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Abstract We consider a nematic liquid crystal occupying the exterior region in R
3

outside of a spherical particle, with radial strong anchoring. Within the context of the
Landau-de Gennes theory, we study minimizers subject to an external field, modeled
by an additional term which favors nematic alignment parallel to the field. When the
external field is high enough, we obtain a scaling law for the energy. The energy scale
corresponds to minimizers concentrating their energy in a boundary layer around the
particle, with quadrupolar symmetry. This suggests the presence of a Saturn ring defect
around the particle, rather than a dipolar director field typical of a point defect.

Keywords Partial differential equations · Calculus of variations · Liquid crystals ·
Line defects

Mathematics Subject Classification 35J50 · 35Q56

1 Introduction

In this paper, we continue the study started in Alama et al. (2016b) of a spherical
colloid particle immersed in nematic liquid crystal (see also Alama et al. 2016a,
2015). Motivated by the experiments described in Gu and Abbott (2000), Loudet and
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Poulin (2001) and the heuristic and numerical arguments exposed in Stark (2002),
Fukuda et al. (2004), Fukuda and Yokoyama (2006), we are interested in the effect of
an external magnetic or electric field on the type of defects that can be observed.

Nematic liquid crystals are typically made of elongated molecules which tend to
align in a commondirection. Several continuummodels havebeenproposed todescribe
this alignment, including the Oseen-Frank and the Landau-de Gennes models. In the
Oseen-Frank description, the alignment is represented by a unit director n ∈ S

2, and
the Landau-de Gennes theory employs the so-called Q-tensors: traceless symmetric
3×3matrices, accounting for the alignment of themolecules through their eigenvectors
and eigenvalues. With respect to directors n ∈ S

2, the Q-tensors can be thought of as
relaxing the uniaxial constraint

Q = n ⊗ n − 1

3
I.

The Landau-de Gennes energy enforces this uniaxial constraint as a small coherence
length goes to zero, the limit in which one can recover the Oseen-Frank model. This
convergence has recently produced a rich trove of mathematical analysis (Majumdar
and Zarnescu 2010; Canevari 2015, 2016; Bauman et al. 2012; Golovaty andMontero
2014; Contreras et al. 2016). An important feature in experiment and in the analysis is
the occurrence of defects (singular structures). Compared to the director description,
the additional degrees of freedom offered by Q-tensors allow for a much finer descrip-
tion of the defect cores where biaxiality might occur, and the nonlinear analysis of
defect cores has recently attracted much attention (Ignat et al. 2016a, b; Di Fratta et al.
2016; Ignat et al. 2014, 2015; Canevari 2015; Contreras and Lamy 2017).

When foreign particles are immersed into nematic liquid crystal, the modifications
they induce in the nematic alignment may generate additional defects, leading to
many potential applications related, e.g., to the detection of these foreign particles or
to structure formation created by defect interactions (Stark 2001). The mathematical
analysis of such phenomena is very challenging. Here we are interested in the most
fundamental situation: a single spherical particle in a sea of liquid crystals.

We assume radial anchoring at the particle surface : the liquid crystal molecules
tend to align perpendicularly to the surface. This creates a topological charge that has
to be balanced by a defect so as to be compatible with a uniformly (say vertically)
aligned state far away from the particle. In the absence of external field, two different
types of configurations have been predicted and observed: the so-called hedgehog and
Saturn ring. The hedgehog configuration presents one point defect above (or below)
the particle. The Saturn ring configuration presents a line defect around the particle.
Both configurations are axially symmetric with respect to the vertical axis, and the
Saturn ring configuration enjoys the additional mirror symmetry with respect to the
equatorial plane. Hedgehog configurations have been observed for large particles and
Saturn rings for smaller particles. In our previous work Alama et al. (2016b), we
provided a rigorous mathematical justification of these observations based on the
Landau-de Gennes model, together with a very precise description of the Saturn ring.

In the presence of an external field, the situation changes, as a Saturn ring defects
can be observed even around large particles (Gu and Abbott 2000). A heuristical
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explanationproposed inStark (2002) is that the external field confines defects to amuch
narrower region around the particle,which is favorable to the Saturn ring type of defect.
This explanation has been confirmed numerically in Fukuda et al. (2004), Fukuda and
Yokoyama (2006) using a Landau-de Gennes model and assuming the external field to
be uniform in the sample. There the presence of the external field is simplymodeled by
adding a symmetry-breaking term to the energy (favoring alignment along the field),
multiplied by a parameter accounting for the intensity of the field. In the present paper,
we study this simplified model and prove that, when the applied field is high enough,
minimizers should indeed correspond to Saturn ring configurations.

After adequate nondimensionalization (Fukuda et al. 2004), we are left with two
parameters ξ, η > 0 which represent, in units of the particle radius, the coherence
lengths for nematic alignment and alignment along the external field. In these units,
the colloid particle is represented by the closed ball of radius one B = {|·| ≤ 1}⊂R

3,
so that the liquid crystal is contained in the domain � = R

3 \ B. The Landau-de
Gennes energy used in Fukuda et al. (2004), Fukuda and Yokoyama (2006) is given
by

E(Q) =
∫

�

(
1

2
|∇Q|2 + 1

ξ2

[
f (Q) + h2g(Q)

])

=
∫

�

(
1

2
|∇Q|2 + 1

ξ2
f (Q) + 1

η2
g(Q)

)
, η = ξ

h
.

Themap Q takes values into the space S0 of 3×3 symmetric matrices with zero traces
and describes nematic alignment. The nematic potential is given by

f (Q) = −1

2
|Q|2 − tr(Q3) + 3

4
|Q|4 + C,

where the constant C is such that f satisfies

f (Q) ≥ 0 with equality iff Q = n ⊗ n − 1

3
I for some n ∈ S

2. (1)

The symmetry-breaking potential g(Q) is given by

g(Q) =
√
2

3
− Q33

|Q| .

It breaks symmetry in the sense that the rotations R ∈ SO(3) which satisfy
g(t RQR) = g(Q) for all Q ∈ S0 must have e3 as an eigenvector, while f (t RQR) =
f (Q) for all R ∈ SO(3) and Q ∈ S0. Its specific form is chosen so that

g(Q) = c(1 − n23) for Q = n ⊗ n − 1

3
I,

and g(Q) is invariant under multiplication of Q by a positive constant (Fukuda et al.
2004). This potential satisfies
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g(Q) ≥ 0 with equality iff Q = λ

(
e3 ⊗ e3 − 1

3

)
I for some λ > 0.

