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Abstract
Understanding the relationship between structural and functional organization repre-
sents one of the most important challenges in neuroscience. An increasing amount
of studies show that this organization can be better understood by considering the
brain as an interactive complex network. This approach has inspired a large number of
computational models that combine experimental data with numerical simulations of
brain interactions. In this paper, we present a summary of a data-driven computational
model of synchronization between distant cortical areas that share a large number of
overlapping neighboring (anatomical) connections. Such connections are derived from
in vivo measures of brain connectivity using diffusion-weighted magnetic resonance
imaging and are additionally informed by the presence of significant resting-state
functionally correlated links between the areas involved. The dynamical processes
of brain regions are simulated by a combination of coupled oscillator systems and a
hemodynamic responsemodel. The coupled oscillatory systems are represented by the
Kuramoto phase oscillators, thus modeling phase synchrony between regional activ-
ities. The focus of this modeling approach is to characterize topological properties
of functional brain correlation related to synchronization of the regional neural activ-
ity. The proposed model is able to reproduce remote synchronization between brain
regions reaching reasonable agreement with the experimental functional connectivi-
ties.We show that the best agreement betweenmodel and experimental data is reached
for dynamical states that exhibit a balance of synchrony and variations in synchrony
providing the integration of activity between distant brain regions.
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1 Introduction

Decoding the fundamental mechanisms underlying large-scale brain integration is one
of the major challenges of neuroscience. A dominant hypothesis states that phase syn-
chronization plays an important role for the integration of the neural activities between
distant sites of the brain. The interaction among distributed brain regions through phase
synchronization may form the basis for cognitive processing (Womelsdorf et al. 2007;
Uhlhaas et al. 2009; Bola and Sabel 2015). An increasing number of literature aims to
establish a framework of models designed to deal with this issue by means of shaping
patterns of the large-scale functional connectivity map (Honey et al. 2009; Deco et al.
2011; Muldoon et al. 2016; Hutchings et al. 2015; Sanz-Leon et al. 2015).

In this paper, we discuss neural synchronization using simple concepts of oscilla-
tors’ dynamics (Strogatz 2000). To this purpose, we review a data-driven approach
that uses a network of Kuramoto models to simulate phase synchrony in the brain at
rest (Vuksanović and Hövel 2014, 2015, 2016). This is one of the models that aim
to recover the interplay between brain structural and functional connectivity from the
perspective of coupled oscillatory processes (Cabral et al. 2011, 2014; Bressler and
Menon 2010; Breakspear et al. 2010). This model shows that remote synchronization
observed in the brain at rest may be sustained by the shape of structural connectivity
and simple dynamical rules.

There is evidence that brain integrative functions cannot be fully predicted from the
anatomical structure (Honey et al. 2009; Hutchings et al. 2015). Subsequently, one can
argue that the dynamics of information on top of structural connections enables the
communication between segregated brain areas. Kuramoto phase oscillator models
have been used to explore fundamental mechanisms underlying the nature of this
communication. The basic idea is to incorporate topological properties of the large-
scale brain connectivity in the coupling structure of the model. These properties are
usually derived from white matter tractography. The model that we here present also
takes into account the functional connectivity map and transmission delays based on
realistic distances to help to focus on connections relevant for the brain state under
consideration.

Within this framework, dynamical models of the resting brain based on the
Kuramoto phase oscillators have been able to shed light on how (i) the resting-state
brain activity emerges from a sufficient degree of noise and time delays (Cabral et al.
2011, 2014), (ii) relay-like interactions between distant brain areas emerge from
modular network structures (Vuksanović and Hövel 2014), and (iii) the anatomical
hubs in the brain synchronize their activity (Wildie and Shanahan 2012). A similar
approach can be utilized to study pathological states due to the epilepsy (Hutch-
ings et al. 2015), stroke (Vása et al. 2015), or schizophrenia (Cabral et al. 2013).
An additional common feature of these models is the presence of variations in net-
work synchrony, which is indicative of networkmetastability. This dynamical property
allows for flexible changes of the network synchrony, i.e., partial and time-varying
synchronization of neural activity across regions. These partial synchronization pat-
terns in neural networks induce fluctuations at the level of synchrony of sub-networks
leading to correlated fluctuations in low-frequency activity present in functional mag-
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netic resonance imaging (fMRI) time series (Cabral et al. 2011; Wildie and Shanahan
2012; Shanahan 2010).

This paper is organized as follows: In Sect. 2, we first introduce the concept of
brain networks, which can be studied using methods from graph theory. We then
continue by describing principles of nonlinear dynamics behind synchronization mod-
els and their application on neural dynamics (Sect. 3). In Sect. 4, we investigate
the role that synchrony and its variations play in brain activity based on simulated
neural/blood-oxygen-level-dependent time series. We also provide new findings that
combine different approaches used in previous studies. We conclude in Sect. 5 with a
brief summary, consider model limitations, and suggest further studies.

2 Brain Networks and Neuroimaging Data

The brain is a complex dynamical system characterized by nonlinear interac-
tions and emergent behaviors. This description—today nearly a consensus among
neuroscientists—contrasts the approach of brain functional specialization, a concept
widespread until the early twentieth century (Kanwisher 2010). A common basis of
both viewpoints is the hypothesis that everymental state is connected to a physical brain
state. This hypothesis is known as a neural correlate (Schall 2004). The functional
specialization approach has triggered considerable contributions to neuroscience.Nev-
ertheless, it faces serious limitations, mainly when employed to investigate high-level
cognitive functions. On the other hand, the complex system approach has been very
promising for such investigations. In short, the focus from the first to the latter approach
has been shifted fromwhere to how cognitive functions take place in the brain (Sporns
2013).

The popularization of the idea of the brain as a complex dynamical systemwas espe-
cially promoted by the recent development of noninvasive imaging technologies that
were able to record the time-dependent activity in the human brain as a whole (Haynes
and Rees 2006). Among those technologies, functional magnetic resonance imaging
(fMRI) played a particularly important role. Roughly speaking, the data recorded via
those functional neuroimaging techniques consist of temporal series associated with
linear and nonlinear functional relationships between brain regions and are under-
stood as a proxy for neural activity. These series are recorded from collective signals
of neural populations that form synchronized local circuits. The current challenge is
to unveil the rules behind global brain activity and how they are connected to the range
of cognitive states.

2.1 Graph Theory and Brain Connectivity Maps

Graph theory or network science is a novel way to study topology of the structural
and functional organization of the brain which consists of describing it in terms of
nodes (brain regions) and edges (the structural connections or functional relationships).
Before we discuss how to define brain connectivity using graph theoretical concepts, it
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is important to clarify the distinction between two different types of large-scale brain
connectivity frequently mentioned in the literature.

The anatomical connectivity map is the map of structural connections between
brain regions (Sporns et al. 2005). This network is stable on shorter timescales, but it
may change over larger times due to neuronal plasticity (Sporns 2013). The classical
way to map structural connectivity is tracing neuronal paths by means of invasive and
postmortem methods (Felleman and Van Essen 1991). Due to this fact, it cannot be
used to create a large data set of the human brain. Alternatives come with the advance
of neuroimaging techniques, such as diffusion-weighted magnetic resonance imaging
(DW-MRI), where anatomical fibers may be inferred by means of statistical models.
Such methods allow in vivo tractography of white matter fibers. See Ciccarelli et al.
(2008), Clayden (2013) and Jbabdi et al. (2015) for details about structural connectivity
and how to acquire it from the human brain. Figure 1 depicts a schematic illustration
of the workflow to extract a brain graph from imaging data. In short, the adjacency
matrix is obtained from the anatomical connectivity probability map by thresholding,
that is, only probabilities above a threshold result in a link in the brain graph.

