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Abstract

We study the noise-induced escape from a stable limit cycle of a non-gradient dynam-
ical system driven by a small additive noise. The fact that the optimal transition path
in this case is infinitely long imposes a severe numerical challenge to resolve it in the
minimum action method. We first consider the landscape of the quasi-potential near
the limit cycle, which characterizes the minimal cost of the noise to drive the system
far away form the limit cycle. We derive and compute the quadratic approximation of
this quasi-potential near the limit cycle in the form of a positive definite solution to a
matrix-valued periodic Riccati differential equation on the limit cycle. We then com-
bine this local approximation in the neighborhood of the limit cycle with the minimum
action method applied outside of the neighborhood. The neighborhood size is selected
to be compatible with the path discretization error. By several numerical examples, we
show that this strategy effectively improves the minimum action method to compute
the spiral optimal escape path from limit cycles in various systems.
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1 Introduction

Many physical and biological systems exhibit sustainable oscillating dynamics and are
altered by random external perturbations simultaneously. To understand the long-term
impact of noise on the stable oscillations in a deterministic dynamics is an important
question. We here consider a continuous-time dynamical system exhibiting a stable
limit cycle, subject to the additive random perturbation in the small noise limit. The
model is the following Itd stochastic differential equation in RY:

dx; = b(x)dt + oo (x)dw,, & < 1, (1

where b : R? — R is a smooth drift vector field, wy is the standard R4-valued Wiener
process, o : RY — R is a matrix-valued function and the positive semidefinite matrix
a(x) :=o(x)o(x)" is usually known as the diffusion tensor. We are concerned with
the case that the deterministic dynamical system x = b(x) has a stable limit cycle I.
This model of noise-perturbed stable oscillations has attracted a lot of interest in the
areas of nonlinear oscillators in biology, synchronization of neural network dynamics,
fluid dynamics and so on Kuramoto (1984), Moss and McClintock (1989), Bressloff
(2014), Wan et al. (2015), Wan and Yu (2017), de la Cruz et al. (2018). The central
question is how the stochastic trajectory of (1) is driven far away from I" due to the
long time effect of the noise. Such non-equilibrium behaviors correspond to many
important rare events and the stability problems of the stochastic systems.

It is a classic problem on the exit from a domain in a non-equilibrium system,
and there are many analytical and experimental studies in the physics literature on
this topic. The asymptotic analysis works (Matkowsky and Schuss 1982; Day 1996;
Maier and Stein 1996; Berglund and Gentz 2004) have focused on the exit problem
where the basin boundary is a closed curve or an unstable limit cycle. For the case
considered here on the noise-induced escape from stable limit cycles, Holland (1978)
and Kurrer and Schulten (1991) studied the invariant measure near the stable limit
cycle in small noise intensity limit. With the numerical experiments, Beri et al. (2005)
is concerned with the optimal trajectories in stochastic continuous dynamical systems
and maps. The approach Beri et al. (2005) is to study the activation energy by solving
the underlying Hamiltonian system. The activation energy in Beri et al. (2005) is
mathematically equivalent to the quasi-potential in our approach here based on the
Freidlin—Wentzell large deviation principle.

The large deviation theory provides a useful tool for the noise-induced problems
for (1) in the asymptotic regime of small noise. The mathematical theory of Freidlin—
Wentzell large deviation principle (Freidlin and Wentzell 2012) states that the most
probable trajectory of (1) between two given points aj and a; is the minimizer of the
Freidlin—Wentzell action functional: the minimizer is called the minimum action path
(MAP) (E et al. 2004) and the minimum value of the action is the so-called quasi-
potential. This theory is also applicable to the transitions from a compact invariant set
K to another set K5. The quasi-potential landscape, denoted as V (x), takes the zero
value at K| and increases its value away from K, intuitively depicting the cost that
the noise has to pay to drive the system to reach the target point. So, the quasi-potential
is an important quantity describing the landscape of the minimal action for the escape
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from K. In the case that K is a stable limit cycle, the level set of the quasi-potential
near this limit cycle is very useful to understand the effect of noise in driving the
periodic system (1) in the long run time.

It is shown that V satisfies a Hamilton—Jacobi equation (Freidlin and Wentzell
2012). For planar problems d = 2, one can numerically solve this Hamilton—Jacobi
equation with suitable numerical schemes (Cameron 2012). In general, this problem
has to be solved by the variational approach (the least action principle) rather than the
PDE approach. The minimum action method (MAM) and its variants (E et al. 2004;
Zhou et al. 2008; Heymann and Vanden-Eijnden 2008; Vanden-Eijnden and Heymann
2008; Wan 2011) have been developed to directly calculate the minimum action path
(MAP). In practice, the MAM works on a path with two fixed endpoints, so it naturally
fits the situation where both K| and K are singletons. But when K is a continuum
set, for instance, a limit cycle I, then the challenge for the transition from K to K3 is
that every pointin K is equally important since the quasi-potential is zero everywhere
inside K1, which usually implies that the actual MAP may have an infinite length. This
key fact can also be observed from the underlying Hamiltonian flow. The extremal
path, together with its corresponding momentum part, satisfies a Hamiltonian flow.
When the momentum term in the Hamiltonian flow vanishes, one has a flow identical
to the original dynamics x = b(x). So the stable set K in the original dynamics
becomes the a-limit set of the extremal escape path with nonvanishing momentum.
This suggests that the optimal exit path emitting from the limit cycle has an infinite
arc-length as t — —o0.

The numerical challenge in practical computation is that it is not possible to resolve
an infinitely long path perfectly. The previous study on the Kuramoto—Sivashinsky
equation in Wan et al. (2010) is to select an arbitrary point on the traveling wave
and use the transition from this point to approximate the transition from the traveling
wave. This approach works reasonably well if the main purpose is to explore the high-
dimensional phase space rather than a pursuit of the precise values of quasi-potential,
since the accuracy of the path deteriorates critically only near the limit cycle. In
addition, the minimum action obtained in this way depends crucially on the initial
guess in the optimization: the more loops around the limit cycle in the initial path, the
better accuracy of the numerical results, but the length of the numerical path becomes
longer and longer.

In this paper, we propose a new computational strategy of the MAM to adaptively
compute the MAP from the limit cycle. Our new method is based on the explicit form of
the quadratic approximation of the quasi-potential near the limit cycle. To this end, we
construct a small tube around the limit cycle, selected by a given numerical tolerance
compatible with the discretization of the path. The MAM is only applied to the outside
of this tube, and the true path spiralling outward with infinite length is truncated to have
a finite length with a new initial point confined on the surface of the tube. To construct
the analytic form of the quasi-potential in the tubular neighborhood of the limit cycle,
the quasi-potential is approximated by a quadratic form witha (d — 1) x (d — 1)
positive definite matrix G along the limit cycle. G is computed by solving a periodic
Riccati differential equation (PRDE), which is not a challenging numerical problem
even for a large dimension d. The existence-and-uniqueness condition of the positive
definite solution to the PRDE is shown to be closely connected to the linear stability
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of the limit cycle and the non-degeneracy of the diffusion tensor. If d = 2, we have the
analytic solution of G explicitly. The eigenvalues of G along the limit cycle describe
the varying widths of the tubular level set of the quasi-potential; the eigenvectors of
G lying in the normal plane of the limit cycle tell us which direction is more preferred
(or less preferred) for the stochastic trajectory to depart from the limit cycle. The
asymptotic approximation of the quasi-potential can also provide the correct initial
values if one wants to solve the Hamiltonian system to calculate the quasi-potential
along the Hamiltonian trajectory.

In the following, Sect. 2 will review the basics of several theoretic foundations.
Section 3 derives the approximation form of the quasi-potential near the limit cycle.
Section 4 is devoted to the Riccati matrix differential equations. Our main numerical
method is presented in Sect. 5, followed by several numerical examples in Sect. 6.
The last section is our conclusive part.