Hence for h > 0 the full potential f (Q) + hg(Q) is minimized exactly at Q = Q∞,
where

Q∞ = e3 ⊗ e3 − 1

3
I.

Moreover it is easily checked that

f (Q) + hg(Q) ≥ C(h)|Q − Q∞|2, (2)

for some constant C(h) > 0. This ensures that the energy is coercive on the affine
space Q∞ + H1(�;S0). The anchoring at the particle surface is assumed to be radial:

Q = Qb := er ⊗ er − 1

3
I on ∂�, er = x

|x | . (3)

Denoting byH the space

H =
{
Q ∈ Q∞ + H1(�;S0) : Q = Qb on ∂�

}
, (4)

the coercivity of the energy ensures existence of a minimizer in H for any ξ, η > 0.

Remark 1.1 The above choice of constants in the nematic potential f (Q) is justified
since we are working at a fixed temperature, but in fact is chosen mainly to simplify
notation. Indeed, our results remain valid for more general potentials of the form

f (Q) = t

2
|Q|2 − tr(Q3) + 3

4
|Q|4 + C(t), t <

1

9
,

that is, at temperatures below the nematic-isotropic transition, where (1) is still satis-
fied.

Remark 1.2 Accounting for the presence of an external field through the potential
g(Q) is the result of several simplifying assumptions (Fukuda et al. 2004; Fukuda
and Yokoyama 2006). In particular the field is assumed to be constant throughout the
liquid crystal sample, an assumption that is more realistic in the case of a magnetic
(vs. electric) field. We do not aim at questioning the physical validity of such assump-
tion, but rather at understanding a simple model where the external field introduces a
symmetry-breaking effect at some additional length scale.

In Fukuda and Yokoyama (2006, § 3.1), heuristic arguments are used to estimate
the behavior of the different terms in the energy for a ‘hedgehog’ configuration and for
a ‘Saturn ring’ configuration. Decomposing the energy as E = Enem + Emag, where

Enem =
∫
R3\B

(
1

2
|∇Q|2 + 1

ξ2
f (Q)

)
, Emag = 1

η2

∫
R3\B

g(Q),

they conjecture the asymptotics
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hedgehog: Enem ≈ 1, Emag ≈ 1

η
,

Saturn ring: Enem ≈ |ln ξ |, Emag ≈ 1.

In fact we believe that for the Saturn ring the magnetic part of the energy should also
be of order 1/η (with a smaller constant though), but this does not affect the conclusion
that there should be a critical value

ηc ≈ 1

|ln ξ | ,

with the following properties. If η < ηc (high applied field) then the Saturn ring
configuration has lowest energy, and if η > ηc (low applied field) then the hedgehog
configuration has lowest energy. In Fukuda et al. (2004), Fukuda andYokoyama (2006)
this conjecture is checked numerically, for ξ = 4 × 10−3 and η around 10−1 (so that

h lies between 10−2 and 10−1) in Fukuda et al. (2004), and ξ = R
−1
0 between 10−3

and 10−2 and h of the same order in Fukuda and Yokoyama (2006).
Our aim in thiswork is to justify rigorously the fact that the Saturn ring configuration

isminimizing for high fields, i.e., η 
 1/|ln ξ |.Wewill tackle the regime η � 1/|ln ξ |
in a forthcoming work [2]. Since physically relevant values of η, ξ satisfy ξ � η 
 1,
we consider the limit ξ → 0 and assume that

η = η(ξ) −→ 0 as ξ → 0.

With this convention, the energy functional depends only on the small parameter ξ

and we write

Eξ (Q;U ) =
∫
U

[
1

2
|∇Q|2 + 1

ξ2
f (Q) + 1

η2
g(Q)

]
,

for any measurable set U⊂� = R
3 \ B and Q ∈ Q∞ + H1(�;S0).

Oneway to characterize aSaturn ring configuration versus a hedgehog configuration
is its mirror symmetry: a Saturn ring configuration is symmetric with respect to the
equatorial plane {x3 = 0}, while a hedgehog configuration is not, that is,

Eξ (Q
Saturn;�+) = Eξ (Q

Saturn;�−), �± = � ∩ {±x3 > 0},

while for a hedgehog configuration these energies are different. Our first main result
shows that a minimizing configuration must exhibit this symmetry asymptotically if
ξ � η 
 |ln ξ |−1, that is, for fields h which are bounded in ξ , but much larger than
ξ | ln ξ |.
Theorem 1.3 If Qξ minimizes Eξ with boundary conditions (3) and

η(ξ)|ln ξ | → 0,
η(ξ)

ξ
→ λ ∈ (0,∞], as ξ → 0,
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then
Eξ (Qξ ;�+) ∼ Eξ (Qξ ;�−) as ξ → 0.

Remark 1.4 This asymptotic symmetry does not exclude in principle a configuration
that would have a hedgehog defect somewhere in the equatorial plane {x3 = 0}. Our
heuristic conclusion that the minimizing configuration carries a Saturn ring defect
relies on the numerical observation (Fukuda et al. 2004; Fukuda and Yokoyama 2006)
that a hedgehog defect in the equatorial plane is not among the possible minimizing
configurations. Such configuration would presumably have a much higher energy than
the bound established in Theorem 1.5 below.

Theorem 1.3 is a consequence of the more precise asymptotics we obtain for the
energy of a minimizer. The potential

1

ξ2
f (Q) + 1

η2
g(Q) = 1

η2

(
η2

ξ2
f (Q) + g(Q)

)
,

is minimized at Q = Q∞. As η → 0, this forces a minimizing configuration to be
very close to Q∞. The boundary data Qb satisfies f (Qb) ≡ 0 but not g(Qb) ≡ 0.
Not surprisingly, deformations concentrate in a boundary layer of size η, where a
one-dimensional transition takes place according to the energy

Fλ(Q) =
∫ ∞

1

[
1

2

∣∣∣∣dQdr
∣∣∣∣
2

+ λ2 f (Q) + g(Q)

]
dr, (5)

defined for Q ∈ Q∞+H1((1,∞);S0). Forλ = ∞, this formula should be understood
as

F∞(Q) =
⎧⎨
⎩
∫∞
1

[
1
2

∣∣∣ dQdr
∣∣∣2 + g(Q)

]
dr if f (Q) = 0 a.e.,

+∞ otherwise.

