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Abstract In this paper, we develop and study a stochastic predator–prey model with
stage structure for predator and Holling type II functional response. First of all, by
constructing a suitable stochasticLyapunov function,we establish sufficient conditions
for the existence and uniqueness of an ergodic stationary distribution of the positive
solutions to the model. Then, we obtain sufficient conditions for extinction of the
predator populations in two cases, that is, the first case is that the prey population
survival and the predator populations extinction; the second case is that all the prey
and predator populations extinction. The existence of a stationary distribution implies
stochastic weak stability. Numerical simulations are carried out to demonstrate the
analytical results.
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1 Introduction

Classical predator–prey models typically assume that individual predators have the
same capability to hunt prey. However, natural populations are more complex; while
the mature individuals can hunt for food by themselves, the immature individuals are
raised by their mature parents, and the rate at which they attack prey can be ignored.
Particularly, we have in mind mammalian populations and some amphibious animals,
which exhibit these two stages. Recently, predator–prey models with stage structure
for the predator have received much attention and many authors have studied the
dynamical behaviour of these models (Freeman and Wu 1991; Wang and Chen 1997;
Wang 1997; Wang et al. 2001; Xiao and Chen 2004; Deng et al. 2014; Al-Omari
2015; Xu and Ma 2008; Georgescu et al. 2010). These models typically provide a
richer dynamics, leading to better understanding of the interactions within the biolog-
ical system while they also incorporate important physiological parameters, such as
different death rates for immature and mature predators.

Moreover, all predator–prey models use some interaction functions especially
Holling interaction functions between predators and preys based on reasonable biolog-
ical assumptions because these functions do not allow the predators to grow arbitrarily
fast, if prey is abundant (Sahoo and Poria 2014). Holling type II functional response
captures density-dependent growth rate that is a concave function, leading to a sat-
uration of prey consumption, and it measures the average feeding rate of a predator
when it spends some time finding and processing the prey (Skalski and Gilliam 2001).
The functional form f (x) = bx

1+mx denotes the Holling type II functional response,
b being the search rate and m being the search rate multiplied by the handling time.
This type of functional response has been extensively used in biological systems, such
as chemostat model (Monod 1950; Novick and Szilard 1950) and epidemic model
(Zhang and Teng 2008; Xiang et al. 2009).

A predator–prey model with stage structure for predator and Holling type II func-
tional response was developed by Wang and Chen (1997) and takes the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x ′ = x(r − ax) − bx

1 + mx
z,

y′ = kbx

1 + mx
z − (D + d1)y,

z′ = Dy − d2z,

(1.1)

where x = x(t) denotes the density of prey at time t and y = y(t) and z = z(t)
denote the densities of immature and mature predators at time t , respectively. The
parameters r , a, b, m, k, D, d1 and d2 are positive constants: r represents the intrinsic
growth rate of the prey, a denotes the intraspecific competition rate of the prey, k
(k ≤ 1 due to its biological significance) is the coefficient in converting prey into a
new immature predator, d1 and d2 represent the death rates of immature and mature
predators, respectively, and D denotes the rate at which immature predators become
mature predators. By defining the basic reproduction number of the predator
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R0 = kbDr

d2(a + mr)(D + d1)

as being the average number of offsprings produced by amature predator in its lifetime
when introduced in a prey-only environment with prey at carrying capacity, they have
shown that if R0 ≤ 1, then the prey-only equilibrium

( r
a , 0, 0

)
is globally asymptot-

ically stable on (0,∞)3, while if R0 > 1, then the prey-only equilibrium
( r
a , 0, 0

)

is unstable; there is a unique positive equilibrium. These results can be found in the
works (Georgescu and Hsieh 2006; Georgescu and Moroşanu 2006).

However, as a matter of fact, parameters involved in the system are not absolute
constants, and they always fluctuate around some average values due to fluctuations in
the environment (see e.g. Gard 1984, 1986), such as earthquakes, epidemics, tsunami,
malaria and dengue fever. These events are so severe and strong that they can change
the population size greatly in a short time. So these sudden events can be described as
noise. Introducing environmental noise into the underlying population systems may
be a good approach to describe these phenomena. May (2001) has revealed the fact
that due to environmental fluctuations, the birth rates, death rates, carrying capacities,
competition coefficients and other parameters involved in the system exhibit random
fluctuations to a greater or lesser extent, and as a result, the equilibrium population
distribution cannot attain a steady value, but fluctuates randomly around some average
value (Ji and Jiang 2011). Hence, in order to fit to the reality better, many authors
have introduced stochastic perturbations into deterministic models to reveal the effect
of environmental variability on the population dynamics in mathematical biology
(Zhang et al. 2014; Zhang and Jiang 2015; Liu and Wang 2011). By considering the
effect of randomly fluctuating environment, Zhang et al. (2014) considered a predator–
prey model with disease in the prey and discussed the asymptotic behaviour of the
solution. Moreover, they investigated whether there exists a stationary distribution for
the model and if it has the ergodic property. In Zhang and Jiang (2015), Zhang and
Jiang discussed a stochastic Lotka–Volterra model with two predators competing for
one prey. They obtained sufficient conditions guaranteeing the principle of coexistence
for this perturbed model via Markov semigroup theory. Furthermore, they proved that
the densities of the distributions of the solutions can converge in L1 to an invariant
density or can converge weakly to a singular measure under appropriate conditions.
Liu and Wang (2011) investigated a stochastic stage-structured predator–prey model
with Beddington–DeAngelis functional response. They gave sufficient conditions for
global asymptotic stability of the system. For this reason, we study the dynamics of a
stochastic predator–prey model with stage structure for predator and Holling type II
functional response.

Since the intrinsic growth rate r and death rates di (i = 1, 2) are most influential
in determining the fate of predators and preys, the literature has mainly focused on
studying the effect of random perturbations on these parameters (Beddington and
May 1977; Pang et al. 2008; Braumann 2008; Li and Mao 2009; Liu et al. 2011).
Consequently, we follow the approach proposed by Liu et al. (2016) and perturb the
parameters r , −d1 and −d2 by

r → r + σ1 Ḃ1(t), − d1 → −d1 + σ2 Ḃ2(t), − d2 → −d2 + σ3 Ḃ3(t).
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So

rdt → rdt + σ1dB1(t), − d1dt → − d1dt + σ2dB2(t),

− d3dt → − d3dt + σ3dB3(t),

where B1(t) B2(t), B3(t) are mutually independent standard Brownian motions with
B1(0) = B2(0) = B3(0) = 0, σ 2

1 , σ 2
2 , σ 2

3 are the intensities of the environmental
white noise. Then, system (1.1) becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx =
[

x(r − ax) − bx

1 + mx
z

]

dt + σ1xdB1(t),

dy =
[

kbx

1 + mx
z − (D + d1)y

]

dt + σ2ydB2(t),

dz = [Dy − d2z]dt + σ3zdB3(t).

(1.2)

Our paper is organized as follows: In Sect. 2, we give some known results, definitions
and lemmas which will be used in the following analysis. In Sect. 3, we prove the
existence and uniqueness of the global positive solution of system (1.2). In Sect. 4, we
establish sufficient conditions for the existence and uniqueness of an ergodic stationary
distribution of the solutions to system (1.2). In Sect. 5, we obtain sufficient conditions
for extinction of the predator populations in two cases, that is, the first case is that the
prey population survival and the predator populations extinction; the second case is
that all the prey and predator populations extinction. In Sect. 6, numerical simulations
are introduced to illustrate the theoretical results. Finally, some concluding remarks
and future directions are presented to end this paper. In order to make our proofs easier
to follow, we present some auxiliary results in Appendixes A, B and C.