The procedure of DW-MRI leads to probabilistic structural connectivity maps.
In order to quantify the probability, with which two brain regions of interest are
structurally connected, one constructs a three-dimensional trajectory of the fiber tract

Fig. 1 Anatomical network. a Diffusion-weighted magnetic resonance imaging (DW-MRI) and artistic
reconstruction showing the fiber tracts. b Parcellation according to a cortical anatomical atlas and density
of tracts between two pairs of areas. c Matrix of the anatomical connectivity probability of structural
connections between pairs of regions. d Network construction: adjacency matrix obtained by thresholding
and graphical representation of the corresponding structural brain network. Sources: The DW-MRI figure
and its artistic reconstruction is a reproduction of Farooq et al. (2016). The brain images and network
were created with the help of BrainNet Viewer (Xia et al. 2013). The data for the anatomical connectivity
probability are taken from Iturria-Medina et al. (2008)
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Fig. 2 Euclidean distances and fiber lengths. a Representation of networks, that is, 90 brain regions accord-
ing to the Automated Anatomical Labeling (AAL) parcellation (Tzourio-Mazoyer et al. 2002) as nodes
connected by links in the left hemisphere, between hemispheres, and in the right hemisphere respectively.
b Top: histograms of Euclidean distances in the right (blue), left (cyan), and between (red) hemispheres.
Bottom: matrix of the Euclidean distances between pairs of cortical regions. c Top: histograms of the fiber
lengths in the right, left, and between hemispheres. Bottom: matrix of the fiber lengths between pairs of cor-
tical regions. The data of the fiber lengths were taken from Iturria-Medina et al. (2008). The brain networks
were created with help of BrainNet Viewer (Xia et al. 2013) (Color figure online)

between the centers of those regions. This provides a gateway to measure the length
of the connection. Figure 2 depicts the distribution and distance matrices of these
fiber lengths in panel (c). Compared to a naive estimate based on the Euclidean dis-
tance between regions considered in the Automated Anatomical Labeling (AAL, see
Tzourio-Mazoyer et al. 2002) shown in panel (b), one can see that the distributions of
intra- and inter-hemispheric connections exhibit qualitatively the same shape and that
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Fig. 3 Functional network. a Functional magnetic resonance imaging (fMRI) and blood-oxygen-level-
dependent (BOLD) signals recorded for each voxel. b Parcellation according to cortical anatomical atlas
and the averages of the signals from two regions. c Functional correlation between BOLD time series
for every pair of regions. d Network construction: the adjacency matrix obtained by thresholding and the
corresponding functional brain network. The brain images and network were created with the help of
BrainNet Viewer (Xia et al. 2013)

the fiber lengths stretch to larger values. As it will be explained in detail in Sect. 3.2,
this distance can be used to approach transmission delays between the brain regions.

Functional relationships in the brain are usually described in the form of so-called
functional connectivity maps. They map the temporal correlations between regional
activities (Heeger and Ress 2002), whose modular-like organization supports resting-
state networks as well as cognitive and behavioral functions. Therefore, they refer to
a functional relationship irrespective of whether or not there exist anatomical connec-
tions. Functional connectivities are derived from time traces obtained by recordings
of variations in the blood-oxygen-level-dependent signal (BOLD signal) due to brain
activity. For a schematic depiction of the generation of functional connectivity maps,
see Fig. 3. In this work, we are interested in simulating the functional connectivity
based on networks obtained from neuroimaging data. In the following, we briefly
describe how a functional connectivity map, or functional network, can be obtained
from fMRI data using graph theory.

The fMRI data are a three-dimensional image of the brain acquired over time. At
the finest spatial resolution of such an image, each voxel (typically of size 1–2 mm3)
gives rise to a single time series. For a large-scale analysis of the whole brain, the
functional network may be defined as follows: The graph nodes represent regions of
interest, usually defined by cortical regions obtained by parcellating the voxels in the
fMRI measurement according to a cortical brain atlas (Tzourio-Mazoyer et al. 2002;
Talairach and Tournoux 1988). Each of the resulting regions of interest, that is, nodes
in the brain network, gives rise to one time series that represents the BOLD signal
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in this region. Usually, this series is obtained by averaging over the respective set of
voxels. Subsequently, network links are defined on the basis of a correlation between
time series from each pair of regions of interest. Thismethod yields aweighted coupled
network, indicating the similarity in the activities of the respective nodes. These maps
connect brain regions irrespective of the presence of actual anatomical links. It is
worth mentioning that fMRI captures the variation in the BOLD signal; that is, it is
an indirect measurement of neural activity and includes several confounders (Greve
et al. 2013). Before constructing functional networks, the data undergo a number of
preprocessing steps, e.g., for motion correction, to remove spurious information, and
band-pass filtering to improve the signal-to-noise ratio. For further details about data
preprocessing, see Vuksanović and Hövel (2014), Power et al. (2014), Kruggel et al.
(1999), and Desjardins et al. (2001). For more details about networks from fMRI data,
see Rubinov and Sporns (2010), Bullmore and Bassett (2011), Liu et al. (2008), and
Onias et al. (2014).

One can describe functional networks by an adjacency matrix {Ai j }i, j=1,...,N , in
which each matrix element takes the value of unity if a pair of nodes is connected
and zero otherwise. The pair of nodes is considered to be connected when the respec-
tive entry in the correlation matrix exceeds a predefined threshold value. There are
different methods used to threshold the matrix and to retain only those values which
are statistically significant. The value of the threshold has a direct influence on the
network density (Bullmore and Bassett 2011): The higher the threshold, the lower the
network density. By defining its adjacencymatrix and thus selecting the network topol-
ogy, it is possible to detect universal behaviors of coupled dynamical systems such as
synchronization or metastability. One can also consider weighted instead of binarized
matrices. The weight can be added to the model by considering some information
from experimental data. For example, it can be proportional to the density of fiber
tracts between the two cortical regions (Cabral et al. 2014). In the current approach,
however, we aim for simplicity of themodel by considering only anatomically relevant
connections of higher probability. For a detailed overview of complex brain networks,
see Sporns (2011).

2.2 Spontaneous Synchronicity and Resting-State Brain Networks

Most of the early neuroimaging analyses were designed to test the hypothesis of local-
ized functional brain specificity. The goal was to investigate, which region in the brain
is activated during a specific task. This design is rooted in neuroanatomists’ concepts
of the eighteenth century and was largely discussed at the end of the twentieth century
(Kanwisher 2010). In fact, several experiments had supported the paradigm that spe-
cific brain regions are correlated with specific functions, especially basic sensory and
motor tasks (Kanwisher 2010). However, the functional specificity started to receive
relevant critical remarks. This reductionist approach could not explain high-level cog-
nitive processes such as emotions, creativity, and consciousness.

