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Abstract
The aim of this work is to extend and prove the Onsager conjecture for a class of con-
servation laws that possess generalized entropy. One of the main findings of this work
is the “universality” of the Onsager exponent, α > 1/3, concerning the regularity of
the solutions, say in C0,α , that guarantees the conservation of the generalized entropy,
regardless of the structure of the genuine nonlinearity in the underlying system.
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1 Introduction

In this work, we aim at extending and proving the Onsager conjecture for a class of
conservation laws that admit a generalized entropy. Roughly speaking, the Onsager
conjecture (Onsager 1949) states that weak solutions of the three-dimensional Euler
equations of inviscid incompressible flows conserve energy if the velocity field u ∈
C0,α , for α > 1

3 , and that the critical exponent α = 1
3 is sharp. This conjecture

has been the subject of intensive investigation for the last two decades. The sufficient
condition direction was proved by Eyink (1994) for the case when α > 1

2 . Later,
a complete proof was established by Constantin and Titi (1994) (see also Cheskidov
et al. 2008) under slightlyweaker regularity assumptions on the solutionwhich involve
a similar exponent α > 1

3 . Duchon and Robert (2000) have shown, under similar
sufficient conditions to those in Constantin and Titi (1994), a local version of the
conservation of energy. It is worth mentioning that the above results are established
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in the absence of physical boundaries, i.e., periodic boundary conditions or the whole
space. However, due to the well-recognized dominant role of the boundary in the
generation of turbulence (cf. Bardos and Titi (2013) and references therein) it seems
very reasonable to investigate the analogue of the Onsager conjecture in bounded
domains. Indeed, for the three-dimensional Euler equations in a smooth bounded
domain �, subject to no-normal flow (slip) boundary conditions, it has been shown in
Bardos and Titi (2018) that a weak solution conserves the energy provided the velocity
field u ∈ C0,α(�) , for α > 1

3 , (see also Robinson et al. (2017) for the case of the
upper-half space under stronger conditions on the pressure term). A local version,
analogue to that of Duchon and Robert (2000), was established recently in Bardos
et al. under slightly weaker conditions to those in Bardos and Titi (2018), but at the
expense of additional sufficient conditions concerning the vanishing behavior of the
energy flux near the boundary.

Showing the sharpness of the exponent α = 1
3 in Onsager’s conjecture turns out to

be much more subtle. This direction has been underlined by a series of contributions
(cf. Isett 2016; Buckmaster et al. 2018 and references therein) where weak solutions,
u ∈ C0,α , with α < 1

3 , that dissipate energy were constructed using the convex
integration machinery. Notice, however, that there exists a family of weak solutions to
the three-dimensional Euler equations, that are not more regular than L2, and which
conserve the energy, cf. Bardos and Titi (2010).

It is most natural to ask whether the analogue of the Onsager conjecture is valid
for other systems of conservation laws. Indeed, there has been some intensive recent
work extending the Onsager conjecture for other physical systems, in the absence of
physical boundaries, see, e.g., Akramov and Wiedemann (2018), Drivas and Eyink
(2017), Feireisl et al. (2017), Gwiazda et al. (2018), Yu (2017) and references therein.
In this paper, we consider systems of conservation laws with physical boundaries. We
use the approach of Duchon and Robert (2000), as it has been outlined and extended
in Bardos et al. in the presence of physical boundaries, to establish the local con-
servation of “generalized entropies” (conserved quantities, which are not necessarily
convex) for systems of conservation laws which possess such generalized entropies.
This is accomplished provided the underlying weak solutions are locally in C0,α , for
α > 1

3 . One of the primary findings of this work is the universality of the Onsager
critical exponent α = 1

3 , regardless of the structure of the genuine nonlinearity in the
underlying system. Notably, in a forthcoming paper (Bardos et al. 2018) we will show
the extension of these results and provide additional explicit physical examples, using
more delicate harmonic analysis tools and function spaces. In particular, we will show
similar results under slightly weaker regularity assumptions of the solutions which are
required to belong to some “exotic” function spaces with exponent α = 1

3 .