Throughout this paper, unless otherwise specified, let (�,F , {Ft }t≥0,P) be a com-
plete probability space with a filtration {Ft }t≥0 satisfying the usual conditions (i.e. it
is increasing and right continuous, while F0 contains all P-null sets) and we also let
Bi (t) be mutually independent standard Brownian motions defined on the complete
probability space, i = 1, 2, 3. Define

R
d+ = {x = (x1, . . . , xd) ∈ R

d : xi > 0, 1 ≤ i ≤ d} and R
d
+

= {x = (x1, . . . , xd) ∈ R
d : xi ≥ 0, 1 ≤ i ≤ d}.

2 Preliminaries

In this section, we shall present some known results, definitions and lemmas which
will be used later. Firstly, we give some basic theory of stochastic differential equations
(see Mao 1997 for a detailed introduction).

Consider the d-dimensionalMarkov process described by the stochastic differential
equation

d(X (t)) = f (X (t))dt + g(X (t))dB(t) for t ≥ t0, (2.1)
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with the initial value X (0) = X0 ∈ R
d , where B(t) denotes a d-dimensional stan-

dard Brownian motion defined on the complete probability space (�,F , {Ft }t≥0,P).
Denote by C2(Rd;R+) the family of all nonnegative functions V (X) defined on R

d

such that they are continuously twice differentiable in X . The differential operator L
of Eq. (2.1) is defined by (Mao 1997)

L =
d∑

i=1

fi (X, t)
∂

∂Xi
+ 1

2

d∑

i, j=1

[
gT(X, t)g(X, t)

]

i j

∂2

∂Xi∂X j
.

If L acts on a function V ∈ C2(Rd;R+), then

L(V (X)) = VX (X) f (X) + 1

2
trace

[
gT(X)VXX (X)g(X)

]
,

where VX =
(

∂V
∂X1

, . . . , ∂V
∂Xd

)
, VXX =

(
∂2V

∂Xi ∂X j

)

d×d
. According to Itô’s formula

(Mao 1997), if X (t) ∈ R
d , then

d(V (X (t))) = L(V (X (t)))dt + VX (X (t))g(X (t))dB(t).

Definition 2.1 (Has’minskii 1980) The transition probability function P(s, x, t, A)

is said to be time homogeneous (and the corresponding Markov process is called time
homogeneous) if the function P(s, x, t + s, A) is independent of s, where 0 ≤ s ≤ t ,
x ∈ R

d and A ∈ B and B denotes the σ -algebra of Borel sets in R
d .

Let X (t) be a regular time-homogeneous Markov process in R
d described by the

stochastic differential equation

d(X (t)) = f (X (t))dt + g(X (t))dB(t).

The diffusion matrix of the process X (t) is defined as follows

A(x) = (ai j (x)), ai j (x) = gi (x)g j (x).

Lemma 2.1 (Has’minskii 1980) The Markov process X (t) has a unique ergodic sta-
tionary distribution μ(·) if there exists a bounded open domain U ⊂ R

d with regular
boundary �, having the following properties:

A1 The diffusion matrix A(x) is strictly positive definite for all x ∈ U.
A2 There exists a nonnegative C2-function V such that L(V ) is negative onRd \U.
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3 Existence and Uniqueness of the Global Positive Solution

Since x , y, z in system (1.2) denote population densities, they should be nonnegative.
So for further study, we should first give some condition under which system (1.2) has
a unique global positive solution. To this end, we establish the following theorem.

Theorem 3.1 For any initial value (x(0), y(0), z(0)) ∈ R
3+, there exists a unique

solution (x(t), y(t), z(t)) of system (1.2) on t ≥ 0 and the solution will remain in R3+
with probability one, namely (x(t), y(t), z(t)) ∈ R

3+ for all t ≥ 0 almost surely (a.s.).

Proof Since the coefficients of system (1.2) satisfy the local Lipschitz condition, then
for any initial value (x(0), y(0), z(0)) ∈ R

3+, there exists a unique local solution
(x(t), y(t), z(t)) ∈ R

3+ on t ∈ [0, τe) a.s., where τe denotes the explosion time (Mao
1997). Now we shall prove that this solution is global, i.e. to prove that τe = ∞ a.s.
To this end, let n0 ≥ 1 be sufficiently large such that x(0), y(0) and z(0) all lie within

the interval
[

1
n0

, n0
]
. For each integer n ≥ n0, define the stopping time as (Mao 1997)

	


τn = inf

{

t ∈ [0, τe) : min{x(t), y(t), z(t)} ≤ 1

n
or max{x(t), y(t), z(t)} ≥ n

}

,

where throughout this paper, we set inf ∅ = ∞ (as usual ∅ denotes the empty set).
Clearly, τn is increasing as n → ∞. Set τ∞ = limn→∞ τn , whence τ∞ ≤ τe a.s. If
we can verify that τ∞ = ∞ a.s., then τe = ∞ and (x(t), y(t), z(t)) ∈ R

3+ a.s. for all
t ≥ 0. That is to say, to complete the proof all we need to prove is that τ∞ = ∞ a.s.
If this assertion is not true, then there exists a pair of constants T > 0 and ε ∈ (0, 1)
such that

P{τ∞ ≤ T } > ε.

Hence, there exists an integer n1 ≥ n0 such that

P{τn ≤ T } ≥ ε, ∀n ≥ n1. (3.1)

Define a C2-function V : R3+ → R+ by

V (x, y, z) =
(

x − c − c ln
x

c

)

+ 1

k
(y − 1 − ln y) + (z − 1 − ln z),

where c is a positive constant to be determined later. The nonnegativity of this function
can be seen from

u − 1 − ln u ≥ 0, ∀u > 0.

Applying Itô’s formula to V , we have

d(V ) = L(V )dt + σ1(x − c)dB1(t) + σ2

k
(y − 1)dB2(t) + σ3(z − 1)dB3(t),
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where, according to the definition of the operator L ,

L(V ) = (x − c)

[

r − ax − bz

1 + mx

]

+ cσ 2
1

2
+ 1

k

(

1 − 1

y

)[
kbxz

1 + mx
− (D + d1)y

]

+ σ 2
2

2k
+
(

1 − 1

z

)

[Dy − d2z] + σ 2
3

2

= − ax2 + (ac + r)x − bxz

y(1 + mx)
− Dy

z

+ Dy − D + d1
k

y + cbz

1 + mx
− d2z − cr + cσ 2

1

2
+ 1

k

(

D + d1 + σ 2
2

2

)

+ d2 + σ 2
3

2

≤ (−ax2 + (ac + r)x) + (k − 1)D

k
y − d1

k
y

+ cbz − d2z + cσ 2
1

2
+ 1

k

(

D + d1 + σ 2
2

2

)

+ d2 + σ 2
3

2

≤ (−ax2 + (ac + r)x) + (k − 1)D

k
y + cbz − d2z + cσ 2

1

2

+ 1

k

(

D + d1 + σ 2
2

2

)

+ d2 + σ 2
3

2

≤ (ac + r)2

4a
+ (cb − d2)z + cσ 2

1

2
+ 1

k

(

D + d1 + σ 2
2

2

)

+ d2 + σ 2
3

2
,

where in the third inequality, we have used the fact that 0 < k ≤ 1. Choose c = d2
b

such that cb − d2 = 0, then we have

L(V ) ≤ (ac + r)2

4a
+ cσ 2

1

2
+ 1

k

(

D + d1 + σ 2
2

2

)

+ d2 + σ 2
3

2
≤ K ,

where K is a positive constant. Hence, one can obtain that

d(V (x, y, z)) ≤ Kdt+σ1(x−c)dB1(t)+ σ2

k
(y−1)dB2(t)+σ3(z−1)dB3(t). (3.2)

Integrating both sides of (3.2) from 0 to τn ∧ T = min{τn, T } yields

V (x(τn ∧ T ), y(τn ∧ T ), z(τn ∧ T ))

≤ V (x(0), y(0), z(0))

+ K (τn ∧ T ) + σ1

∫ τn∧T

0
x(s)dB1(s) + σ2

k

∫ τn∧T

0
y(s)dB2(s)