In the middle of the 1990s, a new insight changed the focus of research and trans-
formed prior knowledge. It was recognized that there are large-scale synchronization
patterns in the spontaneous fluctuation of brain activities in the absence of external
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input (Biswal et al. 1995). Non-random patterns were observed in the data scanned
from subjects in the resting state, that is, lying down in the absence of tasks or atten-
tion demands. These findings were corroborated and complemented by several studies
using different neuroimaging techniques (Lowe 2010). Further descriptions of these
patterns, termed as resting-state networks (RSN), can be found in Cole et al. (2010)
and van den Heuvel and Hulshoff Pol (2010). The discovery of the RSN is considered
a milestone in contemporary neuroscience for different reasons. It supports the regard
of the brain as a dynamical complex system. The detection of large-scale patterns for
resting-state conditions reflects the existence of coordinated intrinsic dynamics. This
spontaneous inter-regional synchronization indicates self-organized capability. On the
one hand, it has been suggested that RSN are related to high-level brain functions such
as internal mental processes and consciousness. This hypothesis is supported by stud-
ies that show variations in statistical features of RSN in altered states of consciousness
(Tagliazucchi et al. 2014; Carhart-Harris et al. 2016; Viol et al. 2017) and mental dis-
orders such as autism (Rudie et al. 2013) or schizophrenia (Rubinov et al. 2009). On
the other hand, RSN have also been detected in people subjected to deep sedation
(Schrouff et al. 2011), sleep (Dang-Vu et al. 2008), coma (Noirhomme et al. 2010),
or even vegetative states (Huang et al. 2014). This fact could, in principle, challenge
the hypothesis of RSN as a signature of consciousness. However, Barttfeld et al. show
that RSN in monkey brains under deep anesthesia are more strongly correlated with
the anatomical connectivity map in comparison with regular RSN in a resting state
of wakefulness (Barttfeld et al. 2015). They show that in the case of loss of con-
sciousness, the functional activity is tied to anatomical connectivity. Their study is
in agreement with hypotheses made in previous theoretical works (Deco et al. 2011,
2013). Functional networks in resting states where the subject is awake are character-
ized by long-range synchronicity and high variability of patterns. It had been observed
that an anatomically connected pair of nodes has a high probability to be functionally
connected. However, functional connectivity is frequently observed between brain
regions without direct structural links (Deco et al. 2011; Koch et al. 2002). The under-
standing of the rules that allow both long-range synchronization and flexibility of
patterns on functional networks may be the key to decrypt the mechanisms behind
high-level brain functions. Models using dynamical systems, e.g., oscillator models,
are the most promising tools to tackle this challenge.

3 Brain Activity and SynchronizationModels

In this section, we build a bridge between nonlinear dynamics and computational
neuroscience. At first, we summarize the concept of synchronization and then develop
a simple mathematical model that will be used in Sect. 4. We also briefly elaborate,
how a BOLD signal can be inferred from a neural time series bymeans of the Balloon–
Windkessel model.
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3.1 Nonlinear Dynamics and Synchronization in the Brain

Synchronization plays an important role in various contexts including physics, biology,
and beyond (Strogatz 2000; Pikovsky et al. 2001; Boccaletti et al. 2002; Mosekilde
et al. 2002; Balanov et al. 2009). In neuroscience, some forms of cooperative dynamics
have been associated with pathological states like migraine, Parkinson’s disease, or
epilepsy (Rossoni et al. 2005; Wang and Lu 2005; Hauptmann et al. 2007; Masoller
et al. 2008; Wang et al. 2008, 2009; Masoller et al. 2009; Senthilkumar et al. 2009;
Liang et al. 2009; Lehnert et al. 2011; Popovych et al. 2011). Besides these detrimental
forms of synchrony, it is also considered a crucialmechanism for recognition, learning,
and processing of neural information.

In general, neuronal systems can be described by physiological models such as
the Hodgkin–Huxley equations (Hodgkin and Huxley 1952). These type of mod-
els account for many physiological details and processes. Accordingly, they offer a
detailed description of a single cell. On the downside, they often consist of many
equations and many parameters and their applicability on large ensembles of elements
is highly questionable, which also holds for a bifurcation analysis.

On the other side of the spectrum of complexity, there are normal-form equations.
These phenomenologicalmodels capture themain dynamical behavior of neurons such
as the type of excitability and can be coupled together in large networkswith reasonable
numerical effort. In some cases like the FitzHugh–Nagumo model (FitzHugh 1961;
Nagumo et al. 1962), they can be derived as low-dimensional approximations, which
are better suited for a bifurcation analysis, because they contain only a few parameters
and nonlinearities. The price that one has to pay is a vague—at best qualitative—
correspondence to physiological quantities likemembrane potential and ionic currents.

Self-organized dynamics of brain regions into functional networks often follow the
underlying structural connections. There are, however, functional correlations between
cortical regions that are not directly connected. Thus, the mechanisms for functional
connectivity between distant cortical regions are still subject to intense research efforts.
For example, indirect connections can support collective dynamical behavior on the
brain network and pronounced pair-wise correlation of brain regions. If such indirect
connections are involved, that is, there is no direct anatomical link between highly cor-
related regions, the dynamical pattern can be called remote synchronization (Bergner
et al. 2012; Nicosia et al. 2013). The amount of synchrony depends on properties of the
coupling topology such as the symmetry of interactions (Nicosia et al. 2013; Arenas
et al. 2006).

3.2 The KuramotoModel of Phase Oscillators

Neural activity evolves through brain networks as a dynamical process, which can
be approximated by either neural fields (Jirsa and Haken 1996) or neural models
(Izhikevich 2004). To simulate the dynamical behavior of such processes, one can
also choose the even simpler, that is less complex, model of Kuramoto-like phase
oscillators (Vuksanović and Hövel 2014, 2015; Cabral et al. 2011; Breakspear et al.
2010), which has been established as a general model for oscillatory dynamics.
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The classic Kuramoto model consists of dynamical equations with one phase vari-
able for each network node (Kuramoto 1975). The nodes are connected in an all-to-all
topology and the interactions are mediated by sinusoidal functions of the phase dif-
ferences of all pairs of oscillators:

φ̇i = ωi + K

N

N∑

j=1

sin
[
φ j (t) − φi (t)

]
, i = 1, . . . , N , (1)

where K is a global coupling strength. The parameterωi denotes the natural frequency
of the ith oscillator drawn from a given distribution. For reviews on the relevance and
universal applicability of theKuramotomodel, seeAcebrón et al. (2005) andRodrigues
et al. (2016).

In order to analyze the amount of synchrony in the network, the global order param-
eter, which is given by the center of mass of phase variables of each node distributed
on the unit circle, has proved to be very insightful:

R(t) =
∣∣∣
〈
eiφk (t)

〉

N

∣∣∣ , k = 1, . . . , N , (2)

where 〈·〉N denotes the average over all nodes in the network. The order parameter
can easily be applied to the simulated time series of neural activity (Cabral et al. 2011;
Hellyer et al. 2014; Cabral et al. 2012). Then, its temporal mean value 〈R(t)〉 and
standard deviation provide information about the level and temporal fluctuations of
synchrony. The latter can be interpreted as metastability as discussed below. It is easy
to see that in Eq. (2), R(t) tends to zero, if the phase variables are dispersed across
phase space, that is, when they are highly desynchronized. In the opposite case, when
most of oscillators have close phase variables, one obtains the limit R(t) −→ 1.

In general, the number of phase variables that become locked and synchronized,
depends on the coupling strength K . This quantity can be used as a control parameter
to study emerging patterns of synchrony. For a given natural frequency distribution,
there is a threshold or critical coupling strength Kc above which the coupled system
starts to synchronize. This observation can be described as a phase transition. Results
based on the global order parameter defined in Eq. (2) can be seen as a mean-field
approach, that is, the simplest case of isotropic interaction.