2 Review
2.1 Quasi-Potential and Minimum Action Method
Assume y (1) is a periodic solution of the deterministic dynamics

x(t) =b(x) (2)
with a least period 7 > 0. Then the trajectory I" := {y(t) : t € [0, 7]} in the phase
space is a limit cycle. I" is assumed to be stable in the sense which will be specified

later. Then the SDE (1) is a random perturbation of (2). We are interested in the
quasi-potential for the noise-perturbed escape from this stable limit cycle:

V(x) := inf inf N , 3
(x) L LIPS T[] 3

where the Freidlin—~Wentzell action functional S associated with an interval [—T, T]
is defined by

1 (7T, . 2
for an absolute continuous function ¢; otherwise, St[¢] = +00. Here
T

a:=oco0', and |vl,:=vVvlalv, (u,v),:= <u,a_lv> =u'a v

Remark 1 If a is not invertible, then the above action functional is modified as follows

T
Srlg] = inf / llul|? dr. 5)

1
2 qu=¢—b(¢) J-1
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The quasi-potential V (x) > 0 and the equality holds on the limit cycle I'. It has been
shown Freidlin and Wentzell (2012) that V satisfies the Hamilton—Jacobi equation in
the basin of attraction of I':

H(x, VV(x)) =0, (6)

where the Hamiltonian is

1
Hx, p) = (b(x). p) + 5 (p.a(x)p). )

The extremal path of the variational problem (3) satisfies the canonical equations of
the Hamiltonian system:

{¢ — Hp(¢, p) =b(p) +a(@)p, 3

p=—Hi(g, p) = —(3:b(@) p— 1d (p.a(@)p).

where [0,b(x)]ij = [0x,;bi(x)] is the Jacobian matrix of the vector field b. As a
practical tool, the Hamilton’s ODE (8) can be used as an initial value problem to
explore all possible dynamical trajectories in the phase space RY x R? or a boundary-
value problem in R? with certain constraints imposed on the terminal point. For the
initial value problem, the extremal paths emitting from the limit cycle I' has the
following condition at —oo:

lim dist(¢(¢),I')=0, and lim p(t) =0. )
——00 [—>—00

For the boundary-value problem such as the variational problem associated with V (x)
in (3), the boundary condition is

tii@@dist(qﬁ(t), MN=0, and ¢(T)=x, forsome T € (0, c0]. (10)

The computational issue of infinite time interval can be resolved by the formulation
in curve space (Grafke et al. 2014).

For each extremal path ¢ emitting from the limit cycle, i.e., satisfying (9), the
following scalar value on this extremal path, denoted by V; to distinguish from V, can
be defined

1 [t .
Vi@ ()= Vi () = 5 / |6 = b@ED |2y s Vot (1)
0]

with the setting lim;_, o, V(¢ (¢)) = 0. If this extremal path ¢ happens to solve the
variational problem (3), then the quasi-potential V equals to V; on this path. In some
cases, multiple extremal paths may intersect at the same point in the position space,
and the true value of the quasi-potential V at the intersection point is the minimum of
all V;’s corresponding to the multiple extremal paths. The detailed discussion may be
found in literatures such as Maier and Stein (1993) and Beri et al. (2005).
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To determine the special extremal path related to the quasi-potential V (x), one need
assign the initial condition and a terminal condition as in (10). In fact, the extremal
path winds around the limit cycle and follows the same rotation direction as I". This
means that the extremal path has an infinite length.

To handle the calculus of variation with respect to the time interval in the quasi-
potential (3), Heymann and Vanden-Eijnden (2008) proposed the geometric action
functional and this action can be written in terms of an arbitrarily parametrized geo-
metric curve:

Sle] = f (p.dp) = f (@ — b(9)). d), (12)
@ ¢

where the curve ¢ is a geometric description for the time variable function ¢(¢).
The momentum p(t) = a($(t))~' (¢ — b(¢)) is related to the quasi-potential by
p() = VV(¢(t)). The form (12) is in the same format of the Maupertuis’s principle
(Landau and Lifshitz 1976), where the time derivative (i)(t) in S has to be provided
additionally. If the path ¢ has a finite length L, then it can be parametrized by its
arc-length ¢(s), —L < s < 0. The path then has two parametrized forms: ¢ (¢) and
¢(s). The optimal change-of-variable between time ¢ and arc-length s is obtained by
the zero-Hamiltonian property, H(g, p) = 0, which is equivalent to the important
identity

Idll, = 16@)ll, -

So, ds/dt = %, where ¢’ (s) is the derivative of ¢ parametrized by the arc-length
parameter s. The geometric minimum action method (Heymann and Vanden-Eijnden
2008) (gMAM) is based on this new variational problem of minimizing S. Grafke
et al. (2014) used the same relations between s and ¢ in the context of Hamiltonian
ODE (8).

The quasi-potential defined in (3) then is equivalent to

V(x) = inf inf S[el, 13
) go (peAé‘r[lfL, 0] le] (13
o(=L)el,p(0)=x

where AC[—L, 0] denotes the space of absolutely continuous functions on [—L, 0].
As noted above, since the set I' is a limit cycle, the arc-length L of the optimal path is
infinite. In numerical computation based on (3) or (13), the path has to be truncated by
a finite value of either time 7 or arc length L. Thus, the gMAM inevitably produces
truncation errors as any other version of MAM. The tMAM (Wan 2015; Wan and
Yu 2017; Wan et al. 2018) strives to adaptively match the truncation errors with the
numerical optimization errors by determining a larger and larger 7 as the resolution
of the path is finer and finer. This method works remarkably well in practice, and we
think the same idea can also be applied to the gMAM for the case of infinite arc length
L. But the numerical stiffness increases with the interval length 7" (or L). Our idea here
to avoid this stiffness due to infinite long interval length is to find an approximation to
the quasi-potential within a tube {x : dist(x, I') < §} and the numerical computation
is only applied to the outside of this tube.
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2.2 Quadratic Approximation of the Quasi-Potential at Stationary Points

The asymptotic idea has been implemented to analyze the Hamiltonian flow (8) around
stationary points. We briefly review this result Bouchet et al. (2015) on the approxi-
mation of the quasi-potential at a stable stationary point. Assume that the linearized
dynamics at a stationary point x, (not necessarily stable) of b is X = Jx where
J is the Jacobian matrix 9,b at x,. J is assumed to be non-degenerated. Assume
that V(x) = %xTAx, where A is a symmetric matrix to be determined. Then the
zero-Hamiltonian condition H(x, VV) = 0 and (8) lead to the matrix equation
AJ 4+ JTA + AaA = 0. The unique positive definite matrix solution A satisfies
Al = fooo e ael dr (where a is valued at x,). The tangent flow of the Hamil-
tonian system (8) in R?? is then in the following two subspaces: (X, p) = (Jx, 0)
and (x, p) = (—(J + A)x, —JTAx). If J corresponds to a stable fixed point (all
eigenvalues have negative real parts), then A is positive definite.

The generalization of this asymptotic analysis to the setting for a stable limit cycle
is more complicated than this fixed point case. We first need to set up some local
curvilinear coordinates around the limit cycle by using a moving affine frame along
the limit cycle.

2.3 Linear Stability of Limit Cycle

We review some classic concepts for asymptotic stability of periodic ordinary differ-
ential equations in the Floquet theory (Coddington and Levinson 1955). Some of them
will be used later.

