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Abstract Weconsider theN-bodyproblemof celestialmechanics in spaces of nonzero
constant curvature. Using the concept of effective potential, we define the moment of
inertia for systems moving on spheres and hyperbolic spheres and show that we can
recover the classical definition in the Euclidean case. After proving some criteria for
the existence of relative equilibria, we find a naturalway to define the concept of central
configuration in curved spaces using themoment of inertia and show that our definition
is formally similar to the one that governs the classical problem.We prove that, for any
given point masses on spheres and hyperbolic spheres, central configurations always
exist. We end with results concerning the number of central configurations that lie on
the same geodesic, thus extending the celebrated theorem of Moulton to hyperbolic
spheres and pointing out that it has no straightforward generalization to spheres, where
the count gets complicated even for two bodies.
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1 Introduction

Central configurations for the N-body problem of celestial mechanics were introduced
by Pierre-Simon Laplace in 1789 in connection with the discovery of Eulerian and
Lagrangian orbits and via Kepler’s laws in the flat case (Euler 1764; Lagrange 1772;
Laplace 1891). But a first systematic study of this concept appeared only in 1900, when
Dziobek (1900) published a fundamental paper on central configurations. Research
in this direction has continued ever since, showing over the past decades that central
configurations are essential for understanding the N -body problem. Although break-
throughs are rare in this difficult area of mathematics, some recent progress has been
made on the Wintner–Smale conjecture, which we will discuss later.

1.1 Motivation

In 1772 Joseph Louis Lagrange found the equilateral solutions of the three-body
problem and rediscovered the collinear orbits, whose existence Leonhard Euler had
proved a decade earlier. These motions, called homographic because they stay similar
to themselves for all time, can be decomposed into homothetic and relative equilibrium
solutions. The former are dilations and/or contractions of the particle system without
rotation, whereas the latter are rotations without dilations or contractions, such that
the mutual distances remain constant during the motion. Starting from the homothetic
Lagrangian orbits, Laplace noticed that it may be simpler to seek the configurations
that remain similar to themselves, which we now call central configurations, instead
of looking for the homographic solutions to the differential equations (Wintner 1947).
Central configurations do not involve the time variable and are given by the system

∇U (q) = λ∇ I (q),

where q provides the positions of the bodies, U is the force function (the negative of
the potential), I is the moment of inertia as defined in (2) below, λ is a constant, and
∇ denotes the gradient. In this case, central configurations provide classes of relative
equilibrium, homothetic, and homographic orbits by reducing the dynamical question
of finding solutions of a differential equation to solving algebraic systems.

1.2 Importance

Research done since 1900 has shown that the concept of central configuration opens
a path towards understanding the N -body problem. Not only it offers a method for
finding periodic solutions, but it appears in various other circumstances. For instance,
when three or more bodies tend to a simultaneous collision, or when the system
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becomes unbounded and the mutual distances between bodies tend to infinity, the
system tends asymptotically to a central configuration (Saari 1980, 2005).

But finding central configurations is far from easy. Basic questions related to them
are often difficult. TheWintner–Smale conjecture, for instance, became notorious after
Steven Smale placed it sixth on his list of open problems for the twenty-first century
(Smale 1998). The problem asks whether, for given N positive masses, the number
of planar central configurations is finite or not. So far, the conjecture has been solved
only for N = 3, 4, and 5, see Moeckel (2006) and Albouy and Kaloshin (2012). In
all these cases the answer is that the set of central configurations is finite. But it is
possible that for more than five bodies this set is infinite. If so, it may be countable or
contain a continuum, as it actually happens when some masses are negative or charges
are embedded in the system (Alfaro and Pérez-Chavela 2002; Roberts 1999).

1.3 Our Goal

We consider here the motion of N point masses in spaces of constant Gaussian cur-
vature κ �= 0, namely spheres for κ > 0 and hyperbolic spheres for κ < 0 in a
non-relativistic context. This problem stems from the work of János Bolyai and Niko-
lai Lobachevsky, done in the 1830s, who independently had the idea of generalizing
celestial mechanics to hyperbolic space, being among the first to understand that the
laws of physics are related to the geometry of the universe (Bolyai and Bolyai 1913;
Lobachevsky 1949). The problem was further pursued by Schering (1870, 1873),
Killing (1880), Liebmann (1902, 1903), and others. More recent work in this direc-
tion appears in Kozlov and Harin (1992), Shchepetilov (2006), Diacu (2011, 2012a, b,
2013a, b, 2017, 2016), Diacu and Kordlou (2013), Diacu et al. (2013), Diacu and
Pérez-Chavela (2011), Diacu et al. (2005, 2012a, b, c, 2018), Diacu and Popa (2014),
Diacu and Thorn (2015), García-Naranjo et al. (2016), Martínez and Simó (2013,
2017), Montanelli and Gushterov (2016), Pérez-Chavela and Reyes Victoria (2012),
Tibboel (2013a, b, 2014), Zhu (2014) and Zhu and Zhao (2017). A history of the
problem and reasons why it is worth studying can be found in Diacu (2012b).

In this paper we extend the concept of central configuration to the N -body problem
in spaces of constant Gaussian curvature. Our idea was to find a formal definition that
resembles the classical one. To achieve this goal we had to formulate first the correct
definition of the moment of inertia for 3-spheres and hyperbolic 3-spheres, such that
it agrees with the standard definition known in the Euclidean space. This step proved
more difficult than we expected, also because of a terminological mix-up that had
occurred in the past few decades in the literature pertaining to the Newtonian N -body
problem. A main obstacle was that, in the three-dimensional case, the definition of
the moment of inertia we considered suitable for our purposes did not match the one
in the Euclidean space when the curvature takes the value zero. But in the end we
found a way out with the help of the concept of effective potential and thus clarified
the semantic confusion that had occurred in recent years.

We also wanted to develop some criteria for the existence of central configurations
and apply them towards finding new classes of such mathematical objects. The reward
was higher than expected when we understood that any central configuration on a
3-sphere delivers two classes of relative equilibria, whereas any central configuration
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on hyperbolic 3-spheres provides three such classes. Unlike in the Euclidean case,
however, central configurations do not lead to homothetic orbits, in general. The loss
of this property is not only because spheres and hyperbolic spheres are not vector
spaces, so the concept of similarity does not make much sense, but also for dynamical
reasons. In Euclidean space, bodies released from a central configuration with zero
initial velocities collide simultaneously. While this happens in some highly symmetric
cases in curved space as well, it does not happen in general. For example, for fixed
points on spheres, which are central configurations, the bodies do not move at all.

We also include in this first paper on central configurations of the curved N -body
problem a complete proof that for any masses on spheres and hyperbolic spheres
central configurations exist. Finally, we add some results on the number of geodesic
central configurations, in the spirit of the classical theorem proved by Forest Ray
Moulton in the classical case (Moulton 1910).

2 The Moment of Inertia in Euclidean Space

In this section we discuss the moment of inertia in Euclidean space, aiming to find
later a proper definition of this concept for an N -body system in spaces of constant
curvature. At this stage we do not need any equations of motion, since the moment of
inertia does not depend on them. The reason for dealing with this issue here is related
to the fact that we will use this concept later in the definition of central configurations.

2.1 The Physical Concept

The moment of inertia first appeared in one of Euler’s works of 1765, p. 166. The term
apparently made it into dictionaries sometime between 1820 and 1830 (Dictionary
2015). In the spirit of Euler, we can define this concept as follows.

Definition 1 The moment of inertia is the sum of the products of the mass and the
square of the perpendicular distance to the axis of rotation of each particle in a body
rotating about an axis.

According to the above definition, given for a rigid body, the moment of inertia I
for a system of N positive point masses, m1, . . . , m N , relative to the z-axis in some
xyz-coordinate system of the Euclidean space R3, must be of the form

I =
N∑

i=1

mi

(
x2i + y2i

)
, (1)

where the position of the body mi is given by the vector qi = (xi , yi , zi ). The moment
of inertia has the same expression (1) if we restrict the motion to the plane R

2 and
assume that the rotation takes place about the origin of some xy-coordinate system,
where the position vector for the body mi is now qi = (xi , yi ).

In celestial mechanics, as long as the motion is restricted to R
2, the moment of

inertia is taken as in (1) or, sometimes, as half this quantity. We will soon clarify the
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reason for which some authors introduce the factor 1
2 , but it is more important for now

to note that in celestial mechanics the moment of inertia is taken in R3 as

I =
n∑

i=1

mi

(
x2i + y2i + z2i

)
(2)

or as half this quantity. The usual physical interpretation of formula (2) given in the
field is that the moment of inertia provides a crude measure for the distribution of the
bodies in space, with I = 0 at total collision and I large if at least one body is far
away from the others. So not only there is no match between Definition 1 and formula
(2), but the celestial mechanics literature never hints at any connection between the
moment of inertia thus defined and the rotation of the bodies about an axis.

We thought that we might find a reason for this mismatch in the original works
where formula (2) appeared. The moment of inertia for the classical N -body problem
has been historically known for its presence in the Lagrange–Jacobi equation,

Ï = (2α + 4)U + 4h,

where I is defined as in (2), U is the force function (i.e. the negative of the potential
energy),

U : R3N → (0,∞), U (q1, . . . ,qN ) =
∑

1≤i< j≤N

mi m j

|qi − q j |α ,

h is the energy constant, and α > 0 is also a constant. The physical units are chosen
such that the gravitation constant is 1. Since the right-hand side of the Lagrange–Jacobi
formula has a factor of 2, some researchers in celestial mechanics prefer to introduce
the factor 1

2 in the definition of I , but this detail is irrelevant. So a good place to start
our attempt at answering the above question was the first work that contained the
Lagrange–Jacobi equation.

2.2 Jacobi’s Approach

In the winter semester of 1842–1843 at the University of Königsberg in East Prussia,
Carl Gustav Jacobi gave a lecture series on the N -body problem, which was very
well received, so he published it as a book entitled Vorlesungen über Dynamik in
1848 (Jacobi 1884). On page 22, the Lagrange–Jacobi equation appears for the first
time as

∑
mir2i , where r2i = x2i + y2i + z2i . Jacobi never attached a name to this

sum, as he did for other important concepts, such as kinetic energy, which he called
“lebendige Kraft” (living force). Between pages 22 and 24 he referred to

∑
mir2i as

“Ausdruck” (expression), “Summe” (sum), or “Grösse” (quantity), but never hinted
that it has anything to do with the moment of inertia defined in physics. Recall that
this concept had been defined in 1765 and was already in dictionaries around 1830,
so Jacobi should have been aware of it by the time of his lectures.

In the first paragraph on page 24, he mentioned that, at the origin of the coordinate
system,

∑
mir2i reaches its minimum value and, when

∑
mir2i is constant, the bodies

can be thought of lying on the same sphere. So he formulated there our current physical
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interpretation of the moment of inertia in celestial mechanics as a crude measure of
the bodies’ distribution in space. And this is all he wrote relative to

∑
mir2i . It is

thus reasonable to think that he made no connection between this expression and the
rotation of the bodies about a fixed axis.

2.3 Wintner’s Terminology

A century later, Aurel Wintner published the first edition of his influential book on the
analytical foundations of celestialmechanics, updated in a second edition that appeared
in 1947 (Wintner 1947). On page 234, the quantity J = ∑

miξ
2
i was introduced

(with ξi having the same meaning as Jacobi’s ri mentioned above), which finally
bears a name; he called it the polar inertia momentum. In modern parlance, the polar
moment of inertia, or the polar moment of area, is a quantity used to predict an object’s
resistance to torsion. Physicists warn, however, that the polar moment of inertia should
not be confused with the moment of inertia, which characterizes an object’s angular
acceleration due to torque. So though related, the concepts of torque and torsion mean
different things.

2.4 Recent Developments

Since the publication of Wintner’s book, researchers in celestial mechanics got appar-
ently mixed up in terminology. Though the two physical concepts are identical in the
classical N -body problem as long as I is defined in the plane R2, in R3 we must dis-
tinguish between the polar moment of inertia, (2), and the moment of inertia, (1). This
remark is important to us for reasons related to the definition we will give for central
configurations in spaces of constant curvature and to the fact that we can recover the
classical definition when the curvature tends to zero.

In spite of a misleading terminology, the polar moment of inertia was understood
in terms of a rotation when considered in the context of relative equilibria (orbits that
maintain constantmutual distances between the bodies all along themotion) defined by
central configurations, as we will explain later. But the central configurations leading
to relative equilibria must be planar (seeWintner 1947, p. 287). As there are no spatial
relative equilibria in R

3, the mix-up between concepts was harmless. In the next
section, we will provide and justify the correct definition of the moment of inertia for
spheres and hyperbolic spheres and later find another way to back up our findings.

3 The Moment of Inertia in Spaces of Constant Curvature

In this section we first introduce the definition of relative equilibria in the context
of mechanical systems with symmetry. We use the language of geometric mechanics
(Abraham and Marsden 1987; Marsden 2009; Marsden and Ratiu 1999; Smale 1998)
to show that finding relative equilibria of mechanical systems in spheres and hyper-
bolic spheres is equivalent to finding the critical points of the corresponding effective
potentials. The effective potentials corresponding to different relative equilibria have
the same form, a fact that motivates our definition of the moment of inertia in spheres
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and hyperbolic spheres. Throughout this paper, vectors are all column vectors, but
written as row vectors in the text, and the masses m1, . . . , m N are all positive.