In other words, F∞ is finite for maps Q ∈ Q∞ + H1((1,∞);S0) which satisfy
Q = n ⊗ n − I/3 for some measurable map n : (0,∞) → S

2.
Obviously the cases λ ∈ (0,∞) and λ = ∞ are quite different and they require

separate treatments, but in both cases we obtain for the energy of a minimizer Qξ the
asymptotics

Eξ (Qξ ;�) = 1

η

∫
S2

Dλ(Qb(ω)) dH2(ω) + o

(
1

η

)
as ξ → 0,

where

Dλ(Q0) = min
{
Fλ(Q) : Q ∈ Q∞ + H1((1,∞);S0), Q(1) = Q0

}
. (6)

The existence of a minimizer of Fλ which attains Dλ(Qb(ω)) for any ω ∈ S
2 follows

from the direct method. In Sect. 3.2, we will exploit the observation of Sternberg
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(1991) that the heteroclinic connections which minimize Fλ represent geodesics for a
degenerate metric. In the case λ = ∞ this enables us to obtain an exact value for the
limiting energy,

D∞(Qb(θ, ϕ)) = κ(1 − | cos θ |), and lim
ξ→0

η Eξ (Qξ ;�) = 2πκ, (7)

where κ := 4
√
24. (See Lemma 3.4.)

More specifically, we obtain local asymptotics in angular subdomains of �. For
U⊂S

2 we denote by C(U ) the cone

C(U ) = {tω : t > 1, ω ∈ U } ,

and prove

Theorem 1.5 If Qξ minimizes Eξ with boundary conditions (3) and

η(ξ)|ln ξ | → 0,
η(ξ)

ξ
→ λ ∈ (0,∞], as ξ → 0,

then for any measurable set U⊂S
2 it holds

Eξ (Qξ ;� ∩ C(U )) = 1

η

∫
U
Dλ(Qb(ω)) dH2(ω) + o

(
1

η

)
as ξ → 0.

Theorem 1.3 follows trivially from Theorem 1.5 by applying the latter to U =
(S2)± = S

2 ∩ {±x3 > 0}, since Qb is symmetric under reflection with respect to the
equatorial plane.

The lower bound in Theorem 1.5 follows from an elementary rescaling and the
properties of λ �→ Dλ. To obtain an upper bound matching this lower bound, a first
approach would be to define a trial map Q on every radial direction by an appropriate
rescaling of a minimizer of Fλ, i.e., set

Q(rω) = Qω

(
1 + r − 1

η

)
for (r, ω) ∈ (1,∞) × S

2,

with Qω minimizing Fλ under the constraint Qω(1) = Qb(ω). The problem with this
approach is that it may not be possible to control the derivatives of such Q with respect
to angular variable ω. We overcome this difficulty by using different arguments in the
cases λ ∈ (0,∞) and λ = ∞.

For λ ∈ (0,∞), we take advantage of the fact that, although the regularity of
ω �→ Qω is not understood, the map ω �→ Fλ(Qω) = Dλ(Qb(ω)) is easily seen to
be continuous, hence Riemann integrable. Thus we obtain a trial map by smoothly
interpolating between Qωi (r) for a discrete set {ωi }. The cost of this weak approach
is that we cannot hope to obtain a more precise remainder than o(1/η).

For λ = ∞ the map Qω takes the form n ⊗ n − I/3 and this restriction allows
to specify its dependence on ω. However the topological constraint enforced by the
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boundary conditions prevents it to be smooth : there is a jumpasω crosses the equatorial
plane {x3 = 0}. We modify the trial map near this plane by including a Saturn ring
defect which rectifies the topological charge. With this approach, the remainder in the
upper bound is actually of the order O(|ln ξ |).

Finally, it is natural and tempting tomake a direct comparison between the symmet-
ric minimizer (which we expect to represent the Saturn ring) and its usual competitor,
the dipolar hedgehog. The difficulty is that we do not know if there exists such a solu-
tion, nor how to impose constraints under which there would be a minimizer of this
form. However, we can restrict our attention to uniaxial tensors with oriented director
fields, Q = n ⊗ n − 1

3 I , n ∈ N , where

N :=
{
n ∈ H1

loc(�;S2) : n|∂� = er ,
∫

�

(n21 + n22)dx < ∞.

}

Within this orientable setting, the Saturn ring line defect is not admissible anymore
since it carries a half-integer degree (Ball and Zarnescu 2011).We show that orientable
configurations have much larger energy at leading order:

Proposition 1.6 Let Qξ minimize Eξ with boundary conditions (3) and η = η(ξ)

with
η|ln ξ | → 0,

η

ξ
→ λ ∈ (0,∞], as ξ → 0.

Then, for any Q = n ⊗ n − 1
3 I with n ∈ N , and any ξ > 0, we have

ηEξ (Q) ≥ 8πκ ≥ 4 lim
ξ→0

(
ηEξ (Qξ )

)
.

The paper is organized as follows. In Sect. 2, we prove the lower bound. In Sect. 3,
we concentrate on the upper bound, considering the case λ ∈ (0,∞) in Sect. 3.1
and λ = ∞ in Sect. 3.2. We conclude with the short proofs of Theorem 1.5 and
Proposition 1.6 in Sect. 4.

2 Lower Bound

In this section, we prove the

Proposition 2.1 If Qξ minimizes Eξ with boundary conditions (3) and

η = η(ξ) → 0,
η

ξ
→ λ ∈ (0,∞],

then for any measurable set U⊂S
2 it holds

lim inf
ξ→0

ηEξ (Qξ ;� ∩ C(U )) ≥
∫
U
Dλ(Qb(ω)) dH2(ω).
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Proof We use spherical coordinates x = rω, (r, ω) ∈ (1,∞) × S
2. Setting r =

1 + η(r̃ − 1) and
Q̃(r̃ , ω) = Qξ (1 + η(r̃ − 1), ω),

we have

ηEξ (Qξ ; C(U ))

=
∫
U

∫ ∞

1

[
1

2

∣∣∣∣∂ Q̃∂ r̃
∣∣∣∣
2

+ 1

2

η2

r2
∣∣∇ω Q̃

∣∣2 + η2

ξ2
f (Q̃) + g(Q̃)

]
r2dr̃ dH2(ω)

≥
∫
U

∫ ∞

1

[
1

2

∣∣∣∣∂ Q̃∂ r̃
∣∣∣∣
2

+ η2

ξ2
f (Q̃) + g(Q̃)

]
dr̃ dH2(ω)

≥
∫
U
D η

ξ
(Qb(ω)) dH2(ω),

using (5) and (6) for the last inequality. We conclude using the fact (see Lemma 2.2
below) that

Dλ(Qb(ω)) = lim
μ→λ

Dμ(Qb(ω)) ∀ω ∈ S
2,

and Fatou’s lemma. ��
Lemma 2.2 For any Q0 ∈ S0 and λ ∈ (0,∞] we have

Dλ(Q0) = lim
μ→λ

Dμ(Q0).