2 Local and Global Generalized Entropies Conservation

In this section, we state and prove our main result. In the first subsection, we estab-
lish the local entropy conservation for any weak solution that belongs to the Hölder
space C0,α with α > 1/3 . In the second subsection, we state a fundamental Lemma
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concerning nonlinear commutator estimate of Friedrichs mollifier, and in the last sub-
section we state additional sufficient conditions for establishing the global entropy
conservation.

2.1 Local Entropy Conservation

Let Q ⊂ R
d+1 be an open set, and consider in Q the following system of conservation

laws:

∑

0≤i≤d

∂xi Ai (u) = 0, (2.1)

where x �→ u(x) is the unknown vector field defined in Q with values in an open
convex set M ⊂⊂ R

k , while the vectors Ai , i = 0, 1, . . . , d , are C2 vector-valued
functions defined inMwith values inRl , where A j

i , for j = 1, . . . , l , denotes the j-th
component of Ai . Below L(Rl;R) stands for the set of linear operators from R

l to R.

Theorem 2.1 Suppose that B : M �→ L(Rl;R) is a C1 map, represented by a row
vector B(u) = (b1(u), b2(u), . . . , bl(u)), defines a generalized entropy , i.e., for every
i = 0, 1, . . . , l there exists a C2 flux qi : M �→ R such that one has:

B(u) · ∇u Ai (u) = ∇uqi (u), for i = 0, 1, . . . , d . (2.2)

Suppose that u is a weak solution of (2.1). Moreover, supposed that for everyK ⊂⊂ Q
there exists α > 1

3 , which might depend on K, such that u ∈ C0,α(K) . Then the
following equation holds in D′(Q)

∑

0≤i≤d

∂xi qi (u) = 0 . (2.3)

Remark 2.2 (i) Observe that since M is assumed to be an open convex, and hence
simply-connected, set then the generalized entropy condition (2.2) is equivalent
to the relation:

∑

1≤ j≤l

∂b j

∂uβ

∂A j
i

∂uα

=
∑

1≤ j≤l

∂b j

∂uα

∂A j
i

∂uβ

, for all α, β = 1, 2, . . . , l , and i = 1, 2, . . . , d .

(2.4)

For more details about entropy cf. Dafermos (2000) , Chapters 3 and 5.
(ii) Notice that equation (2.3) is, in a sense, the analogue of the local conservation of

energy for the three-dimensional incompressible Euler equations as presented in
Duchon and Robert (2000) (see also Bardos et al.).
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The proof of Theorem 2.1 is an extension of the ideas introduced in Bardos et al.
What has to be proven is that for any φ ∈ D(Q) one has:

∑

0≤i≤d

〈∂xi φ, qi (u)〉x = 0 . (2.5)

The support of φ being given one introduces three open sets Qi such that suppφ ⊂⊂
Q1 ⊂⊂ Q2 ⊂⊂ Q3 ⊂⊂ Q and such for i = 1, 2, one has

sup
x∈Qi ,y∈Rd+1\Qi+1

|x − y| > ε0 ,

for some ε0 > 0 that depends on the support of φ and Q .

Then one introduces a C∞ cutoff function I : R
d+1 �→ [0, 1] , which is zero

outside Q3 and is equal to 1 on Q2 . For any distribution T ∈ D′(Q) one denotes by
T ∈ D′(Rd+1) the distribution defined for every ψ ∈ D(Rd+1) by the formula

〈ψ, T 〉x = 〈Iψ, T 〉x . (2.6)

Eventually, we use standard C∞(Rd+1) radially symmetric compactly supported
Friedrichs mollifier x �→ ρε(x) , with support inside the ball of radius ε > 0. For
any distribution T ∈ D′(Rd+1), we define the distribution T ε := T ∗ ρε . Next, we fix
ε ∈ (0, ε0

2 ) , which we will eventually let it tend to zero.
Observe that from (2.1) one infers that

∑

0≤i≤d

∂xi Ai (u) = 0 , in D′(Q2) . (2.7)

Notice that for any 
 ∈ C2
c (Q1;L(Rl ,R)) one has that 
ε ∈ D(Q2;L(Rl ,R)).