3.1 Relative Equilibria

We begin with some definitions for general mechanical systems. The first is from
Smale (1998), whereas the second is from Smale (1970b).

Definition 2 Amechanical systemwith symmetry consists of a 4-tuple (M, K , V, G),
where M is a manifold, K the kinetic energy, V the potential energy, and G a Lie group
acting on M preserving K and V with all data smooth.

For each ξ in the Lie algebra g of G, there is a vector field ξ M on M given by

ξ M (q) := d

dt

∣∣∣∣
t=0

(exp(ξ t)q) .

We denote by ξ M (q) the vector at q ∈ M , and by exp(ξ t)q the action of exp(ξ t) on
q.

Definition 3 A solution of the mechanical system with symmetry (M, K , V, G) is
called a relative equilibrium if it is also an integral curve of the vector field ξ M . In
other words, a relative equilibrium is a solution in the form of exp(ξ t)q. The curve
exp(ξ t) ∈ G is called a one-parameter subgroup of G.

Recall that a 4× 4 matrix A is in the orthogonal Lie group O(4) if it preserves the
inner product in the four-dimensional Euclidean space, that is, if

Au · Av = u · v, for any u, v ∈ R
4.

O(4) is a matrix Lie group that has two components. The component containing the
identity matrix I , i.e. the set of matrices with determinant one, denoted by SO(4), is
the special orthogonal group. The tangent space at I , the Lie algebra of O(4), is a
six-dimensional linear space and is denoted by so(4). A 4 × 4 matrix X is in so(4) if
X T = − X .

Also recall that a 4 × 4 matrix A is in O(3, 1) if it preserves the inner product in
the four-dimensional Minkowski space, that is, if

Au · Av = u · v, for any u, v ∈ R
3,1.

O(3, 1) is a matrix Lie group with four components (Naber 1991). The two compo-
nents with determinant one form SO(3, 1), out of which the component containing I ,
denoted by SO+(3, 1), is the Lorentz group. The tangent space at I , the Lie algebra
of O(3, 1), is a six-dimensional linear space and denoted by so(3, 1). A 4× 4 matrix
X belongs to so(3, 1) if ψ X T ψ = −X , where ψ = diag(1, 1, 1,− 1).

Let us return to mechanical systems in spheres and hyperbolic spheres. We embed
them either in the standard Euclidean space, R4, or in the Minkowski space, R3,1.
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More precisely, for vectors q1 = (x1, y1, z1, w1) and q2 = (x2, y2, z2, w2) in R
4 or

R
3,1, the inner products are given by

q1 · q2 = x1x2 + y1y2 + z1z2 + σw1w2,

where σ = 1 for R4 and σ = −1 for R3,1. Then the family of manifolds is

M
3
κ := {(x, y, z, w) ∈ R

4 |x2 + y2 + z2 + σw2 = κ, κ �= 0},

with w > 0 for κ < 0. For κ > 0, the manifolds are 3-spheres, which we denote by
S
3
κ , whereas for κ < 0, the manifolds are hyperbolic 3-spheres, which we denote by

H
3
κ .
Given positive masses m1, . . . , m N , whose positions are described by the config-

uration q = (q1, . . . ,qN ) ∈ (M3
κ)N , qi = (xi , yi , zi , wi ), i = 1, N , we define the

singularity set

� = ∪1≤i< j≤N

{
q ∈ (M3)N ; qi = ±q j

}
.

We take the kinetic energy as

K (q̇) =
∑

1≤i≤N

1

2
mi q̇i · q̇i .

We assume that the potential energy is invariant under the O(4) (O(3, 1)) action. For
instance, V =∑1≤i< j≤N mi m j f (di j ), where di j is the distance between qi and q j .

Now let us consider the relative equilibrium of such a mechanical system that
consists of the 4-tuple

(
(M3

κ)N \�, K (q̇), V (q), O(4)(O(3, 1))
)

. (3)

Proposition 1 A one-parameter subgroup of SO(4) is of the form P Aα,β(t)P−1, with
P ∈ SO(4) and

Aα,β(t) =

⎡

⎢⎢⎣

cosαt − sin αt 0 0
sin αt cosαt 0 0
0 0 cosβt − sin βt
0 0 sin βt cosβt

⎤

⎥⎥⎦ , α, β ∈ R.

We call these rotations positive elliptic–elliptic if α �= 0 and β �= 0, and positive
elliptic if only one of them is zero.We call the corresponding relative equilibria positive
elliptic–elliptic relative equilibria and positive elliptic relative equilibria, respectively.
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Proposition 2 A one-parameter subgroup of SO+(3, 1) is of the form P Bα,β(t)P−1

or PCη(t)P−1, with P ∈ SO(3, 1), and

Bα,β(t) =

⎡

⎢⎢⎣

cosαt − sin αt 0 0
sin αt cosαt 0 0
0 0 cosh βt sinh βt
0 0 sinh βt cosh βt

⎤

⎥⎥⎦ ,

Cη(t) =

⎡

⎢⎢⎣

1 0 0 0
0 1 − ηt ηt
0 ηt 1 − ηt2/2 ηt2

0 ηt − ηt2 1 + ηt2/2

⎤

⎥⎥⎦ ,

where α, β, η ∈ R.

Similarly, the negative elliptic, negative hyperbolic, negative elliptic–hyperbolic,
and parabolic transformations correspond to α �= 0 and β = 0, α = 0 and β �= 0,
α �= 0 andβ �= 0, andη �= 0, respectively.Wecall the corresponding relative equilibria
negative elliptic relative equilibria, negative hyperbolic relative equilibria, negative
elliptic–hyperbolic relative equilibria, and parabolic relative equilibria, respectively.

We can easily check that

Aα,β(t) = exp(ξ1t), Bα,β(t) = exp(ξ2t), Cη(t) = exp(ξ3t),

where ξ1 ∈ so(4), ξ2, ξ3 ∈ so(3, 1), and

ξ1=

⎡

⎢⎢⎣

0 −α 0 0
α 0 0 0
0 0 0 −β

0 0 β 0

⎤

⎥⎥⎦ , ξ2=

⎡

⎢⎢⎣

0 −α 0 0
α 0 0 0
0 0 0 β

0 0 β 0

⎤

⎥⎥⎦ , ξ3=

⎡

⎢⎢⎣

0 0 0 0
0 0 − η η

0 η 0 0
0 η 0 0

⎤

⎥⎥⎦ .

It is easy to see that for any φ in the isometry group, q(t) solves the mechanical
system (3) if and only if φq(t) does. Thus, we cover all possible relative equilibria
for the mechanical system if we define them in terms of the three normal forms of
the one-parameter subgroup. To simplify the notation, we will denote initial positions
without any argument and attach the argument t to functions depending on time.

Definition 4 Let q = (q1, . . . ,qN ) be an initial configuration of the masses
m1, . . . , m N , N ≥ 2 in (Mκ

3)N \�, where the initial position vectors are qi =
(xi , yi , zi , wi ), i = 1, N . Then a solution of the form

q(t) = Q(t)q := (Q(t)q1, . . . , Q(t)qN )

of system (3), with Q(t) being Aα,β(t), Bα,β(t), or Cη(t), is called a relative equilib-
rium of the mechanical system (3).

It was proved in Diacu (2012b) that parabolic relative equilibria do not exist for
system (3).
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3.2 Effective Potentials and Moment of Inertia

First recall the following result.

Theorem 1 (Smale 1970b) Suppose (M, K , V, G) is a mechanical system with sym-
metry and ξ ∈ g. Then exp(ξ t)q is a relative equilibrium if and only if q is a critical
point of the real valued function on M which sends q into V (q) − K (ξ M (q), ξ M (q)),
the effective potential corresponding to ξ .

Theorem 2 Consider system (3). Let q = (q1, . . . ,qN ), qi = (xi , yi , zi , wi ), i =
1, N ,be a configuration in (M3

κ )N \�. In (S3κ)N \�, exp(ξ1t)q = Aα,β(t)q is a relative
equilibrium if and only if this configuration satisfies the equation

α2 − β2

2
∇qi

(
N∑

i=1

mi (x2i + y2i )

)
= ∇qi V (q), i = 1, N .

In (H3
κ)N \�, exp(ξ2t)q = Bα,β(t)q is a relative equilibrium if and only if this con-

figuration satisfies the equations

α2 + β2

2
∇qi

(
N∑

i=1

mi (x2i + y2i )

)
= ∇qi V (q), i = 1, N .

Proof The action of exp(ξ i t) is exp(ξ i t)q = (exp(ξ i t)q1, . . . , exp(ξ i t)qN ).Thus, the
vector fields generated by ξ1 and ξ2 on (S3κ)N and (H3

κ)N are ξ1q = (ξ1q1, . . . , ξ1qN )

and ξ2q = (ξ2q1, . . . , ξ2qN ), respectively.
Recall that the kinetic energy is K (q̇, q̇) =∑N

i=1
1
2mi q̇i · q̇i . In S

3
κ , using the fact

qi · qi = 1, we obtain

K (ξ1q, ξ1q) =
N∑

i=1

1

2
miξ1qi · ξ1qi

=
N∑

i=1

1

2
mi (−αyi , αxi ,−βwi , βzi ) · (−αyi , αxi ,−βwi , βzi )

=
N∑

i=1

1

2
mi

(
α2(x2i + y2i ) + β2(κ − x2i − y2i )

)

= α2 − β2

2

N∑

i=1

mi

(
x2i + y2i

)
+ κβ2

2

N∑

i=1

mi .

In H3
κ , by using qi · qi = κ , we similarly obtain

K (ξ2q, ξ2q) = α2 + β2

2

N∑

i=1

mi

(
x2i + y2i

)
− κβ2

2

N∑

i=1

mi .
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Ignoring the constant, the effective potentials with respect to ξ1 and ξ2 are

V (q) −
N∑

i=1

mi

2

(
α2 − β2

) (
x2i + y2i

)
, V (q) −

N∑

i=1

mi

2

(
α2 + β2

) (
x2i + y2i

)
.

So exp(ξ i t)q is a relative equilibrium if and only ifq is a critical point of these effective
potentials, which is equivalent to the equations. This remark completes the proof. 
�

The effective potentials depend on the parameters α, β in such a manner since the
spheres are three-dimensional. Note that the quantity

∑N
i=1 mi (x2i + y2i ), which has

the same form as the moment of inertia in R
3, see Definition 1, is related to relative

equilibria of system (3) in the same way as the moment of inertia is related to relative
equilibria of mechanical systems in R

3. We can now introduce the natural definition
of the moment of inertia for the mechanical systems in (M3

κ)N \�.

Definition 5 Consider a mechanical system that is determined by the 4-tuple (3).
Assume that their configuration is given by the vectorsqi = (xi , yi , zi , wi ) ∈ M

3
κ , i =

1, N . Then the moment of inertia of the particle system is the function

I (q) :=
N∑

i=1

mi (x2i + y2i ). (4)

4 Equations of Motion

In this section we introduce the N -body problem in spaces of constant nonzero curva-
ture, which we will refer to as the curved N-body problem. It is the study of motion of
particle systems under Newton-like attraction. We will call its analogue in Euclidean
space the Newtonian N-body problem.

As in Diacu (2012b), we set the curved N -body problems M3±1, which we will
simply denote by S3 and H

3. For convenience, we will also use the notation

M
3 := {(x, y, z, w) ∈ R

4 |x2 + y2 + z2 + σw2 = σ, with w > 0 for σ = −1}.

Given the positive masses m1, . . . , m N , whose positions are described by the config-
uration q = (q1, . . . ,qN ) ∈ (M3)N , qi = (xi , yi , zi , wi ), i = 1, N , we define the
singularity set

� = ∪1≤i< j≤N {q ∈ (M3)N ; qi · q j = ±σ }.

If di j is the geodesic distance between the point masses mi and m j , we define the
force function U (−U being the potential function) on (M3)N \� as

U (q) :=
∑

1≤i< j≤N

mi m jctndi j ,
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where ctn(x) stands for cot(x) in S
3 and coth(x) in H

3. We would like to mention
that there are many other choices of the potential, but this potential is coherent with
the Newtonian N -body problem, see Diacu (2012b). We also introduce two more
notations, which unify the trigonometric and hyperbolic functions,

sn(x) = sin(x) or sinh(x), csn(x) = cos(x) or cosh(x).

Then the distance di j is given by the expression di j := arccsn(σqi · q j ), where
arccsn(x) is the inverse function of csn(x). We define the kinetic energy as

T (p) =
∑

1≤i≤N

mi q̇i · q̇i =
∑

1≤i≤N

m−1
i pi · pi ,

where pi := mi q̇i is the momentum of mi . We also denote the momentum of the
particle system by p = (p1, . . . ,pN ). Then the curved N -body problem is given by
the Hamiltonian system on T ∗((M3)N \�), with

H(q,p) := T (q,p) − U (q).

