IFU2ω − 0.05U 2

1 − 0.14U 2
2

))
+ c̄d̂ I21 cosαm (U2(0.02U2

− 2.4IFω) + 0.01U 2
1

)
+

+ I21rcg
(
U2(0.18U2 − 19.27IFω) + 0.06U 2

1

))

+ rcg

(
I11k

(
U2(1.48U2 − 41.88IFω) + 0.49U 2

1

)
+

+ I12
(
U2(31.4IFω − 1.1U2) − 0.37U 2

1

)))
.

Considering the hawkmoth parameters, we find A63 = − 72.96 as shown in Eq.
(26). The negative sign indicates a restoring pitching moment under a pitch angle
perturbation from the equilibrium, hence a stabilizing pitch stiffness. This result revises
the community’s belief. That is, the natural (open-loop) longitudinal flight dynamics
possesses a stabilizing body pitch stiffness mechanism.

To investigate the main contributors to this pitch stiffness mechanism, we write the
averaged dynamics in terms of its two components: the dynamics vector field Z and
the Lie brackets between the dynamics and control vector fields (i.e., control effects),
as shown in Eq. (24). As such, the Jacobian matrix A can be considered as an addition
of two matrices Ad and Ac, where
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Ad = ∂
∂ x̄

∣∣∣∣
x̄0

(
Z
)

Ac = ∂
∂ x̄

∣∣∣∣
x̄0

(
U2
ω
[Y , Z] +

(
U2
1+3U2

2
4 ω2

)
ad2Y Z +

(
31U2

1U2+5U3
2

12 ω3

)
ad3Y Z

) , (28)

where the subscripts d and c refer to dynamics and control, respectively. Hence, the
effect emanating from each source can be shown separately. We find that, as maybe
expected, Ad63 = 0.Hence, the pitch stiffness emanates solely fromflapping actuation.
This fact implies that the high-frequency periodic forcing applied on thewings induces
a stabilizing effect on the slower body pitching motion. That is, this pitch stiffness
mechanism relies essentially on the vibrational stabilization phenomenon.

It should be noted that the pitch stiffness term A63 stems from a combined inertial–
aerodynamic root; i.e.,

lim
mw→0

A63 = 0 and lim
CLα →0

A63 = 0.

The pitch stiffness term A63 can be abstractly written as

A63 = k63 mw cos φ̄0M
(I )
yw ,

where k63 is a function of the vehicle parameters and the flapping torque amplitude
and frequency, φ̄0 is the average flapping angle at the trim condition (25), and M (I )

yw is
an aerodynamic derivative that represents a pitching moment in the inertial frame due
to a disturbance in the vertical velocity w. For an intuitive explanation of this pitch
stiffness mechanism and the role of wing inertia, consider a body pitch up disturbance
�θ . This pitch disturbance causes a change of the lift force vector direction, which,
in turn, results in a deficit in the lift force needed for balance. Hence, a downward
vertical velocity disturbance �w would be generated. The vertical velocity distur-
bance �w can be written as an addition of two components: �w = �w̄ +�w̃, where
�w̄ is the cycle-average and �w̃ is a zero-mean oscillatory component because of
the fast timescale of the wing dynamics. Due to the aerodynamic derivative M (I )

yw , a

pitching moment is generated as a consequence of �w. The derivative M (I )
yw can be

decomposed similarly: M (I )
yw = M̄yw + M̃yw . As such, the resulting pitching moment

�M (I )
y = M (I )

yw �w will have three contributions: (i) M̄yw�w̄ which is captured by
direct averaging; (ii) M̄yw�w̃ + M̃yw�w̄ whose net effect cancel over the flapping
cycle (zero mean); and (iii) M̃yw�w̃ which is the multiplication of two zero-mean
terms and will have a nonzero mean value if the variations of these two terms are syn-
chronized. It should be noted that the last contribution is clearly due to the oscillation
(vibration) of the system characteristics (i.e., themulti-timescale nature of the system);
it is typically neglected by direct averaging. The wing inertial effects promote the last
contribution, M̃yw�w̃, through amplifying �w̃ resulting from a pitch disturbance.
This effect can be seen from the ẇ equation in the three-DOF NLTP system, i.e., the
fourth line in Eq. (13). The right-hand side of that line contains terms like the follow-
ing: mwrcgθ̇ ϕ̇ cos θ cosϕ; mwrcgθ̇2 sin θ sin ϕ; mwc̄d̂ cosαm θ̇ ϕ̇ cos θ sin ϕsign(ϕ̇);
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and mwc̄d̂ cosαmwθ̇ cos θ sin ϕsign(ϕ̇). This implies that these terms are producing
body’s vertical velocity through an interaction between the wing inertial effects and
the body pitch angle/rate. Therefore, any first-order analysis that neglects the wing
inertial effects would yield a zero pitch stiffness for the body.

4.4 Averaging-Aided Shooting–Floquet Analysis

Although the adopted approach (applying the VOC formula first to the NLTP system
and then averaging over the flapping cycle) captures a wide range of aerodynamic–
dynamic interactions, it is still an approximation of the true time-periodic. Thus, there
are some phenomena that are not very well captured in the averaged dynamics sense.
One important aspect is the effect of the wing–body interactions on the generated lift
over the cycle. That is, an averaged lift over the flapping cycle that is equal to the
weight of the vehicle may not be enough for balance. This phenomenon has been
referred to as a negative lifting mechanism in an earlier work by Taha et al. (2016).
This phenomenon, in turn, affects stability since balance and stability are coupled in
this problem. That is, if the flapping input torque amplitudes are not enough to ensure
balance at hover, the vehicle will be deviating from its hovering periodic orbit (or fixed
point in the averaged sense).