Proof The arguments are standard, we only sketch them here.
We first treat the case where Dλ(Q0) = +∞. This occurs only if λ = ∞ and

f (Q0) > 0. Then we also have Dμ(Q0) → ∞ as μ → λ = ∞. Otherwise there
would exist a sequenceμk → ∞ andmaps Qk with Qk(1) = Q0 such that Fμk (Q

k) ≤
C , and therefore, up to a subsequenceQk convergesweakly in H1((1,∞);S0) to amap
Q∗ with Q∗(1) = Q0. However, the bound μ2

k

∫
f (Qk) ≤ C implies that f (Q∗) = 0

a.e., contradicting f (Q0) > 0.
Hence we may assume that Dλ(Q0) < ∞ and pick a minimizer Qλ of Fλ with

Qλ(1) = Q0. Fix a sequence μk → λ and minimizers Qk of Fμk with Qk(1) = Q0.
Then we have the bound

lim sup
k→∞

Fμk (Q
k) ≤ lim sup

k→∞
Fμk (Q

λ) = Fλ(Q
λ) = Dλ(Q0),

and therefore, up to a subsequence, Qk converges weakly in H1((1,∞);S0) toward
a map Q∗. The weak lower semi-continuity of

∫ |dQ/dr |2 and Fatou’s lemma then
imply

Fλ(Q
∗) ≤ lim inf

k→∞ Fμk (Q
k),

so that combining the above we have

Dλ(Q0) ≤ Fλ(Q
∗) ≤ lim inf

k→∞ Fμk (Q
k) ≤ lim sup

k→∞
Fμk (Q

k) ≤ Dλ(Q0),
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and deduce lim Fμk (Q
k) = lim Dμk (Q0) = Dλ(Q0). ��

3 Upper Bound

3.1 The Case λ ∈ (0,∞)

In this section, we assume that

η

ξ
−→ λ ∈ (0,∞) as ξ → 0,

and show that

min
H

Eξ ≤ 1

η

∫
S2

Dλ(Qb(ω)) dH2(ω) + o

(
1

η

)
as ξ → 0,

where we recall that H is the space of admissible configurations, defined in (4).This
is obtained by constructing an admissible comparison map. This comparison map
depends on two parameters ε, h > 0, the use of which will become clear in the course
of the proof.

Proposition 3.1 For any ε, h, ξ > 0 there exists a map Qh,ε
ξ such that

lim sup
ξ→0

ηEξ (Q
h,ε
ξ ) ≤

∫
S2

Dλ(Qb(ω)) dH2(ω) + σ(h, ε),

where limh→0(limε→0 σ(h, ε)) = 0.

Proof We construct an axially symmetric map Qh,ε
ξ of the form

Qh,ε
ξ (r, θ, ϕ) = t Rϕ Q̃

h,ε

(
1 + r − 1

η
, θ

)
Rϕ,

where Q̃h,ε(r̃ , θ) is a smooth map to be determined later, and Rϕ is the rotation of
angle ϕ and axis e3. Dropping the exponents h, ε (as we will do when there is no
confusion) it holds

∣∣∇Qξ

∣∣2 = 1

η2

∣∣∣∣∂ Q̃∂ r̃
∣∣∣∣
2

+ 1

r2

∣∣∣∣∂ Q̃∂θ

∣∣∣∣
2

+ 1

r2 sin2 θ
�[Q̃],

where �[Q̃] = ∣∣∂ϕ[t Rϕ Q̃Rϕ]∣∣2.
The function � is a nonnegative quadratic form with bounded coefficients depending
smoothly onϕ. Since Q∞ commuteswith Rϕ ,�[Q̃] vanishes at Q̃ = Q∞ and satisfies

�[Q̃] ≤ C
∣∣Q̃ − Q∞

∣∣2,
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for some absolute constant C > 0. Integrating in � and changing variables according
to r − 1 = η(r̃ − 1) we find

η

∫
�

∣∣∇Qξ

∣∣2 ≤ 2π
∫ π

0

∫ ∞

1

∣∣∣∣∂ Q̃∂ r̃
∣∣∣∣
2

dr̃ sin θdθ + 2πηRξ (Q̃),

Rξ (Q̃) =
∫ π

0

∫ ∞

1
(2(r̃ − 1) + η(r̃ − 1)2)

∣∣∣∣∂ Q̃∂ r̃
∣∣∣∣
2

sin θdθ

+ η

∫ π

0

∫ ∞

1

∣∣∣∣∂ Q̃∂θ

∣∣∣∣
2

dr̃ sin θdθ + η

∫ π

0

∫ ∞

1

C

sin θ

∣∣Q̃ − Q∞
∣∣2dr̃ dθ.

For any fixed h, ε > 0 we will have supξ Rξ (Q̃h,ε) < ∞ provided

Q̃h,ε − Q∞ is compactly supported

inside {(r̃ , θ) : 0 ≤ r̃ < ∞, 0 < θ < π}. (8)

Note that (8) implies that Q̃h,ε − Q∞ ≡ 0 for large r̃ and near θ = 0 and θ = π .
Moreover we have

η

∫
�

(
1

ξ2
f (Qξ ) + 1

η2
g(Qξ )

)

= 2π
∫ π

0

∫ ∞

1

(
λ2 f (Q̃) + g(Q̃)

)
dr̃ sin θdθ

+ 2πη

∫ π

0

∫ ∞

1
(2(r̃ − 1) + η(r̃ − 1)2))

(
η2

ξ2
f (Q̃) + g(Q̃)

)
dr̃ sin θdθ

+ 2π

(
η2

ξ2
− λ2

)∫ π

0

∫ ∞

1
f (Q̃) dr̃ sin θdθ.

Since f (Q∞) = g(Q∞) = 0, if (8) is satisfied for all h, ε > 0, we deduce, gathering
the above,

lim sup
ξ→0

ηEξ (Q
h,ε
ξ ) ≤ 2π

∫ π

0
Fλ

(
Q̃h,ε(·, θ)

)
sin θdθ, (9)

where Fλ was defined in (5). Recall that

Dλ(Q0) = inf
{
Fλ(Q̃) : Q̃(1) = Q0

}
.

The functional Fλ is invariant under pointwise conjugation by Rϕ for any angle ϕ ∈ R,
and therefore

Dλ(
t RϕQ0Rϕ) = Dλ(Q0).

Since Qb(ω) = Qb(θ, ϕ) is axially symmetric, in other words

Qb(θ, ϕ) = t RϕQb(θ, 0)Rϕ,
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we deduce that Dλ(Qb(θ, ϕ)) does not depend on the azimuthal angle ϕ, and

∫
S2

Dλ(Qb(ω))dH2(ω) = 2π
∫ π

0
Dλ(Qb(θ, 0)) sin θdθ.

Combining this with (9), in order to prove Proposition 3.1 it suffices to construct for
all h, ε > 0 a smooth map Q̃h,ε(r̃ , θ) which satisfies (8) and

lim sup
h→0

[
lim sup

ε→0

∫ π

0
Fλ

(
Q̃h,ε(·, θ)

)
sin θdθ

]
≤
∫ π

0
Dλ(Qb(θ, 0)) sin θdθ. (10)

In principle one would like to choose Q̃(·, θ) minimizing Fλ with respect to the
boundary condition Q̃(1, θ) = Qb(θ, 0). But it is not obvious that such amap Q̃ would
be (even weakly) differentiable in θ . However we can make use of the continuity of
θ �→ Dλ(Qb(θ, 0)) to bypass this issue, at the price of introducing the extra parameters
h, ε > 0.