+ σ3

∫ τn∧T

0
z(s)dB3(s)
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− σ1cB1(τn ∧ T ) − σ2

k
B2(τn ∧ T ) − σ3B3(τn ∧ T )

:= V (x(0), y(0), z(0)) + K (τn ∧ T ) + M1(τn ∧ T ) + M2(τn ∧ T ) + M3(τn ∧ T )

− σ1cB1(τn ∧ T ) − σ2

k
B2(τn ∧ T ) − σ3B3(τn ∧ T ), (3.3)

where

M1(τn ∧ T )

:= σ1

∫ τn∧T

0
x(s)dB1(s), M2(τn ∧ T )

:= σ2

k

∫ τn∧T

0
y(s)dB2(s), M3(τn ∧ T )

:= σ3

∫ τn∧T

0
z(s)dB3(s)

are three local martingales.
Since the solution (x(t), y(t), z(t)) of system (1.2) isFt -adapted, taking the expec-

tation on both sides of (3.3), we have

EV (x(τn ∧ T ), y(τn ∧ T ), z(τn ∧ T )) ≤ V (x(0), y(0), z(0)) + KE(τn ∧ T ).

Therefore,

EV (x(τn ∧ T ), y(τn ∧ T ), z(τn ∧ T )) ≤ V (x(0), y(0), z(0)) + KT . (3.4)

Let �n = {ω ∈ � : τn = τn(ω) ≤ T } for n ≥ n1 and by (3.1), we have P(�n) ≥ ε.
Note that for every ω ∈ �n , there is x(τn, ω) or y(τn, ω) or z(τn, ω) equals either n
or 1

n . Hence, V (x(τn, ω), y(τn, ω), z(τn, ω)) is no less than either

(

n − c − c ln
n

c

)

∧
(

n − 1 − ln n

)

or

(
1

n
− c − c ln

1

nc
= 1

n
− c + c ln(nc)

)

∧
(
1

n
− 1 − ln

1

n
= 1

n
− 1 + ln n

)

.

Consequently, one can get that

V (x(τn, ω), y(τn, ω), z(τn, ω)) ≥
(

n − c − c ln
n

c

)

∧
(

n − 1 − ln n

)

∧
(
1

n
− c + c ln(nc)

)

∧
(
1

n
− 1 + ln n

)

.

It follows from (3.4) that
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V (x(0), y(0), z(0)) + KT ≥ E[I�n(ω)V (x(τn, ω), y(τn, ω), z(τn, ω))]

≥ ε

(

n − c − c ln
n

c

)

∧
(

n − 1 − ln n

)

∧
(
1

n
− c + c ln(nc)

)

∧
(
1

n
− 1 + ln n

)

,

where I�n denotes the indicator function of �n . Letting n → ∞, then one can see
that

∞ > V (x(0), y(0), z(0)) + KT = ∞,

which leads to the contradiction and so we must have τ∞ = ∞ a.s. This completes
the proof.

4 Existence of Ergodic Stationary Distribution

In this section, we shall establish sufficient conditions for the existence of a unique
ergodic stationary distribution. We first give two lemmas which will be used later.

Lemma 4.1 If l1, l2, l3 > 0, then

l1 + l2 + l3
3

≥ 3
√
l1l2l3, (4.1)

and the equality holds if and only if l1 = l2 = l3.

Proof Obviously, (4.1) is equivalent to the following inequality 	


l31 + l32 + l33 ≥ 3l1l2l3.

Since

l31 + l32 + l33 − 3l1l2l3
= (l1 + l2)

3 − 3(l21 l2 + l1l
2
2) + l33 − 3l1l2l3

= (l1 + l2)
3 + l33 − 3(l21l2 + l1l

2
2) − 3l1l2l3

= (l1 + l2 + l3)
[
(l1 + l2)

2 − (l1 + l2)l3 + l23

]
− 3l1l2(l1 + l2 + l3)

= (l1 + l2 + l3)(l
2
1 + l22 + l23 − l2l3 − l1l3 − l1l2)

= 1

2
(l1 + l2 + l3)

[
(l2 − l3)

2 + (l3 − l1)
2 + (l1 − l2)

2
]

≥ 0,

then the assertion in Lemma 4.1 is true. This completes the proof.

Lemma 4.2 For any ξ > 0, the following inequality holds

ξ + 2

3
ξ(1 − ξ) ≤ ξ

1
3 .
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Proof Since 	


ξ + 2

3
ξ(1 − ξ) − ξ

1
3

= ξ
1
3

[

ξ
2
3 − 1 + 2

3
ξ

2
3 (1 − ξ)

]

= ξ
1
3

(
ξ

1
3 − 1

) [

ξ
1
3 + 1 − 2

3
ξ

2
3

(
ξ

1
3 + ξ

2
3 + 1

) ]

= ξ
1
3

(
ξ

1
3 − 1

) [

ξ
1
3 + 1 − 2

3
ξ − 2

3
ξ

4
3 − 2

3
ξ

2
3

]

= 1

3
ξ

1
3

(
ξ

1
3 − 1

) (
−2ξ

4
3 − 2ξ − 2ξ

2
3 + 3ξ

1
3 + 3

)

= 1

3
ξ

1
3

(
ξ

1
3 − 1

) [

− 2(ξ − 1) − 2ξ
1
3 (ξ − 1) − 2ξ

2
3 + ξ

1
3 + 1

]

= −2

3
ξ

1
3

(
ξ

1
3 − 1

) (
1 + ξ

1
3

)
(ξ − 1) − 1

3
ξ

1
3

(
ξ

1
3 − 1

)2 (
2ξ

1
3 + 1

)

≤ 0,

then the assertion in Lemma 4.2 is true. This completes the proof.

Theorem 4.1 Assume that r >
σ 2
1
2 and RS

0 = kbDr

(a+mr)

(

D+d1+ σ22
2

)(

d2+ σ23
2

)

(

1 − σ 2
1
2r

)3

> 1, then for any initial value (x(0), y(0), z(0)) ∈ R
3+, system (1.2) has a unique

ergodic stationary distribution μ(·).
Proof In order to prove Theorem 4.1, it suffices to validate conditions A1 and A2 in
Lemma 2.1. Now we prove the condition A1. The diffusion matrix of system (1.2) is
given by 	


A =
⎛

⎝
σ 2
1 x

2 0 0
0 σ 2

2 y
2 0

0 0 σ 2
3 z

2

⎞

⎠ .

Obviously, the matrix A is positive definite for any compact subset of R3+; then, the
condition A1 in Lemma 2.1 is satisfied.

Now we verify Assumption A2 by constructing a C2-function V (x, y, z) and an
open bounded set U such that L(V ) ≤ −1 on R

3+ \U . Define

V1(x, y, z) = − ln y + c1x − c2 ln z,

V2(x) = 2a

3r

x

r
− ln x

r
,

V3(x, y, z) = V1(x, y, z) + 3
3

√

c1c2kbDr2

ma
V2(x),
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V4(x, y, z) = V3(x, y, z) + 3b

d2r
3

√

c1c2kbDr2

ma
z + 3bD

d2r(D + d1)
3

√

c1c2kbDr2

ma
y,

V5(x, y, z) = 1

θ + 1

(

x + y

k
+ D + d1

2Dk
z

)θ+1

,

where c1 and c2 are positive constants to be determined later and θ > 0 is a sufficiently

small constant satisfying 3θ θ < min
{

d1
4σmax

, d2
2σmax

}
and σmax := σ 2

1 ∨ σ 2
2 ∨ σ 2

3 =
max

{
σ 2
1 , σ 2

2 , σ 2
3

}
. Moreover, let

Ṽ (x, y, z) = MV4(x, y, z) + V5(x, y, z) − ln y,

where M is a positive constant satisfying the following condition

− Mλ + B + D + d1 + σ 2
2

2
= −2 (4.2)

and

λ :=
(

D + d1 + σ 2
2

2

)(
RS
0 − 1

)
> 0.