Let us derive the equations of motion for the Hamiltonian system in S3. The Hamil-
tonian is

H =
∑

1≤i≤N

1

2
m−1

i pi · pi −
∑

1≤i< j≤N

mi m j cot di j .

Here U is defined on (S3)N \�, with the set of singularities � = �− ∪ �+, where

�− : = ∪1≤i< j≤N {q ∈ (S3)N : qi = −q j }\ ∪1≤i< j≤N {q ∈ (S3)N : qi = q j },
�+ : = ∪1≤i< j≤N {q ∈ (S3)N : qi = q j }\ ∪1≤i< j≤N {q ∈ (S3)N : qi = −q j }.

(5)

Wewill call�− the antipodal singularity set and�+ the collision singularity set. Using
constrained Hamiltonian dynamics, we obtain the equations describing the motion of
the bodies,

⎧
⎪⎨

⎪⎩

q̇i = m−1
i pi

ṗi = ∇qi U − m−1
i (pi · pi )qi = ∇qi U − mi (q̇i · q̇i )qi

qi · qi = 1, pi · qi = 0, i = 1, N ,

where ∇qi U stands for the gradient of U on the manifold (S3)N . Notice that ∇qi U
can be interpreted as the attractive force on qi produced by all other particles, and
−m−1

i (pi · pi )qi can be viewed as the constraint force keeping the particles on the
sphere. Thus, we denote ∇qi U and ∇qi mi m j cot di j by Fi and Fi j , respectively. We
have

Fi j = −mi m j

sin2 di j
∇qi di j = −mi m j

sin2 di j
∇qi cos

−1 qi · q j = mi m j

sin3 di j
∇qiqi · q j .
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The gradient of qi · q j on the manifold (S3)N can be computed as follows. We extend
any function f : (S3)N → R to the ambient space f̄ : (R4)N → R,

f̄ (q) = f

(
q1√
q1 · q1 , . . . ,

qN√
qN · qN

)
.

Then f̄ (λq) = f̄ (q) for λ > 0, i.e. f̄ is a homogeneous function of degree zero. Let
∇̃ be the gradient in the ambient space and ∂

∂ni
the unit normal vector of the i th unit

sphere. Since ∂ f̄
∂ri

= 0, we obtain (∇̃qi f̄ )|(S3)N = ∇qi f + ∂ f̄
∂ri

∂
∂ni

= ∇qi f . Thus,

Fi j = mi m j

sin3 di j
∇̃qi

qi · q j√
qi · qi

√
q j · q j

= mi m j

sin3 di j

√
qi · qi

√
q j · q jq j −qi · q j

√q j ·q j√
qi ·qi

qi

(
√
qi · qi

√
q j · q j )2

= mi m j [q j − cos di jqi ]
sin3 di j

.

Thus, the equations of motion for the curved N -body problem in S
3 are

⎧
⎪⎪⎨

⎪⎪⎩

q̇i = m−1
i pi

ṗi =∑N
j=1, j �=i

mi m j [q j −cos di jqi ]
sin3 di j

− mi (q̇i · q̇i )qi

qi · qi = 1, pi · qi = 0, i = 1, N .

Gravitation law in S
3 A mass m2 at q2 ∈ S

3 attracts another mass m1 at q1 ∈ S
3

(q1 �= ±q2) along the minimal geodesic connecting the two points with a force whose
magnitude is m1m2

sin2 d12
. More precisely,

F12 = m1m2[q2 − cos d12q1]
sin3 d12

.

Similarly, we can derive the equations of motion for the Hamiltonian system inH3.
The Hamiltonian is

H = T (q,p) − U (q) =
∑

1≤i≤N

1

2
m−1

i pi · pi −
∑

1≤i< j≤N

mi m j coth di j .

Here U is defined on (H3)N \�, and the set of singularities is

� := ∪1≤i< j≤N {q ∈ (H3)N : qi = q j }.

We interpret ∇qi U and ∇qi mi m j coth di j as Fi and Fi j , respectively. Similar compu-
tations lead to

Fi j = mi m j [q j − cosh di jqi ]
sinh3 di j

,
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and the equations of motion for the curved N -body problem in H
3 are

⎧
⎪⎪⎨

⎪⎪⎩

q̇i = m−1
i pi

ṗi =∑N
j=1, j �=i

mi m j [q j −cosh di jqi ]
sinh3 di j

+ mi (q̇i · q̇i )qi

qi · qi = −1, pi · qi = 0, i = 1, N .

Gravitation law in H
3 A mass m2 at q2 ∈ H

3 attracts another mass m1 at q1 ∈ H
3

(q1 �= q2) along the minimal geodesic connecting the two points with a force whose
magnitude is m1m2

sinh2 d12
. More precisely,

F12 = m1m2[q2 − cosh d12q1]
sinh3 d12

.

Using the functions sn(x) and csn(x) introduced earlier, we can blend the two
systems of equations into one system in (M3)N \� (Diacu 2012b, 2013a),

⎧
⎪⎨

⎪⎩

q̇i = m−1
i pi

ṗi =∑N
j=1, j �=i

mi m j [q j −csndi jqi ]
sn3di j

− σmi (q̇i · q̇i )qi

qi · qi = σ, pi · qi = 0, i = 1, N .

(6)

Remark 1 If we derive the equation of motion in M
3
κ , we would see that the gravita-

tional law is

F12 = m1m2|κ| 32 [q2 − csn|κ| 12 dκ(q1,q2)q1]
sn3
(
|κ| 12 dκ(q1,q2)

) ,

(Diacu 2012b, p. 29), where dκ(q1,q2) is the distance between the two particles in
M

3
κ . Formally, it tends to the gravitational law in R3 when κ → 0, which again shows

that the potential is coherent with the Newtonian potential.
Some researchers studied the curved N -body problem in M

3
κ with curvature κ �=

± 1 (Kilin 1999). This is not necessary since it has been shown in Diacu (2012b) that
there are coordinate and time-rescaling transformations,

qi = |κ|−1/2ri , i = 1, N and τ = |κ|3/4t,

which bring the systems from S
3
κ and H

3
κ to systems to S3 and H

3, respectively.

4.1 Total Angular Momentum Integrals

The Hamiltonian function is invariant under the action of SO(4) and SO(3, 1) for
motions in S

3 and H
3, respectively. These symmetries lead to six integrals, which
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stand for the generalized version of the usual total angular momentum conservation
laws in R3,

ωuv =
N∑

i=1

mi (u̇ivi − ui v̇i ),

where u, v is any combinations of x, y, z, w, a fact shown in Diacu (2012b) and Diacu
(2013a). We refer to them as angular momentum integrals.

5 Relative Equilibria and Central Configurations

We can apply Theorem 2 to derive the criteria for relative equilibria of the curved
N -body problem. They are equivalent to the criteria given in Diacu (2012b) and Diacu
(2013a), but differ significantly in form. We then define central configuration of the
curved N -body problem and discuss the relationships between central configurations
and solutions of the curved N -body problem.

5.1 Criterion for Relative Equilibria inM
3

Let q = (q1, . . . ,qN ), qi = (xi , yi , zi , wi ), i = 1, N , be a non-singular configura-
tion and Q(t)q a relative equilibrium, where Q(t) is Aα,β(t) or Bα,β(t). Again, we
denote initial positions and velocities without any argument and attach the argument
t to functions depending on time.

We first substitute qi (t) = Q(t)qi , i = 1, N , into Eq. (6) and obtain

mi Q̈(t)qi = ∇qi U (t) − σmi [Q̇(t)qi · Q̇(t)qi ]Q(t)qi , i = 1, N .

Since U is invariant under the isometry group, it is easy to see that Q−1(t)∇qi U (t) =
∇qi U . Multiplying to the left by Q−1(t) yields

mi Q−1(t)Q̈(t)qi = ∇qi U − σmi [Q̇(t)qi · Q̇(t)qi ]qi . (7)

Theorem 3 Let q = (q1, . . . ,qN ),qi = (xi , yi , zi , wi ), i = 1, N, be a non-singular
configuration in S

3. Then Aα,β(t)q is a relative equilibrium if and only if this config-
uration satisfies the equations

mi (β
2 − α2)

⎡

⎢⎢⎢⎢⎢⎣

xi (w
2
i + z2i )

yi (w
2
i + z2i )

−zi (x2i + y2i )

−wi (x2i + y2i )

⎤

⎥⎥⎥⎥⎥⎦
= ∇qi U, i = 1, N . (8)
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Proof Using the fact that Aα,β(t) = exp(ξ1t) and that exp(ξ1t) and ξ1 commute,
straightforward computations show that

A−1
α,β(t) Äα,β(t) = diag(−α2,−α2,−β2,−β2),

Ȧα,β(t)qi · Ȧα,β(t)qi = α2(x2i + y2i ) + β2(z2i + w2
i ).

Substituting these expressions into Eq. (7), we obtain that

mi (−α2xi ,−α2yi ,−β2zi ,−β2wi ) = ∇qi U − mi [α2(x2i + y2i ) + β2(z2i + w2
i )]qi ,

i = 1, N .

Using in the above equations the identity qi · qi = 1, we can obtain Eq. (8), a remark
that completes the proof. 
�

Similarly, we can prove the following criterion for relative equilibria in H
3.

Theorem 4 Let q = (q1, . . . ,qN ), qi = (xi , yi , zi , wi ), i = 1, N , be a non-singular
configuration in H

3. Then Bα,β(t)q is a relative equilibrium if and only if this config-
uration satisfies the equations

− mi (α
2 + β2)

⎡

⎢⎢⎢⎢⎢⎣

xi (w
2
i − z2i )

yi (w
2
i − z2i )

zi (x2i + y2i )

wi (x2i + y2i )

⎤

⎥⎥⎥⎥⎥⎦
= ∇qi U, i = 1, N . (9)

Theorem 2 and the above two theorems are equivalent. For example, in S
3, define

f (x, y, z, w) = x2 + y2 as a function from S
3 to R. To find the gradient of f , we

employ the trick used to derive ∇qiqi · q j in Sect. 4. Extend f to a homogeneous
function f̄ of degree zero in the ambient space R4,

f̄ (x, y, z, w) := x2 + y2

x2 + y2 + z2 + w2 .

Let ∇̃ be the gradient in the ambient space, and let ∂
∂n be the unit normal vector of

the unit sphere. Since ∂ f̄
∂r = 0, we obtain (∇̃ f̄ )|S3 = ∇ f + ∂ f̄

∂r
∂
∂n = ∇ f . Thus,

straightforward computations show that

∇ f (x, y, z, w) = 2
(

x(w2 + z2), y(w2 + z2),−z(x2 + y2),−w(x2 + y2)
)

.

Hence, we can conclude that

∇qi I (q) = 2mi

(
xi (w

2
i + z2i ), yi (w

2
i + z2i ),−zi (x2i + y2i ),−wi (x2i + y2i )

)
.
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Thus, the right-hand side of (8) is β2−α2

2 ∇qi

(∑N
i=1 mi (x2i + y2i )

)
. Theorem2matches

Theorem 3. Similarly, in H3,

∇qi I (q) = 2mi

(
xi (w

2
i − z2i ), yi (w

2
i − z2i ), zi (x2i + y2i ), wi (x2i + y2i )

)
.

Thus, Theorem 2 also matches Theorem 4.

5.2 Central Configurations and Relative Equilibria

We are now motivated to study the equation

∇qi U (q) = λ∇qi

[
N∑

i=1

mi (x2i + y2i )

]
, i = 1, N .

Definition 6 Assume that the point masses m1, . . . , m N inM3 have the non-singular
positions given by the vector q = (q1, . . . ,qN ), qi = (xi , yi , zi , wi ), i = 1, N .

Then q is a central configuration of the curved N -body problem in M
3 if it satisfies

the equations

∇qi U (q) = λ∇qi I (q), i = 1, N , (10)

where λ ∈ R is a constant and I is the moment of inertia. We call (10) the central
configuration equations.

Explicitly, the central configuration equations (10) are

N∑

j �=i, j=1

m j miq j

sn3di j
−

N∑

j �=i, j=1

m j micsndi j

sn3di j
qi = λ∇qi I, i = 1, N . (11)

Proposition 3 The ith equation of the central configuration equations (11) holds if
and only if there is a constant θi such that

N∑

j �=i, j=1

m j miq j

sn3di j
− θiqi = λ∇qi I. (12)

Proof Multiply (12) by qi . Since qi · q j = σcsndi j , qi · qi = σ , and qi · ∇qi I = 0,

we obtain θi = ∑N
j �=i, j=1

m j mi csndi j

sn3di j
. Thus, (12) is equivalent to the i th equation of

(11). 
�
The following class of central configurations exists in S

3 only (Diacu 2012b,
2013a).
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Definition 7 Consider the positive masses m1, . . . , m N in S
3. Then a configuration

q = (q1, . . . ,qN ), qi = (xi , yi , zi , wi ), i = 1, N , is called a special central config-
uration if it is a critical point of the force function U , i.e.

∇qi U (q) = 0, i = 1, N .

In other words,Fi = 0, i = 1, N .To avoid any confusion, wewill call ordinary central
configurations those central configurations that are not special.