To study neurobiological systems, it is necessary to consider inhomogeneities of the
coupling topology connected to a variety of different complex networks. In addition,
one can investigate the influence of time delay in the coupling term. Then, Eq. (1) can
be extended as follows

φ̇i = ωi + C
N∑

j=1

Ai j sin
[
φ j (t − τi j ) − φi (t)

]
, i = 1, . . . , N , (3)

where the coupling strength is denoted by C . Now, structural inhomogeneities can be
accounted for by pair-wise transmission delays τi j in the coupling term. This makes
network interactions biologically more plausible (Breakspear et al. 2010, 2006) and
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prevents full synchronization of the network (Nicosia et al. 2013; Keane et al. 2012).
The delays are inferred from the distanceΔi j between nodes i and j : τi j = Δi j/v with
a signal propagation velocity v in the range of 1 m/s to 20 m/s. Alternatively, one can
introduce link-dependent phase offsets in the coupling term (Vuksanović and Hövel
2016). Less pronounced synchronization can be interpreted as a preferred dynamical
state and an important property of the neural networks, as fully synchronized brain
dynamics are never observed experimentally. From the results ofmodels of the resting-
state dynamics, for instance, it has been argued that the brain operates in so-called
metastable states and never reaches full synchronization (Cabral et al. 2014; Deco and
Jirsa 2012).

The network matrix {Ai j } defines the interactions between the neural processes. As
elaborated in Sect. 2, one can construct this matrix using empirically derived structural
connectivity: The nonzero entries of the matrix correspond to existing connections
between respective brain regions. Alternatively, one could also generate an adjacency
matrix based on the functional connectivity. Further details on the applied procedure,
which uses a combination of anatomical and functional connectivity maps, will be
discussed in Sect. 4. See also Fig. 4.

3.3 Inferring BOLD Signals: The Balloon–Windkessel Model

As mentioned in Sect. 2.1, functional connectivity maps are networks of brain regions
that are based on a statistical dependence between fMRI time series (Bressler and
Menon 2010; Biswal et al. 1995; Damoiseaux et al. 2006). The underlying time series
of BOLD activity are a function of changes in cerebral blood flow, cerebral blood
volume, and cerebral metabolic rate of oxygen consumption and typically exhibit sig-
nificant correlations for frequencies below 0.1 Hz in the resting state (Biswal et al.
1995). In order to compare the numerically obtained neuronal activity with the empir-
ical BOLD signal, we make use of the Balloon–Windkessel model (Friston et al.
2000), which has been established in many computational studies of the resting-state
brain activity. Briefly summarized, this model considers the neuronal time series as an
input signal (Seth et al. 2013) and computes the hemodynamic response, which can
then be related to the BOLD signal. Since the neuronal activity and the blood response
operate on different timescales ofmilliseconds and seconds, respectively, the Balloon–
Windkessel model acts as a low-pass filter on the high-frequency neuronal signal. To
allow for comparison with the experimentally measured BOLD signal, we match a
simulation’s duration to the lengths of the experimental recording.

4 Data-InspiredModels: FromNeuroimaging Information to Brain
Activity Models

From a modeling perspective, the observed spatiotemporal patterns in brain activity
are shaped by the complex relationship between the dynamics of individual oscilla-
tors and global synchronization (Friston and Dolan 2010). As described in Sect. 3.2,
these competing dynamics can be characterized by the amount of synchrony in the
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Fig. 4 Schematic diagram of the modeling framework. Anatomical connectivity (AC) and functional con-
nectivity (FC) maps extracted from DW-MRI and fMRI as group averages over 26 subjects, respectively,
are binarized and combined to compute the adjacency matrix that provides the coupling topology in the
simulations. Neural population activity is simulated and used as input to infer the simulated BOLD signal.
The resulting time series of each node are correlated pair-wise leading to a simulated functional connectivity
matrix, which is compared with the experimental functional connectivity map

network and its variations over time. The latter indicates dynamical metastability. It
has been suggested that these variations of the network synchrony shape the patterns
of coordinated activity between brain regions, thus enabling dynamical exploration of
different network configurations (Cabral et al. 2014; Hellyer et al. 2014; Tognoli and
Kelso 2014). Such functional network configurations are constrained by the underly-
ing anatomical structure (Bullmore and Sporns 2009)—another key ingredient of the
model.

Anatomical brain connections enter models of the brain dynamics in the form
of the coupling matrix, whose elements represent actual neural paths between brain
regions—network nodes—as described in Sect. 2.1. The topology of thismatrix is usu-
ally static, i.e., the number of links between the nodes is preserved. Figure 4 provides a
schematic diagram of the model workflow. A combination of experimental anatomical
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Fig. 5 Functional connectivity between pairs of network nodes, i.e., regions of interest that are not directly
connected in the considered brain graph, as a function of the number of common neighbors (left) and Jaccard
coefficient (right). Parameters in the simulation of Eq. (3) with delays calculated from the fiber lengths:
threshold for functional connectivity in the network generation r = 0.56, coupling strength C = 54, and
signal transmission velocity v = 5 m/s

and functional connectivity maps leads to an adjacency matrix that defines the interac-
tion of the oscillators in the simulations. A link is present if it is anatomically justified
and has a high probability to have functional connectivity, which is implemented as
an element-wise multiplication of binarized anatomical and functional connectivity
matrices. By averaging and binarizing the connectivity matrices, one can select the
connections between pairs of regions with higher statistical probability, considering
all subjects. Since the functional connectivity map has been derived from resting-
state data, the element-wise multiplication selects those anatomical connections that
directly connect brain regions that tend to be highly correlated in this condition. This
step is important to evaluate the first level influence of anatomical connections in the
remote synchronization of brain regions activities.

We use this approach to derive the coupling topology for our simulations as our
primary aim is to reconstruct long-distance functional correlations that emerge from
the underlying anatomical paths. Previous works have used this model to explore the
contribution of the long-distance functional interactions—those that are not supported
by direct neural paths—to the brain functional correlations in the resting-state activity
(Vuksanović and Hövel 2014, 2015). These works have shown that the integration
of the brain functions may arise from relay-like phase interactions between neural
oscillators that share large parts of their individual network’s neighborhood. In this
review, we present additional analyses based on brain dynamics that include time
delays in the phase interactions between the neural oscillators, as given in Eq. (3). The
time-delayed interactions are determined by the empirical length of the connections
between the regions. See Fig. 2. It is worth mentioning that the time delays on the real
brain may be affected by heterogeneities related to local physiology. For example, the
velocity of signal transmission depends on other biological aspects such asmyelination
and axon thickness. The model in this paper accounts for the influence of time delay
by (i) considering the heterogeneity of distances and (ii) assuming a fixed velocity.

Figure 5 shows the effect of remote synchronization. It depicts the functional con-
nectivity for any pair of nodes i and j that do not share a direct connection according
to the coupling matrix in dependence on the number of common neighbors and the
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(a) (b)

Fig. 6 Pearson correlation coefficient between experimentally derived and simulated functional connectivity
in the parameter space spanned by coupling strength C and signal transmission velocity v. The simulations
are based on Eq. (3) with time delays calculated from the Euclidean distances and lengths of fiber tracks
between regions of interest in panels (a) and (b), respectively. See Fig. 2 for further information on the
distances. The white circle in panel (b) marks the (C, v) values used in Figs. 5 and 7 with a maximum
Pearson correlation of 0.53

relative overlap of the neighborhoods Ni and N j . The latter is quantified by the Jaccard
coefficient

Ji j = |Ni ∩ N j |
|Ni ∪ N j | , (4)

where |Ni | denotes the number of neighbors of node i , that is, its degree. In words,
Ji j is the relative size of the intersection between the two node sets with respect to
their union and takes values in the interval [0, 1] with the limit cases of zero and unity
referring to no and perfect overlap, respectively. We observe an increase in functional
connectivity as the overlap of neighborhoods becomes larger. This is in agreement
with previous findings (Vuksanović and Hövel 2014, 2015).