Note that Ṽ (x, y, z) is not only continuous, but also tends to +∞ as (x, y, z)
approaches the boundary of R3+ and as ‖(x, y, z)‖ → ∞, where ‖ · ‖ denotes the
Euclidean norm of a point in R

3+. Therefore, it must be lower bounded and achieve
this lower bound at a point (x0, y0, z0) in the interior of R3+. Then, we define a non-
negative C2-function V : R3+ → R+ ∪ {0} as

V (x, y, z) = Ṽ (x, y, z) − Ṽ (x0, y0, z0) = MV4(x, y, z)

+ V5(x, y, z) − ln y − Ṽ (x0, y0, z0).

It is shown in Appendix B that

L(V (x, y, z)) ≤ −1, ∀(x, y, z) ∈ R
3+ \U,

where U is the bounded open set defined as

U =
{

(x, y, z) ∈ R
3+ : ε < x <

1

ε
, ε3 < y <

1

ε3
, ε < z <

1

ε

}

,

and 0 < ε < 1 is a sufficiently small number. Consequently, condition A2 in Lemma
2.1 is satisfied and system (1.2) has a unique ergodic stationary distribution μ(·). This
completes the proof.
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5 Extinction of the Predator Populations

In this section, we shall establish sufficient conditions for extinction of the predator
populations in two cases, that is, the first case is that the prey population survival and
the predator populations extinction; the second case is that all the prey and predator
populations extinction. We establish the following two theorems.

Theorem 5.1 Let (x(t), y(t), z(t)) be the solution of system (1.2) with any initial

value (x(0), y(0), z(0)) ∈ R
3+. If r >

σ 2
1
2 , then for almost ω ∈ �, we have

lim sup
t→∞

1

t
ln

(
D

d2(D + d1)
y(t) +

√
R0

d2
z(t)

)

≤ υ a.s.,

where υ = min{D + d1, d2}(√R0 − 1)I{√R0≤1} + max{D + d1, d2}(√R0 −
1)I{√R0>1}+ kbDσ1

(a+mr)(D+d1)

(
r

2R0

) 1
2 −
(
2
(
σ−2
2 + σ−2

3

))−1
and R0 = kbDr

d2(a+mr)(D+d1)
.

Particularly, if υ < 0, then the predator populations y and z die out exponentially
with probability one, i.e.

lim
t→∞ y(t) = 0, lim

t→∞ z(t) = 0 a.s.

Furthermore, the distribution of x(t) converges weakly a.s. to the measure which has
the density

π(x) = Qσ−2
1 x

−2+ 2r
σ21 e

− 2a
σ21

x
, x ∈ (0,∞),

where Q =
[

σ−2
1

(
σ 2
1
2a

) 2r
σ21

−1

�

(
2r
σ 2
1

− 1

)]−1

is a constant satisfying
∫∞
0 π(x)dx =

1. This statement means that if μt (x) denotes the probability density of the prey pop-
ulation at time t, then for any (sufficiently smooth) function f (x),

lim
t→∞

∫

R+
f (x)μt (x)dx =

∫

R+
f (x)π(x)dx . (5.1)

Proof Since for any initial value (x(0), y(0), z(0)) ∈ R
3+, the solution of system (1.2)

is positive, and we obtain 	


d(x) ≤ x(r − ax)dt + σ1xdB1(t).

Consider the following auxiliary 1-dimensional stochastic differential equation

d(X) = X (r − aX)dt + σ1XdB1(t), (5.2)
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with the initial value X (0) = x(0) > 0.
Setting

g(x) = x(r − ax), σ (x) = σ1x, x ∈ (0,∞),

we compute that

∫
g(u)

σ 2(u)
du = 1

σ 2
1

∫ (
r

u
− a

)

du = 1

σ 2
1

(r ln x − ax) + Q.

Hence,

e
∫ g(u)

σ2(u)
du = eQx

r
σ21 e

− a
σ21

x
.

Obviously, we obtain

∫ ∞

0

1

σ 2(x)
e
∫ x
1

2g(u)

σ2(u)
du
dx = e

2a
σ21

σ 2
1

∫ ∞

0
x−2x

2r
σ21 e

− 2a
σ21

x
dx < ∞. (5.3)

Therefore, the condition of Theorem 1.16 in Kutoyants (2003) follows clearly from
(5.3). So system (5.2) has the ergodic property, and the invariant density is given by

π(x) = Qσ−2
1 x

−2+ 2r
σ21 e

− 2a
σ21

x
, x ∈ (0,∞),

where Q =
[

σ−2
1

(
σ 2
1
2a

) 2r
σ21

−1

�

(
2r
σ 2
1

− 1

)]−1

is a constant satisfying
∫∞
0 π(x)dx =

1.
Next, we will prove statement (5.1). In order to prove statement (5.1), we only need

to validate conditions A1 and A2 in Lemma 2.1. We first prove the condition A1. The
diffusion matrix A of system (5.2) is positive definite for any compact subset of R+,
so the condition A1 in Lemma 2.1 holds.

Now we prove the condition A2. To this end, let us define aC2-function V̄ : R+ →
R as

V̄ (X) = M̃(− ln X + X) + X,

where M̃ is a positive constant satisfying the following condition

M̃ = 2

r − σ 2
1
2

. (5.4)

Note that V̄ (X) is not only continuous, but also tends to +∞ as X approaches the
boundary of R+ and as |X | → ∞, where | · | denotes the modulus of a point in R+.

123



1164 J Nonlinear Sci (2018) 28:1151–1187

Thus, it must be lower bounded and achieve this lower bound at a point X0 in the
interior of R+. Then, we can define a nonnegative C2-function V : R+ → R+ ∪ {0}
as

V (X) = V̄ (X) − V̄ (X0) = M̃(− ln X + X) + X − V̄ (X0). (5.5)

Applying Itô’s formula to (5.5) leads to

L(V ) = −M̃

(

r − σ 2
1

2

)

+ M̃aX + r X − aX2.

Define a bounded open set Uε as

Uε =
{

X ∈ R+ : ε < X <
1

ε

}

,

where 0 < ε < 1 is a sufficiently small number. In the set R+ \Uε , we can choose ε

sufficiently small such that the following conditions hold

0 < ε ≤ 1

M̃a + r
, (5.6)

− a

2ε2
+ sup

X∈R+

{

− a

2
X2 + M̃aX + r X

}

≤ −1. (5.7)

For convenience, we can divide Uc
ε = R+ \Uε into two domains,

U 1
ε = {X ∈ R+ : 0 < X ≤ ε}, U 2

ε =
{

X ∈ R+ : X ≥ 1

ε

}

.

Obviously, Uc
ε = U 1

ε ∪ U 2
ε . Next, we prove that L(V (X)) ≤ −1 for any X ∈ Uc

ε ,
which is equivalent to proving it on the above two domains, respectively.

Case 1 For any X ∈ U 1
ε , we have

L(V ) ≤ −M̃

(

r− σ 2
1

2

)

+ M̃aX+r X ≤ −M̃

(

r− σ 2
1

2

)

+(M̃a+r)ε ≤ −2+1 = −1,

(5.8)
which follows from (5.4) and (5.6). Therefore,

L(V ) ≤ −1 for any X ∈ U 1
ε .

Case 2 For any X ∈ U 1
ε , we obtain

L(V ) ≤ −aX2 + M̃aX + r X

= −a

2
X2 − a

2
X2 + M̃aX + r X

≤ − a

2
X2 + sup

X∈R+

{

− a

2
X2 + M̃aX + r X

}
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≤ − a

2ε2
+ sup

X∈R+

{

− a

2
X2 + M̃aX + r X

}

≤ −1, (5.9)

which follows from (5.7). Hence,

L(V ) ≤ −1 for any X ∈ U 2
ε .