Definition 1 Let M(-) € R"*" be a 7 -periodic matrix-valued continuous function.
Fix an initial time 7o, @7 (t, 79)€ R"*" is called the state transition matrix associated
with M (-) if it solves the periodic matrix differential equation

a
37 Pm (@ 70) = M@ Py (T, 70), (14)

@y (0, 0) = 1,
where [ is the identity matrix. The monodromy matrix at time 7 is defined as
Qy(r) =Py +7, 7). (15)
The eigenvalues of the monodromy matrix ® () are independent of T because
CE)M(T) = Dy (r, 0)d_>M(0)d>;,11(t, 0). The eigenvalues of the monodromy matrix

@)y (t) are called the characteristic multipliers for the linear 7 -periodic system
y(t) = M(7)y(t) or simply the characteristic multipliers of M (-).

Recall that y (t) is a 7 -periodic solution of (2), i.e.,

y (@) = b(y (). (16)
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Linearization of (2) around y () leads to the following periodic linear system
Y = 0:b(y(1))y. a7

By differentiating (16), we see that y(t) is a 7 -periodic solution of the equation
(17). Tt follows that the linear 7 -periodic system (17) always has a characteristic
multiplier equal to 1. The stability of the limit cycle is characterized by the other
(d — 1) characteristic multipliers.

Definition 2 We say that the limit cycle I, which is the orbit of a 7 -periodic solution
y (1) of (2), is asymptotically stable if, except for the trivial characteristic multiplier
1, the other d — 1 characteristic multipliers of (17) lie inside the open unit disk in the
complex plane.

The asymptotic stability of the limit cycle defined in Definition 2 has the property
of asymptotic orbital stability in the sense that any solution of (2) which comes near
the limit cycle will tend to the limit cycle as T — 4-o00. Refer to Theorem 2.2 of
Chapter 13 in the textbook (Coddington and Levinson 1955).

2.4 Curvilinear Coordinates

To set up the curvilinear coordinates around the limit cycle I in R, we need a moving
affine frame along the limit cycle I" in RY, i.e., a collection of d differentiable 7 -
periodic mappings ¢; : [0, 7] — R4, 0 <i <d — 1, such that for all T € [0, T,
the (column) vector set {¢;(t) : 0 < i < d — 1} forms a basis of R?. Each ¢; (1) may
be viewed as a vector field along the limit cycle I'. In addition, we set ep(7) to be a
tangent unit vector field along the limit cycle I, i.e.,

eo(7) = A(D)y (1), (18)

where a superior dot denotes differentiation with respect to t, and A(t) is a 7 -periodic
nonzero scalar function. To be well defined, we need to assume that y (t) never vanishes
for any t, which amounts to saying that the vector field b(x) never vanishes on the limit
cycle I'. Given a moving affine frame ¢;(t), 0 < i < d — 1, the following equations
for the derivatives hold:

d—1
éj(1) =Y oi(Dei(r), for 0<j<d—1, (19)
i=0
where . '
a)lj(t):(el(t),éj(t)>, for 0<i, j<d—1, (20)

and the (column) vector set {e!(t) : 0 < i < d — 1} is the reciprocal basis for the
basis {¢;(t) : 0 <i <d — 1}, that is

—

' . , if l — j’
L , . = 81. = 21
<€ (1), ¢j (T)> J {0, otherwise. ey
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So, the normal plane of the limit cycle T is P(t) := span{e! (1), ..., e (1)} =
(eo(2)* = (y (t))L. Actually this normal plane is the d — 1-dimensional direct sum
of the generalized left eigenspaces for the nontrivial eigenvalues (excluding 1) of the
monodromy matrix ®j 5, (.))(7) associated with the Jacobian d,b(y (7)).

Let E(t) = [eo(r), e, ed_l(t)] denote the d x d matrix whose columns
are the vectors ¢;(t), 0 < i < d — 1. Then its inverse matrix is E(r)*l =
[eo(r) coedl (r)]T , and (19) can be written in the matrix form

E(r) = E(1)Q(7), (22)

or
Q)= E®) 'E®). (23)

where the element in the (i + 1)-th row and (j + 1)-th column of Q(7) is a)’] (7).

Remark 2 1f one assumes that the basis {¢;(t) : 0 < i < d — 1} is an orthonormal
basis, then ¢! (1) = ¢;(z)T and |e;| = 1,0 < i < d — 1. It follows that o, = (ei.e;)
satisfies

wl(1) = —wi(r), for 0<i, j<d—1 0=<t<T,

i.e., Q(7) is antisymmetric.

Assume {y(t) : 0 < v < 7}isacurve of order d, i.e., for all t, the k-th derivative
)/(k)(t), 1 < k < d, are linearly independent, then we can construct the moving
frame ¢;(7), 0 <i < d — 1 from the derivatives of y (7) by using the Gram—Schmidt
orthogonalization process. Consequently, the resulting frame ¢;(7), 0 <i <d — 1
satisfies that for every t, the vector set {e; (t) : 0 < i < d — 1} forms an orthonormal
basis in R?, and in addition, for all 1 < k < d, the k-th derivative y ©) (1) of y (1)
lies in the span of the first k vectors ¢;(t), 0 < i < k — 1. It then follows that Q(7) is
antisymmetric and tridiagonal:

0  wi(r) 0
Q1) = —w1(7)
. 0 wq—1(1)
0 —wg-1(r) 0

The frame {e¢;(7),0 <i < d — 1} constructed in this way is called the Frenet frame,
and the corresponding equation (19) or (22) is known as the Frenet—Serret formula,
and the invariant «; (t) := w; (t)/ |y (t)] is called the i-th curvature of the curve y (7)
and can be determined by {e;(7) : 0 <i <d — 1}.

2.5 Gradient Form in Terms of Curvilinear Coordinates
Now, equipped with an affine frame ¢;(t), 0 < i < d — 1 defined on the limit cycle

I' as stated in § 2.4 (without the requirement of orthonormality in Remark 2), we
introduce a set of local curvilinear coordinates
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(t,2) € [0, T) xR 2=, ..., 22 HT e r4! (24)

in the tubular neighborhood of the limit cycle I' by writing a point x in the neighborhood

as
d—1

x(r.2) =y + Y dej(r) =y() + E()z. (25)
j=1
Here the d x (d — 1) matrix EisE := [el(r), ed_l(r)] . Differentiating (25)
with respect to T and z; yields

d—1 d—1
drx = |:A(r)_l + szw?(r)}eo(r) + Z ij;(f)ei(f)
j=1

i,j=I
= [A(z)*‘ + <eo(t), E(r)z)] eo() + E(1)Q(7)z,

dix =ei(r), for 1 <i=<d-1

S~2(‘L') denotes the (d — 1) x (d — 1) submatrix of 2(7) by deleting the first row and
the first column. The Jacobian matrix [fo, d1x, - azd—l.x] at (r,z = 0) of the
mapping defined by (25) is the matrix whose columns are the vectors AMo)Leo(r),
e1(1), ..., eq—1 (1), therefore it is non-singular for any t. So the mapping defined by
(25) is a local diffeomorphism and gives a differentiable transformation between the
Cartesian coordinates x and the curvilinear coordinates (t, z). We now can express
the gradient operator V in the curvilinear coordinates. Refer to Proposition 10 in the
appendix.

3 Quadratic Approximation of Quasi-Potential

In this section, we study the quadratic approximation of the quasi-potential V near the
limit cycle I'. We shall derive a periodic Riccati differential equation (PRDE) on the
limit cycle and discuss its theoretic properties and numerical calculations.

3.1 Asymptotic Analysis

We choose 7 as the physical time in parametrizing the limit cycle I' = {y(7):0 <
T < 7T}. The other choice, such as the arc-length parametrization, can be easily
transformed from the time-parametrization. The main idea is to write V (x) in terms of
the curvilinear coordinate (7, z) near I and apply the Taylor expansion of V around I'.