Thanks to Lemma 3.2 below, the function θ �→ Dλ(Qb(θ, 0)) sin θ is continuous
on [0, π ]. In particular it is Riemann integrable, and there exists a family of partitions

0 = θh1 < θh2 < · · · < θhIh = π, sup
i

∣∣∣θhi+1 − θhi

∣∣∣ ≤ h,

such that

lim
h→0

∑
i

(θhi+1 − θhi )Dλ(Qb(θ
h
i , 0)) sin θhi =

∫ π

0
Dλ(Qb(θ, 0)) sin θ dθ.

For any i ∈ {1, . . . , Ih−1} there exists amap Q̃h
i (r̃) such that Q̃

h
i −Q∞ ∈ C∞

c ([1,∞))

and
Fλ(Q̃

h
i ) ≤ Dλ(Qb(θ

h
i , 0)) + h.

Then, defining

Q̃h(r, θ) =
{
Q∞ if θ ∈ [0, θh2 ) ∪ [θhIh−1, π),

Q̃h
i (r) if θ ∈ [θhi , θhi+1), 2 ≤ i ≤ Ih − 2,

we obtain

lim sup
h→0

∫ π

0
Fλ(Q̃

h(·, θ)) sin θ dθ ≤
∫ π

0
Dλ(Qb(θ, 0)) sin θ dθ. (11)

Eventually we define Q̃h,ε by smoothing Q̃h in θ , i.e.,

Q̃h,ε = Qh ∗θ ϕε,
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for some smooth kernel ϕε(θ) = ε−1ϕ(θ/ε). Such map Q̃h,ε satisfies (8), and

Q̃h,ε −→ Q̃h,
∂ Q̃h,ε

∂r
−→ ∂ Q̃h

∂r
a.e.

By dominated convergence we thus have

lim
ε→0

∫ π

0
Fλ(Q̃

h,ε(·, θ)) sin θ dθ =
∫ π

0
Fλ(Q̃

h(·, θ)) sin θ dθ.

Combining this with (11) we obtain (10), thus completing the proof. ��
Lemma 3.2 The map Q0 �→ Dλ(Q0) is locally Lipschitz.

Proof Let Q1
0, Q

2
0 ∈ S0 be such that

∣∣Q1
0

∣∣, ∣∣Q2
0

∣∣ ≤ M . Let Q̃1 be such that

Dλ(Q
1
0) = Fλ(Q̃

1), Q̃1(1) = Q1
0.

Let δ > 0 and define

Q̃2(r) =
{
Q2

0 + r−1
δ

(Q1
0 − Q2

0) for 1 < r < 1 + δ,

Q̃1(r − δ) for r > 1 + δ.

Then

Dλ(Q
2
0) − Dλ(Q

1
0) ≤ Fλ(Q̃

2) − Fλ(Q̃
1)

=
∫ 1+δ

1

[
1

2

∣∣Q1
0 − Q2

0

∣∣2
δ2

+ λ2 f (Q̃2) + g(Q̃2)

]
dr

≤
∣∣Q1

0 − Q2
0

∣∣2
2δ

+ Cδ,

for C = sup|Q|≤M (λ2 f + g). Choosing δ = C−1/2
∣∣Q1

0 − Q2
0

∣∣ yields

Dλ(Q
2
0) − Dλ(Q

1
0) ≤ C1/2

∣∣∣Q1
0 − Q2

0

∣∣∣,
thus proving the local Lipschitz continuity of Dλ. ��

3.2 The Case λ = ∞

We next consider a complementary regime to the one considered above, with η = η(ξ)

such that

ε := ξ

η
−→ 0 and η| ln ξ | −→ 0 as ξ → 0,
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that is, the characteristic length scale determined by the field is much larger than the
length scale determined by elastic response in the nematic. Again, we derive an upper
bound on the energy by constructing an appropriate test map, whose structure suggests
the anticipated form of the minimizers. We show:

Proposition 3.3 There exists a map Qξ such that

Eξ (Qξ ) ≤ 1

η

∫
S2

D∞(Qb(ω)) dH2(ω) + π2| ln ε| + O(1).

Before proving the proposition we require some further information about the min-
imizing geodesic of the problem D∞. Recall that this minimization is taken over
uniaxial tensors and thus reduces to a problem for unit vector fields n ∈ S

2. We note
that for Q = n ⊗ n − 1

3 I , the magnetic energy density is expressed as

g(Q) =
√
3

2
(1 − n23) =: g(n),

with a slight abuse of notation. This is both a major simplification and a minor compli-
cation: whereas the potential vanishes for exactly one uniaxial tensor Q∞, it vanishes
for two antipodal directors n = ± e3. We denote by ω(θ, ϕ) the point on S

2 with
angular coordinates (θ, ϕ) ∈ [0, π ] × [0, 2π). Define

G∞(n) :=
∫ ∞

0

(
|ṅ|2 + g(n)

)
dt,

for n ∈ H1
loc([0,∞);S2) with n(0) = ω(θ, ϕ), so that

G∞(n) = F∞(Q) for Q(r) = n(r − 1) ⊗ n(r − 1) − 1

3
I.

Finiteness of the energy enforces the condition n(t) → ±e3 as t → ∞, but the choice
of terminal point will depend on the initial value n(0) ∈ S

2. Let

d±∞(ω) := inf
n(0)=ω

n(∞)=±e3

G∞(n).

Then, since n(0) = ω is chosen such that Qb(ω(θ, ϕ)) = n(0)⊗ n(0)− 1
3 I , we have

D∞(Qb(ω)) = min
{
d+∞(ω), d−∞(ω)

}
.

By symmetry it is enough to consider the case where the target point is +e3. We have
the following characterization of the minimizers:
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Lemma 3.4 For any ω ∈ S
2 with angular coordinates (θ, ϕ) ∈ [0, π ]×[0, 2π) there

exists a minimizer n = n(t, θ, ϕ) of d+∞(ω), with

G∞(n) = κ(1 − cos θ), κ = 4
√
24.