Clearly, from (5.8) and (5.9), we get that for a sufficiently small ε,

L(V (X)) ≤ −1, ∀X ∈ R+ \Uε .

Consequently, the condition A2 in Lemma 2.1 holds and system (5.2) has a unique
ergodic stationary distribution μt (x). In view of Theorem 4.3 of Khasminskii (2012),
p.117, we can immediately obtain statement (5.1).

Let X (t) be the solution of Eq. (5.2) with the initial value X (0) = x(0) > 0; then
by the comparison theorem of 1-dimensional stochastic differential equation (Peng
and Zhu 2006), we have x(t) ≤ X (t) for any t ≥ 0 a.s.

Moreover, let

√
R0(ω1, ω2) = (ω1, ω2)M0,

where (ω1, ω2) =
(

D
d2

,
√
R0

)
and M0 =

⎛

⎜
⎝

0
kbr

(a + mr)(D + d1)
D

d2
0

⎞

⎟
⎠.

Define a C2-function V : R2+ → R+ as

V (y, z) = α1y + α2z,

where α1 = ω1
D+d1

, α2 = ω2
d2
. Making use of Itô’s formula to differentiate ln V leads

to

d(ln V ) = L(ln V )dt + 1

V
(α1σ2ydB2(t) + α2σ3zdB3(t)), (5.10)

where

L(ln V ) = α1

V

[
kbxz

1 + mx
− (D + d1)y

]

+ α2

V
[Dy − d2z] − α2

1σ
2
2 y

2

2V 2 − α2
2σ

2
3 z

2

2V 2 .

In addition, one can get that

V 2 =
(

α1σ2y
1

σ2
+ α2σ3z

1

σ3

)2

≤
(

α2
1σ

2
2 y

2 + α2
2σ

2
3 z

2
)(

1

σ 2
2

+ 1

σ 2
3

)

(5.11)
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and

1

V

{

α1

[
kbxz

1 + mx
− (D + d1)y

]

+ α2[Dy − d2z]
}

= α1z

V

(
kbx

1 + mx
− kb r

a

1 + m r
a

)

+ 1

V

{

α1

[
kbr

a + mr
z − (D + d1)y

]

+ α2[Dy − d2z]
}

= α1kbz

V

x − r
a

(1 + mx)(1 + m r
a )

+ 1

V

{
ω1

D + d1

[
kbr

a + mr
z − (D + d1)y

]

+ ω2

d2
[Dy − d2z]

}

≤ α1kbz

V

X − r
a

1 + m r
a

+ 1

V

{
ω1

D + d1

[
kbr

a + mr
z − (D + d1)y

]

+ ω2

d2
[Dy − d2z]

}

≤ α1

α2
· kab

a + mr

∣
∣
∣
∣X − r

a

∣
∣
∣
∣+

1

V
(ω1, ω2)(M0(y, z)

T − (y, z)T )

= α1

α2
· kab

a + mr

∣
∣
∣
∣X − r

a

∣
∣
∣
∣+

1

V
(
√
R0 − 1)(ω1y + ω2z)

= α1

α2
· kab

a + mr

∣
∣
∣
∣X − r

a

∣
∣
∣
∣+

1

V
(
√
R0 − 1)[(D + d1)α1y + d2α2z]

≤ min{D + d1, d2}(
√
R0 − 1)I{√R0≤1} + max{D + d1, d2}(

√
R0 − 1)I{√R0>1}

+ α1

α2
· kab

a + mr

∣
∣
∣
∣X − r

a

∣
∣
∣
∣. (5.12)

In view of (5.11) and (5.12), we have

L(ln V ) ≤ min{D + d1, d2}(
√
R0 − 1)I{√R0≤1}

+ max{D + d1, d2}(
√
R0 − 1)I{√R0>1} + α1

α2
· kab

a + mr

∣
∣
∣
∣X − r

a

∣
∣
∣
∣

−
(
2
(
σ−2
2 + σ−2

3

))−1
.

It follows from (5.10) that

d(ln V ) ≤
[

min{D + d1, d2}(
√
R0 − 1)I{√R0≤1}

+ max{D + d1, d2}(
√
R0 − 1)I{√R0>1} + α1

α2
· kab

a + mr

∣
∣
∣
∣X − r

a

∣
∣
∣
∣

−
(
2
(
σ−2
2 + σ−2

3

))−1
]

dt
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+ α1σ2y

V
dB2(t) + α2σ3z

V
dB3(t). (5.13)

Integrating (5.13) from 0 to t and then dividing by t on both sides, one obtains

ln V (t)

t
≤ ln V (0)

t
+ min{D + d1, d2}(

√
R0 − 1)I{√R0≤1}

+max{D + d1, d2}(
√
R0 − 1)I{√R0>1}

+ α1kab

α2(a + mr)t

∫ t

0

∣
∣
∣
∣X (s) − r

a

∣
∣
∣
∣ds −

(
2
(
σ−2
2 + σ−2

3

))−1

+ 1

t

∫ t

0

α1σ2y(s)

V (s)
dB2(s) + 1

t

∫ t

0

α2σ3z(s)

V (s)
dB3(s)

= ln V (0)

t

+min{D + d1, d2}(
√
R0 − 1)I{√R0≤1}

+max{D + d1, d2}(
√
R0 − 1)I{√R0>1}

+ α1kab

α2(a + mr)t

∫ t

0

∣
∣
∣
∣X (s) − r

a

∣
∣
∣
∣ds −

(
2
(
σ−2
2 + σ−2

3

))−1

+ M1(t)

t
+ M2(t)

t
, (5.14)

where M1(t) := ∫ t
0

α1σ2 y(s)
V (s) dB2(s), M2(t) := ∫ t

0
α2σ3z(s)
V (s) dB3(s) are local martin-

gales whose quadratic variations are 〈M1, M1〉t = σ 2
2

∫ t
0

(
α1y(s)
V (s)

)2
ds ≤ σ 2

2 t and

〈M2, M2〉t = σ 2
3

∫ t
0

(
α2z(s)
V (s)

)2
ds ≤ σ 2

3 t . Using the strong law of large numbers for

local martingales (Mao 1997) yields

lim
t→∞

Mi (t)

t
= 0 a.s., i = 1, 2. (5.15)

Since X (t) is ergodic and
∫∞
0 xπ(x)dx < ∞, we have

lim
t→∞

1

t

∫ t

0

∣
∣
∣
∣X (s) − r

a

∣
∣
∣
∣ds

=
∫ ∞

0

∣
∣
∣
∣x − r

a

∣
∣
∣
∣π(x)dx ≤

[ ∫ ∞

0

(

x − r

a

)2

π(x)dx

] 1
2

=
(
rσ 2

1

2a2

) 1
2

, (5.16)

where a detailed calculation of the last integral can be found in Appendix C.

123



1168 J Nonlinear Sci (2018) 28:1151–1187

Taking the superior limit on both sides of (5.14) and combining with (5.15) and
(5.16) lead to

lim sup
t→∞

ln V (t)

t
≤ min{D + d1, d2}(

√
R0 − 1)I{√R0≤1}

+ max{D + d1, d2}(
√
R0 − 1)I{√R0>1}

+ α1kab

α2(a + mr)

(
rσ 2

1

2a2

) 1
2 −

(
2
(
σ−2
2 + σ−2

3

))−1

= min{D + d1, d2}(
√
R0 − 1)I{√R0≤1}

+max{D + d1, d2}(
√
R0 − 1)I{√R0>1}

+ kbDσ1

(a + mr)(D + d1)

(
r

2R0

) 1
2 −

(
2
(
σ−2
2 + σ−2

3

))−1

:= υ a.s.,

which is the desired assertion. Furthermore, if υ < 0, we can easily conclude that

lim sup
t→∞

ln y(t)

t
< 0, lim sup

t→∞
ln z(t)

t
< 0 a.s.,

which implies that limt→∞ y(t) = 0 and limt→∞ z(t) = 0 a.s. In other words, the
predator populations y and z tend to zero exponentially with probability one. This
completes the proof.