Therefore, in this subsection, a time-periodic analysiswill be performedbyusing the
averaging analysis results as an initial guess for an optimized periodic shootingmethod
(Dednam and Botha 2015). This shooting method is used to determine the hovering
periodic orbit of the three-DOF system (13) simultaneously with more accurate (i.e.,
accounts for the negative liftingmechanism) values of the trim input torque amplitudes
(U1t , U2t ). Such a procedure has been proposed and applied on a simpler model in
our previous effort (Hassan and Taha 2017b, a). “Appendix E” presents details of
the adopted optimized periodic shooting algorithm (Dednam and Botha 2015). The
Floquet theorem (Nayfeh and Balachandran 1995) is then used to analyze stability
of the captured hovering periodic orbit. In the Floquet stability analysis, the NLTP
dynamics (13) is linearized about the numerically captured periodic orbit, yielding a
linear, time-periodic (LTP) system. The stability of the obtained LTP system is then
analyzed through investigating the monodromy matrix: the state transition matrix
evaluated after one period T . The eigenvalues of the monodromy matrix (also called
Floquet multipliers) have to be inside the unit disk (in the complex plane) for the
periodic orbit to be stable. The Floquet multipliers could then be transformed into
Floquet exponents, which represent eigenvalues of the corresponding continuous LTI
system. That is, a positive real-part Floquet exponent implies instability. Therefore,
the obtained Floquet exponents will be used to construct a comparison against the
averaging stability results obtained in Sect. 4.2.

Feeding the trim input torque amplitudes (U1t ,U2t ) from Eq. (25) as an initial guess
to the optimized periodic shooting, we obtain the following point on the hovering
periodic orbit along with the associated trim input torque amplitudes
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Fig. 7 Numerical simulation of the captured hovering periodic orbit (29) for the NLTP system (13) under
the input waveform (23) and using the hawkmoth parameters

ϕ(0) = −1.1 rad, θ(0) = 0.11 rad, w(0) = −0.01 m/s

ϕ̇(0) = −0.74 rad/s, θ̇ (0) = 5.29 rad/s

U1tn = 1.02 U †, U2tn = 0.07 U †, (29)

where the subscript n in U1tn ,U2tn , refers to the trim values obtained through the
numerical optimized shooting method. Investigating the resultant trim amplitude, we

find URtn
=

√
U 2
1tn

+U 2
2tn

= 1.0225 U †. That is, the resultant trim amplitude from

the optimized shooting is slightly higher than that of averaging. This result conforms
with our previous findings for the two-DOF model (Hassan and Taha 2017a, b) that
averaging may not very well capture the negative lifting phenomenon (i.e., averaging
underestimates the required flapping torque to ensure hovering). Figure 7 shows the
periodic orbit corresponding to the initial conditions and trim input torque amplitudes
in (29).
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Fig. 8 Eigenvalues determining the stability of theNLTP system (13) for the hawkmoth case using averaging
and Floquet theorem

To investigate stability, the NLTP dynamics (13) is linearized about the captured
hovering periodic orbit (29). The Floquet multipliers for the obtained LTP system are
found to be

0.69 ± 1.99i, 0.11 ± 0.22i, 0.87, 0,

which also indicates an unstable hovering periodic orbit due to the existence of the
complex–conjugate pair (0.69±1.99i) outside the unit disk. Figure 8 shows theFloquet
exponents corresponding to the above Floquet multipliers along with the eigenvalues
from averaging for comparison. Both techniques yield similar stability characteristics:
an unstable oscillatory mode, a stable oscillatory mode, a stable eigenvalue on the real
line, and a neutral (zero) eigenvalue. Note that the zero eigenvalue corresponds to the
ignorable coordinate z in both cases.

4.5 Effects of High Flapping Frequency

It is well known that the vibrational pitch stabilization phenomenon is intimately tied
to high-frequency periodic forcing (Bellman et al. 1985; Stephenson 1908; Kapitsa
1951, 1965). Therefore, the effect of flapping frequency on stability of the NLTP
system (13) is investigated in this subsection.

Considering a flapping frequency that is ten times the documented value for the
hawkmoth, the captured hovering periodic orbit is found to have the following trim
input torque amplitudes

U hf
1tn

= 1.00 U †

U hf
2tn

= 0.01 U † , (30)

where the superscript hf denotes high frequency. It is noted that the resultant ampli-
tude U hf

Rtn
= 1.00032 U †, which is less than that of the original flapping frequency

and closer to the averaging one. This implies that the negative lifting mechanism
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effects tends to diminish as the flapping frequency increases and hence the closeness
to the averaging result. This, in fact, conforms with the averaging theorem statement
that the averaging results are valid for high enough frequency. That is, the averaging
results become more representative of the physical (time-periodic) system at higher
frequencies.

The obtained Floquet multipliers for this high-frequency periodic orbit are

1.1055 ± 0.1297i, 0.8745 ± 0.1074i, 0.9849, 0,

whose unstable pair (1.1055± 0.1297i) shifts toward the stable region. This indicates
that the higher flapping frequency amplifies the effect of the vibrational pitch stabi-
lization mechanism. However, to achieve passive (open-loop) stability, a change in the
vehicle parameters (e.g., wing mass, wing size, hinge location, etc.) maybe required.