A systematic exploration of the parameter space spannedby coupling strengthC and
signal transmission velocity v is depicted in Fig. 6, where the left and right panels refer
to time delays in Eq. (3) according to the Euclidean distances and lengths of fiber tracks
between brain network nodes, respectively. Recall that the finite velocity is the cause of
delayed interactions. The color code indicates the agreement with the experimentally
derived and simulated functional connectivity quantified by the Pearson correlation
coefficient. Overall, the results of the two panels in Fig. 6 are qualitatively very similar.
Note that a rescaling in thev-directionwould lead to a quantitative agreement that could
be explained by the shape of the distance distributions shown inFig. 2. Larger velocities
could compensate for the longer distances. According to our analysis, the Euclidean
distance between different brain regions—with a proper scaling factor—can be used
to account for finite signal transmission velocities along the neural connections. The
highest Pearson correlation is found in the range of plausible transmission velocities.
For weak coupling, that is, low values of C , the interaction via the network is not
strong enough to trigger significant self-organized synchrony in neural activity or
BOLD signals.
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Fig. 7 Exemplary, simulated functional connectivity based on Eq. (3) with time delays calculated from the
fiber lengths between regions of interest (cf. Fig. 2). Parameters: C = 54 and v = 5 m/s
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Fig. 8 Global order parameter defined in Eq. (2) for different signal transmission velocities v = 0.1 m/s
(blue), 5 m/s (green), 20 m/s (red), and 100 m/s (cyan). The coupling strength is fixed at C = 54 (Color
figure online)

The best agreement of the simulated functional connectivity with the experimental
functional connectivity is observed for C = 54 and v = 5 m/s. Figure 7 shows the
corresponding functional connectivity matrix obtained from the simulations. One can
see clusters of well-correlated nodes in the brain network.

Considering the form of the global order parameter R given by Eq. (2), the partic-
ular parameter combination choice, C = 54 and v = 5 m/s, is justified. The temporal
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(a)

(b)

(c)

(d)

Fig. 9 Panels (a) and (b): parameter scan of the average order parameter 〈R(t)〉 and detrended fluctuations
σRD as color code in the (C, v)-plane, respectively (cf. Fig. 6). Panels (c) and (d): average order parameter
〈R(t)〉 versus Pearson correlation coefficient r and detrended fluctuations σRD , respectively. The color code
refers to the Pearson correlation coefficient r between experimental and simulated functional connectivity
(cf. Fig. 6). The white circles and blue star marks the values C = 54 and v = 5 m/s used in Figs. 5 and
7 with a maximum Pearson correlation of 0.53. The fit of the modeled functional correlations with the
experimental data is best for a dynamical state that simultaneously balances synchrony and metastability
(Color figure online)

average 〈R(t)〉 of the order parameter quantifies the average amount of synchrony in
the brain network and its standard deviation can be used to characterize metastability.
Figure 8 depicts the time series of R for a fixed coupling strengthC = 54 and different
velocities v. Large values of v result in an almost instantaneous coupling, for which the
coupling function in Eq. (3) supports the emergence of robust synchronization. This
is indicated by a high value of R that does not exhibit strong fluctuations around its
mean (cyan curve, v = 100 m/s). As velocities decrease, the order parameter becomes
smaller, but still maintains its periodicity (red curve, v = 20 m/s). In the range of
plausible velocities (cf. green curve, v = 5 m/s), we find a balance between syn-
chrony and metastability, that is, a reasonable value of 〈R(t)〉 together with seemingly
random fluctuations. These observations are in agreement with our previous studies
(Vuksanović and Hövel 2014, 2015).

Figure 9 shows how functional interactions—high values of the correlation coef-
ficient r between the modeled and experimental dynamics—can be connected to a
dynamical behavior that balances the synchrony 〈R(t)〉 and the variations in syn-
chrony σRD . Figure 9a, b depicts the dependence of the average order parameter 〈R〉
and its fluctuations σRD on the coupling strength C and the transmission velocity v,

123



Journal of Nonlinear Science (2020) 30:2259–2282 2275

respectively. For the fluctuations σRD , we detrended the periodic behavior of R(t) (cf.
Fig. 8). This detrending removes the contributions to the standard deviation that do
not reflect fluctuations in the dynamics. One can see that the good agreement with the
experimental matrix is found in a region of the parameter space that presents some
level of synchronization (panel a) and fluctuations (panel b). These dynamical condi-
tions allow for the emergence of synchronization on the functional networks and also
keep some level of flexibility for the emergence of different synchronized patterns
over time. Figure 9c, d further corroborates this balance in the simulated, metastable
dynamics. The values C = 54 and v = 5 m/s, which lead the maximum Pearson
correlation between simulated and experimental functional connectivities, are marked
by white circles and a blue star. These findings are consistent with the previous simu-
lations of task-free (Cabral et al. 2011, 2014) and task-dependent (Hellyer et al. 2014)
brain activity, which are based on similar simplified models that take into account a
few key parameters of structural and functional brain connectivity.

The experimental fMRI data sets used in this paper are available from the 1000
Functional Connectome Project Web site (http://fcon_1000.projects.nitrc.org/). We
consider functional scans from the Berlin Margulies data to calculate the group aver-
age. The data consist of open-eyed resting-state measurements of 26 subjects (ages
23–44) (Biswal 2010). For details on the preprocessing steps, see Vuksanović and
Hövel (2014). For the anatomical connectivity probability, we use DW-MRI data from
a study described in Iturria-Medina et al. (2008).

5 Conclusions

Modern brain imaging methods allow for a quantitative study of both local activity
dynamics and the interdependence between activities in anatomically distant cortical
areas, which is known as functional connectivity. With this review, we have summa-
rized one of many multidisciplinary approaches to model such functional interactions.
Leveraging interdisciplinary theoretical techniques, inspired by complex system the-
ory and applied mathematics, and existing experimental data from noninvasive brain
imaging, the proposed modeling framework contributes to the development of viable
analytical andmodeling techniques leading to significant insight into dynamicalmech-
anisms of the brain.

The particular model, which we consider in this review, combines experimental
anatomical and functional connectivity between cortical regions to generate a network
topology of the brain at rest. By varying the network interactions (using different cou-
pling strengths and signal transmission velocities), it is possible to obtain correlation
patterns in the simulated BOLD fMRI time series that are in agreement with experi-
ments.We have shown that the model leads to the best agreement for a dynamical state
that exhibits a balance between synchrony and temporal variations in synchrony. The
proposed model allows to investigate the role of network structure and in particular
indirect connections between distant cortical regions and to explore functional connec-
tivity in the brain using numerical simulations of delay-coupled phase oscillators. For
example,we have found higher functional connectivity, if the neighborhoods of respec-
tive nodes show a greater overlap. We have also compared the influence of time delay
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considering fiber track lengths and Euclidean distances between brain regions. We
have observed no qualitative difference in the simulations. This means that Euclidean
distances—after rescaling—may be used to account for realistic coupling delays.

The procedure can easily be extended to a much larger field of brain states. For
example, one can alter the adjacency matrix of the task-negative system by increasing
theweights of connections between task-relatednodes aboveunity, simulating agreater
statistical relevance within the task-evoked state. Additionally, this procedure might
give some insight into the brain shifting from the resting-state to task-evoked states
and back.