Theorem 5.2 Let (x(t), y(t), z(t)) be the solution of system (1.2) with any initial

value (x(0), y(0), z(0)) ∈ R
3+. If r <

σ 2
1
2 , then the prey population x and the predator

populations y and z die out exponentially with probability one, i.e.

lim
t→∞ x(t) = 0, lim

t→∞ y(t) = 0, lim
t→∞ z(t) = 0 a.s.

Proof Applying Itô’s formula to the first equation of system (1.2), we get 	


d(ln x(t)) =
(

r − ax − bz

1 + mx
− σ 2

1

2

)

dt + σ1dB1(t). (5.17)

Integrating from 0 to t on both sides of (5.17), we obtain

ln x(t) − ln x(0) =
(

r − σ 2
1

2

)

t − a
∫ t

0
x(s)ds − b

∫ t

0

z(s)

1 + mx(s)
ds + σ1B1(t)

≤
(

r − σ 2
1

2

)

t + σ1B1(t). (5.18)
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Dividing by t on both sides of (5.18) leads to

ln x(t) − ln x(0)

t
≤ r − σ 2

1

2
+ σ1B1(t)

t
. (5.19)

Taking the superior limit on both sides of (5.19) and noting that limt→∞ B1(t)
t = 0

a.s., we obtain

lim sup
t→∞

ln x(t)

t
≤ r − σ 2

1

2
< 0 a.s.,

which implies that

lim
t→∞ x(t) = 0 a.s.

Hence, x(t) → 0 exponentially a.s. as claimed. In particular, there exists t0 and a set
�ε ⊂ � such that P(�ε) > 1− ε and kbx

1+mx ≤ kbx ≤ kbε a.s. for t ≥ t0 and ω ∈ �ε .
To prove that y and z also tend to zero, let P(t) = y(t)+ z(t). Applying Itô’s formula
to ln P(t) yields

d(ln P(t)) =
{ kbxz

1+mx − d1y − d2z

y + z
− σ 2

2 y
2 + σ 2

3 z
2

2(y + z)2

}

dt + σ2y

y + z
dB2(t)

+ σ3z

y + z
dB3(t)

≤ kbxdt − min{d1, d2}dt + σ2y

y + z
dB2(t) + σ3z

y + z
dB3(t)

≤ kbεdt − min{d1, d2}dt + σ2y

y + z
dB2(t)

+ σ3z

y + z
dB3(t) with probability 1 − ε when t ≥ t0. (5.20)

Integrating (5.20) from 0 to t ≥ t0 and then dividing by t on both sides, we get

ln P(t)

t
− ln P(0)

t
≤ kbε − min{d1, d2}

+1

t

∫ t

0

σ2y(s)

y(s) + z(s)
dB2(s) + 1

t

∫ t

0

σ3z(s)

y(s) + z(s)
dB3(s)

= kbε − min{d1, d2} + M3(t)

t

+M4(t)

t
with probability 1 − ε, (5.21)

where M3(t) := ∫ t
0

σ2 y(s)
y(s)+z(s)dB2(s), M4(t) := ∫ t

0
σ3z(s)

y(s)+z(s)dB3(s) are local martin-

gales whose quadratic variations are 〈M3, M3〉t = σ 2
2

∫ t
0

(
y(s)

y(s)+z(s)

)2
ds ≤ σ 2

2 t and
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〈M4, M4〉t = σ 2
3

∫ t
0

(
z(s)

y(s)+z(s)

)2
ds ≤ σ 2

3 t . Applying the strong law of large numbers

for local martingales (Mao 1997) leads to

lim
t→∞

Mi (t)

t
= 0 a.s., i = 3, 4. (5.22)

Taking the limit supremum of (5.21) as t → ∞ and combining with (5.22), one
obtains

lim sup
t→∞

ln P(t)

t
≤ −min{d1, d2} < 0 with probability 1 − ε.

Letting ε → 0, we have

lim sup
t→∞

ln P(t)

t
< 0 a.s.,

which implies that

lim
t→∞ y(t) = 0, lim

t→∞ z(t) = 0 a.s.

That is to say, the predator populations y and z die out exponentially with probability
one. This completes the proof.

6 Numerical Simulations

In this section, we illustrate our theoretical results using numerical simulations of
system (1.2). The initial state of the system is taken fixed at (1.0, 1.0, 1.2). For the
numerical simulations, we use Milstein’s higher-order method mentioned in Higham
(2001) to obtain the following discretization transformation of system (1.2)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x j+1 = x j +
[

x j (r − ax j ) − bx j z j

1 + mx j

]

�t + σ1x
j
√

�tε1, j + σ 2
1

2
x j
(
ε21, j − 1

)
�t,

y j+1 = y j +
[
kbx j z j

1 + mx j
− (D + d1)y

j
]

�t + σ2y
j
√

�tε2, j + σ 2
2

2
y j
(
ε22, j − 1

)
�t,

z j+1 = z j + [Dy j − d2z j
]
�t + σ3z j

√
�tε3, j + σ 2

3

2
z j
(
ε23, j − 1

)
�t,

(6.1)

where the time increment �t is positive and εi, j are the Gaussian random variables
which follow the distribution N (0, 1), i = 1, 2, 3.

Example 6.1 In order to check the existence of an ergodic stationary distribution, in
Fig. 1, we choose the values of the systemparameters as follows: σ 2

1 = 0.02, σ 2
2 = 0.1,

σ 2
3 = 0.08.Other values of the systemparameters, see Table 1. Direct calculation leads

to r = 0.6 > 0.01 = σ 2
1
2 and RS

0 = 7.3024 > 1, where RS
0 is defined in Theorem 4.1.

In other words, the conditions of Theorem 4.1 hold. In view of Theorem 4.1, there is
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Fig. 1 The solution of the stochastic system (1.2) and its histogram. The blue lines represent the solution
of system (1.2), and the red lines represent the solution of the corresponding undisturbed system (1.1). The
pictures on the right are the histogram of the probability density function for x , y and z populations at
t = 300 for the stochastic system (1.2) with σ 2

1 = 0.02, σ 2
2 = 0.1, σ 2

3 = 0.08. Other parameters are taken
in Table 1 (Color figure online)

Table 1 List of parameters

Parameters Description Values

r Intrinsic growth rate of the prey 0.6

a Intraspecific competition rate of the prey 0.1

b Search rate of the predator 0.8

m Search rate multiplied by the handling time 0.5

k Coefficient in converting prey into a new immature predator 0.8

D Rate at which immature predators become mature predators 0.4

d1 Death rate of immature predator 0.05

d2 Death rate of mature predator 0.06

an ergodic stationary distribution μ(·) of system (1.2). Figure 1 illustrates this. The
dynamics of system (1.2) can be visible on a log-linear plot. See Fig. 2.

Example 6.2 In order to illustrate the conclusions of Theorem 5.1, in Fig. 3, we choose
the values of the system parameters as follows: σ 2

1 = 0.01, σ 2
2 = 2, σ 2

3 = 2. Other

values of the system parameters see Table 1. Direct calculation shows that
σ 2
1
2 =

0.005 < 0.6 = r and υ = 1.2675 − 2 = −0.7325 < 0, where υ is defined in
Theorem 5.1. Thus, the conditions of Theorem 5.1 hold. According to Theorem 5.1,
the distribution of x(t) convergesweakly a.s. to the stationarymeasure and the predator
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Fig. 2 Simulation of paths of ln x(t), ln y(t), ln z(t)ofmodel (1.2)with the initial value (x(0), y(0), z(0)) =
(1.0, 1.0, 1.2) under the parameter values r = 0.6, a = 0.1, b = 0.8, m = 0.5, k = 0.8, D = 0.4,
d1 = 0.05, d2 = 0.06, σ 2

1 = 0.02, σ 2
2 = 0.1, σ 2

3 = 0.08

populations y and z tend to zero exponentially. See Fig. 3. The dynamics of system
(1.2) can be visible on a log-linear plot. See Fig. 4.