4.6 Comparison with the Corresponding Single-BodyModel

One legitimate question that needs to be addressed is: Can direct averaging (which
is essentially less rigorous) capture such stabilizing effects? Realizing that direct
averaging of the NLTP system (13) would yield trivial results (completely ignoring
the flapping effects), the simplest non-trivial analysis, avoiding differential-geometric
tools (e.g., VOC), would have to ignore the flapping dynamics and assume a wave-
form for the flapping angle ϕ(t) as if the flapping wing is controlled by a fast servo
mechanism. This analysis essentially neglects the multi-body nature of the problem
(i.e., a single-body problem). Therefore, it is interesting to investigate the differences
between the three-DOF model (13) and the single-body version of it. In the latter, the
VOC formula would not be needed. After applying direct averaging to the single-body
version of the system (13) and linearizing the resulting NLTI system, we obtain the
following Jacobian matrix

d

dt

⎛

⎜⎝
θ

w

θ̇

⎞

⎟⎠ = [Asb](xsb) =
⎡

⎢⎣
0 0 1

0.01 − 0.15 0

0 − 0.03 − 0.88

⎤

⎥⎦

⎛

⎜⎝
θ

w

θ̇

⎞

⎟⎠ , (31)

where the state vector is xsb = [θ w θ̇]∗. It should be noted that the pitch stiff-
ness, the element (3, 1), is zero, whereas in the multi-body averaged system (26), the
pitch stiffness has a significant value (−72.96). This implies that the discovered pitch
stiffness mechanism is essentially induced due to the mutual interactions between the
body and wing dynamics. That is, such a mechanism is revealed only when the wing
flapping dynamics is included and/or higher-order averaging is used.

5 Conclusion

The main finding of this paper is that the high-frequency periodic forcing on flapping-
wingmicro-air-vehicles induce vibrational stabilizationmechanisms to their relatively
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Fig. 9 Summary of the analysis steps performed in Sect. 4

slow body dynamics. These stabilizing mechanisms are mainly due to the interaction
between the aero-inertial loads on the flapping wings due to the fast flapping motion
and those due to the slow body motion: what we call aerodynamic–dynamic inter-
action. The main conclusion is that this interaction is instrumental for the open-loop
stability analysis of such nonlinear time-periodic systems. Moreover, it cannot be
captured by direct averaging or without accounting for the wing flapping dynamics.
Therefore, the differential-geometric-control tools are essential to properly analyze
the complex dynamics of these systems as they naturally account for the multi-
body dynamics and hence capture the vibrational stabilization mechanisms due to
aerodynamic–dynamic interactions. Finally, Fig. 9 summarizes the analysis performed
in this paper.

Acknowledgements The authors gratefully acknowledge the support of the National Science Foundation
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Appendix

A Derivation of the Five-DOF Equations of Motion

We use the principle of virtual power (Greenwood 2003), as explained in Sect. 2, to
derive the five-DOF equations of motion (2) in detail. The various terms in Eq. (1) for
the body and wing are given below.

A.1 Body

The linear velocity of the reference point of the body axis system (the body’s center
of gravity) and the corresponding angular velocity are written as

vb = ẋ i I + żkI and ωb = θ̇ jb = θ̇ j I,

where i , j , and k are unit vectors along the x , y, and z directions in the axis system
indicated by the subscript. Thus, one obtains

∂vb

∂ ẋ
= i I

∂vb

∂ ż
= kI

∂vb

∂θ̇
= 0

∂vb

∂ϕ̇
= 0

∂vb

∂η̇
= 0

∂ωb

∂ ẋ
= 0

∂ωb

∂ ż
= 0

∂ωb

∂θ̇
= j I

∂ωb

∂ϕ̇
= 0

∂ωb

∂η̇
= 0 ,

and

v̇b = ẍ i I + z̈kI.

The angular momentum vector of the body about its center of gravity and its inertial
derivative are given by

hb = Iybθ̇ j I, ḣb = Iybθ̈ j I.

The aerodynamic contribution of the body is neglected, and hence, the body exhibits
gravitational forces only with no moments. Thus, the body force in the inertial frame
is written as

f (I)
b = [0, 0, mbg]∗.

A.2 Wing

The linear velocity of the reference point of the wing frame (the hinge root) and its
angular velocity are written as

vw = (ẋ − xhθ̇ sin θ)i I + (ż − xhθ̇ cos θ)kI, ωw = θ̇ jb − ϕ̇ks + η̇ jw.
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Thus, one obtains

∂vw

∂ ẋ
= i I

∂vw

∂ ż
= kI

∂vw

∂θ̇
= −xh(sin θ i I + cos θkI)

∂vw

∂ϕ̇
= 0

∂vw

∂η̇
= 0

∂ωw

∂ ẋ
= 0

∂ωw

∂ ż
= 0

∂ωw

∂θ̇
= j I

∂ωw

∂ϕ̇
= −kb

∂ωw

∂η̇
= − jw ,

and

v̇w = [ẍ − xhθ̈ sin θ − xhθ̇
2 cos θ ]i I + [z̈ − xhθ̈ cos θ + xhθ̇

2 sin θ ]kI.