The flexibility of the network topology generating process also gives an oppor-
tunity to manipulate node connections to adapt to neural activity observed in fMRI
measurements of patients suffering from various brain disorders. Indeed, similar data-
driven models had contributed to understanding some mechanisms of brain disorders
(Demirtas and Deco 2018; Hutchings et al. 2015; Deco and Kringelbach 2014; Cabral
et al. 2012).

The limitation of this model is given by its purpose, which was to provide explana-
tions for mechanisms generating coordinated activity between spatially distant brain
regions.We focus our computations on how these long-distance correlations arise from
realistic functional interactions, i.e., those that are also supported by direct structural
connections. Thus, our model does not consider the role of coupling topologies that
correspond directly to structural connectivity data. Models based on these structural
connectivity topologies have been explored extensively in several studies (see Cabral
et al. 2011; Hellyer et al. 2014; Cabral et al. 2012), reaching—similarly to ourmodel—
an agreement with the experimental data only to a certain extent.

The model presented in this paper does not strive to give an accurate representation
of the physiologically realistic brain activity.Amuchmore physiology-based approach
is needed to achieve a full understanding of the relation between experimental fMRI
data and simulated neural activity. However, this goes beyond the scope of the main
focus of the present work that discusses a specific approach to find a simple way to
simulate neural time series and to transform them into data, which can be compared
to experimental fMRI measurements. This simplification is also adopted in similar
studies found in Cabral et al. (2011, 2012, 2014) and Deco and Jirsa (2012). The
model that we presented in this review can be extended in various way to incorporate
more physiological details such as heterogeneities in the signal transmission veloc-
ities accounting for myelination or axon thickness. In addition, link weights can be
introduced in the couplingmatrix to includemore information from experimental data.

The studies summarized in this article contribute to a better understanding of the
relationship between complex brain networks and temporal dynamics of brain activity.
They might also serve as a starting point to investigate brain network reconfigurations
providing a modeling framework to explore transient, dynamical interactions, which
enable diverse cognitive functions.
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A List of Cortical and Subcortical Regions

See Table 1.

Table 1 Cortical and subcortical
regions according to the
Automated Anatomical Labeling
(AAL) template image
(Tzourio-Mazoyer et al. 2002)

Index R/L Anatomical description Label

1/46 Precentral PRE

2/47 Frontal sup F1

3/48 Frontal sup orb F10

4/49 Frontal mid F2

5/50 Frontal mid orb F20

6/51 Frontal inf oper F30P

7/52 Frontal inf tri F3T

8/53 Frontal inf orb F30

9/54 Rolandic oper RO

10/55 Supp motor area SMA

11/56 Olflactory OC

12/57 Frontal sup medial F1M

13/58 Frontal mid orb SMG

14/59 Gyrus rectus GR

15/60 Insula IN

16/61 Cingulum ant ACIN

17/62 Cingulum mid MCIN

18/63 Cingulum post PCIN

19/64 Hippocampus HIP

20/65 ParaHippocampal PHIP

21/66 Amygdala AMYG

22/67 Calcarine V1

23/68 Cuneus Q

24/69 Lingual LING

25/70 Occipital sup O1

26/71 Occipital mid O2

27/72 Occipital inf O3

28/73 Fusiform FUSI

29/74 Postcentral POST

30/75 Parietal sup P1

31/76 Parietal inf P2

32/77 Supramarginal gyrus SMG

33/78 Angular AG

34/79 Precuneus PQ

35/80 Paracentral lobule PCL

36/81 Caudate CAM

37/82 Putamen PUT

38/83 Pallidum PAL
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Table 1 continued Index R/L Anatomical description Label

39/84 Thalamus THA

40/85 Heschi HES

41/86 Temporal sup T1

42/87 Temporal pole sup T1P

43/88 Temporal mid T2

44/89 Temporal pole mid T2P

45/90 Temporal inf T3

Indexes from1–45 and 46–90 indicate right (R) and left (L) hemisphere
respectively, and refer to the order in which the brain regions of interest
are arranged in all connectivity, adjacency, and distancematrices of this
paper

References

Acebrón, J.A., Bonilla, L.L., Pérez Vicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: a simple
paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137 (2005)

Arenas, A., Díaz-Guilera, A., Pérez Vicente, C.J.: Synchronization reveals topological scales in complex
networks. Phys. Rev. Lett. 96, 114102 (2006)

Balanov, A.G., Janson, N.B., Postnov, D.E., Sosnovtseva, O.V.: Synchronization: From Simple to Complex.
Springer, Berlin (2009)

Barttfeld, P., Uhrig, L., Sitt, J.D., Sigman, M., Jarraya, B., Dehaene, S.: Signature of consciousness in the
dynamics of resting-state brain activity. Proc. Natl. Acad. Sci. USA 112, 887 (2015)

Bergner, A., Frasca, M., Sciuto, G., Buscarino, A., Ngamga, E.J., Fortuna, L., Kurths, J.: Remote synchro-
nization in star networks. Phys. Rev. E 85, 026208 (2012)

Biswal, B.B.: Toward discovery science of human brain function. Proc. Natl. Acad. Sci. USA 107, 4734
(2010)

Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting
human brain using echo-planar MRI. Magn. Reson. Med. 34, 537 (1995)

Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems.
Phys. Rep. 366, 1 (2002)

Bola, M., Sabel, B.A.: Dynamic reorganization of brain functional networks during cognition. NeuroImage
114, 398 (2015)

Breakspear,M., Roberts, J.A., Terry, J.R., Rodrigues, S.,Mahant,N., Robinson, P.A.:Aunifying explanation
of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb.
Cortex 16, 1296 (2006)

Breakspear, M., Heitmann, S., Daffertshofer, A.: Generative models of cortical oscillations: neurobiological
implications of the Kuramoto model. Front. Hum. Neurosci. 4, 190 (2010)

Bressler, S.L.,Menon,V.: Large-scale brain networks in cognition: emergingmethods and principles. Trends
Cogn. Sci. 14, 277 (2010)

Bullmore, E.T., Bassett, D.S.: Brain graphs: graphical models of the human brain connectome. Annu. Rev.
Clin. Psychol. 7, 113 (2011)

Bullmore, E.T., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional
systems. Nat. Rev. Neurosci. 10, 186 (2009)

Cabral, J., Hugues, E., Sporns, O., Deco, G.: Role of local network oscillations in resting-state functional
connectivity. Neuroimage 57, 130 (2011)

Cabral, J., Hugues, E., Kringelbach, M.L., Deco, G.: Modeling the outcome of structural disconnection on
resting-state functional connectivity. Neuroimage 62, 1342 (2012)

Cabral, J., Fernandes, H.M., Van Hartevelt, T.J., James, A.C., Kringelbach, M.L.: Structural connectivity in
schizophrenia and its impact on the dynamics of spontaneous functional networks. Chaos 23, 046111
(2013)

123



Journal of Nonlinear Science (2020) 30:2259–2282 2279

Cabral, J., Luckhoo, H., Woolrich, M.W., Joensson, M., Mohseni, H., Baker, A., Kringelbach, M.L., Deco,
G.: Exploring mechanisms of spontaneous functional connectivity in MEG: how delayed network
interactions lead to structured amplitude envelopes of band-pass filtered oscillations. Neuroimage 90,
423 (2014a)