Example 6.3 In order to obtain the extinction of the predator populations, in Fig. 5, we
choose the values of the system parameters as follows: σ 2

1 = 1.8, σ 2
2 = 1.8, σ 2

3 = 2.
Other values of the system parameters see Table 1. By a simple computation, we obtain

r = 0.6 < 0.9 = σ 2
1
2 . That is to say, the condition of Theorem 5.2 is satisfied. By

Theorem 5.2, both the prey and predator populations die out exponentially. Figure
5 shows this. The dynamics of system (1.2) can be visible on a log-linear plot. See
Fig. 6. From Figs. 3 and 5, we can observe that the larger white noise can lead to the
extinction of predator populations.

7 Concluding Remarks and Future Directions

This paper studied a stochastic predator–prey model with stage structure for predator
and Holling type II functional response. Firstly, by constructing a suitable stochastic
Lyapunov function, we obtained sufficient conditions for the existence of a unique
ergodic stationary distribution of the positive solutions to system (1.2). Then, we
established sufficient conditions for extinction of the predator populations in two cases,
that is, the first case is that the prey population survival and the predator populations
extinction; the second case is that all the prey and predator populations extinction. The
existence of a stationary distribution implies stochastic weak stability. More precisely,
we have obtained the following results:
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Fig. 3 The left column shows the paths of x(t), y(t), z(t) of model (1.2) with the initial value
(x(0), y(0), z(0)) = (1.0, 1.0, 1.2) under the parameter values r = 0.6, a = 0.1, b = 0.8, m = 0.5,
k = 0.8, D = 0.4, d1 = 0.05, d2 = 0.06, σ 2

1 = 0.01, σ 2
2 = 2, σ 2

3 = 2. The blue lines represent the
solution of system (1.2), and the red lines represent the solution of the corresponding undisturbed system
(1.1). The right column displays the histogram of x(t) with values of σ 2

1 = 0.01, σ 2
2 = 2, σ 2

3 = 2 (Color
figure online)
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Fig. 4 Simulation of paths of ln x(t), ln y(t), ln z(t)ofmodel (1.2)with the initial value (x(0), y(0), z(0)) =
(1.0, 1.0, 1.2) under the parameter values r = 0.6, a = 0.1, b = 0.8, m = 0.5, k = 0.8, D = 0.4,
d1 = 0.05, d2 = 0.06, σ 2

1 = 0.01, σ 2
2 = 2, σ 2

3 = 2
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Fig. 5 Simulation of paths of x(t), y(t), z(t) of model (1.2) with the initial value (x(0), y(0), z(0)) =
(1.0, 1.0, 1.2) under the parameter values r = 0.6, a = 0.1, b = 0.8, m = 0.5, k = 0.8, D = 0.4,
d1 = 0.05, d2 = 0.06, σ 2

1 = 1.8, σ 2
2 = 1.8, σ 2

3 = 2. The blue lines represent the solution of system (1.2),
and the red lines represent the solution of the corresponding undisturbed system (1.1) (Color figure online)
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Fig. 6 Simulation of paths of ln x(t), ln y(t), ln z(t)ofmodel (1.2)with the initial value (x(0), y(0), z(0)) =
(1.0, 1.0, 1.2) under the parameter values r = 0.6, a = 0.1, b = 0.8, m = 0.5, k = 0.8, D = 0.4,
d1 = 0.05, d2 = 0.06, σ 2

1 = 1.8, σ 2
2 = 1.8, σ 2

3 = 2
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• If r >
σ 2
1
2 and RS

0 = kbDr

(a+mr)

(

D+d1+ σ22
2

)(

d2+ σ23
2

)

(

1 − σ 2
1
2r

)3

> 1, then for any

initial value (x(0), y(0), z(0)) ∈ R
3+, system (1.2) has a unique ergodic stationary

distribution μ(·).
• If r >

σ 2
1
2 , then for any initial value (x(0), y(0), z(0)) ∈ R

3+, the solution
(x(t), y(t), z(t)) of system (1.2) has the following property

lim sup
t→∞

1

t
ln

(
D

d2(D + d1)
y(t) +

√
R0

d2
z(t)

)

≤ υ a.s.,

where υ = min{D + d1, d2}(√R0 − 1)I{√R0≤1} + max{D + d1, d2}(√R0 −
1)I{√R0>1}+ kbDσ1

(a+mr)(D+d1)

(
r

2R0

) 1
2 −
(
2
(
σ−2
2 + σ−2

3

))−1
and R0 = kbDr

d2(a+mr)(D+d1)
.

Especially, if υ < 0, then the predator populations y and z die out exponentially with
probability one.Moreover, the distribution of x(t) convergesweakly a.s. to themeasure
which has the density

π(x) = Qσ−2
1 x

−2+ 2r
σ21 e

− 2a
σ21

x
, x ∈ (0,∞),

where Q =
[

σ−2
1

(
σ 2
1
2a

) 2r
σ21

−1

�

(
2r
σ 2
1

− 1

)]−1

is a constant satisfying
∫∞
0 π(x)dx =

1. That is to say, if we useμt (x) to denote the probability density of the prey population
at time t , then for any (sufficiently smooth) function f (x),

lim
t→∞

∫

R+
f (x)μt (x)dx =

∫

R+
f (x)π(x)dx .

• If r <
σ 2
1
2 , then the prey population x and the predator populations y and z die out

exponentially with probability one.
Some interesting problems deserve further consideration. On the one hand, one

can propose some more realistic but complex models, such as considering the effects
of impulsive perturbations on system (1.2). The motivation for studying this is that
ecological systems are often deeply perturbed by natural and human factors, such as
planting, drought and flooding. To better describe these phenomena mathematically,
impulsive effects should be taken into account (Bainov and Simeonov 1993; Laksh-
mikantham et al. 1989). On the other hand, while our model is autonomous, it is of
interest to investigate the nonautonomous case and study other important dynamical
properties, such as the existence of positive periodic solutions, the motivation is that
due to the seasonal variation, individual life cycle, food supplies, mating habits, hunt-
ing, harvesting and so on, the birth rate, the death rate of the population and other
parameters will not remain constant, but exhibit a more or less periodicity. It is also
interesting to introduce the coloured noise, such as continuous-time Markov chain,
into model (1.2). The motivation is that the dynamics of population may suffer sud-
den environmental changes, e.g. temperature, humidity, harvesting. Frequently, the
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switching among different environments is memoryless and the waiting time for the
next switch is exponentially distributed; then, the sudden environmental changes can
be modelled by a continuous-time Markov chain (see e.g. Luo and Mao 2007; Zhu
and Yin 2007). Moreover, for more complex predator–prey systems, the Lyapunov
function used in this paper is no longer applicable, and we need to construct new dif-
ferent Lyapunov functions to study the existence and uniqueness of ergodic stationary
distributions. These problems will be the subject of future work.
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Appendix A: Calculation of the Derivation of the Bound

Making use of Itô’s formula leads to

L(V5) =
(

x + y

k
+ D + d1

2Dk
z

)θ[

x(r − ax)

− D + d1
2k

y − d2(D + d1)

2Dk
z

]

+ θ

2

(

x + y

k
+ D + d1

2Dk
z

)θ−1

×
(

σ 2
1 x

2 + σ 2
2

k2
y2 + (D + d1)2

4D2k2
σ 2
3 z

2
)

≤
(

x + y

k
+ D + d1

2Dk
z

)θ[

x(r − ax) − D + d1
2k

y − d2(D + d1)

2Dk
z

]