Here is one remark on terminology. These special central configurations were
introduced in Diacu (2012b, 2013a) under the name of fixed points. Given such a
configuration q, we see with the help of Theorem 3 that A0,0(t)q is an associated
relative equilibrium, which is a fixed-point solution: q(t) = q, p(t) = 0. This explains
the old terminology. Let us introduce some new terminology as well.

Definition 8 A central configuration q of the curved N -body problem is called

– a geodesic central configuration if it is lying on a geodesic;
– an S

2 central configuration if it is lying on a great 2-sphere;
– an H

2 central configuration if it is lying on a great hyperbolic 2-sphere;
– an S

3 central configuration if it is not lying on any great 2-sphere;
– an H

3 central configuration if it is not lying on any great hyperbolic 2-sphere.

Central configurations will play an important role in the study of the curved N -body
problem. They influence the topology of the integral manifolds (Marsden 2009; Smale
1970b). Now we discuss the connection between them and the motions of the curved
N -body problem. Let

S
1
xy := {(x, y, z, w) ∈ R

4|x2 + y2 = 1, z = w = 0},
S
1
zw := {(x, y, z, w) ∈ R

4|z2 + w2 = 1, x = y = 0},
H

1
zw := {(x, y, z, w) ∈ R

4|z2 − w2 = −1, x = y = 0}.

Lemma 1 In (S3)N , we have that ∇qi I = 0 if and only if qi ∈ S
1
xy ∪ S

1
zw. Similarly,

in (H3)N , we have that ∇qi I = 0 if and only if qi ∈ H
1
zw.

Proof In (S3)N , recall that

∇qi I = 2mi

(
xi

(
w2

i + z2i

)
, yi

(
w2

i + z2i

)
,−zi

(
x2i + y2i

)
,−wi

(
x2i + y2i

))
.

On the one hand, if ∇qi I is a zero vector, then

(
xi

(
w2

i + z2i

))2 +
(

yi

(
w2

i + z2i

))2 =
(

x2i + y2i

) (
w2

i + z2i

)2 = 0,

whichmeans thatqi ∈ S
1
xy orS

1
zw. On the other hand, ifqi ∈ S

1
xy ∪S

1
zw, then∇qi I = 0.
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In (H3)N , recall that

∇qi I = 2mi

(
xi

(
w2

i − z2i

)
, yi

(
w2

i − z2i

)
, zi

(
x2i + y2i

)
, wi

(
x2i + y2i

))
.

Again, on the one hand, if ∇qi I is a zero vector, then

(
xi

(
w2

i − z2i

))2 +
(

yi

(
w2

i − z2i

))2 =
(

x2i + y2i

) (
w2

i − z2i

)2 = 0,

which means that xi = yi = 0, since w2
i − z2i = 1 + x2i + y2i �= 0. Thus, we obtain

that qi ∈ H
1
zw. On the other hand, if qi ∈ H

1
zw, then ∇qi I = 0. 
�

Corollary 1 Consider a central configurationq = (q1, . . . ,qN ),qi = (xi , yi , zi , wi ),

i = 1, N , in M
3. Let λ be the constant in the central configuration equations

∇qi U (q) = λ∇qi I (q).

1. If q is an ordinary central configuration in S3, then it gives rise to a one-parameter

family of relative equilibria: Aα,β(t)q with λ = β2−α2

2 .
2. If q is in H

3, then it gives rise to a one-parameter family of relative equilibria:

Bα,β(t)q with λ = −α2+β2

2 .
3. Ifq is a special central configuration inS3 and not all the particles are onS1xy∪S1zw,

then it gives rise to a one-parameter family of relative equilibria: Aα,β(t)q with
0 = β2 − α2.

4. If q is a special central configuration in S
3 and all the particles are on S

1
xy ∪ S

1
zw,

then it gives rise to a two-parameter family of relative equilibria: Aα,β(t)q with
α, β ∈ R.

Before proving this corollary, let us make the following remark on terminology. In
the literature, the concept of relative equilibrium stands for both central configurations
and the rigid motions associated with them (Marsden 2009; Smale 1970b). In this
paper, however, we use the term relative equilibrium only for the associated motion.

Proof The first two claims are obvious by Theorem 2. If q is a special central con-
figuration in S

3, then by Theorem 2, Aα,β(t)q is an associated relative equilibrium if

and only if β2−α2

2 ∇qi I = 0 for i = 1, N .
There are two possibilities: first, if there exists some qi with ∇qi I �= 0, i.e. there

is some qi /∈ S
1
xy ∪ S

1
zw, then 0 = β2 − α2, i.e. there is a one-parameter family of

relative equilibria associated with the special central configuration q: Aα,β(t)q with
0 = β2 − α2; second, if ∇qi I = 0 for all i , that is, qi ∈ S

1
xy ∪ S

1
zw for all i , then

there is no limitation for α, β, i.e. there is a two-parameter family of relative equilibria
associated with the special central configuration q: Aα,β(t)q with α, β ∈ R. 
�
Remark 2 There is a gap in the proof. For a central configuration in H

3, we do not
have a one-parameter family of relative equilibria, as claimed, unless we can show
that the value of λ is always negative. This fact will be proved in Sect. 6.
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Notice that while three-dimensional central configurations of the Newtonian N -
body problem do not have associated relative equilibria (Wintner 1947), all central
configurations of the curved N -body problem have associated relative equilibria.

In the class of relative equilibria associated with one central configuration, there
are motions of different types. In S

3, the relative equilibria can be positive elliptic
and positive elliptic–elliptic. InH3, they can be negative elliptic, negative hyperbolic,
and negative elliptic–hyperbolic. These solutions can be periodic, quasi-periodic, or
different. For an ordinary central configuration in S3, the intersections of the hyperbola

λ = β2−α2

2 and the line β = kα, k rational, in the αβ plane, give periodic motions;
otherwise, the motions are quasi-periodic. For a special central configuration in S

3

that not all particles are on S1xy ∪ S
1
zw, the relative equilibria are always periodic. If q

is on S
1
xy ∪ S

1
zw, then any points on the line β = kα, k rational in the αβ plane give

periodic motions; otherwise, the motions are quasi-periodic. For an ordinary central
configuration in H

3, the relative equilibria are periodic if and only if β = 0. Some
negative hyperbolic solutions can be mere hyperbolic rotations, which are neither
periodic nor quasi-periodic.

However, unlike in the Newtonian N -body problem, central configurations do not
provide us with homothetic solutions, which occur only in vector spaces, since they
require similarity (Wintner 1947). Actually, since there is no centre ofmasses, it makes
no sense to talk about homothetic solutions. For a special central configuration, if we
set the particles at rest at t = 0, then we obtain a fixed-point solution.

6 Central Configurations

In this sectionwe prove some basic facts about central configurations.Wefirstwrite the
central configuration equations in another form, then give their physical description,
which justifies their name, and finally define equivalent classes of central configura-
tions.

6.1 The Central Configuration Equations

In the previous section we introduced the central configuration equations in differ-
ent forms, such as (10), (11), and (12). We now derive another form of the central
configuration equations, which will be useful. Define

ri := (x2i + y2i )1/2, ρi := (σ z2i + w2
i )1/2, i = 1, N .

Then, in H
3, we have r2i + σρ2

i = σ and rho2i > 0. Recall that the i th equation of

(11) is
∑N

j �=i, j=1
m j miq j

sn3di j
−∑N

j �=i, j=1
m j mi csndi j

sn3di j
qi = λ∇qi I.

Proposition 4 Consider the positive masses m1, . . . , m N on S
3 at the configuration

q = (q1, . . . ,qN ), where qi = (xi , yi , wi ). If qi = (xi , yi , zi , wi ) /∈ S
1
xy ∪ S

1
zw, then

the i th equations of (11) can be written as
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
j=1, j �=i

m j (xi x j + yi y j − r2i cos di j )

sin3 di j
= 2λr2i ρ2

i

N∑
j=1, j �=i

m j (xi y j − x j yi )

sin3 di j
= 0

N∑
j=1, j �=i

m j (ziw j − z jwi )

sin3 di j
= 0.

(13)

Proof Since qi /∈ S
1
xy ∪ S

1
zw, the following four vectors

vi1 = (xi , yi , 0, 0), vi2 = (− yi , xi , 0, 0), vi3 = (0, 0, zi , wi ), vi4 = (0, 0,−wi , zi )

form an orthogonal basis of TqiR
4. Recall that

∇qi U =
N∑

j=1, j �=i

mi m j
q j − cos di jqi

sin3 di j
, ∇qi I = 2mi (xiρ

2
i , yiρ

2
i ,−zi r

2
i ,−wi r

2
i ).

Then ∇qi U = λ∇qi I is equivalent to ∇qi U · vik = λ∇qi I · vik, k = 1, 2, 3, 4. Thus,

N∑

j=1, j �=i

mi m j

sin3 di j
(xi x j + yi y j − r2i cos di j ) = λ2mir

2
i ρ2

i ,

N∑

j=1, j �=i

mi m j

sin3 di j
(xi y j − yi x j ) = 0,

N∑

j=1, j �=i

mi m j

sin3 di j
(zi z j + wiw j − ρ2

i cos di j ) = −λ2mir
2
i ρ2

i ,

N∑

j=1, j �=i

mi m j

sin3 di j
(ziw j − wi z j ) = 0.

Adding the first and the third equations we obtain an identity. 
�
Similarly, we can prove the following result.

Proposition 5 Consider the positive masses m1, . . . , m N in H
3 at the configuration

q = (q1, . . . ,qN ), where qi = (xi , yi , wi ). If qi /∈ H
1
zw, then the i th equations of

(11) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
j=1, j �=i

m j (xi x j + yi y j − r2i cosh di j )

sinh3 di j
= 2λr2i ρ2

i

N∑
j=1, j �=i

m j (xi y j − x j yi )

sinh3 di j
= 0

N∑
j=1, j �=i

m j (ziw j − z jwi )

sinh3 di j
= 0.
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Now we consider the value of λ in the central configuration equations. In this
section, let M be the matrix diag(m1, m1, m1, m1, . . . , m N , m N , m N , m N ). Introduce
a metric in (R4)N

(
(R3,1)N

)
:

〈q,q〉 =
N∑

i=1

miqi · qi = q · Mq.

For ordinary central configurations we have

〈M−1∇U, M−1∇ I 〉 = λ〈M−1∇ I, M−1∇ I 〉.

Proposition 6 Let q be an ordinary central configuration, then the value of λ in the

central configuration equation is 〈M−1∇U,M−1∇ I 〉
〈M−1∇ I,M−1∇ I 〉 . For central configurations in H

3,
we have λ < 0.

Proof Since q is an ordinary central configuration,∇ I �= 0 and 〈M−1∇ I, M−1∇ I 〉 �=
0. Thus, the value of λ for an ordinary central configuration q is 〈M−1∇U,M−1∇ I 〉

〈M−1∇ I,M−1∇ I 〉 .

InH3, using the identities cosh di j = wiw j − (xi x j + yi y j + zi z j ) and x2i + y2i +
z2i − w2

i = −1, the denominator is

〈M−1∇ I, M−1∇ I 〉 = 4
N∑

i=1

mir
2
i ρ2

i

and the numerator is

N∑

i=1

mi

⎛

⎝
N∑

j �=i

m j
q j

sinh3 di j
· ∇qi I

mi

⎞

⎠

= 2
∑

1≤i< j≤N

mi m j
(xi x j + yi y j )(ρ

2
i + ρ2

j ) + (zi z j − wiw j )(r2i + r2j )

sinh3 di j

= 2
∑

1≤i< j≤N

mi m j
2xi x j + 2yi y j − (r2i + r2j ) cosh di j

sinh3 di j

= −2
∑

1≤i< j≤N

mi m j
(xi − x j )

2 + (yi − y j )
2 + (r2i + r2j )(cosh di j − 1)

sinh3 di j
< 0,

a remark that completes the proof. 
�
This proposition fills the gap in the proof of Corollary 1. It also implies that there are

no special central configurations in H3 and that there is no such central configuration
with qi ∈ H

1
zw for all i = 1, N , since in either case we have λ = 0.

In S
3, the value of λ could be positive, zero, or negative, see examples in Sect. 9.

The case λ = 0 corresponds to special central configurations.
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6.2 A Physical Description of Central Configurations

It turns out that the moment of inertia I has geometric meaning, a fact that brings some
insight into the problem and provides a physical description of central configurations.

Lemma 2 If A = (x, y, z, w) is a point in S
3, then z2 + w2 = cos2 d(A,S1zw).

If A = (x, y, z, w) is a point in H
3, then −z2 + w2 = cosh2 d(A,H1

zw), where
d(A,M) := infB∈M d(A, B), with A, B representing points and M being a smooth
manifold.

Proof View A as a vector in R
4. Denote by R

3
A the three-dimensional (or two-

dimensional) subspace spanned by A, ez = (0, 0, 1, 0), and ew = (0, 0, 0, 1). Denote
by R2

zw the two-dimensional subspace spanned by ez and ew.
In S

3, the minimal geodesic connecting A and S
1
zw is on the great 2-sphere S2A =

R
3
A ∩S

3. Let θ = d(A,S1zw). Then A = Av + Ah ∈ (R2
zw)⊥⊕R

2
zw with ||Av|| = sin θ

and ||Ah || = cos θ . Hence, we obtain

cos2 d(A,S1zw) = ||Ah ||2 = ||(A · ez)ez + (A · ew)ew||2 = ||zez + wew||2 = z2 + w2.