The rotation matrix from the inertial frame to the stroke plane frame is given by

Rβ =
⎡

⎣
cosβ 0 − sin β

0 1 0
sin β 0 cosβ

⎤

⎦ ,

and rotation matrices from the stroke plane frame to the wing frame are

Rϕ =
⎡

⎣
cosϕ − sin ϕ 0
sin ϕ cosϕ 0
0 0 1

⎤

⎦ , Rη =
⎡

⎣
cos η 0 − sin η

0 1 0
sin η 0 cos η

⎤

⎦ ,

and

Rws = RηRϕ.

The wing angular velocity vector in the wing frame is

ω(w)
w =

⎛

⎜⎝
ω1

ω2

ω3

⎞

⎟⎠ = Rws

⎛

⎜⎝
0

θ̇

−ϕ̇

⎞

⎟⎠ +
⎛

⎜⎝
0

η̇

0

⎞

⎟⎠ =
⎛

⎜⎝
ϕ̇ sin η − θ̇ cos η sin ϕ

θ̇ cosϕ + η̇

−ϕ̇ cos η − θ̇ sin η sin ϕ

⎞

⎟⎠ .

The position vector pointing from the hinge root to the wing center of gravity is
ρcw = −d̂ iw + rcg jw where d̂ and rcg are the distances between the wing root
hinge point and the wing center of gravity along the negative xw-axis and the yw-axis,
respectively. Thus, the inertial acceleration is obtained as

ρ̈c
(w)
w =

⎛

⎜⎝
ρ̈1

ρ̈2

ρ̈3

⎞

⎟⎠ =
⎛

⎜⎝
d̂(ω2

2 + ω2
3) − rcg(ω̇3 − ω1ω2)

−d̂(ω̇3 + ω1ω2) − rcg(ω2
1 + ω2

3)

d̂(ω̇2 − ω1ω3) + rcg(ω̇1 + ω2ω3)

⎞

⎟⎠ .

Assuming the wing reference frame is fixed in the wing principal axes, the inertial time
derivative of the angular momentum vector represented in the wing frame is written
as

123



Journal of Nonlinear Science (2019) 29:1379–1417 1405

ḣ
(w)

w =
⎛

⎜⎝
ḣ1

ḣ2

ḣ3

⎞

⎟⎠ =
⎛

⎜⎝
Ix ω̇1 + (Iz − Iy)ω2ω3

Iyω̇y + (Ix − Iz)ω1ω3

Izω̇3 + (Iy − Ix )ω1ω2

⎞

⎟⎠ .

The wing is subject to aerodynamic and gravitational forces. Noting that the yb-
components of the aerodynamic force on each wing are equal and opposite, the force
vector applied on the wing is written as

f w =
⎛

⎝
Fx
0
Fz

⎞

⎠
(w)

+
⎛

⎝
0
0

mwg

⎞

⎠
(I)

,

where Fx and Fz are the aerodynamic loads along the xw and zw directions, respec-
tively. The moment vector comprises three contributions: aerodynamic, gravitational,
and the control torque. The aerodynamic contribution Maw is determined by inte-
grating the radial distributions of the forces Fx and Fz over the wing. That is,
Maw = Mx iw + My jw + Mzkw, where

Mx = 2
∫ R

0
F ′
z(r)rdr , My = 2

∫ R

0
F ′
z(r)dac(r)dr , and Mz = −2

∫ R

0
F ′
x (r)rdr ,

where F ′
x (r) and F ′

z(r) are the two-dimensional aerodynamic loads on an airfoil that
is at distance r from the wing root and dac(r) is the distance between the hinge line and
the quarter chord line (aerodynamic center) at each airfoil section along xw direction.
The gravitational contribution is written as Mgw = (−d̂ iw + rcg jw) × mwgkI. The
last contribution (the control torque) is written as Mcw = −τϕks + τη jw, where τϕ

and τη are the actuating torque along the flapping and pitching directions, respectively.
Constructing all the required terms to apply the principle of virtual power (1), the

five-DOF equations of motion are obtained as (with obvious correspondence to the
abstract form (2))

mw

(
ρ̈1 (cosβ cos η cosϕ − sin β sin η) + ρ̈3 (cosβ sin η cosϕ + sin β cos η)

+ ρ̈2 cosβ sin ϕ − xhθ̈ sin θ − xhθ̇
2 cos θ

)
+ mvu̇

= Fx (cosβ cos η cosϕ − sin β sin η) + Fz (cosβ sin η cosϕ + sin β cos η) (32)

−mw

(
ρ̈1 (sin β cos η cosϕ + cosβ sin η) + ρ̈3 (sin β sin η cosϕ − cosβ cos η)

+ ρ̈2 sin β sin ϕ + xhθ̈ cos θ − xhθ̇
2 sin θ

)
+ mv(ẇ − g)

= −Fx (sin β cos η cosϕ + cosβ sin η) − Fz (sin β sin η cosϕ − cosβ cos η)

(33)
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mw

[
−xh

(
θ̈ d̂ (cosβ cos η cos θ cosϕ + sin β cos η sin θ cosϕ − sin β sin η cos θ

+ cosβ sin η sin θ) − θ̈ rcg sin ϕ cos(β − θ) + θ̇2

(
−rcg sin ϕ sin(β − θ) + d̂ cos η cosϕ sin(β − θ) + d̂ sin η cos(β − θ)

))

+ u̇
(
− sin β rcg sin ϕ + d̂ sin β cos η cosϕ + d̂ cosβ sin η

)

+ ẇ
(
− cosβ rcg sin ϕ + d̂ cosβ cos η cosϕ − d̂ sin β sin η

)]