Firstly, we have V (7, z) > 0 and particularly on the limit cycle V(r,z = 0) = 0.
Therefore d,;V(z,0) = 0,V 0 < i < d — 1. Consequently, the Taylor expansion of
V(t,z) in z at z = 0 reads

d—1
1 . 1
Vi) =3 Y Gt + 0z = EzTG(r)z +0(z]Y), (26)
i,j=1
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where the (d — 1) x (d — 1) symmetric matrix G(7) is G;;(t) = 822,.Zj V(z, 0), which
is to be determined. Since '

V= %(z, G(®z)+ 0(zl*) and 3.V = G(t)z+ 0(z1).

then from Proposition 10 and 1/(A~! 4+ z) = A + O(z), we have

1. ST 3 0
VV = A(1) <<z, |:§G(r) — Q(1) G(r)i| Z> + O(|z| )) e (1)
d—1

+3[G@ai +01zP] e . @7)

i=1

Secondly, we expand the coefficients b(x) and a(x) in the Eq. (1) in terms of the
curvilinear coordinates (t, z). For any x in a neighborhood of I', we write the drift
vector

d—1 d—1
b(x) = b(y(r) + Y deam) = Bz 0a ), (28)
i=1 i=0
where by (21) the coefficients are

Bi(1,2) = <ei(t),b(x)>, 0<i<d—1.

Onthelimitcyple, wehaveb(y (7)) =y (1) = A7) Leg (7). It follows that BO(z, 0) =
)L(r)_l and B'(1,0) = 0,1 <i <d — 1. In addition,

0B (7, 0) = (¢! (), 0:b(y ()e; (D), 1=iij=d—1. (29)

We denote the right hand side of (29) as the (i, j) entry, 1 <i, j <d—1,0fthe (d—1)
by (d — 1) matrix J (t). Note that d,b(y (1)) is the original Jacobian matrix evaluated
on the limit cycle I', and J(7) may be viewed as the Jacobian matrix restricted in the
z-space. Therefore in the neighborhood of I", we have the expansion

B%t,2) = A(1)" ' + O(lz)), (30)
d—1
Bi(t,72) = szaz_/Bi(t, 0) 4+ 0(Iz|)
j=1
=J@2) +0(z%, 1<i<d-—1, (31)

For the diffusion tensor a(x), the approximation is simply

d—1

a) =a(y(@+ Y () = aly (@) + 02, (32)

i=1
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Then by plugging (28), (30),(31) and (32) into the Hamiltonian in (7), we have that

H(x, VV) = (b(x),VV) + % (VV,a(x)VV)

d—1
= <z, BG’(z) - ﬁ(r)TG(w} z> + ;(G(T)z)i(f(f)z)i
d—1

+s X 6wo (é0), aly )e! @) (G012, + 0GP
= <z, BG’(:) - ﬁ(r)TG(r)} z> +(G(0)z, T(1)z)
362 ADG@2) + 0P,

where A is the positive definite symmetric matrix whose element in the i-th row and
Jj-th column is given by

<e"(r),a(y(r))ef'(r)>, l<i,j<d—1.

A is the restriction of the original diffusion matrix a in the normal plane P. Hence, by
(6), equating the terms with the same order z'z/ yields the following periodic Riccati
differential equation (PRDE)

G(r) — Q0)TG(r) — G(Q(x) + G) T (2) + ()G (x) + G()A(T)G(r) =0,

ie.,

G)=-M@)'G(x) — G()M(z) — G(1)A(1)G (1), (33)

where ~ ~ B
M(t) := J(t) — Q(1), (34)

is the matrix of size (d — 1) x (d — 1). Note that the coefficients M (t) and A (t) are
both 7 -periodic. We need to seek a periodic positive definite solution G(7) to (33).

When G is found, the quasi-potential at a point (7, z) then can be approximated
locally by the quadratic form

1
0(t,2) := 3 (z, G(1)z)

due to (26). Then the momentum p = VV is approximated by VQ when |z|] < 1 as
follows due to (27) and Proposition 10:
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p(t.2) =VV(x)~ VQ
d—1
<z, [%Gu) - fz(rfG(r)] z>eo(f) +) LG@®)ile (D).

i=1

_ leo(@)|
7 (@)l
(35)

This may serve as the initial condition for the Hamiltonian system. We can build
the MAM by restricting the initial point on the contour near the limit cycle
{(z,2) : Q(z, z) = &} with a small positive §. The details are discussed in Sect. 5.

4 Periodic Riccati Differential Equation

This section is devoted to the study of PRDE (33) derived from the previous section.
We investigate the existence and uniqueness of the positive definite solution and the
relation to the linear stability of the limit cycle as well as the degeneracy of the diffusion
tensor.

4.1 Solutions of the Riccati Equation

We first state a theoretic result concerning the existence of the positive definite solution
for the Cauchy initial value problem of the PRDE (33).

Proposition 3 Assume that the initial condition G (0) = G is symmetric and positive
semidefinite. Then the solution of the PRDE (33) exists and is symmetric and positive
semidefinite for all T > 0. Furthermore, if G is positive definite, then so is G(t) for
allT > 0.

For the proof, refer to Proposition 1.1 in Dieci and Eirola (1994). From Proposition 3,
we immediately conclude the following result on periodic positive definite solutions
to the PRDE (33).

Corollary 4 Assume G(t) is a T -periodic symmetric solution to the PRDE (33). Then
G (1) is positive (semi)definite for all T if and only if G (1) is positive (semi)definite
for some 19 € [0, T).

Next, we give a sufficient and necessary conditions for the existence and uniqueness
of the periodic positive definite solution to the PRDE (33). We start with the connection
between the PRDE and the periodic Lyapunov differential equation (PLDE). Assume
G (1) is non-singular for all T (a sufficient condition is that G is non-singular at certain
10). Let H(t) := G~! (). Then by (33), H () solves the following PLDE

H(t) = M(t)H(t) + H@)M(t)" + A(7). (36)
It is easy to verify that the solution of the PLDE (36) with the initial condition H (1)
is given by

H(t) = ®j3(z, 1) HO)® (7, 1) + W(T, 10), (37)
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where @ 57 (7, 79) refers to the state transition matrix associated with the T -periodic
matrix-valued function M (+) (see Definition 1) and

Wi(r, 19) := /T D 5 (x, S)X(S)@M(‘L’, s)T ds. (38)

0

Before we state our theorem, we need introduce some definitions and results from
the control theory (Bittanti 1986) of linear periodic ordinary differential equations.

Definition 5 A pair (M (-), N(-)) of n x n and n x m real 7 -periodic matrix-valued
functions is called controllable if there exists no left eigenvector, denoted by u, of the
monodromy matrix ®;(0) satisfying the equation u (P4 (z, 0)) "' N(z) = 0 for all
te[0, 7).

In a special case that the left null space of N is zero, then (M, N) is controllable for
any M. Note the fact that the left null space of any real matrix N is the same as that
of NNT, then we have the following useful observation.

Lemma6 A pair (M(-), N(-)) of n X n and n x m real T -periodic matrices is con-
trollable if and only if the pair (M (-), N(-)N (-)7) is controllable.

Our main result is the following theorem rigorously connecting the linear stability of
the limit cycle to the positive definite solution of the PRDE (33), under the assumption
of certain controllability determined by the diffusion tensor a. The proof is based on
some classical results in Bolzern and Colaneri (1988) and is left in “Appendix A.”

Theorem 7 The PRDE (33) admits a unique T -periodic positive definite solution if
and only if the following two conditions hold:

(1) the limit cycle T is asymptotically stable; B
(ii) atsome v’ € [0, T), the pair (® 5 (z"), W(z'+ 7T, t")) is controllable. where ® j;
is the monodromy matrix of M and W is defined in (38).