In H
3, the minimal geodesic connecting A and H

1
zw is on the great hyperbolic 2-

sphereH2
A = R

3
A ∩H

3. Let θ = d(A,H1
zw). Then similarly we have A = Av + Ah ∈

(R2
zw)⊥ ⊕ R

2
zw with ||Av|| = sinh θ and ||Ah || = cosh θ . Hence, we obtain

cosh2 d(A,H1
zw) = ||Ah ||2 =

∣∣∣∣

∣∣∣∣
A · ez

ez · ez
ez + A · ew

ew · ew

ew

∣∣∣∣

∣∣∣∣
2

= ||zez − (−w)ew||2 = |(zez + wew) · (zez + wew)|
= |z2 − w2| = −z2 + w2.


�
Theorem 5 A non-singular configuration q = (q1, . . . ,qN ), qi = (xi , yi , zi , wi ),

i = 1, N, in M
3 is a central configuration if and only if

∇qi U (q) = λmi sin[2d(qi ,S
1
zw)]∇qi d(qi ,S

1
zw), i = 1, N , in S

3,

∇qi U (q) = λmi sinh[2d(qi ,H
1
zw)]∇qi d(qi ,H

1
zw), i = 1, N , in H

3,
(14)

where λ ∈ R is a constant.

Proof By Lemma 2, we obtain x2i + y2i = sin2 d(qi ,S
1
zw) in S

3 and x2i + y2i =
sinh2 d(qi ,H

1
zw) in H3. Thus,

I =
∑

1≤i≤N

mi sin
2 d(qi ,S

1
zw) in S

3, I =
∑

1≤i≤N

mi sinh
2 d(qi ,H

1
zw) in H

3.

Then the central configuration equations (10) can be written as (14). 
�

123



2022 J Nonlinear Sci (2018) 28:1999–2046

Fig. 1 ∇(x2 + y2) on S2xyz (left) and H
2
xyw (right)

By definition, special central configurations are arrangements of the particles for
which the forces acting on each particle cancel. By the above theorem, ordinary
central configurations are special arrangements of the particles with the property
that the gravitational force produced on each particle by all the other particles
points towards the geodesic S

1
zw (H1

zw) and is proportional to mi sin[2d(qi ,S
1
zw)]

(mi sinh[2d(qi ,H
1
zw)]).

Define

H
2
xyw := {(x, y, z, w) ∈ R

4|x2 + y2 − w2 = −1, z = 0},
S
2
xyz := {(x, y, z, w) ∈ R

4|x2 + y2 + z2 = 1, w = 0}.

Recall that in theNewtonian N -bodyproblem, central configurations are those arrange-
ments of particles such that all Fi are pointing towards the centre of mass (Wintner
1947). In the curved N -body problem, instead of a point, all Fi are pointing towards
a geodesic. Furthermore, it was shown in Zhu and Zhao (2017) that all central con-
figurations in H

3 lie on a submanifold H
2
xyw and we will prove that all ordinary S

2

central configurations lie on a submanifold S
2
xyz . The intersection of H2

xyw and H
1
zw

is (0, 0, 0, 1), and the intersections of S2xyz and S
1
zw are (0, 0,±1, 0). It is easy to see

that the minimal path connecting qi on H
2
xyw (S2xyz) and the geodesic H1

zw (S1zw) lies
on the two submanifolds. Thus, we can say that for all central configurations in H

3,
all Fi are pointing towards one point; for all ordinary S

2 central configurations, all
Fi are pointing towards one of two points. The vector fields ∇(x2 + y2) on the two
submanifolds are sketched in Fig. 1.

6.3 Equivalent Central Configurations

Recall that central configurations in the Newtonian N -body problem are invariant
under translations, rotations, reflections, and scaling (Wintner 1947). In the curved N -
body problem,U is invariant under the symmetry group O(4) or O(3, 1).We can check
by the formula of∇qi U that∇qi U |q′=χq = χ∇qi U |q for anyχ in the symmetry group.
Though I is not invariant under all elements of the symmetry group, it is invariant
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under a subgroup O(2) × O(2) (O(2) × O(1, 1)). Let χ = (χ1, χ2) ∈ O(2) × O(2)
(O(2) × O(1, 1)). The action is

χq = (χq1, . . . , χqN ), χqi = (χ1(xi , yi )
T , χ2(zi , wi )

T ).

Then, by using the formula of ∇qi I or Lemma 2, we can see that ∇qi I |q′=χq =
χ∇qi I |q.

There is no other obvious transform that keeps the central configuration equations.
Also note that I is not involved in the equation of special central configurations. Thus,
we introduce the following definition.

Definition 9 Let q = (q1, . . . ,qN ), qi = (xi , yi , zi , wi ), i = 1, N , and q′ =
(q′

1, . . . ,q
′
N ), q ′

i = (x ′
i , y′

i , z′
i , w

′
i ), i = 1, N , be two central configurations inM3.

1. If they are special central configurations in S3, then they are equivalent if there is
a χ ∈ SO(4) such that q = χq′.

2. If they are ordinary central configurations, then they are equivalent if there is a
χ = (χ1, χ2) ∈ SO(2) × SO(2) (SO(2) × SO(1, 1)) such that q = χq′.

We use SO(2) × SO(2) (SO(2) × SO(1, 1)) instead of O(2) × O(2) (O(2)
× O(1, 1)). We adopt this definition to keep consistency with the critical point char-
acterization of central configurations, which will be introduced in Sect. 8.

Example 1 (Lagrangian central configuration on S2xyz). Let three equal masses m1 =
m2 = m3 = 1 be at

q = (q1,q2,q3), q j = (x j , y j , z j , w j ), j = 1, 2, 3,

x j =
√
1 − c2 cosβ j , y j =

√
1 − c2 sin β j , z j = c, w j =0, β j = 2π( j − 1)

3
,

where c could have any value between − 1 and 1, see Fig. 2. By symmetry, we see
that ∇qi U is pointing towards the north pole if c > 0, or towards the south pole if
c < 0. Comparing with Fig. 1, we get that there must be some constant λ such that
∇qi U = λ∇qi I for 1 ≤ i ≤ 3. Note that d12 = d13 = d23, which is reminiscent
of the three-body central configuration in the Newtonian N -body problem found by
Lagrange (Wintner 1947). We call them Lagrangian central configurations.

By the convention we introduced, rotating the central configurations in the xy-
plane does not lead to new central configurations, and the rotated ones still remain
on the original 2-sphere; rotating them in the zw-plane does not lead to new central
configurations either, although they will not remain on the original 2-sphere. Though
these central configurations, for different values of c, are similar in some sense, there
does not exist an element in SO(2) × SO(2) to relate any two of them. Thus, we see
that there is a continuum of central configurations.

In Sect. 8, we will see that, for any given masses, there is a continuum of central
configurations.

123



2024 J Nonlinear Sci (2018) 28:1999–2046

Fig. 2 Lagrangian central
configurations on S

2
xyz

z

x

m1m2
m3

7 Some Properties of Central Configurations

In this section we provide some lemmas and theorems that will be useful in the study
of central configurations. We first prove a property that is analogous to the relation-
ship

∑N
i=1 miqi = 0 for central configurations of the Newtonian N -body problem

(Moeckel 1994). We then focus on lower-dimensional ordinary central configurations,
namely geodesic central configurations, S2 central configurations, andH2 central con-
figurations. We show that any geodesic central configuration in H

3 is equivalent to
some central configuration onH1

xw. We also show that any S2 central configuration in
S
3 can be found on S2xyz and that any geodesic central configuration in S

3 is equivalent
to some central configuration on S

1
xz .

Theorem 6 Let q = (q1, . . . ,qN ), qi = (xi , yi , zi , wi ), i = 1, N , be an ordinary
central configuration. Then we have the relationships

N∑

i=1

mi xi zi =
N∑

i=1

mi xiwi =
N∑

i=1

mi yi zi =
N∑

i=1

mi yiwi = 0. (15)

Proof We first prove (15) in S
3. Let vi1 = (zi , 0,−xi , 0). Take the inner product of

both sides of the i th equation of (11) with vi1. Since

q j · vi1 = zi x j − xi z j , qi · vi1 = 0, ∇qi I · vi1 = 2mi xi zi (qi · qi ) = 2mi xi zi ,

we obtain
∑N

j=1, j �=i
mi m j

sin3 di j
(zi x j − xi z j ) = 2λmi xi zi . Summing over all i leads to

2λ
N∑

i=1

mi xi zi =
N∑

i=1

N∑

j=1, j �=i

mi m j

sin3 di j
(zi x j − xi z j ) = 0.

Since q is an ordinary central configuration, we have λ �= 0, so
∑N

i=1 mi xi zi = 0.
The other relationships in S3 can be obtained by considering the inner product of (11)
with

vi2 = (wi , 0, 0,−xi ), vi3 = (0, zi ,−yi , 0), vi4 = (0, wi , 0,−yi ).

The relationships inH3 can be obtained by considering the inner product of (11) with

vi1=(zi , 0,−xi , 0), vi2=(wi , 0, 0, xi ), vi3=(0, zi ,−yi , 0), vi4=(0, wi , 0, yi ),
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a remark that completes the proof. 
�
An obvious application of Eq. (15) is that of showing with little computational

effort why certain configurations are not ordinary central configurations.
Recall that a (hyperbolic) 2-sphere means a sphere (hyperbolic sphere) isometric to

the unit sphere (hyperbolic sphere) inR3 (R2,1). This is the non-empty intersection of
M

3 with a three-dimensional linear subspace, {(x, y, z, w) ∈ R
4|ax +by+cz+dw =

0} (Bridson and Haefliger 1999). Similarly, a geodesic is the non-empty intersection
of a (hyperbolic) 2-sphere with a two-dimensional linear subspace.

Lemma 3 Assume that the intersection of S3 (H3) and the three-dimensional linear
space V = {(x, y, z, w) ∈ R

4 | ax + by + cz + dw = 0} is non-empty. Let q =
(q1, . . . ,qN ), N ≥ 2, be a non-singular configuration on the (hyperbolic) 2-sphere
V ∩ M

3. If ∇qi I are not all zero, then ∇qi I ∈ V, i = 1, N , if and only if a = b = 0
or c = d = 0.

Proof Recall that

∇qi I = 2mi

(
xi

(
w2

i + σ z2i

)
, yi

(
w2

i + σ z2i

)
,−σ zi

(
x2i + y2i

)
,−σwi

(
x2i + y2i

))
.

Then ∇qi I ∈ V, i = 1, N if and only if

0 = axi

(
w2

i + σ z2i

)
+ byi

(
w2

i + σ z2i

)
− cσ zi

(
x2i + y2i

)
− dσwi

(
x2i + y2i

)

= (axi + byi )
(
w2

i + σ z2i

)
+ σ (axi + byi )

(
x2i + y2i

)
= (axi + byi ).

Thus, czi + dwi = 0. Consider the matrix A :=
⎡

⎣
a b c d
a b 0 0
0 0 c d

⎤

⎦ . Then (q1, . . . ,qN ) ∈

kerA. Since qi and q j are linearly independent, we obtain rank(ker A)≥ 2, which
implies that rank A = 1. Therefore, we have either a = b = 0 or c = d = 0. 
�

Now we turn to central configurations inH3. The following result is from Zhu and
Zhao (2017).

Theorem 7 Each central configuration in H
3 is equivalent to some central configu-

ration on H
2
xyw.

Thus, there are no H
3 central configurations. However, there exist both special

S
3 central configurations and ordinary S

3 central configurations, so the set of central
configurations in S3 is richer and more interesting than in H

3 (Zhu and Zhao 2017).
Define H1

xw := {(x, y, z, w) ∈ H
3 | y = z = 0}.

Corollary 2 Each geodesic central configuration in H
3 is equivalent to some central

configuration on H
1
xw.
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Proof By Theorem 7, every geodesic central configuration is equivalent to some
geodesic central configuration on H

2
xyw. A geodesic on H

2
xyw is the non-empty inter-

section of a two-dimensional linear space V and H
2
xyw. Suppose that V is defined by

{ax + by + dw = 0} and that a central configuration q is on V ∩ H
2
xyw. Then ∇qi U

lies in V for all i . It implies that each ∇qi I belongs to V . As in Lemma 3, we can
show that it is sufficient and necessary to require d = 0.

Then any geodesic central configuration is equivalent to some central configuration
on a geodesic {(x, y, w) ∈ H

2
xyw | ax + by = 0} and there is some element in

SO(2)× SO(1, 1) that moves the geodesic toH1
xw. This remark completes the proof.


�
Nowwediscuss theS2 ordinary central configurations and geodesic ordinary central

configurations in S3. Define

S
2
xzw := {(x, y, z, w) ∈ S

3 | y = 0}, S
1
xz := {(x, y, z, w) ∈ S

3 |w = y = 0}.

Theorem 8 Any S
2 ordinary central configuration is equivalent to some ordinary

central configuration on S
2
xyz or on S

2
xzw. Furthermore, there is a one-to-one corre-

spondence between the central configurations on S
2
xyz and the central configurations

on S
2
xzw.