+ Iyb θ̈ + xhmw

[
ρ̈3 sin β sin η cos θ cosϕ + ρ̈1 (cos η cosϕ sin(β − θ)

+ sin η cos(β − θ)) − ρ̈3 (cosβ sin η sin θ cosϕ

− cosβ cos η cos θ − sin β cos η sin θ) + ρ̈2 sin ϕ sin(β − θ) + g cos θ

+ xhθ̈ − u̇ sin θ − ẇ cos θ

]
− ḣ3 sin η sin ϕ − ḣ1 cos η sin ϕ + ḣ2 cosϕ

= τη cosϕ − Fz xh

(
sin β (cos η sin θ − sin η cos θ cosϕ)

+ cosβ(sin η sin θ cosϕ + cos η cos θ)

)

+ Fx xh(cos η cosϕ sin(β − θ) + sin η cos(β − θ))

− Mx cos η sin ϕ + My cosϕ − Mz sin η sin ϕ (34)

rcg xh mw cosϕ

(
θ̈ cos θ sin β − θ̈ sin θ cosβ − 2θ̇2 cos θ cosβ − 2 θ̇2 sin θ sin β

)

+ rcg mw cosϕ

(
u̇ cosβ + u θ̇ sin β − ẇ sin β + w θ̇ cosβ

)

+ d̂ xh mw cos η sin ϕ

(
θ̈ cos θ sin β − θ̈ sin θ cosβ − 2 θ̇2 cos θ cosβ

− 2 θ̇2 sin θ sin β

)
+ d̂ mw cos η sin ϕ

(
u̇ cosβ + u θ̇ sin β − ẇ sin β

+w θ̇ cosβ

)
+ ḣ1 sin η − ḣ3 cos η = τϕ + Mx sin η − Mz cos η (35)

d̂ xh mw

(
θ̈ sin η cos θ cosϕ sin β − θ̈ sin η sin θ cosϕ cosβ − θ̈ cos η cos θ cosβ

− θ̈ cos η sin θ sin β − 2 θ̇2 sin η cos θ cosϕ cosβ − 2 θ̇2 sin η sin θ cosϕ sin β

− 2 θ̇2 cos η cos θ sin β + 2 θ̇2 cos η sin θ cosβ

)

+ d̂ mw

(
u̇ sin η cosϕ cosβ + u̇ cos η sin β + u θ̇ sin η cosϕ sin β
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− u θ̇ cos η cosβ − sin η cosϕ sin β ẇ

+ ẇ cos η cosβ + w θ̇ sin η cosϕ cosβ + w θ̇ cos η sin β

)
+ ḣ2 = τη + My,

(36)
where mv = mb + mw.

B Aerodynamic Model

The aerodynamic derivatives in Eq. (7) are defined below

Fx0 = ρπ

(
k I11 − 1

4
I12

)
sin η η̇ϕ̇

Fz0 = −1

2
ρ CLα I21 sin η ϕ̇ |ϕ̇| − ρπ

(
k I11 − 1

4
I12

)
cos η η̇ϕ̇

Mx0 = −1

2
ρ CLα I31 sin η ϕ̇ |ϕ̇| − ρπ

(
k I21 − 1

4
I22

)
cos η η̇ϕ̇

My0 = 3

4

(
−1

2
ρ CLα I22 sin η ϕ̇ |ϕ̇| − ρπ

(
k I12 − 1

4
I13

)
cos η η̇ϕ̇

)
− k Fz0

Mz0 = −ρπ

(
k I21 − 1

4
I22

)
sin η η̇ϕ̇

Fxu = ρπ

(
k I01 − 1

4
I02

)
(cosβ sin η cosϕ + sin β cos η) η̇

Fxw = −ρπ

(
k I01 − 1

4
I02

)
(sin β sin η cosϕ − cosβ cos η) η̇

Fxq = ρπ

(
k I11 − 1

4
I12

)
sin η cosϕ ϕ̇ − ρπ

(
xh

(
k I01 − 1

4
I02

)
(cos η cos (β − θ)

− sin η cosϕ sin (β − θ)) + cos η sin ϕ

(
k I11 − 1

4
I12

))
η̇

Fxnl = ρπ cosϕ θ̇

(
k I01 − 1

4
I02

)(
u (cosβ sin η cosϕ + sin β cos η)

+w (cosβ cos η − sin β sin η cosϕ)

)

− ρπ

(
xh cosϕ

(
k I01 − 1

4
I02

)
(cos η cos (β − θ) − sin η cosϕ sin (β − θ))

+ cos η sin ϕ

(
k I11 − 1

4
I12

))
θ̇2

Fzu = −1

2
ρ CLα I11(2 cosβ sin η cosϕ + sin β cos η) |ϕ̇|

− ρπ

(
k I01 − 1

4
I02

)
(cosβ cos η cosϕ − sin β sin η) η̇

Fzw = ρπ

(
k I01 − 1

4
I02

)
(sin β cos η cosϕ + cosβ sin η) η̇
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− 1

2
ρ CLα I11 (cosβ cos η − 2 sin β sin η cosϕ) |ϕ̇|

Fzq = 1

2
ρ CLα I21 cos η sin ϕ |ϕ̇| +

+ ρ CLα I11 |ϕ̇|
(
xh sin β sin η cos θ cosϕ + 1

2
cosβ (2xh sin η sin θ cosϕ

+ xh cos η cos θ) + 1

2
xh sin β cos η sin θ

)