Therefore, as a result of (2.7) one has

0 =
〈

ε,

∑

0≤i≤d

∂xi Ai (u)

〉

x

= −
∑

0≤i≤d

〈(∂xi 
)ε, Ai (u)〉x

=
∑

0≤i≤d

∫

R
d+1
x

∂xi
(x) · (Ai (u))ε(x) dx

= −
∑

0≤i≤d

∫

R
d+1
x

∂xi
(x) · Ai ((u)ε)(x) dx

−
∑

0≤i≤d

∫

R
d+1
x

∂xi 
(x) ·
(
(Ai (u))ε(x) − Ai ((u)ε)(x)

)
dx .

(2.8)
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Now, we replace 
, in (2.8), by φB((u)ε) ∈ C2
c (Q1;L(Rl ,R)). Thus, the right-

hand side of (2.8) is the sum of two terms:

Jε = −
∑

0≤i≤d

∫

R
d+1
x

∂xi (φB((u)ε)(x) · Ai ((u)ε))(x) dx , (2.9)

and

Kε =
∑

0≤i≤d

∫

R
d+1
x

∂xi (φB((u)ε)(x) ·
(
Ai ((u)ε)(x) − (Ai (u))ε(x)

)
dx . (2.10)

Thanks to (2.2) one has for Jε :

Jε = −
∑

0≤i≤d

∫

R
d+1
x

∂xi (φB((u)ε))(x) · Ai ((u)ε)(x) dx

=
∑

0≤i≤d

∫

R
d+1
x

(φB((u)ε))(x) · ∂xi Ai ((u)ε)(x) dx

=
∑

0≤i≤d

∫

R
d+1
x

[
φ(B(η(u)ε)) · (∇u Ai ((u)ε) · ∂xi (u)ε

]
dx

=
∑

0≤i≤d

∫

R
d+1
x

φ(x)∂xi qi ((u)ε(x))dx = −
∑

0≤i≤d

∫

R
d+1
x

∂xi φ(x)qi ((u)ε(x))dx .

(2.11)

Since u ∈ C0,α(Q2) , qi ∈ C2(M) and φ ∈ D(Q1) , then by virtue of the Lebesque
Dominant Convergence theorem this last term in (2.11) converges, when ε → 0 , to

−
∑

0≤i≤d

∫

Q
∂xi φ(x)qi (u)dx =

∑

0≤i≤d

〈φ, ∂xi qi (u)〉x .

To complete the proof, one has to show that for α > 1
3 the term Kε converges to 0 ,

as ε → 0 . Obviously, one has:

‖∂xi (φB((u)ε))‖L∞(Q1)

≤ ‖φ‖C1(Q1)
‖B‖C0(M) + C‖φ‖L∞(Q1)‖B‖C2(M)‖u‖C0,α(Q2)

εα−1 . (2.12)

Therefore, the proof is completed by virtue of the following estimate.

‖((Ai ((u)ε) − (Ai (u))ε)‖L∞(Q1) ≤ C‖Ai‖C2(M)‖u‖2C0,α(Q2)
ε2α , (2.13)

which we will establish in the next section.
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2.2 Nonlinear Commutator Estimate for Friedrichs Mollifier

Since u in (2.13) belongs toC0,α(Rd+1), with the Hölder exponent α that corresponds
to the compact set Q3, and is compactly supported in Q3, estimate (2.13) follows from
the following more “general lemma” concerning nonlinear commutator estimate for
the Friedrichs mollifier (see also Gwiazda et al. 2018). Notably, the estimate below,
which generalizes those established for quadratic nonlinearities in Constantin and
Titi (1994) and Bardos and Titi (2018), shows that regardless of the structure of the
nonlinearity one always obtains the same exponent for ε, i.e., 2α in (2.13). Combining
(2.13) with (2.12) implies the “universality” of the Onsager exponent, i.e., α > 1/3,
for conservation laws.

Lemma 2.3 For any F ∈ C2(M;Rl) and for any compactly supported function v ∈
C0,α
c (Rd+1;M) one has:

‖(F(v))ε − F(vε)‖L∞ ≤ C(‖F‖C2(M))‖v‖2C0,α(Rd+1)
ε2α . (2.14)

Proof First observe that if F is an affine map one has:

(F(v))ε − F(vε) = 0 . (2.15)

Therefore, combining (2.15) with the Taylor formula applied to F(v(x − y)), viewed
as a function of y, about vε(x) gives the following estimates:

|(F(v))ε(x) − F(vε(x))| =
∣∣∣∣∣

( ∫

R
d+1
y

F(v(x − y))ρε(y)dy
)