Proof Lemma 3 implies that any S
2 ordinary central configuration is either on S

3 ∩
{ax + by = 0} or on S3 ∩ {cz + dw = 0}. It is easy to see that there is some element
in SO(2) × SO(2) that would move these 2-spheres to either S2xyz or S

2
xzw. Thus, any

S
2 ordinary central configuration is equivalent to some ordinary central configuration

on S2xyz or on S
2
xzw.

Let q be a central configuration on S
2
xyz , i.e. ∇qi U (q) − λ∇qi I (q) = 0, i = 1, N .

Consider the orthogonal transformation ϕ(xi , yi , zi , wi ) = (zi , wi , xi , yi ). Then we
have that q′ = (q′

1, ...,q
′
N ) = ϕq = (ϕq1, ..., ϕqN ) is a configuration on S

2
xzw. Note

that for q′
i = (x ′

i , y′
i , z′

i , w
′
i ) = (zi , wi , xi , yi ) we have

I (q′) =
N∑

i=1

mi (x ′2
i + y′2

i ) =
N∑

i=1

mi (1 − x2i − y2i )

=
N∑

i=1

mi − I (q) and U (q′) = U (q).

Then ∇U (q′) = ϕ∇U (q) and ∇ I (q′) = −ϕ∇ I (q). Here ∇U (q′) and ∇ I (q′) mean
the gradient of U and I at q′, respectively. Thus, q′ satisfies the central configuration
equations ∇qi U (q′) + λ∇qi I (q′) = 0, i = 1, N . This remark completes the proof. 
�

The proof of the following statement is similar to that of Corollary 2.

Corollary 3 Each ordinary geodesic central configuration in S3 is equivalent to some
central configuration on S

1
xz .
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8 Existence of Ordinary Central Configurations

In this section we interpret central configurations as critical points of functions related
to U and prove the existence of ordinary central configurations for any given masses.
Then we discuss the Wintner–Smale conjecture for the curved N -body problem.

8.1 Central Configurations as Critical Points

From the first central configuration equations,

∇qi U (q) − λ∇qi I (q) = 0,

we can derive the following property.

Proposition 7 Central configurations in M
3 are critical points of the function

U − λI : (M3)N \� → R.

In H
3, λ is a negative constant; in S

3, λ could be any real number, and the case λ = 0
corresponds to special central configurations.

We can also see that an ordinary central configuration is a critical point of the
restriction of U subject to the constraint I = constant . From this point of view, −λ

is a Lagrange multiplier. More precisely, let us denote

Sc := {q ∈ (M3)N \�| I (q) = c}.

Proposition 8 Ordinary central configurations in M
3 are critical points of U |Sc , i.e.

critical points of

U : Sc → R.

Let q be an ordinary central configuration and φ an element of SO(2) × SO(2) or
SO(2) × SO(1, 1). Then φq is also a central configuration. Thus, it follows that the
critical points of U |Sc are not isolated, but rather occur as manifolds of critical points.
Similarly, these special central configurations are not isolated either. This fact suggests
that we can further look at central configurations as critical points of U subject to a
factorization. Note that both U and (M3)N are invariant under the isometry group and
the set Sc is invariant under the subgroup SO(2) × SO(2) or SO(2) × SO(1, 1). We
thus have the following property.

Proposition 9 There is a one-to-one correspondence between the classes of central
configurations and the critical points of the force function Û induced by U on the
quotient set

(1) ((S3)N \�)/SO(4) for special central configurations in S
3,

(2) Sc/(SO(2) × SO(2)) for ordinary central configurations in S
3, and
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(3) Sc/(SO(2) × SO(1, 1)) for central configurations in H
3.

Let q in the quotient set be a critical point of Û . In the case of special central
configuration on S3, the Hessian of Û at q, D2Û (q), is an invariant symmetric bilinear
form on Tq((S3)N \�)/SO(4)). For ordinary central configurations in S

3 and H
3,

D2Û (q) is an invariant symmetric bilinear form on Tq Ŝc, where Ŝc is the quotient set
in either (2) or (3) of Proposition 9. The index of D2Û (q) is the maximal dimension
of a subspace of the tangent space on which this form is negative definite. A critical
point q of Û is degenerate whenever the Hessian has a non-trivial null-space.

We can now formally introduce the following two concepts.

Definition 10 A central configuration is degenerate (non-degenerate) provided that
the corresponding critical point q of Û is degenerate (non-degenerate).

8.2 The Structure of I−1(c)

Unlike in the Newtonian N -body problem, where I = c > 0 is always a (3N − 1)-
dimensional ellipsoid, the set I −1(c) may not be a smooth manifold. To understand
the structure of this set, we need the classical regular value theorem, which we further
recall for completeness. Let M,N be differentiable manifolds and f : M → N a
differentiable function. Then f is called a submersion at x ∈ M if its differential,
D fx : TxM → T f (x)N , is surjective. In this case, x is called a regular point and f (x)

a regular value. Otherwise, x is called a critical point and f (x) a critical value. We
can now state the following well-known result (Hirsch 1976).

Regular Value Theorem Let f : M → N be a Cr -map, r ≥ 1. If y ∈ f (M) is a
regular value, then f −1(y) is a Cr -submanifold of M.

If we further regard the moment of inertia as the smooth map

I : (M3)N → [0,∞),

we have the following properties.

Lemma 4 Assume that the masses m1, . . . , m N are in S
3, and consider c ≥ 0, not

of the form c = ∑N
i=1 miμi , where μ1, . . . , μN ∈ {0, 1}. Then the set I −1(c) is a

smooth manifold.

Proof Suppose that c ≥ 0 is a critical value for I . This is equivalent to saying that
there exists a q = (q1, . . . ,qN ) such that q ∈ I −1(c) and

∇q1 I (q) = · · · = ∇qN I (q) = 0,

which implies that qi ∈ S
1
xy ∪S

1
zw by Lemma 1 in Sect. 6. Then x2i + y2i = 0 or 1 and

c =∑N
i=1 miμi , where μ1, . . . , μN ∈ {0, 1}, a remark that completes the proof. 
�

Lemma 5 Assume that the masses m1, . . . , m N are in H
3, and consider c ≥ 0. Then

I −1(c) is always a smooth manifold.
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Proof Suppose that c ≥ 0 is a critical value for I . This is equivalent to saying that
there exists a q = (q1, . . . ,qN ) such that q ∈ I −1(c) and

∇q1 I (q) = · · · = ∇qN I (q) = 0,

which implies that qi ∈ H
1
zw by Lemma 1 in Sect. 6. Then x2i + y2i = 0 and c =

0. Moreover, I −1(0) = (H1
zw)N , which is homeomorphic with R

N , a remark that
completes the proof. 
�

8.3 The Existence Result

The characterization of central configurations as critical points provides an easy way
to see that ordinary central configurations exist, i.e. that the complicated criteria devel-
oped earlier always have solutions for λ �= 0.

Theorem 9 Assume that the masses m1, . . . , m N are inS3 orH3. Then for any positive
values these masses take, there is at least one ordinary central configuration in S

3 and
at least one ordinary central configuration in H

3.

Proof Let us first prove the result inH3. In general, themanifold I −1(c) is not compact
in this case. However, things change if we confine all masses to the hyperbolic circle
H

1
xw, since the set I = c > 0 is homeomorphic to an ellipsoid. Then U defines a

smooth function on the open subset Sc, and the boundary of Sc is composed of points
in the singularity set. Since the ellipsoid is compact andU → +∞ asq approaches the
boundary of Sc, it follows thatU attains aminimumat some non-singular configuration
q. This will be a critical point of U on Sc and hence an ordinary central configuration.

In S
3, we need to construct a connected component of Sc on whose boundary U

approaches+∞. Recall that there are two kinds of singularities, collision singularities
in �+ and antipodal singularities in �−. U approaches +∞ as the configuration
approaches �+, but approaches −∞ as the configuration approaches �−. Thus, we
need to construct a connected component of Sc whose boundary lies only in �+.

We confine the particles to S
2
xyz and order the masses as 0 < m1 ≤ . . . ≤ m N ,.

Let 0 < c < m1. Then Sc is a smooth manifold. Let us further choose a configuration
q ∈ Sc with all bodies lying near the North Pole (0, 0, 1), i.e. zi > 0, i = 1, N . Denote
by J the connected component of the manifold Sc that contains the configuration q.
We claim that the boundary of J contains only points from �+.

To prove this claim, we define the sets U = {(x, y, z) ∈ S
2
xyz |x2+ y2 < c/m1, z >

0} and V = {(x, y, z) ∈ S
2
xyz |x2 + y2 < c/m1, z ≤ 0}. Since I (q) =∑N

i=1 mi (x2i +
y2i ) ≥ m1(x2i + y2i ), it follows that x2i + y2i ≤ c/m1, i = 1, N , which means that for
any configuration q ∈ J each body lies either in U or in V .

Let us now suppose that ∂J ∩ �− �= ∅. Then there must exist a configuration
q̄ = (q̄1, . . . , q̄N ) ∈ J such that one body is in U and the another in V , say, q̄1 ∈ U
and q̄2 ∈ V , see Fig. 3. Since J is connected, it is also path-connected. Then there is
a path in J connecting q and q̄, so there is a path that connects q2 ∈ U and q̄2 ∈ V .
But this is impossible since U ∩ V = ∅. Thus, J is a connected component of the
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Fig. 3 q̄1, q̄2 (left) and q1,q2 (right) on S
2
xyz

manifold Sc whose boundary consists only of points from �+. Therefore, U → +∞
as q approaches ∂J . It follows that U attains a minimum at some configuration q,
which is then a critical point of U on Sc, hence an ordinary central configuration. 
�

8.4 The Wintner–Smale Conjecture in Spaces of Constant Curvature

Recall that three equal masses on S2xyz possess a continuum of central configurations,
see Example 1. Notice that these central configurations are on different Sc. In general,
there is no obviousway to relate central configurations in Sc1 and central configurations
in Sc2 . Thus, we consider them as belonging to different classes of central configu-
rations. Notice that the existence proof of ordinary central configurations works for
other constant values of I . Hence, there always exist central configurations on Sc for
c belonging to some open intervals. So we have the following obvious consequence.

Corollary 4 Assume that the masses m1, . . . , m N are in S
3 or H

2. Then for any
positive values of these masses, the set of ordinary central configurations has the
power of the continuum.

Recall that the Wintner–Smale problem (Smale’s 6th problem) asks whether for
some given masses, m1, . . . , m N > 0, the number of classes of planar central config-
urations for the Newtonian N -body problem is finite or not. If we extend the problem
to the curved N -body problem in the following way: whether for some given masses,
m1, . . . , m N > 0, the number of classes of central configurations for the curved N -
body problem is finite or not, then this extension has an obvious and uninteresting
answer. So we modify the problem as follows for ordinary central configurations.

Question 1 In the curved N-body problem, for given masses m1, . . . , m N and all
possible values of c, is the number of ordinary central configurations on Sc finite?

From now on, we say that several masses possess a continuum of ordinary central
configurations if the continuum of central configurations is on a certain set Sc. We will
see in Sect. 10 that even for two equal masses, m1 = m2 =: m, there is a continuum
of central configurations on Sm .

For special central configurations in S3, we also pose a similar question:
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Fig. 4 An acute triangle special
central configuration
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Question 2 In the curved N-body problem in S
3, for given masses m1, . . . , m N , is

the number of special central configurations finite?

9 Examples

In this section we produce examples of central configurations of the curved N -body
problem in S

3 and H
3 and discuss the associated relative equilibria. Some examples

will concern special and ordinary central configurations for N = 3 that lie on the
great sphere S

2
xyz and the great hyperbolic sphere H

2
xyw. In the Newtonian N -body

problem there are only two classes of central configurations for N = 3, the Lagrangian
(equilateral triangles) and theEulerian (collinear configurations). For nonzero constant
curvature, however, the set of central configurations (and therefore that of relative
equilibria) is richer, as we will further show. We also include in this section examples
of central configurations for N > 3. Unless otherwise stated, the relative equilibria
associated with all these central configurations were already found in Diacu (2012b)
and Diacu (2013a).

The stability question for some relative equilibria of the curved N -body problem
was studied by several authors (Diacu et al. 2013, 2018; Martínez and Simó 2013). In
particular, the paper Diacu et al. (2018) is about the relative equilibria associated with
the special central configurations mentioned in Sect. 9.1.

9.1 Acute Triangle Special Central Configurations on S
1
x y

Let us assume that three masses, m1 = sin2 α

sin2 β
, m2 = sin2 α

sin2(α+β)
, and m3 = 1, form

an acute scalene triangle on S
1
xy . In the complex coordinates of the xy-plane, i.e.

q j = x j + iy j ∈ C, the configuration is given by

q1 = 1, q2 = eiα, q3 = ei(α+β),

for any fixed 0 < α < π, 0 < β < π, π < α + β < 2π , see Fig. 4. Then it is easy to
verify that ∇qi U = 0 for each i = 1, 2, 3, [22].