+ ρπ xh cos η cosϕ sin(β − θ)

(
1

4
I02 − k I01

)
η̇

+ ρπ xh sin η cos(β − θ)

(
1

4
I02 − k I01

)
η̇ − ρπ sin η sin ϕ

(
k I11 − 1

4
I12

)
η̇

− ρπ cos η cosϕ

(
k I11 − 1

4
I12

)
ϕ̇

Fznl = −ρπ cosϕ θ̇

(
k I01 − 1

4
I02

)(
u (cosβ cos η cosϕ − sin β sin η)

+w (sin β cos η cosϕ + cosβ sin η)

)

+ θ̇2
(
2πρxh cosϕ

(
1

4
I02 − k I01

)
(cos η cosϕ sin(β − θ) + sin η cos(β − θ))

− 2πρ sin η sin ϕ cosϕ

(
k I11 − 1

4
I12

))

Mxu = −1

2
ρ CLα I21 (2 cosβ sin η cosϕ + sin β cos η) |ϕ̇|

− ρπ

(
k I11 − 1

4
I12

)
(cosβ cos η cosϕ − sin β sin η) η̇

Mxw = ρπ

(
k I11 − 1

4
I12

)
(sin β cos η cosϕ + cosβ sin η) η̇

− 1

2
ρ CLα I21(cosβ cos η − 2 sin β sin η cosϕ) |ϕ̇|

Mxq = 1

2
ρ CLα I31 cos η sin ϕ |ϕ̇| + ρ CLα I21 |ϕ̇|

(
xh sin β sin η cos θ cosϕ

+ 1

2
cosβ(2xh sin η sin θ cosϕ + xh cos η cos θ) + 1

2
xh sin β cos η sin θ

)

+ ρπxh

(
1

4
I12 − k I11

)
η̇

(
cos η cosϕ sin(β − θ) + sin η cos(β − θ)

)

− ρπ

(
k I21 − 1

4
I22

)(
sin η sin ϕ η̇ − cos η cosϕ ϕ̇

)

Mxnl = −ρπ cosϕ

(
k I11 − 1

4
I12

)
(cosβ cos η cosϕ − sin β sin η) θ̇ u

+ ρπ cosϕ

(
k I11 − 1

4
I12

)
(sin β cos η cosϕ + cosβ sin η) θ̇ w
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+ θ̇2
(
2ρπxh cosϕ

(
1

4
I12 − k I11

)
(cos η cosϕ sin(β − θ) + sin η cos(β − θ))

− 2ρπ sin η sin ϕ cosϕ

(
k I21 − 1

4
I22

))

Myu = 3

4

(
−1

2
ρ CLα I12(2 cosβ sin η cosϕ + sin β cos η) |ϕ̇|

− ρπ

(
k I02 − 1

4
I03

)
(cosβ cos η cosϕ − sin β sin η) η̇

)
− k Fzu

Myw = 3

4

(
ρπ

(
k I02 − 1

4
I03

)
(sin β cos η cosϕ + cosβ sin η) η̇

− 1

2
ρ CLα I12 (cosβ cos η − 2 sin β sin η cosϕ) |ϕ̇|

)
− k Fzw

Myq = 3

4

(
1

2
ρ CLα I22 cos η sin ϕ |ϕ̇| + ρ CLα I12 |ϕ̇|

[
xh sin β sin η cos θ cosϕ

+ 1

2
cosβ (2xh sin η sin θ cosϕ + xh cos η cos θ) + 1

2
xh sin β cos η sin θ

]

+ ρπxh cos η cosϕ sin(β − θ)

(
1

4
I03 − k I02

)
η̇

+ ρπxh sin η cos(β − θ)

(
1

4
I03 − k I02

)
η̇

− ρπ sin η sin ϕ

(
k I12 − 1

4
I13

)
η̇ − ρπ cos η cosϕ

(
k I12 − 1

4
I13

)
ϕ̇

)
− k Fzq

Mynl = 3

4

(
−ρπ

(
k I02 − 1

4
I03

)
cosϕ θ̇

[
u (cosβ cos η cosϕ

− sin β sin η) − w (sin β cos η cosϕ + cosβ sin η)

]

+ θ̇2
[
2ρπxh

(
1

4
I03 − k I02

)
cosϕ (cos η cosϕ sin(β − θ) + sin η cos(β − θ))

− 2ρπ

(
k I12 − 1

4
I13

)
sin η sin ϕ cosϕ

])
− k Fznl

Mzu = −ρπ

(
k I11 − 1

4
I12

)
(cosβ sin η cosϕ + sin β cos η) η̇

Mzw = ρπ

(
k I11 − 1

4
I12

)
(sin β sin η cosϕ − cosβ cos η) η̇

Mzq = ρπ

(
xh

(
k I11 − 1

4
I12

)
(cos η cos (β − θ) − sin η cosϕ sin (β − θ))

+ cos η sin ϕ

(
k I21 − 1

4
I22

))
η̇ − ρπ

(
k I21 − 1

4
I22

)
sin η cosϕ ϕ̇

Mznl = −ρπ

(
k I11 − 1

4
I12

)
cosϕ θ̇

(
u (cosβ sin η cosϕ + sin β cos η)

+w (cosβ cos η − sin β sin η cosϕ)

)
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+ ρπ θ̇2
(
xh cosϕ

(
k I11 − 1

4
I12

)
(cos η cos (β − θ)

− sin η cosϕ sin (β − θ)) + cos η sin ϕ

(
k I21 − 1

4
I22

))
,

where k = cr (1 − xor ), cr is the wing root chord, xor is the position of the hinge
point along xw normalized by the root chord, and xh is the distance from the vehicle
center of mass to the root of the wing hinge line (i.e., the intersection of the hinge line
with the xb-axis). Also, ρ is the air density, CLα is the three-dimensional lift curve
slope of the wing, c(r) is the spanwise chord distribution, R is the wing radius, and
Imn = 2

∫ R
0 rmcn(r) dr .