Remark 3 1t is worthy to note that the controllable condition (ii) in Theorem 7 as a
sufficient condition requires only the existence of t/ € [0, 7) such that the constant
matrix pair fixed at this 7’ is controllable. The conclusion in Theorem 7 still holds
if condition (i7) is replaced by a stronger condition (ii’): (P G, W(E+T,))is
controllable, or equivalently (ii”): (M ), A( )) is controllable. We can obtain a weaker
(sufficient) condition here in Theorem 7 due to Proposition 14 in Appendix A.

In view of (38), we immediately have the following corollary.

Corollary 8 Assume the limit cycle I is asymptotically stable.

(1) Ifthere exists T’ € [0, T), such that A(t') is non-singular, then the PRDE (33)
admits a unique T -periodic positive definite solution.

(2) Ifforevery point y (t) on the limit cycle, ;f(r) = 0, then the PRDE (33) does not
admit a unique T -periodic positive definite solution.

Since A (1) is the restriction of the positive semidefinite diffusion tensor a(y (1))
on the normal plane P(t) = (eo(r))t = span{e'(r),..., e !(r)}, we have the
following proposition.
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Proposition 9 Let N (a(y (1)) and R(a(y (t))) be the null space and the range space
of a(y (1)), respectively.

(1) The following conditions are equivalent:

(a) The matrix X(‘L’) is non-singular;
(b) N (a(y(r)) N P(z) = {0}

(¢c) Any nonzero vector & in P(t) is not in the subspace N (a(y (1))).
(2) The following conditions are equivalent:

(a) The matrix A(z) = 0;
(b) P(r) C N (a(y(1))).
(©) R(a(y(r))) C span{y(t)}.

The proof is trivial and skipped. In Proposition 9, the condition 1.(c) means that
any perturbation force in the normal plane should not be nullified by the linear trans-
formation & — a£ in the perturbed system (1). The heuristic argument of 2.(c) is that
when & — o0& (note R(a) = R(o)) transforms any random force into the tangent
direction of the limit cycle, then it is impossible to escape the limit cycle.

4.2 Analytic Solution for Planar Limit Cycle

We end this theoretic section with a specific example for d = 2 where the solution
can be obtained explicitly.

In the case d = 2, the limit cycle I is a curve in the plane. Let e( be the unit tangent
vector /|y | and e be the unit normal vector n. It follows that Q = 0. The matrix
PRDE (33) reduces to a scalar PRDE: G(‘C) = —2A7I(1)G(r) — g(r)G(r)z, where
X(r) = (e1,aer) = (n,an) > 0 is the diffusion coefficient in the normal direction
n of I', and M(r) = (n, (3,b)n) is the Jacobian of b along the normal direction n.
It is easy to solve the state transition matrix ® (7, 0) = exp ( fot M (s) ds) and the
solution of the Lyapunov equation:

H(z) = H(0)exp (2/T A’Z(s)ds) + /T A(s) exp <2/T A’Z(a)da> ds. (39)
0 0 K

The 7 -periodic solution H () satisfies H(0) = H(7) and it follows that

T _ T _
/ A(s) exp (2/ M (o) do) ds
H(O) = - ’ . (40)

T ~
1 —exp (2/ M(s) ds)
0

The periodic solution of the PRDE is G(t) = ﬁ with H given by (39).

For this planar case, the condition (i) in Theorem 7 reads @ 7#0) = exp
(fOTM(s) ds) < 1, ie, fOT M(s)ds < 0, and the condition (ii) amounts to
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A7) # 0. It is easy to see by (40) that these are exactly the sufficient and nec-
essary conditions for H(0) > 0, in which case we have a unique positive definite
solution G (+).

5 Numerical Methods

In this section, we develop the related numerical methods for the computation of the
quasi-potential and the optimal path escaping from the limit cycle. To find the limit
cycleI', we apply the Newton—Raphson method (Parker and Chua 1989). The Newton—
Raphson method can locate the limit cycle with arbitrary accuracy and a convergence
rate much faster than integrating the ODE. After the stable limit cycle is found, the
first issue is how to robustly generate the moving frame on the limit cycle.

5.1 Construction of the Frame Vectors

All coefficients of the PRDE (33) for G are based on the matrix Q via the moving
frame given by the basis vectors {ej(t) :0 < j <d —1,0 <t < T}. To robustly
construct this basis with a good quality is not quite straightforward in high dimension.

The normalization condition |e;(t)| = 1 is always enforced and the first vector
eo(7) is set to be along the tangent direction: ey := y/|y|. d = 2 is a trivial case
where e is simply obtained by rotating eg with the angle 7 /2 in the plane. For a general
d, one could construct a set of orthonormal basis {e j} to have the Frenet frame, by
using the time derivatives of y as Remark 2 has shown. But this approach is not
practical for high dimension d since it has the numerically instability in computing
the high order derivatives y®(t) for k large. Furthermore, it usually leads to the
vectors {y(j )(1’) 1<j<d } close to degeneracy, with a very bad condition number
of the resulted matrix E(t), even after a low-pass filtering technique applied to the
numerical derivatives. Consequently the calculation of the inverse £~! or the Gram—
Schmidt orthogonalization becomes impractical even for d > 4, observed from our
numerical experiments. The use of time derivative of y also suffers from the fact that
at some point the derivative may be zero. For example, in the plane, a curve can change
the rotation from counterclockwise to clockwise and as a result, the signed curvature
(the first order derivative of eg) is zero at the turning point.

We propose a robust construction of the basis by choosing e (1), ..., eq—1(7) for
each 7 as the d — 1 left-eigenvectors (by excluding the eigenvector associated with
the trivial eigenvalue 1) of the monodromy matrix d_Jax b(y)(7); refer to Sect. 2.3. After
e;(0) is fixed, the eigenvectors e () at T > 0 are chosen so that e (7) are continuous
functions of 7 in the interval (0, 7). Then eo(7) is always orthogonal to other basis
vectors, i.e., the normal plane P(t) is span{e;(t),...,eq—1(r)} for every t. We
do not have that {ey, ..., eq—1} are orthogonal by themselves. If one uses the right-
eigenvectors instead of the left-eigenvectors, then the only difference is the loss of the
orthogonality of eg and {e;(7), ..., eq—1(7)}.

Our approach has the computational overhead of solving the matrix-valued ODE
(14) for each t in parallel. But this method is robust and produces better numerical
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representations of Q and the coefficients M and A for PRDE (33), which is critical to
solve G successfully in the next step.

5.2 Numerical Method for the Riccati Equation

We use the iterative method to find the periodic solution G of the PRDE (33). Each
iteration G, — G4 simply maps a positive definite matrix G, to the solution at time
T of (33) with the initial value G,,. This method is equivalent to integrate the PRDE
(33) in forward time for sufficiently long time, i.e., we seek for a stable limit cycle of
the dynamical system (33) in the space of positive definite matrix. The convergence to
the positive definite periodic solution is guaranteed (Shayman 1985) if the initial guess
Gy is sufficiently large. We use a scalar matrix c/;_1 with a large ¢ for the initial.
As mentioned before, our basis {e j} is constructed from the eigenvectors of the
monodromy matrix. For some examples (see Sect. 6.4), the eigenvectors may not be
periodic, but anti-periodic (a simple analogy is the normal vector of the Mobius band).
The anti-periodic situation needs the following special technique of computing G in
(33). We assume that the first d basis vectors are periodic while the lastd_ = d —d
vectors are anti-periodic. Specifically, we have one basis set with the matrix form

EY(t)=[ef (), ....ef 1 (D)]

where all ej'(t) are C! in [0, 7), but e}'(’T) = e}L(O) for0 < j <dy —1and
e}F (7) = —ef (0) fordy < j <d — 1. Then we define the following basis set

E (1) :=[ey(1).....e; ()] = ET(DF

where ej_ = e;' for0 < j <di—1land ej_ = —ej ford; < j <d—1.Equivalently
la_

0 —1Iy,
we can have M+, M~ and A+, A—, based on these two local coordinate systems E
and E—, respectively. We then solve the following 27 -periodic Riccati equation for
each of the above iterations G, — G, +1:

to this definition of new basis set, the d x d matrix F is [ i| . Correspondingly,

{G(r) =-M@)'G(t) — G(r)M(t) — G(1)A(r)G(z), 0 <1 <2T @D

G(O) = Gy,
where the coefficients are defined by

M(r)z{a%(r) 0<t<T . iﬂ(r) 0<t<T

~ , A(t) =1~ .