Since these special central configurations are confined to S1xy ∪ S
1
zw, they give rise

to two-parameter families of associated relative equilibria: Aα,β(t)q, α, β ∈ R. The
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Fig. 5 Regular tetrahedron
special central configuration

z

y

m1

m2m3m4

rotation in zw-plane does not affect the configuration, which will stay on S
1
xy , thus

forming a one-parameter family of associated relative equilibria, Aα,0(t)q, α ∈ R.

9.2 Regular Tetrahedron Special Central Configurations on S
2
x yz

Let us assume that four masses, m1 = m2 = m3 = m4 = m, form a regular tetrahe-
dron on S

2
xyz , see Fig. 5. By symmetry, it is easy to see that this is a special central

configuration.
Since this special central configuration is not confined to S1xy ∪ S

1
zw, it gives rise to

a one-parameter family of associated relative equilibria, Aα,±α(t)q, α ∈ R. They are
periodic orbits, but the motion is not confined to S

2
xyz .

9.3 Regular Pentatope Special Central Configurations in S
3

Let us assume that five masses, m1 = m2 = m3 = m4 = m5 = m, form a regular
pentatope in S

3. By symmetry, it is easy to see that
∑4

j=1, j �=i Fi j = ∇qi U = 0 for
i = 1, 2, 3, 4, 5, and thus this is a special central configuration. Since this special
central configuration is not confined to S

1
xy ∪ S

1
zw, it gives rise to a one-parameter

family of associated relative equilibria, Aα,±α(t)q, α ∈ R, which are periodic orbits.

9.4 Pair of Equilateral Triangle Special Central Configuration in S
3

Let us assume that six masses, m1 = m2 = m3 = m4 = m5 = m6 = m, in S
3 form

two equilateral triangles on complementary great circles: S1xy and S
1
zw.

To see that
∑6

j=1, j �=i Fi j = ∇qi U = 0 for i = 1, 2, 3, 4, 5, 6, it suffices to check
that for m1. That is,

F1 = F12 + F13 + F14 + F15 + F16 = 0.

By symmetry, we obtain that F12 + F13 = 0. For i = 4, 5, 6, since q1 · qi = 0, we

have d1i = π/2 and F1i = m2(qi −cos d1iq1)
sin3 d1i

= m2qi . Then

F14 + F15 + F16 = m2(q4 + q5 + q6) = 0;
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hence, this is a special central configuration. Since this special central configuration is
on S1xy ∪ S

1
zw, it gives rise to a two-parameter family of associated relative equilibria,

Aα,β(t)q, α, β ∈ R. They are periodic orbits if α/β is rational, but quasi-periodic
orbits if α/β is irrational.

9.5 Lagrangian central configurations in S
2
x yz

Let us assume that three equal masses, m1 = m2 = m3 = m, form an equilateral
configuration on S

2
xyz , parallel with the xy-plane, so the coordinates are given by

q1 = (r, 0, z, 0), q2 =
(
−r/2, r

√
3/2, z, 0

)
, q3 =

(
−r/2,−r

√
3/2, z, 0

)
,

where r2 + z2 = 1, r ∈ (0, 1), see Fig. 2. By symmetry, we notice that Fi is pointing
towards the North or South Poles and that |Fi | = |F j |. Comparing this with the vector
field ∇(x2 + y2) on S

2
xyz , see Fig. 1, we see that the central configuration equations

∇qi U = λ∇qi I are satisfied for i = 1, 2, 3.
To find the value of λ, we use the expression obtained in Proposition 6. For any

i �= j , we obtain that sin3 di j = 3
√
3r3
(
1 − 3r2

4

)3/2
, xi x j + yi y j = −r2/2. Then

λ =
∑

1≤i≤N

N∑

j=1, j �=i

mi m j (2xi x j + 2yi y j − (r2i + r2j ) cos di j )

sin3 di j
/

⎛

⎝2
∑

1≤i≤N

mir
2
i ρ2

i

⎞

⎠

= 3m

2 sin3 d
= − m

2
√
3r3
(
1 − 3r2

4

)3/2 < 0.

These central configurations give rise to a one-parameter family of associated rel-

ative equilibria, Aα,β(t)q with λ = β2−α2

2 .

9.6 Geodesic Central Configurations on S
1
xz

Let the coordinates of the three bodies of masses m1 = m2 = m3 = m be given by

q1 = (0, 0, 1, 0), q2 = (r, 0, z, 0), q3 = (−r, 0, z, 0),

with r > 0, z ∈ (−1, 0) ∪ (0, 1) and r2 + z2 = 1, see Fig. 6 (left). Given the many
zeroes that occur in the above coordinates, it is not difficult to check that the central
configuration equations are satisfied for i = 1, 2, 3.

To find the value of λ, we use the expressions obtained in Proposition 6, so we have

d12 = d13, r21 = 0, r22 = r23 = r2, sin3 d12 = r3, sin3 d23 = 8r3|z|3,
x1x2 + y1y2 = x1x3 + y1y3 = 0, x2x3 + y2y3 = −r2.
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Fig. 6 Geodesic central configurations on S1xz

Then

λ = 1

4mr2z2

(
m2(−r2 cos d12)

sin3 d12
+ m2(−r2 cos d13)

sin3 d13
+ m2(−2r2 − 2r2 cos d23)

sin3 d23

)

= −m

2z2

(
cos d12
sin3 d12

+ 1 + cos d23
sin3 d23

)
= −m

2r3

(
1

z
+ 1

4|z|3
)

.

It is easy to see that λ < 0 for z ∈ (−1/2, 0) ∪ (0, 1), λ > 0 for z ∈ (−1,−1/2), and
λ = 0 for z = −1/2,which shows the connectionwith the special central configuration
discussed in the first example.

All ordinary geodesic central configurations of three masses on S
1
xz were found in

Zhu (2014). Some interesting examples were given there, such as the one in which
three distinct masses form an equilateral triangle. In the complex coordinates of the
xz-plane, i.e. q j = x j + i z j ∈ C, for instance, one such central configuration is given
by

q1 = ei 3π4 , q2 = ei 17π12 , q3 = ei π
12 ,

and the masses are m1 = 2, m2 = 1, m3 = 3, see Fig. 6 (right).
We could also verify that the central configuration equations are satisfied and

λ = − 8
3 . We can actually find many such examples. For any three unequal masses

m1, m2, m3, we can find λ �= 0 and θ such that the equations

sin 2θ = − 4

3λ
(m3 − m2), cos 2θ = 4

√
3

9λ
(2m1 − m3 − m2)

hold. Then the configuration

q1 = eiθ , q2 = e
i
(
θ+ 2π

3

)

, q3 = e
i
(
θ+ 4π

3

)

is a central configuration.
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Fig. 7 Isosceles central
configuration on S2xyz
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x

m1m2
m3

9.7 Isosceles Central Configuration in S
2
x yz

Let us assume that three masses, m1 = −2 cosϕ, with ϕ ∈ (π/2, π), m2 = m3 = 1,
form an isosceles triangle on the sphere S2xyz , parallel with the xy-plane. The config-
uration is given by

q1 = (sin θ, 0, cos θ, 0), q2 = (sin θ cosϕ, sin θ sin ϕ, cos θ, 0),

q3 = (sin θ cosϕ,− sin θ sin ϕ, cos θ, 0),

with θ chosen such that cos2 θ = 1 + 2
(cosϕ−1)(2 cosϕ+3) (Fig. 7).

By straightforward computations, we can see that the central configuration equa-
tions are satisfied, and

λ = −2 − 2 cosϕ

2 sin3 d12
= − 2 − 2 cosϕ

2 sin3 θ(1 − cosϕ)3/2(1 + sin2 θ cosϕ + cos2 θ)3/2
.

The existence of the associated relative equilibria was proved in Diacu (2016). Some
interesting details concerning this type of central configurationwill be given in a future
paper (Zhu and Diacu, to appear).

9.8 Lagrangian Central Configurations in H
2
x yw

Let us assume that three equal masses, m1 = m2 = m3 = m, form an equilateral
configuration in H2

xyw, parallel with the xy-plane, and the coordinates are given by

q1 = (r, 0, 0, w), q2 = (− r/2, r
√
3/2, 0, w), q3 = (− r/2,− r

√
3/2, 0, w),

where r2 − w2 = −1, w ∈ (1,+∞), see Fig. 8 (left). By symmetry, we notice that
Fi is pointing towards (0, 0, 0, 1) and |Fi | = |F j |. Comparing with the vector field
∇(x2 + y2) on H

2
xyw (see Fig. 1), we see that the central configuration equations

∇qi U = λ∇qi I are satisfied for i = 1, 2, 3.
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To find the value of λ, we use the expression obtained in Proposition 6. For any

i �= j , we obtain that sinh3 di j = 3
√
3r3
(
1 + 3r2

4

)3/2
, xi x j + yi y j = − r2/2. Then

λ =
∑

1≤i≤N

N∑

j=1, j �=i

mi m j (2xi x j + 2yi y j − (r2i + r2j ) cosh di j )

sinh3 di j
/

⎛

⎝2
∑

1≤i≤N

mir
2
i ρ2

i

⎞

⎠

= 3m

2 sinh3 d
= − m

2
√
3r3
(
1 + 3r2

4

)3/2 .

Each of these central configurations gives rise to a one-parameter family of associated

relative equilibria: Bα,β(t)q with λ = −β2+α2

2 . These orbits are a new discovery
that has been missed in previous studies, a fact that shows the power of the central
configuration approach for finding relative equilibria.

Although we build the whole theory of negative curvature spaces on the hyperbolic
sphere model H3, it is convenient to visualize the associated relative equilibria in the
Poincaré ball model. Recall that the Poincaré ball model is given by

(
x̄2 + ȳ2 + z̄2 < 1, ds2 = 4(dx̄2 + d ȳ2 + dz̄2)

1 − (x̄2 + ȳ2 + z̄2)

)
,

which can be seen as the perspective projection of the upper three-dimensional hyper-
boloid viewed from (0, 0, 0,− 1). The projection mapping is

x̄ = x

1 + w
, ȳ = y

1 + w
, z̄ = z

1 + w
.

This projection mapping shows that the isometries of the SO(2) rotations in the xy-
plane become the rotations in the x̄ ȳ-plane and that the isometries of the SO(1, 1)
rotations in the zw-plane become action moving points from (0, 0,− 1) to (0, 0, 1)
or in the opposite direction. Thus, the relative equilibria Bα,β(t)q in the Poincaré ball
model can be viewed as bodies that rotate around the z̄-axis and move up or down
along the projection of the hyperbolic cylinder

Crρ := {(x, y, z, w) ∈ H
3 |x2 + y2 = r2},

Fig. 8 Lagrangian central configurations on H
2
xyw and the associated relative equilibria in the Poincaré

ball
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Fig. 9 Geodesic central configurations on H1
xw and the associated relative equilibria in the Poincaré ball

a spindle-shaped surface (within the framework of thismodel) forwhich the hyperbolic
distance from the z̄-axis is constant, see Fig. 8 (right), hence the name “hyperbolic
cylinder” previously given to Crρ (Diacu 2012b, 2013a).

9.9 Geodesic Central Configurations in H
1
xw

Let the three bodies of masses m1 = m2 = m3 =: m have the coordinates

q1 = (0, 0, 0, 1), q2 = (r, 0, 0, w), q3 = (− r, 0, 0, w),

with r > 0 and r2 − w2 = −1, see Fig. 9 (left). It is easy to check that system (11) is
satisfied.

To find the value of λ, we use the expression obtained in Proposition 6. We have

d12 = d23, r21 =0, r22 =r23 = r2, sinh3 d12 = r3, sinh3 d23 = 8r3w3,

x1x2 + y1y2 = x1x3 + y1y3 = 0, x2x3 + y2y3 = −r2,

which yield

λ = 1

4mr2z2

[
m2(−r2 cosh d12)

sinh3 d12
+ m2(−r2 cosh d13)

sinh3 d13
+ m2(−2r2 − 2r2 cosh d23)

sinh3 d23

]

= − m

2w2

(
cosh d12
sinh3 d12

+ 1 + cosh d23
sinh3 d23

)
= − m

2r3

(
1

w
+ 1

4w3

)
.

As in the last example, we can also represent the associated relative equilibria in
the Poincaré ball model, see Fig. 9 (right), where the bodies rotate around the z̄-axis
and move up or down, one along the z̄-axis, and the other two along the projection of
the hyperbolic cylinder Crρ , thus maintaining constant mutual distances.

10 Moulton’s Theorem

In 1910, Forest Ray Moulton sought to extend Euler’s results about the collinear
central configurations in the Newtonian N -body problem to any number N of point
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masses. He showed that for a given ordering of the bodies on a straight line, there
is exactly one class of central configurations (Moulton 1910). In this section we are
asking whether Moulton’s theorem has a natural correspondent in spaces of nonzero
constant curvature. As we will further prove, this extension is true on geodesics ofH3,
but not on geodesics of S3, where even the case N = 2 leads to a complicated count.

Before we get to the curved N -body problem, let us make some comments about
the Euclidean case. The class of central configurations in the above statement of the
theorem is meant as the set of central configurations factorized to homotheties. So
another equivalent way of stating Moulton’s result is to say that, for every ordering
of any given masses with I (q) = constant, there is exactly one central configuration.
This new formulation is the one we adopt here, since the value of I (q) could never be
the same for central configurations with different sizes, as the definition of equivalent
central configurations implies.