The minimizer is C1 smooth and equivariant, that is n(t, θ, ϕ) = Rϕn(t, θ, 0) for all
ϕ. Moreover, we have

|n(t, θ, ϕ) − e3|, |ṅ(t, θ, ϕ)|2,
∣∣∣∣∂n∂θ

∣∣∣∣
2

≤ Ce−κt (12)

for constant C > 0, uniformly in θ, ϕ.

Proof The existence of a minimizer for each fixed (θ, ϕ) follows from Sternberg
(1991); the other statements are special to our case. First, we note that for any
rotation Rϕ , G∞(Rϕn) = G∞(n), and thus, it is sufficient to consider the case
ϕ = 0. We claim that given any admissible n(t) = (n1, n2, n3), the configuration

N (t) = (

√
1 − n23, 0, n3) has energy G∞(N ) ≤ G∞(n). Indeed, we calculate

|Ṅ |2 = ṅ23
1 − n23

, g(N ) = g(n) =
√
3

2
(1 − n23),

and

|ṅ|2 − |Ṅ |2 = (1 − n23)(ṅ
2
1 + ṅ22) − [n3ṅ3]2
1 − n23

= (n21 + n22)(ṅ
2
1 + ṅ22) − (n1ṅ1 + n2ṅ2)2

1 − n23
≥ 0,

by the Cauchy–Schwartz inequality. Thus, it is sufficient to consider ϕ = 0, n = N ,
and

G∞(n) =
∫ ∞

0

[
ṅ23

(1 − n23)
+
√
3

2
(1 − n23)

]
dt.

Moreover, the curve γ traced by n(t) follows a meridian on the sphere.
Following Sternberg (1991), we note that

G∞(n) ≥
∫ ∞

0
2
√
g(n)|ṅ|dt =

∫
γ

κ

√
1 − n23 ds, (13)
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where γ is the curve traced out by n(t), κ = 4
√
24, and the integral is with respect to

arclength ds on γ . Equality holds when |ṅ| = √
g(n), that is,

|ṅ3|
1 − n23

= κ

2
,

which may be integrated to give an explicit formula for the heteroclinic,

n3(t, θ, 0) = A(θ) − e−κt

A(θ) + e−κt
, n1 =

√
1 − n23,

with A(θ) = 1 + cos θ

1 − cos θ
. (14)

Clearly, n is smooth with respect to both t and θ ∈ (0, π ], and a simple calculation
shows that ∂n

∂θ
(t, 0) = 0, and so it is smooth for all (t, θ). The exponential decay also

follows from direct calculation. Finally, to evaluate the energy at a minimizer, recall
that in (13) equality is achieved at a minimizer, and so

G∞(n) =
∫

γ

κ

√
1 − n23 ds = κ

∫ θ

0
sin θ dθ = κ(1 − cos θ).

��
Remark 3.5 It is easy to see that the minimizer n(t, θ, ϕ) of d−∞(θ, ϕ) has energy
G∞(n) = κ(1 + cos θ), and so D∞(Qb(θ, ϕ)) = κ(1 − | cos θ |).

We are now ready to prove our upper bound proposition.

Proof of Proposition 3.3 We construct an axially symmetric map Qξ of the form

Qξ (r, θ, ϕ) = t RϕQξ (r, θ) Rϕ, (15)

where Rϕ is (as before) the rotation of angle ϕ about the axis e3. As above, in spherical
coordinates we decompose the gradient as:

∣∣∇Qξ

∣∣2 =
∣∣∣∣∣
∂Qξ

∂r

∣∣∣∣∣
2

+ 1

r2

∣∣∣∣∣
∂Qξ

∂θ

∣∣∣∣∣
2

+ 1

r2 sin2 θ
�[Qξ ],

with �[Qξ ] = ∣∣∂ϕ[t RϕQξ Rϕ]∣∣2. (16)

As the energy will be the same in each vertical cross section {ϕ = constant} it will be
convenient to define a two-dimensional energy,

Ẽ(Qξ ;U ) :=
∫∫

U

[
1

2

∣∣∣∣∣
∂Qξ

∂r

∣∣∣∣∣
2

+ 1

2r2

∣∣∣∣∣
∂Qξ

∂θ

∣∣∣∣∣
2

+ 1

2r2 sin2 θ
�[Qξ ]

+ 1

ξ2
f (Qξ ) + 1

η2
g(Qξ )

]
r2 sin θdr dθ,
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Fig. 1 Three subregions of �+
0

used in the proof of
Proposition 3.3

η

2η

Ω1

Ω2

Ω+
3

for U⊂�0 := {(r, θ) : r > 1, 0 < θ < π}. We construct Qξ in the upper half
�+

0 := {(r, θ) : r > 1, 0 ≤ θ < π
2 } of the cross section {ϕ = 0}, and define its value

in the lower cross section θ ∈ (π
2 , π ] by reflection,

Qξ (r, θ) = T Qξ (r, π − θ)T t , where T (x, y, z) = (x, y,−z).

Moreover, we divide the region {(r, θ) : r > 1, 0 ≤ θ < π
2 } into three subregions,

and define Qξ as a smooth map in each, continuous across the common boundaries
(Fig. 1).

Region 1 �1 = {(r, θ) : r > 1, 0 ≤ θ ≤ π
2 − η}. In this region, Qξ will be uniaxial,

Qξ = n̄ ⊗ n̄ − 1
3 I , for a director field n̄ ∈ S

2. Specifically, let

n(t, θ) =
⎡
⎣n1(t, θ)

0
n3(t, θ)

⎤
⎦ =

⎡
⎢⎣
√
1 − n23(t, θ)

0
n3(t, θ)

⎤
⎥⎦ . (17)

denote the minimizing geodesic which attains the distance D∞(Qb(θ, 0)), and whose
explicit formula is given in (14). Then, for (r, θ) ∈ �1 and t = (r − 1)/η, we set

n̄(r, θ) := n(t, θ) = n

(
r − 1

η
, θ

)
, Qξ (r, θ) := n̄ ⊗ n̄ − 1

3
I.
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Using the above expression of the energy density (16) we derive

1

2
|∇Qξ |2 = 1

η2

∣∣∣∣∂n∂t
∣∣∣∣
2

+ 1

r2

∣∣∣∣∂n∂θ

∣∣∣∣
2

+ 1

r2 sin2 θ
|n1|2

= 1

1 − n23

[
1

η2

∣∣∣∣∂n3∂t

∣∣∣∣
2

+ 1

r2

∣∣∣∣∂n3∂θ

∣∣∣∣
2
]

+ 1

r2 sin2 θ
(1 − n23),

as the ϕ derivative term simplifies to�(Qξ ) = 2|n̄1|2. As Qξ is uniaxial, f (Qξ ) ≡ 0,

and g(Qξ ) =
√

3
2 (1−n̄23). The energy in�1 then becomes, after the change of variable

r = 1 + ηt ,

ηẼ(Qξ ;�1) =
∫ π

2 −η

0

∫ ∞

0

[∣∣∣∣∂n∂t
∣∣∣∣
2

+ g(n)

+ η2

(1 + ηt)

∣∣∣∣∂n∂θ

∣∣∣∣
2

+ η2

(1 + ηt)2 sin2 θ
|n1|2

]
(1 + ηt)2 sin θ dt dθ

=
∫ π

2 −η

0
G∞(n(·, θ, 0)) sin θ dθ + O(η)

≤
∫ π

2

0
G∞(n(·, θ, 0)) sin θ dθ + O(η), (18)

since by the exponential decay estimates of Lemma 3.4, each of the remaining integrals
converges, and carries at least one factor of η.