− F(vε(x))

∣∣∣∣∣

=
∣∣∣∣∣

∫

R
d+1
y

(F(v(x − y)) − F(vε(x))ρε(y)dy

∣∣∣∣∣

=
∣∣∣∣∣

∫

R
d+1
y

( ∫ 1

0

(
∇2

v F(sv(x−y)+(1−s)vε(x))
)
(1−s)ds

)
(v(x−y)−vε(x))(2)ρε(y)dy

∣∣∣∣∣

≤ ‖F‖C2(M))

∫

R
d+1
y

|v(x − y) − vε(x)|2ρε(y)dy

= ‖F‖C2(M))

∫

R
d+1
y

|v(x − y) −
∫

R
d+1
z

v(x − z)ρε(z)dz|2ρε(y)dy

= ‖F‖C2(M))

∫

R
d+1
y

|
∫

R
d+1
z

(
v(x − y) − v(x − z)

)
ρε(z)dz|2ρε(y)dy .

(2.16)

Since x �→ ρε(x) is equal to zero for |x | > ε then in the last term of (2.16) one has
to restrict oneself to the values when |y| < ε and |z| < ε . This in turn implies that
|(x − y) − (x − z)| ≤ 2ε . Consequently one has

‖(F(v))ε − F(vε)‖L∞ ≤ ‖F‖C2(M))

∫

R
d+1
y

∣∣∣∣
∫

R
d+1
z

(2ε)α‖v‖C0,α(Rd+1)ρε(z)dz

∣∣∣∣
2

ρε(y)dy

= ε2α‖F‖C2(M))‖v‖2C0,α(Rd+1)
.

��
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2.3 Sufficient Conditions for Global Entropy Conservation

Theorem 2.1 can obviously be applied to the case of conservation of energy. Consider
as above a weak solution u of the following conservation law:

∂t A0(u) +
∑

1≤i≤d

∂xi (Ai (u)) = 0 , (2.17)

and assume that this equation has an extra conservation law u �→ η(u) (or entropy as
usually called)with correspondingfluxesq0(u) = η(u) andq j (u) , for j = 1, 2, . . . d ,

satisfying

∇uη(u) · ∇u A0(u) = ∇uη(u) , and

∇uη(u) · ∇u A j (u) = ∇uq j (u) , for j = 1, 2, . . . d .
(2.18)

Consequently, the above gives formally the extra conservation law:

∂tη(u) +
∑

1≤i≤d

∂xi qi (u) = 0. (2.19)

Then, applying Theorem2.1with, x0 = t and (B(u) = ∇uη(u)) one has the following:

Theorem 2.4 Suppose that u ∈ L∞(Q) is defined in a time cylindrical domain Q =
(T1, T2) × � . Suppose also that � is a bounded open set with a Lipschitz boundary
∂� . This implies, in particular, the existence of δ0 > 0 such that for every x ∈ � with
d(x, ∂�) < δ0 the function x �→ d(x, ∂�) is Lipschitz and that there exists a unique
point x̂ ∈ ∂� , depending on x , such that

d(x, ∂�) = |x − x̂ | and ∇xd(x, ∂�) = −�n(x̂). (2.20)

Suppose that u is a weak solution of (2.17) with the following properties:
1. For any Q̃ ⊂⊂ Q there exists α > 1

3 , which might depend on Q̃ , such that

u ∈ C0,α(Q̃) .

2.Let δ ∈ (0, δ0
2 ), denote by�δ = �∩{d(x, ∂�) < δ

2 }) and by Qδ = (T1, T2)×�δ .
Then

lim
δ→0

sup
(t,x)∈Qδ

∣∣∣∣∣∣

∑

1≤i≤d

qi (u(t, x))�ni (x̂)
∣∣∣∣∣∣
= 0. (2.21)

Then the solution u conserves the total entropy η(u), i.e., for almost every (t1, t2)
satisfying T1 < t1 ≤ t2 < T2

∫

�

η(u(t1, x))dx =
∫

�

η(u(t2, x))dx . (2.22)

Proof Theorem 2.1 implies that u satisfies the entropy relation (2.3) in the sense of dis-
tribution. Hence one considers a test function inD(Q) of the following form φ(t, x) =
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θ(t) × χ
(
d(x,∂�)

δ

)
. Here χ ∈ C∞([0,∞)) is a cutoff function χ : [0,∞) → [0, 1]

satisfyingχ(s) = 0 for s ∈ [0, 1
4 ] andχ(s) = 1 for s ∈ [ 12 ,∞) ; and θ ∈ D((T1, T2)) .