Cabral, J., Kringelbach, M.L., Deco, G.: Exploring the network dynamics underlying brain activity during
rest. Prog. Neurobiol. 114, 102 (2014b)

Carhart-Harris,R.,Muthukumaraswamy,S.,Roseman,L.,Kaelen,M.,Droog,W.,Murphy,K., Tagliazucchi,
E., Schenberg, E.E., Nest, T., Orban, C., Leech, R., Williams, L.T., Williams, T.M., Bolstridge, M.,
Sessa, B., McGonigle, J., Sereno, M.I., Nichols, D., Hellyer, P.J., Hobden, P., Evans, J., Singh, K.D.,
Wise, R.G., Curran, H.V., Feilding, A., Nutt, D.J.: Neural correlates of the LSD experience revealed
by multimodal neuroimaging. Proc. Natl. Acad. Sci. USA 113, 4853 (2016)

Ciccarelli, O., Catani, M., Johansen-Berg, H., Clark, C., Thompson, A.: Diffusion-based tractography in
neurological disorders: concepts, applications, and future developments. Lancet Neurol. 7, 715 (2008)

Clayden, J.D.: Imaging connectivity: MRI and the structural networks of the brain. Funct. Neurol. 28, 197
(2013)

Cole, D.M., Smith, S.M., Beckmann, C.F.: Advances and pitfalls in the analysis and interpretation of
resting-state FMRI data. Front. Syst. Neurosci. 4, 8 (2010)

Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., Beckmann,
C.F.: Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. USA 103, 13848
(2006)

Dang-Vu, T.T., Schabus, M., Desseilles, M., Albouy, G., Boly, M., Darsaud, A., Gais, S., Rauchs, G.,
Sterpenich, V., Vandewalle, G., Carrier, J., Moonen, G., Balteau, E., Degueldre, C., Luxen, A., Phillips,
C.,Maquet, P.: Spontaneous neural activity during human slowwave sleep. Proc. Natl. Acad. Sci. USA
105, 15160 (2008)

Deco, G., Jirsa, V.K.: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J.
Neurosci. 32, 3366 (2012)

Deco, G., Kringelbach,M.L.: Great expectations: usingwhole-brain computational connectomics for under-
standing neuropsychiatric disorders. Neuron 84, 892 (2014)

Deco, G., Jirsa, V.K., McIntosh, A.R.: Emerging concepts for the dynamical organization of resting-state
activity in the brain. Nat. Rev. Neurosci. 12, 43 (2011)

Deco, G., Jirsa, V.K., McIntosh, A.R.: Resting brains never rest: computational insights into potential
cognitive architectures. Trends Neurosci. 36, 268 (2013)

Demirtas, M., Deco, G.: Chapter 4—computational models of dysconnectivity in large-scale resting-state
networks. In: Anticevic, A., Murray, J.D. (eds.) Computational Psychiatry, pp. 87–116. Academic
Press, New York (2018)

Desjardins, A.E., Kiehl, K.A., Liddle, P.F.: Removal of confounding effects of global signal in functional
MRI analyses. NeuroImage 13, 751 (2001)

Farooq, H., Xu, J., Nam, J.W., Keefe, D.F., Yacoub, E., Georgiou, T., Lenglet, C.: Microstructure imaging
of crossing (MIX) white matter fibers from diffusion MRI. Sci. Rep. 6, 38927 (2016)

Felleman, D.J., Van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cereb.
Cortex 1, 1 (1991)

FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1,
445 (1961)

Friston, K., Dolan, R.J.: Computational and dynamic models in neuroimaging. NeuroImage 52, 752 (2010)
Friston, K., Mechelli, A., Turner, R., Price, C.J.: Nonlinear responses in fMRI: the balloon model, Volterra

kernels, and other hemodynamics. NeuroImage 12, 466 (2000)
Greve, D.N., Brown, G.G., Mueller, B.A., Glover, G., Liu, T.T.: A survey of the sources of noise in fMRI.

Psychometrika 78, 396 (2013)
Hauptmann, C., Omel’chenko, O.E., Popovych, O., Maistrenko, Y., Tass, P.: Control of spatially patterned

synchrony with multisite delayed feedback. Phys. Rev. E 76, 066209 (2007)
Haynes, J.D., Rees, G.: Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 7, 523

(2006)
Heeger, D.J., Ress, D.: What does MRI tell us about neuronal activity? Nat. Rev. Neurosci. 3, 142 (2002)
Hellyer, P.J., Shanahan, M., Scott, G., Wise, R.J.S., Sharp, D.J., Leech, R.: The control of global brain

dynamics: opposing actions of frontoparietal control and default mode networks on attention. J. Neu-
rosci. 34, 451 (2014)

123



2280 Journal of Nonlinear Science (2020) 30:2259–2282

Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to con-
duction and excitation in nerve. J. Physiol. 117, 500 (1952)

Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.: Predicting
human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA
106, 2035 (2009)

Huang, Z., Dai, R., Wu, X., Yang, Z., Liu, D., Hu, J., Gao, L., Tang, W., Mao, Y., Jin, Y., Wu, X., Liu, B.,
Zhang, Y., Lu, L., Laureys, S., Weng, X., Northoff, G.: The self and its resting state in consciousness:
an investigation of the vegetative state. Hum. Brain Mapp. 35, 1997 (2014)

Hutchings, F., Han, C.E., Keller, S.S., Weber, B., Taylor, P.N., Kaiser, M.: Predicting surgery targets in
temporal lobe epilepsy through structural connectome based simulations. PLoS Comput. Biol. 11,
e1004642 (2015)

Iturria-Medina, Y., Sotero, R.C., Canales-Rodríguez, E.J., Alemán-Gómez, Y., Melie-García, L.: Studying
the human brain anatomical network via diffusion-weighted MRI and graph theory. NeuroImage 40,
1064 (2008)

Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063
(2004)

Jbabdi, S., Sotiropoulos, S.N., Haber, S.N., Van Essen, D.C., Behrens, T.E.: Measuring macroscopic brain
connections in vivo. Nat. Neurosci. 18, 1546 (2015)

Jirsa, V.K., Haken, H.: Field theory of electromagnetic brain activity. Phys. Rev. Lett. 77, 960 (1996)
Kanwisher, N.: Functional specificity in the human brain: a window into the functional architecture of the

mind. Proc. Natl. Acad. Sci. USA 107, 11163 (2010)
Keane, A., Dahms, T., Lehnert, J., Suryanarayana, S.A., Hövel, P., Schöll, E.: Synchronisation in networks

of delay-coupled type-I excitable systems. Eur. Phys. J. B 85, 407 (2012)
Koch,M.A., Norris, D.G., Hund-Georgiadis,M.: An investigation of functional and anatomical connectivity

using magnetic resonance imaging. NeuroImage 16, 241 (2002)
Kruggel, F., von Cramon, D.Y., Descombes, X.: Comparison of filtering methods for fMRI datasets. Neu-

roImage 10, 530 (1999)
Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: Araki, H. (ed.) Inter-

national Symposium on Mathematical Problems in Theoretical Physics, vol. 39 of Lecture Notes in
Physics, pp. 420–422. Springer, Berlin (1975)

Lehnert, J., Dahms, T., Hövel, P., Schöll, E.: Loss of synchronization in complex neural networks with
delay. Europhys. Lett. 96, 60013 (2011)

Liang, X., Tang, M., Dhamala, M., Liu, Z.: Phase synchronization of inhibitory bursting neurons induced
by distributed time delays in chemical coupling. Phys. Rev. E 80, 066202 (2009)

Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., Yu, C., Liu, H., Liu, Z., Jiang, T.: Disrupted
small-world networks in schizophrenia. Brain 131, 945 (2008)

Lowe, M.J.: A historical perspective on the evolution of resting-state functional connectivity with MRI.
Magn. Reson. Mater. Phys. 23, 279 (2010)

Masoller, C., Torrent, M.C., García-Ojalvo, J.: Interplay of subthreshold activity, time-delayed feedback,
and noise on neuronal firing patterns. Phys. Rev. E 78, 041907 (2008)

Masoller, C., Torrent, M.C., García-Ojalvo, J.: Dynamics of globally delay-coupled neurons displaying
subthreshold oscillations. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 3255 (2009)

Mosekilde, E., Maistrenko, Y., Postnov, D.: Chaotic Synchronization: Applications to Living Systems.
World Scientific, Singapore (2002)

Muldoon, S.F., Pasqualetti, F., Gu, S., Cieslak, M., Grafton, S.T., Vettel, J.M., Bassett, D.S.: Stimulation-
based control of dynamic brain networks. PLoS Comput. Biol. 12, e1005076 (2016)

Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc.
IRE 50, 2061 (1962)

Nicosia,V., Valencia,M., Chavez,M.,Díaz-Guilera,A., Latora,V.: Remote synchronization reveals network
symmetries and functional modules. Phys. Rev. Lett. 110, 174102 (2013)

Noirhomme, Q., Soddu, A., Lehembre, R., Vanhaudenhuyse, A., Boveroux, P., Boly, M., Laureys, S.: Brain
connectivity in pathological and pharmacological coma. Front. Syst. Neurosci. 4, 160 (2010)

Onias, H., Viol, A., Palhano-Fontes, F., Andrade, K.C., Sturzbecher, M., Viswanathan, G.M., de Araujo,
D.B.: Brain complex network analysis by means of resting state fMRI and graph analysis: will it be
helpful in clinical epilepsy? Epilepsy Behav. 38, 71 (2014)

Pikovsky, A., Rosenblum, M.G., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences.
Cambridge University Press, Cambridge (2001)

123



Journal of Nonlinear Science (2020) 30:2259–2282 2281

Popovych, O., Yanchuk, S., Tass, P.: Delay- and coupling-induced firing patterns in oscillatory neural loops.
Phys. Rev. Lett. 107, 228102 (2011)

Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Methods to detect,
characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320 (2014)

Rodrigues, F.A., Peron, T.K.D.M., Ji, P., Kurths, J.: The Kuramoto model in complex networks. Phys. Rep.
610, 1 (2016)

Rossoni, E., Chen, Y., Ding, M., Feng, J.: Stability of synchronous oscillations in a system of Hodgkin–
Huxley neurons with delayed diffusive and pulsed coupling. Phys. Rev. E 71, 061904 (2005)

Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neu-
roimage 52, 1059 (2010)

Rubinov, M., Knock, S.A., Stam, C.J., Micheloyannis, S., Harris, A.W.F., Williams, L.M., Breakspear, M.:
Small-world properties of nonlinear brain activity in schizophrenia. Hum. BrainMapp. 30, 403 (2009)

Rudie, J.D., Brown, J.A., Beck-Pancer, D., Hernandez, L.M., Dennis, E.L., Thompson, P.M., Bookheimer,
S.Y., Dapretto,M.:Altered functional and structural brain network organization in autism.NeuroImage
Clin. 2, 79 (2013)

Sanz-Leon, P., Knock, S.A., Spiegler, A., Jirsa, V.K.:Mathematical framework for large-scale brain network
modeling in The Virtual Brain. Neuroimage 111, 385 (2015)

Schall, J.D.: On building a bridge between brain and behavior. Annu. Rev. Psychol. 55, 23 (2004)
Schrouff, J., Perlbarg, V., Boly,M.,Marrelec, G., Boveroux, P., Vanhaudenhuyse, A., Bruno,M.A., Laureys,

S., Phillips, C., Pélégrini-Issac, M., Maquet, P., Benali, H.: Brain functional integration decreases
during propofol-induced loss of consciousness. NeuroImage 57, 198 (2011)

Senthilkumar, D.V., Kurths, J., Lakshmanan, M.: Inverse synchronizations in coupled time-delay systems
with inhibitory coupling. Chaos 19, 023107 (2009)

Seth, A.K., Chorley, P., Barnett, L.C.: Granger causality analysis of fMRI BOLD signals is invariant to
hemodynamic convolution but not downsampling. NeuroImage 65, 540 (2013)

Shanahan, M.: Metastable chimera states in community-structured oscillator networks. Chaos 20, 013108
(2010)

Sporns, O.: Networks of the Brain. MIT Press, Cambridge (2011)
Sporns, O.: Structure and function of complex brain networks. Dialog. Clin. Neurosci. 15, 247 (2013)
Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain.

PLoS Comput. Biol. 1, e42 (2005)
Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of

coupled oscillators. Physica D 143, 1 (2000)
Tagliazucchi, E., Carhart-Harris, R., Leech, R., Nutt, D., Chialvo, D.R.: Enhanced repertoire of brain

dynamical states during the psychedelic experience. Hum. Brain Mapp. 35, 5442 (2014)
Talairach, J., Tournoux, P.: Co-planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional

System: An Approach to Cerebral Imaging. Thieme, New York (1988)
Tognoli, E., Kelso, J.A.S.: The metastable brain. Neuron 81, 35 (2014)
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B.,

Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical
parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273 (2002)

Uhlhaas, P., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolic, D., Singer, W.: Neural synchrony
in cortical networks: history, concept and current status. Front. Integr. Neurosci. 3, 17 (2009)

van den Heuvel, M.P., Hulshoff Pol, H.E.: Exploring the brain network: a review on resting-state fMRI
functional connectivity. Eur. Neuropsychopharmacol. 20, 519 (2010)

Vása, F., Shanahan, M., Hellyer, P.J., Scott, G., Cabral, J., Leech, R.: Effects of lesions on synchrony and
metastability in cortical networks. NeuroImage 118, 456 (2015)

Viol, A., Palhano-Fontes, F., Onias, H., de Araujo, D.B., Viswanathan, G.M.: Shannon entropy of brain
functional complex networks under the influence of the psychedelic Ayahuasca. Sci. Rep. 7, 7388
(2017)
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vesna.vuksanovic@abdn.ac.uk

1 School of Mathematical Sciences, University College Cork, Cork T12 XF62, Ireland

2 Institute of Theoretical Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623
Berlin, Germany

3 Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin,
Philippstraße 13, 10115 Berlin, Germany

4 Aberdeen Biomedical Imaging Centre, University of Aberdeen, Lilan Sutton Building,
Foresterhill, Aberdeen AB25 2ZD, UK

123

http://orcid.org/0000-0002-1370-4272

	Synchronization in Functional Networks of the Human Brain
	Abstract
	1 Introduction
	2 Brain Networks and Neuroimaging Data
	2.1 Graph Theory and Brain Connectivity Maps
	2.2 Spontaneous Synchronicity and Resting-State Brain Networks

	3 Brain Activity and Synchronization Models
	3.1 Nonlinear Dynamics and Synchronization in the Brain
	3.2 The Kuramoto Model of Phase Oscillators
	3.3 Inferring BOLD Signals: The Balloon–Windkessel Model

	4 Data-Inspired Models: From Neuroimaging Information to Brain Activity Models
	5 Conclusions
	Acknowledgements
	A List of Cortical and Subcortical Regions
	References