M~ (t) T <1<2T A (t) T <1t<2T

Gp+1 is chosen as G(27). It is not difficult to show that G(t +7) = FG(t)F for
T € [0,7].So, G(t +7T) and G(7) have the same eigenvalues and their eigenvectors

are connected by the elementary matrix F: they are essentially the same solution
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represented by the two different local coordinate systems E* and E~. In other words,
the solution of (41) is 27 -periodic but its eigenvalues are 7 -periodic. Any point x
near the limit cycle has two representations (z, z*) or (z,z7), based on E* or E™,
with the relation z~ = Fz ™. The quadratic approximation of the quasi-potential at x
then also has two equivalent forms: Q(x) = % (z*,G(m)zh) = % (7. G(T +v)z7).

5.3 Solving Hamiltonian Systems to Generate Extremal Trajectories Emitting from
Limit Cycle

Quite like the case of a stable fixed point, one can solve the Hamiltonian ODE (8)
near the limit cycle with a pair of the correct initial values on the Lagrangian manifold
of the Hamiltonian system. The initial values should be set on the tangent space of
the Lagrangian manifold emitting from the limit cycle. Select a tiny value 2z > 0
and set the initial condition ¢ (t = 0) := y(7) + Z?;ll zje; (1) with the parameters
(1, z) on the tube surface [0, 7) x (hSd_l). The corresponding momentum p(¢t =
0) = V, Q is computed according to (35). Then the quantity V; at the position ¢ ()
is obtained by V;(¢(1)) = 1 (z, G(1)z) + 1 [5 (a(x(®)p(t")), p(t'))dt’. One needs to
scan all initials on the tube surface to generate Hamiltonian trajectories (instantons)
for each of them. So, this approach is preferred for the low dimension d = 2 or 3.
But the patterns revealed by these instantons are insightful for understanding the exit
problem.

5.4 Minimum Action Method to Compute the Minimum Action Path Emitting from
Limit Cycle

We next formulate how to use the MAM to compute the minimum action path and
quasi-potential away from the limit cycle. The version of MAM we used is gMAM.
There are three approaches. The most straightforward one is to directly use any tradi-
tional MAM by fixing one end of the path on an arbitrary location of the limit cycle.
Since the initial path is constructed as a straight line segment connecting two end
points, the choice of this fixed endpoint and the initial path becomes very important
and usually this method performs bad with a large error both in the path and in the
quasi-potential. The second approach is to confine the end on the limit cycle rather
than on a specific location, so that this end point of the path can move along the limit
cycle during the minimization procedure. We abbreviate this approach to gMAM-LC.
Theoretically, as the number of grid points increases, this approach can find the true
path with infinitely long path. In gMAM-LC, one needs to use very long path to get
relatively accurate result, since a large part of the path will spiral around the limit cycle
but contribute very little to action. We remedy this by introducing the third approach
which uses the quadratic approximation of the quasi-potential within a small tubular
neighbor of the limit cycle. After splitting the total action as the sum of the action
from the limit cycle to the neighbor and the action from the neighbor to the final
designated endpoint, one only needs to compute the second part by the MAM. Specif-
ically, we use the following tube-shaped region with a uniform small radius 2 > 0 as
the neighbor.
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d—1
Ap = U !xe]}{d;xzy(r)—i-Zziei(r), lz| = /Zj:izzth}'

7€(0,7] i=1

An alternative choice is to use the level set of Q5 = {(r, 7): 0= %ZTG(T)Z < 8}
as neighborhood, which gives a slightly different version of the following constraint
problem. So we will not give implementation details of this choice here.

We use the gMAM to calculate the optimal path escaping the limit cycle I' and
ending at some point x outside of As. The constraint is that the initial point ¢(0) lies
on the surface of As. By considering the local coordinate (z, z) of ¢(0), we have the
following constrained minimization problem:

A 1
Vix) = min {S[fp] + 5 (z, G(r)z)} : (42)
€0, 7], |z|=h, 2

9eAC([0.1]), p(H)=x

PO)=y (O+Y 4 ziei(0)

We discretize this optimization problem using a linear finite element approximation
to the path ¢, then solve it by a standard optimization software, e.g., the fmincon
in MATLAB. To implement the arc-length parametrization, we add equi-arc-length
constraints on the discretized grid points. Denote the objective function as F (¢, 7, z) =
S [¢]+ % (z, G(7)z). After discretization of ¢ using N linear finite elements, we have

A 1
Fn(p.7.2) = Snloyl+ 5 (2. G(1)2). (43)

The discrete gMAM action S ~vl@y]is given as

N

& lpi — ¢i—1] (Ib(@i)| + [b(gi—1)]) b(¢i) + b(pi-1)
Snlenl = 21: A (gl u —\%i — i R ALl J > i ,
=
(44)
where @ = {¢o0, ¢1, ..., ¢y} and we have assumed that a be identity matrix. The

constraints for discretized problem are
2> — h* =0,

d
y(T)+ Y ziei(r) — go =0,
i=2

loi —@i1l* = lgi —@iaP =0, i=1,... N—1
We abbreviate this gMAM approach with local quadratic approximation for quasi-
potential near limit cycle to gMAM-LQA. It is easy to see that gMAM-LC can be

regarded as a special case of gMAM-LQA with 2 = 0. The adaptive choice of the
value of i is to set h o« 1/N to get a second order convergence rate in N.
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6 Numerical Examples
6.1 Van der Pol Oscillator

The perturbed system takes the form

{ dx = ydr 4+ o1 (x, y)/edw?, 45)

dy = (=x + (1 = x»)y)dt + oo (x, y)J/edw; .

The period of the limit cycle I in the deterministic dynamics is 6.6633. We consider
the following three cases of the diffusion coefficients o1 and o7:

(i) isotropic noise: o1 = 03 = 1;
(i1) degenerate noise: o1 =0, 07 = 1;
1 if x>0;

(iii) discontinuous coefficients: o1 (x, y) = o2(x, y) = ]
0 if x <O.

The curvilinear coordinate in representing G is the Frenet frame. For the case (i), we
plot the limit cycle and the contours of the approximated quasi-potential in the left
panel of Fig. 1. The contour of 0 = 0.02 is well behaved since it is very close to the
limit cycle. For the level set with a higher value of Q = 0.1 inside the limit cycle, there
are four artificial kinks and we found that this is due to the breakdown of the use of the
local curvilinear coordinates and the quadratic approximation of the quasi-potential
far away from the limit cycle.

As we mentioned in Sect. 5.3, with the approximated quasi-potential near I', we can
generate various extremal paths emitting from I" by setting the initial values approx-
imately on the tangent space of the Lagrangian manifold. To explore this issue, we
compute the behaviors of extremal paths near the limit cycle by applying a symplectic
integrator for the Hamiltonian system as dictated in Sect. 5.3. The numerical value of
Hamiltonian is checked to be smaller than 10~7. The right panel of Fig. 1 shows four
extremal paths (projected onto the R? position space) emitting from the limit cycle.
These extremal paths, as the solutions to the initial value problem of the Hamiltonian
ODE (8), are not the minimum action paths subject to certain boundary values and
certainly the value of V; (refer to (11)) associated with each path is not simply equal
to the quasi-potential V. These four extremal paths are examples to numerically show
the flow on the Lagrangian manifold of the Hamiltonian dynamics by plotting only
the position components. The intersection of these extremal trajectories projected in
the position plane R? is a common phenomenon and the similar behavior has been
reported in Smelyanskiy et al. (1997), Beri et al. (2005) for the time inverted Van der
Pol where the limit cycle is unstable and the focus inside the limit cycle is linearly
stable.