10.1 Geodesic Central Configurations in H
3

Corollary 2 states that every geodesic central configuration in H
3 is equivalent to

some geodesic central configuration on H
1
xw. Thus, we assume that the point masses

m1, . . . , m N lie on H
1
xw. Expressing the position of each mass mi in terms of the

oriented hyperbolic distance θi ∈ R, i = 1, N , measured from the vertex, (0, 0, 0, 1),
we can represent the position vectors and the distances between bodies as

qi = (sinh θi , 0, 0, cosh θi ), di j = |θi − θ j |, i, j = 1, N ,

respectively. Then the force function and the moment of inertia can be written as

U (q) =
∑

1≤i< j≤N

mi m j coth di j and I (q) =
N∑

i=1

mi sinh
2 θi .

By the critical point characterization of central configurations introduced in Sect.
8, we only need to find the number of critical points of Û on Ŝc for a constant c > 0.
In this case, we have

Ŝc = Sc/SO(2) × SO(1, 1) = Sc = {q ∈ (H1
xw)N \�| I (q) = c}, Û = U,

where � denotes the collision set. Equivalently, we only need to find the number of
critical points of U − λI in (H1

xw)N \�, where λ is fixed. We can now state and prove
the following result.

Theorem 10 For any given point masses m1, . . . , m N > 0 in H
3 and each c > 0,

there are exactly N !/2 geodesic central configurations with I (q) = c, one for each
ordering of the masses on the geodesic.

Proof We follow the idea used to prove the classical theorem of Moulton (Abraham
and Marsden 1987; Moeckel 1994) and show first that the manifold Sc contains N !
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Fig. 10 A configuration of
N -masses on H1

xw
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sinh θ2

sinh θN
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components, each homeomorphic to an (N −1)-dimensional disc. We will then prove
that the critical points of Û , or equivalently, of U , are local minima on these discs,
and finally show that there is just one minimum on each such disc.

To prove that each ordering corresponds to an (N − 1)-dimensional open disc, it
suffices to consider one of the orderings, θ1 < · · · < θN . Denote the corresponding
component by S′

c, see Fig. 10. Consider the homeomorphism φ : (H1
xw)N → R

N ,
φ(θ1, . . . , θN ) = (x1, . . . , xN ), where xi = sinh θi . Then S′

c is homeomorphic to

{
(x1, . . . , xN ) ∈ R

N | x1 < · · · < xN ,

N∑

i=1

mi x2i = c

}
,

which is an (N − 1)-dimensional open disc [45]. Thus, the set Sc has exactly N ! com-
ponents, each homeomorphic to an (N − 1)-dimensional open disc. By an argument
similar to the one in the proof of Theorem 9, we can establish the existence of a critical
point, or a central configuration, on each component. Denote such a critical point by
q′. We will show that q′ must be a local minimum of U in Sc. For this, we first prove
that q′ is a local minimum of U (q) − λI (q) in (H1

xw)N \�, where λ = λ(q′) < 0 is a
constant. To reach this goal, we compute the Hessian of U (q) − λI (q) and show that
it is positive definite. By straightforward computations, we obtain

Hessq = D2U (q) − λD2 I (q)

= 2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
j=1, j �=1

m1m j cosh d1 j

sinh3 d1 j
−m1m2 cosh d12

sinh3 d12
· · · −m1m N cosh d1N

sinh3 d1N

−m2m1 cosh d12
sinh3 d12

N∑
j=1, j �=2

m2m j cosh d2 j

sinh3 d2 j
· · · −m2m N cosh d2N

sinh3 d2N

· · · · · · · · · · · ·
−m1m N cosh d1N

sinh3 d1N
· · · · · ·

N∑
j=1, j �=N

m N m j cosh dN j

sinh3 dN j

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 2λ

⎡

⎢⎢⎣

m1 cosh 2θ1 0 · · · 0
0 m2 cosh 2θ2 · · · 0
· · · · · · · · · · · ·
0 · · · · · · m N cosh 2θN

⎤

⎥⎥⎦ .

Notice first that − λD2 I (q), the second term in Hessq, is positive definite. Indeed, the
matrix D2 I (q) is obviously positive definite, and the coefficient − λ is positive.
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For the first term, D2U , let us take any nonzero vector v = (v1, . . . , vN ) in the
tangent space Tq′

(
(H1

xw)N \�). Regarding D2U as a bilinear form, we obtain

vT (D2U )v =
N∑

i=1

N∑

j=1

(D2U )i jviv j =2
N∑

i=1

N∑

j=1
j �=i

mi m j cosh di j

sinh3 di j
v2i

−2
N∑

i=1

N∑

j=1
j �=i

mi m j cosh di j

sinh3 di j
viv j =

N∑

i=1

N∑

j=1
j �=i

mi m j cosh di j

sinh3 di j
(vi − v j )

2 ≥ 0.

We can conclude that Hessq(v, v) > 0 for all v ∈ Tq′(H1
xw)N \�, so q′ is a local

minimum of U (q) − λI (q) on (H1
xw)N \�. Then q′ is also a local minimum of the

new function U (q) − λI (q) + λc restricted to the submanifold Sc. Note that, on Sc,
this new function becomes U . Consequently q′ is a local minimum of U on Sc.

We show that such a minimum of U is unique on each (N − 1)-dimensional open
disc. Assume that there are two such minima. Connect these two points with a con-
tinuous family of curves. As the two ends are local minima, there must be a local
maximum on each curve. Then the minimum of all these maxima must be a saddle
point of U , in contradiction with the positive definiteness of the Hessian.

Note that a 180◦ rotation in the xy-plane does not change the ordering, whichmeans
that we counted each case twice, so there are exactly N !/2 classes of geodesic central
configurations, a remark that completes the proof. 
�

10.2 Geodesic Central Configurations in S
3

Unlike in the hyperbolic case, Moulton’s theorem has no straightforward generaliza-
tion to S

3. We give an example of geodesic central configurations for two masses to
show that the number of central configurations on Sc depends on the value of c. This
example also provides some degenerate central configurations, as defined in Sect. 8,
and means that the corresponding critical points of Û on Ŝc are degenerate.

According to Corollary 3, any geodesic central configuration in S3 is equivalent to
some geodesic central configuration on S

1
xz . The example we will exhibit is that of

central configurations for two masses on S
1
xz . Special central configurations cannot

exist under these circumstances since any non-singular configuration would force
the two masses to lie inside a semicircle, which turns out to be impossible because
such a configuration cannot generate relative equilibria, as proved in Diacu (2012b).
Expressing the positions of m1 and m2 in terms of the oriented spherical distance,
θi ∈ [0, 2π ], i = 1, 2, measured from (0, 0, 1, 0), see Fig. 11, we can write the
position vectors as

q1 = (− sin θ1, 0, cos θ1, 0), q2 = (− sin θ2, 0, cos θ2, 0), 0 ≤ θ1 < θ2 ≤ 2π.
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Fig. 11 A configuration of two
masses on S1xz

θ2

θ1
m2

m1

z

x

Then the force function and the moment of inertia have the form

U (q) = m1m2 cot d12 and I (q) = m1 sin
2 θ1 + m2 sin

2 θ2,

respectively, where d12 = min{θ2 − θ1, 2π − θ2 + θ1} is the distance between the
bodies. We can also assume, without loss of generality, that θ1 ∈ [0, π/2]. This is all
the preparation we need to state and prove the following result.

Theorem 11 Consider two masses m1 and m2 on S
1
xz with positions q1 and q2 as

above. Then these bodies can form a central configuration if and only if

m1 sin 2θ1 + m2 sin 2θ2 = 0 with sin 2θ1 �= 0. (16)

The number of geodesic central configurations depends on the size I (q) = c of each
configuration and is given in the table below, where M := m1 + m2. The table on the
left is for m1 < m2, whereas the table on the right is for the m1 = m2 =: m.

Size: I (q) = c Number
c ∈ (0, m1) 2
c ∈ [m1, m2] 0
c ∈ (m2, M) 2

Size: I (q) = c Number
c ∈ (0, m) 2
c = m ∞
c ∈ (m, M) 2

When the masses are equal and c = m, all central configurations are degenerate
critical points of U on Sm and the set they form has the power of the continuum.

Proof In this case, the central configuration equations ∇qi U = λ∇qi I, i = 1, 2,
reduce to

∂U

∂θ1
= λ

∂ I

∂θ1
and

∂U

∂θ2
= λ

∂ I

∂θ2
,

which implies that

±m1m2

sin2(θ2 − θ1)
= λm1 sin 2θ1 and

∓m1m2

sin2(θ2 − θ1)
= λm2 sin 2θ2,

where the signs depend on whether d12 equals θ2 − θ1 or 2π − θ2 + θ1. From these
equations we obtain the condition

m1 sin 2θ1 + m2 sin 2θ2 = 0 with sin 2θ1 �= 0.
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Fig. 12 Graphs of sin2 θ2 = c(m1−c)
m2(M−2c) for m1 < m2 (left) and m1 = m2 =: m (right) in coordinates

(c, sin2 θ2)

This relationship implies that θ1 ∈ (0, π
2

)
and θ2 ∈ ( 12π, π

)
or θ2 ∈ ( 32π, 2π

)
.

To find the number of central configurations on Sc, we solve the system

{
m1 sin2 θ1 + m2 sin2 θ2 = c

m1 sin 2θ1 + m2 sin 2θ2 = 0

and obtain

sin2 θ2 = c(m1 − c)

m2(M − 2c)
and sin2 θ1 = c(m2 − c)

m1(M − 2c)
.

Notice that sin 2θi �= 0, so let

0 <
c(m1 − c)

m2(M − 2c)
< 1, 0 <

c(m2 − c)

m1(M − 2c)
< 1.

We are then led to

0 < c < m1, m2 < c < M,

a fact that can also be seen in the graphs of Fig. 12, where a typical function of the
form c(m1−c)

m2(M−2c) is represented for m1 < m2 (left) and m1 = m2 (right).

Thus, having c in this range, we can obtain the values for sin2 θi < 1, i = 1, 2.
Using the fact that θ1 ∈ (0, π

2

)
and θ2 ∈ ( 12π, π

)
or θ2 ∈ ( 32π, 2π

)
, we see that there

are exactly two central configurations for each c:

(θ1, θ2) ∈
(
0,

π

2

)
×
(
1

2
π, π

)
and (θ1, θ2 + π) ∈

(
0,

π

2

)
×
(
3

2
π, 2π

)
.

If m1 = m2 = m and I = m, we have

Ŝm = Sm = {(θ1, θ2) ∈ (0, π/2) × [0, 2π ] | θ1 < θ2, sin2 θ1 + sin2 θ2 = 1},

which implies that

Ŝm = {θ1 ∈ (0, π/2), θ2 = θ1 + π/2 or θ2 = θ1 + 3π/2}.
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Thus, d12 = π/2 and Û = U = m1m2 cot d12 = 0 on Sm , which means that all
elements of this set are degenerate critical points of U on Sm , so they are degener-
ate central configurations. This remark justifies the values in the above tables and
completes the proof. 
�

The related problem of finding relative equilibria on S
1
xz has also been considered

by A.A. Kilin, who obtained the same criterion given in the first part of Theorem 11
(Kilin 1999).

Remark 3 The complicated count of geodesic central configurations in S3 is a conse-
quence of two facts: the boundary of some components in Sc may contain points in
�+ and �−, which can destroy the existence of critical points on those components,
and the geodesic central configurations are not necessarily minima of U on Sc.

11 Conclusions

So far, the only classes of solutions found for the N -body problem in spaces of con-
stant curvature have been relative equilibria and rotopulsators, the latter allowing
dilations and contractions of the configuration, which, of course, fail to maintain simi-
larity, Diacu and Kordlou (2013), although, very recently, some numerical results have
pointed out the existence of choreographies, including the figure-eight solution on the
sphere S

2 (Montanelli and Gushterov 2016). However, these studies are only at the
beginning, and the current paper shows that the approach we took here offers another
way to answer some of the natural problems that occur in the qualitative study of the
equations of motion and the dynamics of the solutions.

But most questions related to central configurations are far from easy, as it also
happens in the Euclidean case. Even finding all the central configurations in the curved
three-body problem, which has been settled in the classical case long time ago, is not
trivial in curved space and requires a separate study. As we have already seen, new
central configurations, such as the isosceles triangles, or the scalene triangles on the
equator of the sphere, none of which have correspondents in the Euclidean case, show
up. So far, all these central configurations on S

2
xyz lie in planes parallel with the xy-

plane, except for the geodesic ones. But at this point we have some indication that
most triangular central configurations do not lie in planes parallel with the xy-plane
and hope to be able to prove this statement in the near future. So even for only three
bodies, the set of central configurations of the curved problem is significantly richer
than in the Euclidean case, especially in the case of the sphere.

These investigations hint at the rich dynamics of the curved N -body problem and
show that the questions occurring from its study allow us to view the classical case
from a new perspective. Having now extended the concept of central configuration to
the curved problem, we have a new tool and a new direction of research, which will
hopefully shed more light on the equations of motion that govern this mathematical
model.
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