C The Linearized Dynamics of the Averaged Three-DOF System

The linearized averaged version of the three-DOF system (8) at the trim condition can
be written abstractly as

A = ∂ F̄
∂ x̄

∣∣∣∣
x̄0

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 A42 A43 A44 A45 A46

0 A52 A53 A54 A55 A56

0 A62 A63 A64 A65 A66

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (37)

where the elements of the matrix A can be written as (some elements have quite
lengthy expressions, and hence, we only write their limits as the wing mass goes to
zero):

lim
mw→0

A42 = 0

lim
mw→0

A43 = 0.25AI21ρU2
1 sin

2 αm + 0.74CLα I21ρU
2
2 sin

2 αm

I 2Fmvω2

− 98.86CLα I21ρU2 sin2 αm

IFmvω
+ 3307CLα I21ρ sin2 αm

mv

A44 = 1

IF Iybmvω
CLα ρ cosαm

(
cosαm

(
I11(c̄d̂kmw(0.98U2

− 41.88IFω) + Iyb (0.5U2 − 78.37IFω))

+ mw

(
c̄d̂ I12(31.4IFω − 0.74U2) + I21rcg(2.4IFω − 0.02U2)

)

+ c̄d̂ I21mw cosαm(0.12U2 − 19.27IFω)

)

+ mwrcg (5.23I11 IFkω − 0.12I11kU2 − 3.92I12 IFω + 0.09I12U2)

)
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lim
mw→0

A45 =CLα I21ρU2 sin αm cosαm

IFmvω
− 42.5CLα I21ρ sin αm cosαm

mv

lim
mw→0

A46 = 1

IFmvω

(
I11kρ(1.56U2 − 66.29IFω) + I12ρ(16.57IFω − 0.39U2)

)

A52 = 1

I 3F Iybω
2
CLα Iywρ sin αm sin 2αm

(
I21k

(−3230I 2Fω2

+ 96.6IFU2ω − 0.24U2
1 − 0.73U2

2

)

+ I22
(
2422I 2Fω2 − 72.43IFU2ω + 0.18U2

1 + 0.55U2
2

)

+ I31 cosαm
(−222I 2Fω2 + 10.5IFU2ω − 0.06U2

1 − 0.18U2
2

))

lim
mw→0

A53 =0

A54 = 1

I 2F Iybω
CLα ρ cosαm

(
Iyw sin 2αm

(
−2.6I11 IFkω + 0.06I11kU2 + 1.96I12 IFω

− 0.05I12U2+ I21 cosαm(0.01U2 − 1.2IFω)

)
+I21 Iyb sin αm(U2 − 42.5IFω)

)

A55 = 1

I 2F Iybω
CLα ρ sin αm

(
Iyw sin 2αm

(
−12.25I21 IFkω

+ 0.12I21kU2 + 9.19I22 IFω − 0.09I22U2

+ I31 cosαm(0.02U2 − 0.65IFω)

)
− I21 IF Iybω sin αm

)

A56 = 1

I 2F Iybω
ρ sin αm cosαm

(
CLα Iyw cosαm (0.65I21 IFkω

− 0.02I21kU2 − 0.49I22 IFω + 0.01I22U2)

+ CLα I31
(
5.27IF Iybω + 0.15IF Iywω − 0.12IybU2 − 0.001IywU2

)

+ CLα I31 Iyw cos 2αm(0.15IFω − 0.001U2)

+ Iyw sin αm

(
k(−30I11 IFkω + 0.19I11kU2

+ 30I12 IFω − 0.19I12U2) + I13(0.04U2 − 5.6IFω)

)

+ Iyw(−2I21 IFkω + 0.05I21kU2 + 0.5I22 IFω − 0.01I22U2)

)

A62 = 1

I 2F Iybω
2
CLα ρ sin αm

(
I21k

(−826I 2Fω2 + 24.7IFU2ω − 0.06U2
1 − 0.19U2

2

)

+ I22
(
619.6I 2Fω2 − 18.5IFU2ω + 0.05U2

1 + 0.14U2
2

)

+ I31 cosαm
(
1795I 2Fω2 − 84.4IFU2ω + 0.5U2

1 + 1.49U2
2

))

A63 = 1

I 2F Iybmvω2
CLαmwρ cosαm

(
cosαm

(
c̄d̂

(
I11k (−5.23IFU2ω

+ 0.06U2
1 + 0.18U2

2

) + I12
(
3.9IFU2ω − 0.05U2

1 − 0.14U2
2

))
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+ c̄d̂ I21 cosαm
(
U2(0.02U2 − 2.4IFω) + 0.01U2

1

)

+ I21rcg
(
U2(0.18U2 − 19.27IFω) + 0.06U2

1

))

+ rcg

(
I11k

(
U2(1.48U2 − 41.88IFω) + 0.49U2

1

)

+ I12
(
U2(31.4IFω − 1.1U2) − 0.37U2

1

)))