Next, we study the effect of the diffusion coefficient by comparing the solution
G in the above three cases of diffusion coefficients. We plot in Fig. 2 the functions
of G(t) for the three cases. As expected, the quasi-potential in the case (ii) is larger
than the quasi-potential in the case (i) since the dynamics of x component contains
no noise in the case (ii). For the case (iii), it is seen that after the diffusion matrix
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Fig.1 Left: The limit cycle (thick solid curve) and two level sets (dashed curves) of the quasi-potential Q (x)
corresponding to Q being 0.02 (blue) and 0.1 (red), respectively. Right: The four extremal paths starting
from four initial positions close to limit cycle. The quasi-potential at these initial positions is as small as
1073, Two paths (dotted curves) start from the inside of limit cycle (one of them finally spirals out of the
domain encircled by the limit cycle) and the other two paths (dashed curves) start outside of the limit cycle.
The four short bars indicate the direction of the initial momentums associated with the respective position
variables (Color figure online)

a = diag {0}, 03} is turned off (the dashed black curve in the figure), the quasi-
potential does not become steep immediately: it becomes significantly large only after
a short period of “buffering” region (where t is roughly 2.5 ~ 3.5 in the figure). In this
region, even without the noise, the deterministic dynamics on the limit cycle can still
carry the previously perturbed trajectory for a while until the trajectory significantly
leaves the limit cycle. When the noise is turned on again we see a sharp decrease of
the quasi-potential back to a small value again. Note that the case (ii) and (iii) have
the degeneracy of the diffusion matrix a(t) at certain points, but it does not affect the
existence of the positive solution G.

We use gMAM with local quadratic approximation for the quasi-potential near limit
cycle (abbr. gMAM-LQA) and the gMAM with one end point attached to limit cycle
(abbr. gMAM-LC) to calculate the quasi-potential of point (2, —2.5) with respect to
the given limit cycle. The results of the minimum action path is given in Fig 3a. The
convergence behavior is given Fig 3b, where we use the results of gMAM-LQA with
160 elements as reference solution. We observe that while both algorithms have second
order convergence, the gMAM-LQA give better results than the gMAM-LC method,
that because the gMAM-LC algorithm spends more grid points near the limit cycle
which contribute less action.

6.2 A Planar Example

The second example in 2-D is the following system (Cameron 2012):

{dx=(x—x3/3+y—y3/9)dt+ﬁdwf 46)

dy = (x +0.9)dt + /edw; .
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Fig.2 The profiles of G(t) versus t for the cases (i), (ii), and (iii). The dashed black segment in the case
(iii) corresponds to the location where o7 = 0p = 0 (i.e., x < 0) and the solid black segments on the same
curve correspond to the locations where 01 = 07 =1

@),5f
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B gMAM-LC
—15/N?
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10 20 30 40 50 60 7080
X N
Fig. 3 Numerical results of the minimum action methods for the Van der Pol example. a The minimum

action path from the limit cycle to point (2, —2.5). b The convergences of the gMAM-LQA algorithm and
gMAM-LC algorithm

This example has two stable limit cycles, separated by a saddle point located at
(—0.9, 0.6942) and the stable and unstable manifolds of this saddle point. The quasi-
potential for this example was calculated by directly solving the 2-D Hamilton—Jacobi
partial differential equation (Cameron 2012). We only compute the quasi-potential
around one of the limit cycle on the top whose period is 5.7966 and use the MAM to
calculate the minimal escape action for the transition toward the other limit cycle on
the bottom by selecting the final point at the saddle point. Figure 4 plots the G () and
MAP. The minimal action calculated in the previous work Cameron (2012) is 0.1567.
The result of gMAM-LQA algorithm with N = 160 is 0.1599 with a relative error
about 0.1%. The minimum action paths obtained using gMAM and gMAM-LQA with
different N’s are given in Fig 5, in which we observe that the gMAM is trapped in a
local minimum.
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Fig.4 Left: The profile of G(7),0 < v < 7T, for the 2D example (46). The x and y components of the limit
cycle I is also shown. Right: The numerical MAP (blue curve) from the limit cycle (black) to the saddle
point (the marker “x”). The red and yellow curves are, respectively, the unstable and stable manifolds of
the saddle point (Color figure online)

6.3 3D Lotka-Volterra Model

The following randomly perturbed system is the example of 3D Lotka—Volterra model
for three species x = (x1, x2, X3) € R3:

3
dxi (1) = x; Y eij(1 = xj)d + edw; (). (47)
j=1
2 5 05
We set the matrix C = [¢;j] = | 0.5 1 1.48 | . There exist two steady nonnegative
1 05 1

solutions: x = 1 has an one-dimensional stable manifold and an unstable spiral two-
dimensional manifold; x = 0 is unstable and its three unstable eigenvectors are along
three coordinate axes, respectively. Around the spiral saddle point x = (1, 1, 1), there
is a stable limit cycle I' with the period 6.7965. The two eigenvalues of G(t) are
plotted in Fig. 6 and they have a large gap, indicating a strong directional preference
of the quasi-potential near the limit cycle. This results in a large aspect ratio in the
tube corresponding to the level set of QO (x) = é. Figure 7 plots this tubular surface for
8§ =2 x 1075, which visually looks like a ribbon rather than a tube. The numerical
MAP calculated by gMAM-LQA from the limit cycle to the state x = 0 (extinctions
of all species) is also shown in Fig 7.

6.4 5D Example
We consider a 5D example whose form is
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Fig.5 The MAP from the limit cycle to the saddle point. The same initial guess is used in all four cases: a
straight line connecting the two ends in a and b. a gMAM with initial point fixed on the limit cycle using
40 elements. b gMAM with initial point fixed on the limit cycle using 160 elements. ¢ gMAM-LQA using
N =40 elements. d gMAM-LQA using N = 160 elements

X1 = —x1 + 1= 2h(xs5) — 2h(x2) + 2h(x2)h(xs) + 2h(x2)h(x4)
— 2h(x2)h(xa)h(xs)

X2 =—x2+1—2h(x1)

X3 =—x3+ 1 —2h(x2) + 2h(x2)h(x5)

X4 =—x4+1—2h(x3)

Xs = —x5 + 1 = 2h(xa) — 2h(x2) + 2h(x2)h(x4)

(48)

where £ is the sigmoid function i (x) = %(1 + tanh(2x)). This example is Eq. (A.21)
in the reference Wilds and Glass (2009) which used the directed regulatory graphs
to construct dynamical systems with stable limit cycles in any high dimension. This
toy model would be a good theoretic example for understanding dynamics in complex
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Eigenvalues of G
<
T

time

Fig.6 The two eigenvalues of G for the 3D Lotka—Volterra model

Fig.7 The contour set of the
quasi-potential for the limit
cycle of the 3D Lotka—Volterra
model (the ribbon-like tube in
colors). The MAP from the limit
cycle to the unstable point x = 0
are plotted as the blue curve with
“o” markers). The isolated large
circle is the saddle point

x = (1,1, 1). Ared curve is
shown to illustrate the flow of
the deterministic flow (Color
figure online)

biological control networks. The corresponding SDE to (48) is to add the isotropic
white noise 1/gw; to the right hand side of (48). The unique limit cycle is stable with
the period 7 = 8.1165. When we constructed the basis {ep, ..., e4} from the left-
eigenvectors of the monodromy matrix, we found that e3 and e4 are anti-periodic. So
we have to solve G by the strategy based on (41) which is introduced in Sect. 5.2.
Figure 8 shows the one-period profile of the component G 13 during the time interval
(0,27). The eigenvalues of G is 7 -periodic, and we plot the four eigenvalues of
G(7), Tt € [0, T]inthe same figure. By using this G and the gMAM-LQA, we compute
the MAP from the limit cycle to an endpoint specified at x = (0.6, 0.6, 0.7, 0.5, 0.3).
Fig. 9 demonstrates the projections of this 5 dimensional path.
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Fig.8 The profile of the (1, 3) entry of G(t), 0 < v < 27 and the four eigenvalues of G. 7 = 8.1165