Region 2 �2 = {(r, θ) : r ≥ 1 + 2η, π
2 − η ≤ θ ≤ π

2 }. By the exponential decay of
n̄ to e3, the value of Qξ on the ray r ≥ 1+ 2η, θ = π

2 − η is already close to Q∞, so
here we interpolate between the two in this sector. Define �+

η (t) to be the spherical
angle associated to the heteroclinic n+(t) := n(t, π

2 − η), that is,

n+(t) = n
(
t,

π

2
− η

)
=
(
sin�+

η (t), 0, cos�+
η (t)

)
, t ≥ 0.

We note for later use that the exponential decay of n to e3 implies that the angle�+
η (t)

also has exponential decay to zero as t → ∞.
We extend Qξ to �2 uniaxially by interpolating this angle: define

�(t, θ) := �+
η (t) χ(θ), with χ(θ) :=

π
2 − θ

η
,

π

2
− η ≤ θ ≤ π

2
.

Then, for r ≥ 1 + 2η and π
2 − η < θ ≤ π

2 we set

n̂(t, θ) := (sin�(t, θ), 0, cos�(t, θ)) and Qξ (r, θ) := n̂(t, θ) ⊗ n̂(t, θ) − 1

3
I,

where (as usual) r = 1 + ηt .
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To evaluate the energy in this sector we use

1

2
|∇Qξ |2 =

∣∣∣∣∂�

∂r

∣∣∣∣
2

+ 1

r2

∣∣∣∣∂�

∂θ

∣∣∣∣
2

+ 1

r2 sin2 θ
sin2 �

= χ2(θ)

∣∣∣∣∣
∂�+

η

∂r

∣∣∣∣∣
2

+ 1

η2r2

∣∣∣�+
η

∣∣∣2 + 1

r2 sin2 θ
sin2[�+

η χ(θ)]

≤
∣∣∣∣∣
∂�+

η

∂r

∣∣∣∣∣
2

+ 1

η2r2

∣∣∣�+
η

∣∣∣2 + 1

r2 sin2 θ
sin2 �+

η

=
∣∣∣∣∂n

+

∂r

∣∣∣∣
2

+ 1

r2 sin2 θ
[n+

1 ]2 + 1

η2r2

∣∣∣�+
η

∣∣∣2 .

We then calculate the energy, recalling that Qξ is uniaxial, and so f (Qξ ) = 0 and

g(Qξ ) =
√
3

2
sin2 � ≤

√
3

2
sin2 �+

η = g
(
n+) .

Changing variables from r = 1 + ηt , since each term in the integrand is bounded by
a decaying exponential in t , we have the estimate:

ηẼ(Qξ ;�2) ≤
∫ π

2

π
2 −η

∫ ∞

2

[∣∣∣∣∂n
+

∂t

∣∣∣∣
2

+ g
(
n̄+(r)

)

+ 1

(1 + ηt)2 sin2 θ
[n+

1 (r)]2 + 1

(1 + ηt)2

∣∣∣�+
η

∣∣∣2
]
(1 + ηt)2 sin θ dt dθ

≤ O(η).

Note that when θ = π
2 , n3 = e3. When reflecting to the lower half of the cross

section this will create a discontinuity in the director field, but will be invisible in the
tensor Qξ , which will take the value Q∞ continuously across the equatorial plane.

Region 3 �+
3 = {(r, θ) : 1 < r < 1 + 2η, π

2 − η ≤ θ ≤ π
2 }. Unlike the other

regions, here our test configuration will not be uniaxial; it is here that we imagine that
the Saturn ring defect will occur.

It will be convenient to construct Qξ in the symmetric domain obtained by reflection
across the equatorial plane, �3 := {(r, θ) : 1 < r < 1 + 2η, π

2 − η ≤ θ ≤ π
2 + η}.

We note that by the previous steps (and the definition of Qξ by reflection to the lower
hemisphere,) the values of Qξ have already been determined on ∂�3; in particular,
Qξ |∂�3 is uniaxial, with director which carries a degree of − 1

2 .
Consider the square domain �̃3 = {−1 < s < 1, −1 < τ < 1}, which is obtained

from �3 via the change of variables

r = 1 + η(s + 1), θ = π

2
− ητ. (19)
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Note that here we are considering (s, τ ) as Cartesian coordinates, with Jacobian
dr dθ = η2ds dτ . We will define Qξ (r, θ) = Q̃ξ (s, τ ) for (s, τ ) ∈ �̃3, with Q̃ξ

the solution of an appropriate boundary value problem. The energy in �3 transforms
as,

ηẼ(Qξ ;�3) = ηÊ(Q̃ξ ; �̃3)

:= η

∫∫
�̃3

[∣∣∣∣∂ Q̃ξ

∂s

∣∣∣∣
2

+ 1

r(s)2

∣∣∣∣∂ Q̃ξ

∂τ

∣∣∣∣
2

+ 1

r(s)2 sin2 θ(τ )
|�(Q̃ξ )|2

+ 1

ε2
f (Q̃ξ ) + g(Q̃ξ )

]
r(s)2 sin θ(τ ) ds dτ, (20)

with r(s), θ(t) as in (19), and ε := ξ/η → 0. The boundary conditions induced from
Qξ |∂�3 , given in terms of the director field, are:

• n+
η (s + 1) = n(s + 1, π

2 − η), for s ∈ [−1, 1], τ = 1;
• its reflection, Tn+

η (s + 1) = n(s + 1, π
2 + η), for s ∈ [−1, 1], τ = −1;

• the rescaled homeotropic condition, (cos(τη), 0, sin(τη)), for s = −1, τ ∈
[−1, 1];

• the interpolated field from Region 2, (sin(τ�+
η (2)), 0, sgn(τ ) cos(τ�+

η (2)), for
s = 1, −1 ≤ τ ≤ 1, which is discontinuous but well defined as a Q-tensor.