A64 = 1

IF Iybω
CLα ρ cosαm

(
42.2I11 IFkω − I11kU2 − 31.7I12 IFω

+ 0.74I12U2 + I21 cosαm(19.4IFω − 0.12U2)

)

A65 = 1

IF Iybω
CLα ρ sin αm

(
198I21 IFkω − 2I21kU2 − 148I22 IFω

+ 1.5I22U2 + I31 cosαm(10.5IFω − 0.25U2)

)

A66 = ρ

IF Iybω

(
CLα cosαm (−5.23I21 IFkω + 0.12I21kU2 + 3.9I22 IFω − 0.09I22U2)

+ CLα I31 cos 2αm(0.01U2 − 1.2IFω) − 1.2CLα I31 IFω + 0.01CLα I31U2

+ sin αm

(
k(242I11 IFkω − 1.5I11kU2 − 242I12 IFω

+ 1.5I12U2) + I13(45.5IFω − 0.29U2)

)

+ 16.43I21 IFkω − 0.39I21kU2 − 4.1I22 IFω + 0.1I22U2

)
.

D HawkmothMorphological Parameters

The morphological parameters and the wing planform for the hawkmoth, as given in
Sun et al. (2007) and Ellington (1984b), are

R = 51.9mm, S = 947.8mm2, c = 18.3mm,

r̂1 = 0.44, r̂2 = 0.525, f = 26.3Hz, � = 60.5◦,
αm = 30◦, mb = 1.648 gm, and Iyb = 2080mg cm2,

where R is the semi-span of the wing, S is the area of one wing, c is the mean chord,
f is the flapping frequency, � is the flapping angle amplitude, mb is the mass of the
body, and Iyb is the body moment of inertia around the body y-axis. The moments of
the wing chord distribution r̂1 and r̂2 are defined as

Ik1 = 2
∫ R

0
rkc(r) dr = 2SRkr̂ kk .
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As for the wing planform, themethod ofmoments used by Ellington Ellington (1984b)
is adopted here to obtain a chord distribution for the insect thatmatches the documented
first two moments r̂1 and r̂2; that is,

c(r) = c

β

( r

R

)λ−1 (
1 − r

R

)γ−1
,

where

λ = r̂1

[
r̂1(1 − r̂1)

r̂22 − r̂21
− 1

]
, γ = (1 − r̂1)

[
r̂1(1 − r̂1)

r̂22 − r̂21
− 1

]
,

and β =
∫ 1

0
r̂λ−1(1 − r̂)γ−1 dr̂ .

The mass of one wing is taken as 5.7% of the body mass according to Wu et al. (2009)
and is assumed uniform with an areal mass distribution m′ The inertial properties of
the wing are then estimated as

Ix = 2
∫ R

0
m′r2c(r) dr , Iy = 2

∫ R

0
m′d̂2c3(r) dr

, Iz = Ix + Iy, and rcg = 2
∫ R
0 m′rc(r) dr

mw
= I11

2S
,

where d̂ is the chord-normalized distance from the wing hinge line to the center of
gravity line.

E Optimized ShootingMethod

Periodic shooting methods have been used in the literature of FWMAVs/insects to
capture the periodic orbits associated with different equilibrium configurations (e.g.,
hovering) (Dietl and Garcia 2008b; Wu and Sun 2012; Stanford et al. 2013; Hussein
et al. 2018). The stability of these orbits are then analyzed using the Floquet theorem
(Nayfeh and Balachandran 1995). Dednam and Botha (2015) provided an optimized
shooting approach to capture a periodic solution of a nonlinear system. This opti-
mized shooting approach adopts the Levenberg–Marquardt optimization algorithm to
minimize the residual. This algorithm is based on two methods: the gradient descent
method and the Gauss–Newton method. According to Gavin (2011), when the param-
eters are far from the optimal values, the Levenberg–Marquardt algorithm operates in
a way similar to gradient descent. However, it operates similar to the Gauss–Newton
method when approaching the optimal point.

Consider the following system of equations

ẋ(t) = f (x(t),α, t), (38)
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where x ∈ R
n and f : Rn × R

k × R≥0 → R
n , and α are the system parameters. This

system corresponds to a non-autonomous vector field. Thus, a solution x(t) to the
system (38) is periodic if there exists a constant T > 0 such that

x(t) = x(t + T ). (39)

The optimized shooting method can be applied to any system that can be expressed in
the form of (38), and, for convenience, a dimensionless time τ is introduced such that
t = τ T . Equation (38) is then written as

dx
dτ

= T f (x(τT ),α, τT ). (40)

Thus, this new variable τ allows the simplification of the boundary conditions in Eq.
(39) so that x(τ = 0) = x(τ = 1) and Eq. (40) can be integrated over one period (i.e.,
letting τ run from zero to one). Now, the residual can be written as

R = T
∫ 1

0
f (x(τT ),α, τT ) dτ. (41)

According to Dednam and Botha (2015), the residual depends on the number of quan-
tities to be optimized and can be expressed as

R =
(
x(1) − x(0), x(1 + Δτ) − x(Δτ), . . . , x(1 + (p − 1)Δτ) − x((p − 1)Δτ)

)
, (42)

where Δτ is the integration step size and p ∈ N. For solvability, the natural number
p is chosen so that the number pn of components of the residual is greater than or
equal to the number of unknowns (initial point on the periodic orbit and any unknown
parameters such as the period in autonomous systems).
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