0.5¢

Fig.9 The MAP from the limit cycle to the pointx = (0.6, 0.6, 0.7, 0.5, 0.3) calculated using gMAM-LQA
with N = 40

7 Conclusion

We showed how to derive and compute a quadratic approximation of the quasi-potential
near a stable limit cycle in a random perturbed system. The minimum action method
is improved with the aid of this local approximation to effectively handle the infinite
length of the optimal path. With these tools, one can explore the transition behaviors
related to stochastic oscillations in many high dimensional problems.
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Appendix A

Proposition 10 The gradient V f of a differentiable function f(x), x € RY, can be
written in the curvilinear coordinates as

def — 2L dodif T '
VI = L@ + Y0 e (D)
fx rMo)~ + Z?;ll sz?(f)e ! ; e
o/ — (ST d-1 .
f {2807, 1) @)+ Y (0 P (o),

B Ao+ <e0(r), E(r)z) i=1

where A(7T) is defined in (18), 9, f denotes the column vector whose components are
given by 9,i f.

On proof of Theorem 7: 1t is clear that a periodic positive definite solution to the PRDE
(33) is the inverse of a periodic positive definite solution to the PLDE (36), and vice
versa. Hence the proof of Theorem 7 is mainly based on the following classical result
on the PLDE. To state this result, we need introduce another type of asymptotical
stability for periodic matrix-valued functions.

Definition 11 Let M (-) be a 7 -periodic matrix-valued continuous function. We say
that M (-) is asymptotically stable if all the characteristic multipliers of M (-) lie inside
the open unit disk.

The asymptotical stability of M(-) defined above assures that the periodic linear
system y(t) = M (t)y(r) has the trivial identically zero solution as an asymptotically
stable solution.

In the following proposition, we establish the connection between the two types of
asymptotic stability in Definition 11 and Definition 2.

Proposition 12 1\7(~) defined by (34) is asymptotically stable if and only if the limit
cycle T' of (2) is asymptotically stable.

Proof We will proof this proposition by showing that the characteristic multipliers
aEsociated with (17) consist of 1 and the characteristic multipliers associated with
M(7), i.e., the eigenvalues of d_DBX b(y(-))(0) consist of 1 and the eigenvalues of ® 71€0).

Let O(r) = E(r)_lq)axb(y(.))(r, 0)E(0). We claim that ®(7) is a block upper
O11(7) O12(7)

0 Oxn()
scalar and is equal to A(0) /A (7). To see this, we note that the first column of ®(7) is
given by E(7)~! Dby () (T, 0)ep(0), and the key observation is that

triangular matrix which has the form ®(7) = ] , where ®1((7) isa

A(0)
A7)

Dby () (T, 0)e0(0) = eo(7). (49)

To justify (49), recall that eg(r) = A(t)y(r) and y () solves the Eq. (17) of first
variation. Since ®j, 5y (.)) (1, 0), by definition, is the fundamental matrix solution of
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(17) and ®@j, p(5(.)(0,0) = I, we infer from the uniqueness of the solution to the
initial value problem of (17) that

V(1) = Pobiy () (T, 0y (0),

and (49) follows immediately.
Next, we will show that @2, (1) = ®5;(t, 0). To this end, we will derive the ODE
for ® (7). Using (22), we have

iE(r) '— —E@'E@E@) ' = -Q@E@®™L
dr

Recall that @3 5, (.)) (7, 0) satisfies

0
Eq)axb(y(-))(n 0) = 0xb(y (1) Py, p(y () (T, 0).

Hence we find

O(r) = —QE([®) " ®y,6(y()) (7, ) E(0)
+ E(0) " 0:b(y (1) Pabiy ) (T, ) E(0)
= —Q(0)O(1) + E(0) ' o:b(y (1) E(1)O(2)
= M(1)0(7), (50)

where M (1) := E(t)"'a,b(y (1))E(1) — Q (7). Comparing the last equation with
(34), we see that M (1) is the principal submatrix of M () by deleting the first row and
the first column. Partition M () into blocks that are compatible with the partitions of
®(7) and then (50) can be written in the blocked form as

[811(77) ®12(T)} [Mn(f) MIZ(T):| [811(77) ®12(T)}
0  Oxn(r) My (t) M(z) 0  On(r)
_ [Mn(f)@n(f) Mi1(1)®O12(7) +M~12(f)®22(f)]
T M2 (1)O11(7) Mo (1)®12(1) + M(7)On0(7)

Since ©11(7) = A(0)/A(7) # 0, we deduce that M>;(7) = 0 and then it follows that
@22(1) M(r)@zz(r) Also, we have ©®(0) = E(0)~ 1d>0xb(y( »(O0,0E0) =1,s0
®n(r)isa(d —1) x (d — 1) identity matrix. Again, by the uniqueness of the solution
to the initial value problem, we obtain @2, (1) = ®;(t, 0).

Since A(t) and E(t) are 7 -periodic, we have

OT) = E(T) ' @450, () (T, 0)E0) = E(0) ' @51 (0)E(0),

and

_ | MO/MT) ©12(T) | _[1012(T)
®(T)—[ 0 cDM(T,O)}_[O %(0)]
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From the last two equations, we conclude that ®;_5(y(.)(0) and ©(7) have the same
eigenvalues since they are similar, and the eigenvalues of ©(7) consist of 1 and the
eigenvalues of ® j;(0). This justifies what we asserted and the proof is complete. O

Remark 4 In Definition 2, the asymptotical stability of the limit cycle I" is clearly
defined without using the moving affine frame ¢;(7), 0 < i < d — 1. Thus in view
of Proposition 12, the asymptotical stability of M (+) is also a property independent of
the choice of the moving affine frame ¢;(7), 0 <i < d — 1, although the matrix M )
defined by (34) depends explicitly on the moving affine frame ¢; (), 0 <i <d — 1.

Now Theorem 7 can be easily derived from Proposition 12, Lemma 6 and the
following classical results (Bolzern and Colaneri 1988).

Proposition 13 (Theorem 20 in Bolzern and Colaneri 1988) For any T > 0, let M (-),
N () be two T -periodic matrix-valued functions with size n X n and n X m respectively.
Then the following PLDE

P(t) = M(t)P(t) + POOM@) + N@)N(@)"

admits a unique T -periodic positive definite solution P (t) if and only if the following
two conditions hold:

(1) M(-) is asymptotically stable;
@i1) (M(-), N()) is controllable.

Proposition 14 (Proposition 9 in Bolzern and Colaneri 1988) Let M (-), N(-) be given
n x n, n X m T -periodic matrices respectively. For any tg € [0, T), let D(tg) be a
matrix such that

w+7
D(t0)D(x0) = f U B0+ T NN Dy (r0+ T, ) ds.

70

Tflen the pair (M(-), N(-)) is controllable if and only if the time-invariant pair
(D (10), D(10)) is controllable.
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