Parameter δ is chosen to be small enough such that supp θ ⊂ (T1 + δ, T2 − δ) , and
δ ∈ (0, δ0

2 ) .

Then one has:

0 =
〈
φ, ∂tη(u) +

∑

1≤i≤d

∂xi qi (u)

〉

t,x

= −
∫

Q
η(u(t, x))χ

(d(x, ∂�)

δ

) d

dt
θ(t)dxdt

−
∫

Qδ

θ(t)

⎛

⎝
∑

1≤i≤d

qi (u(t, x))�ni (x̂)1
δ
χ ′

(
d(x, ∂�)

δ

)⎞

⎠ dxdt .

(2.23)

Letting δ → 0 , then by the Lebesque Dominant Convergence theorem one obtains
first the trivial relation

lim
δ→0

∫

Q
η((u(t, x)))χ

(
d(x, ∂�)

δ

)
d

dt
θ(t)dxdt =

∫ T2

T1

( d

dt
θ(t)

∫

�

η(u(t, x))dx
)
dt .

(2.24)

While for the term

−
∫

Qδ

θ(t)
( ∑

1≤i≤d

qi (u(t, x))�ni (x̂)1
δ
χ ′(d(x, ∂�)

δ

))
dxdt , (2.25)

one uses the estimate:

∣∣∣
∫

Qδ

θ(t)
( ∑

1≤i≤d

qi (u(t, x))�ni (x̂)1
δ
χ ′(d(x, ∂�)

δ

))
dxdt

∣∣∣

≤ sup
(t,x)∈Qδ

∣∣∣
∑

1≤i≤d

qi (u(t, x))�ni (x̂)
∣∣∣
( ∫

�δ

1

δ

∣∣∣χ ′(d(x, ∂�)

δ

)∣∣∣dx
)

×
∫ T2

T1
|θ(t))|dt

≤ C sup
(t,x)∈Qδ

∣∣∣
∑

1≤i≤d

qi (u(t, x))�ni (x̂)
∣∣∣ .

(2.26)

Thanks to (2.21) the right-hand side in the inequality above tends to zero, as δ → 0 .

Hence, from all the above one infers that for every θ ∈ D(T1, T2) ,

∫ T2

T1

( d

dt
θ(t)

∫

�

η(u(t, x))dx
)
dt = 0

or
d

dt

∫

�

η(u(t, x))dx = 0 in D′(T1, T2). (2.27)
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The above implies that
∫
�

η(u(t, x))dx = const. , for almost every t ∈ (T1, T2), since∫
�

η(u(t, x))dx is a continuous function for all t ∈ (T1, T2). This concludes our proof.
��

Remark 2.5 Observe that the above theorem can be applied to the incompressible Euler
equations

∂tv + ∇ · (v ⊗ v) + ∇ p = 0 ,

∇ · v = 0 .
(2.28)

where u in the above theorem is the column vector u =
(

v

p

)
, η(u) = |v|2

2 , A0(u) =
(

v

0

)
, and Ai (u) =

⎛

⎜⎜⎝
viv + p

⎛

⎝
δi1
δi2
δi3

⎞

⎠

vi

⎞

⎟⎟⎠, for i = 1, 2, 3 .

In the forthcoming paper (Bardos et al. 2018), we will also provide some additional
physical examples for which Theorem 2.1 can be applied.

Remark 2.6 We remark that Lemma 2.3 could be generalized in the spirit of Lemma
2.1 of Conti et al. (2012) to give

‖F(vε) − (F(v))ε‖Cr ≤ C‖F‖Cr+2‖v‖2Cr+α ε2α (2.29)
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Agnieszka Świerczewska-Gwiazda
aswiercz@mimuw.edu.pl

Emil Wiedemann
emil.wiedemann@uni-ulm.de

1 Laboratoire J.-L. Lions, BP 187, 75252 Paris Cedex 05, France

2 Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland
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