Moreover each component converges in C1 as η → 0, and the boundary conditions
determine a degree − 1

2 map on ∂�̃3.
Introducing polar coordinates (ρ, α) in �̃3, we parametrize the square ∂�̃3 with

respect to the polar angle, ρ = γ (α), 0 ≤ α < 2π . The boundary conditions given
abovemay then be described in terms of this parametrization of ∂�̃3 via a phase�η(α)

which is continuous and piecewise smooth on [0, 2π), in the form

n̂η(α) = (sin�η(α), 0, cos�η(α)) on ρ = γ (α), 0 ≤ α < 2π.

Since n̂η(0) = e3 = −n̂η(2π), this defines a continuous and piecewise smooth uni-
axial tensor Q̂η = n̂η ⊗ n̂η − I/3 on ∂�̃3. In a similar way we define �0, n̂0, Q̂0
corresponding to the η → 0 limits of the boundary value components, parametrized
by the polar angle α. The convergence Q̂η → Q̂0 is uniform on ∂�̃3, so Q̂0 is homo-
topic to the uniaxial map of degree −1/2 corresponding to the phase �0(α) = −α/2,
α ∈ [0, 2π).

Wefirst define Q̃ξ in the square annulus �̃3\�̃3/2,where �̃3/2 = [− 1
2 ,

1
2 ]×[− 1

2 ,
1
2 ]

and is parametrized in polar coordinates by ρ = 1
2γ (α). As in �2, we extend Q̃ξ as a

uniaxial tensor by interpolating the phase angle associated to its director, but here we
interpolate along radii,

�̂η(ρ, α) := 2ρ − γ (α)

γ (α)
�η(α) + 2γ (α) − 2ρ

γ (α)
�0(α),

with n̂η(ρ, α) := (sin �̂η, 0, cos �̂η) and Q̃ξ := n̂η ⊗ n̂η − 1
3 I . Since Q̃ξ is piecewise

smooth and
∥∥�η

∥∥
C1 is bounded on each edge of the square, by inserting in (20) we

obtain
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ηÊ(Q̃ξ ; �̃3 \ �̃3/2) ≤ O(η).

It remains to define Q̃ξ in the smaller square �̃3/2.Here the boundary data is uniaxial
and η-independent, given by the phase angle �0(α) = −α/2 and corresponding
director n0(α) = (sin�0, 0, cos�0). Provided ε < 1

4 we may set

Q̃ξ (ρ, α) = fε(ρ)

(
n0(α) ⊗ n0(α) − 1

3
I

)
,

fε(ρ) =

⎧⎪⎨
⎪⎩
1 for ρ ≥ 2ε,
ρ
ε

− 1 for ε < ρ < 2ε,

0 for ρ < ε.

With this definition of Q̃ξ we have

∫
�̃3/2

[
1

2

∣∣∣∣∂ Q̃ξ

∂s

∣∣∣∣
2

+ 1

2

∣∣∣∣∂ Q̃ξ

∂τ

∣∣∣∣
2

+ 1

ε2
f (Q̃ξ )

]
ds dτ ≤ π

2
| ln ε| + C.

Comparing with (20), we note that r(s), sin θ(t) → 1 uniformly on �̃3, and hence,
we may conclude that

ηÊ(Q̃ξ ; �̃3/2) ≤ π

2
η| ln ε| + O(η).

In conclusion, the only nontrivial contribution to the energy at order 1
η
comes from

Region 1, and, extending the definition of Qξ by reflection to the entire cross section
�0 = {r > 1, 0 < θ < π}, we obtain the desired upper bound,

Ẽ(Qξ ;�0) ≤ 1

η

∫ π

0
G∞(n(·, θ, 0)) sin θ dθ + π

2
| ln ε| + O(1).

Defining Qη via (15), we complete the proof of the proposition. ��

4 Proving Theorem 1.5 and Proposition 1.6

Proof of Theorem 1.5 For any measurable U⊂S
2 we have by Proposition 2.1

Eξ (Qξ ;� ∩ C(U )) ≥ 1

η

∫
U
Dλ(Qb(ω)) dH2(ω) + o

(
1

η

)
. (21)

On the other hand, using (21) and the upper bound proved in Sect. 3 we obtain

Eξ (Qξ ;� ∩ C(U )) = Eξ (Qξ ;�) − Eξ (Qξ ;� ∩ C(S2 \U ))

≤
∫
S2

Dλ(Qb(ω)) dH2(ω)
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−
∫
S2\U

Dλ(Qb(ω)) dH2(ω) + o

(
1

η

)

=
∫
U
Dλ(Qb(ω)) dH2(ω) + o

(
1

η

)
.

��
Proof of Proposition 1.6 Let Q = n ⊗ n − 1

3 I with n ∈ N , for which Eξ (Q) < ∞.
Then

ηEξ (Q) =
∫

�

[
η|∇n|2 + 1

η
g(n)

]
dx < ∞.

In particular, by Fubini’s theorem, for almost every ω ∈ S
2 and η, ξ fixed, we have

∫ ∞

1

[
η

∣∣∣∣∂n∂r
∣∣∣∣
2

+ 1

η
g(n)

]
r2dr < ∞,

and hence on almost every ray, n(r, ω) → ±e3 as r → ∞. Again by Fubini’s theorem,
n(r, ·) ∈ H1(S2;S2) for almost every r > 1, and so either n(r, ω) → e3 for almost all
ω ∈ S

2 or n(r, ω) → −e3 for almost all ω ∈ S
2. Without loss, we assume the former,

n(r, ω) → e3 a.e. In particular, after the familiar change of variables r = 1 + ηt ,
n̂(t, ω) := n(r, ω) is an admissible function for the minimization problem d+∞ for a.e.
ω, and so,

ηEξ (Q) =
∫
S2

∫ ∞

0

[∣∣∣∣∂ n̂∂r
∣∣∣∣
2

+ η|∇ωn̂|2 + g(n)

]
(1 + ηt)2 dt dH2(ω)

≥
∫
S2

F∞(n̂(·, ω)) dH2(ω)

≥
∫
S2
d+∞(ω) dH2(ω)

=
∫ 2π

0

∫ π

0
κ(1 − cos θ) sin θdθ dϕ = 8πκ,

by Lemma 3.4.
On the other hand, we note that Dλ ≤ D∞ for any λ ∈ (0,∞], since the domain

of Fλ contains the domain of F∞, and on the latter both functionals coincide. Thus,
for any λ ∈ (0,∞], by (7),

lim
ξ→0
η
ξ
→λ

(
min
H

ηEξ

)
≤ lim

ξ→0
η
ξ
→∞

(
min
H

ηEξ

)
= 2πκ,

and the proposition follows. ��
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