+ θ

2

(

x + y

k
+ D + d1

2Dk
z

)θ+1

(σ 2
1 ∨ σ 2

2 ∨ σ 2
3 )

≤ r x

(

x + y

k
+ D + d1

2Dk
z

)θ

− axθ+2 − d1
2kθ+1 y

θ+1 − d2(D + d1)θ+1

(2Dk)θ+1 zθ+1

+ θ

2

(

x + y

k
+ D + d1

2Dk
z

)θ+1

× (σ 2
1 ∨ σ 2

2 ∨ σ 2
3 )

= −a

2
xθ+2 − d1

4kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+2(Dk)θ+1 zθ+1

− a

2
xθ+2 − d1

4kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+2(Dk)θ+1 zθ+1

+ r x

(

x + y

k
+ D + d1

2Dk
z

)θ

+ θ

2

(

x + y

k
+ D + d1

2Dk
z

)θ+1

(σ 2
1 ∨ σ 2

2 ∨ σ 2
3 )

≤ −a

2
xθ+2 − d1

4kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+2(Dk)θ+1 zθ+1

− a

2
xθ+2 − d1

4kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+2(Dk)θ+1 zθ+1
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+ r x

(

x + y

k
+ D + d1

2Dk
z

)θ

+ 3θ θ

2

(

xθ+1 +
(
y

k

)θ+1

+
(
D + d1
2Dk

)θ+1

zθ+1
)

(σ 2
1 ∨ σ 2

2 ∨ σ 2
3 )

= −a

2
xθ+2 − d1

4kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+2(Dk)θ+1 zθ+1

− a

2
xθ+2 + 3θ θ

2
(σ 2

1 ∨ σ 2
2 ∨ σ 2

3 )xθ+1 + r x

(

x + y

k
+ D + d1

2Dk
z

)θ

− d1
8kθ+1 y

θ+1 − d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1 −
(

d1
8kθ+1 − 3θ θ

2kθ+1 (σ 2
1 ∨ σ 2

2 ∨ σ 2
3 )

)

yθ+1

−
(
d2(D + d1)θ+1

2θ+3(Dk)θ+1 − 3θ θ(D + d1)θ+1

2θ+2(Dk)θ+1 (σ 2
1 ∨ σ 2

2 ∨ σ 2
3 )

)

zθ+1

≤ −a

2
xθ+2 − d1

4kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+2(Dk)θ+1 zθ+1

− a

2
xθ+2 + 3θ θ

2
(σ 2

1 ∨ σ 2
2 ∨ σ 2

3 )xθ+1 + r x

(

x + y

k
+ D + d1

2Dk
z

)θ

− d1
8kθ+1 y

θ+1 − d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1

= −a

2
xθ+2 − d1

4kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+2(Dk)θ+1 zθ+1

− a

2
xθ+2 + 3θ θ

2
σmaxx

θ+1 + r x

(

x + y

k
+ D + d1

2Dk
z

)θ

− d1
8kθ+1 y

θ+1 − d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1

≤ −a

2
xθ+2 − d1

4kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+2(Dk)θ+1 zθ+1 + B,

where

σmax:= σ 2
1 ∨ σ 2

2 ∨ σ 2
3 = max{σ 2

1 , σ 2
2 , σ 2

3 },
B = sup

(x,y,z)∈R3+

{

− a

2
xθ+2 − d1

8kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1

+ 3θ θ

2
σmaxx

θ+1 + r x

(

x + y

k
+ D + d1

2Dk
z

)θ}

and in the third inequality we have used the fact that |∑k
i=1 vi |p ≤ k p−1∑k

i=1 |vi |p
for ∀p ≥ 1.

Appendix B: Verification of the Condition A2 in Lemma 2.1

By system (1.2), we have
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L(x) = x(r − ax) − bxz

1 + mx
≤ x(r − ax) ≤ − r

m
(1 + mx) + r(a + mr)

am
, (B.1)

where the second inequality holds due to the fact that a(x − r
a )2 ≥ 0. Moreover, we

obtain

L(− ln y) = − kbxz

(1 + mx)y
+ D + d1 + σ 2

2

2
(B.2)

and

L(− ln z) = −Dy

z
+ d2 + σ 2

3

2
. (B.3)

It follows from (B.1), (B.2) and (B.3) that

L(V1) ≤ − kbxz

(1 + mx)y
− c1r

m
(1 + mx) − c2Dy

z
+
(

D + d1 + σ 2
2

2

)

+ c1r(a + mr)

am
+ c2

(

d2 + σ 2
3

2

)

≤ −3 3

√
c1c2kbDr

m
3
√
x +

(

D + d1 + σ 2
2

2

)

+ c1r(a + mr)

am

+ c2

(

d2 + σ 2
3

2

)

, (B.4)

where in the second inequality we have used Lemma 4.1. Moreover, we get

L

(
x

r

)

= x

(

1 − ax

r

)

− bxz

r(1 + mx)
≤ x

(

1 − ax

r

)

and

L

(

− ln x

r

)

= −
(

1 − ax

r

)

+ bz

r(1 + mx)
+ σ 2

1

2r
≤ ax

r
− 1 + b

r
z + σ 2

1

2r
.

In view of Lemma 4.2, we have

L(V2) ≤
[
2

3

ax

r

(

1 − ax

r

)

+ ax

r

]

− 1 + b

r
z + σ 2

1

2r
≤ 3

√
a

r
3
√
x − 1 + b

r
z + σ 2

1

2r
.

(B.5)

Therefore, by (B.4) and (B.5), one can see that

L(V3) ≤ −3 3

√
c1c2kbDr

m
3
√
x +

(

D + d1 + σ 2
2

2

)
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+ c1r(a + mr)

am
+ c2

(

d2 + σ 2
3

2

)

+ 3 3

√
c1c2kbDr

m
3
√
x

− 3
3

√

c1c2kbDr2

ma

(

1 − σ 2
1

2r

)

+ 3b

r
3

√

c1c2kbDr2

ma
z

=
(

D + d1 + σ 2
2

2

)

+ c1r(a + mr)

am
+ c2

(

d2 + σ 2
3

2

)

− 3
3

√

c1c2kbDr2

ma

(

1 − σ 2
1

2r

)

+ 3b

r
3

√

c1c2kbDr2

ma
z. (B.6)

Taking c1 =
kbDam

(

1− σ21
2r

)3

(a+mr)2
(

d2+ σ23
2

) , c2 =
kbDr

(

1− σ21
2r

)3

(a+mr)

(

d2+ σ23
2

)2 , according to (B.6), we obtain

L(V3) ≤
(

D + d1 + σ 2
2

2

)

+ 2kbDr

(a + mr)

(

d2 + σ 2
3
2

)

(

1 − σ 2
1

2r

)3

− 3kbDr

(a + mr)

(

d2 + σ 2
3
2

)

(

1 − σ 2
1

2r

)3

+ 3b

r
3

√

c1c2kbDr2

ma
z

= −
(

D + d1 + σ 2
2

2

)(
RS
0 − 1

)
+ 3b

r
3

√

c1c2kbDr2

ma
z, (B.7)

where

RS
0 = kbDr

(a + mr)

(

D + d1 + σ 2
2
2

)(

d2 + σ 2
3
2

)

(

1 − σ 2
1

2r

)3

.

Noting that

L

(
3b

d2r
3

√

c1c2kbDr2

ma
z + 3bD

d2r(D + d1)
3

√

c1c2kbDr2

ma
y

)

=
3k2b3D2

(

1 − σ 2
1
2r

)2

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)
xz

1 + mx

+ 3bD

d2r
3

√

c1c2kbDr2

ma
y − 3bD

d2r
3

√

c1c2kbDr2

ma
y − 3b

r
3

√

c1c2kbDr2

ma
z
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=
3k2b3D2

(

1 − σ 2
1
2r

)2

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)
xz

1 + mx
− 3b

r
3

√

c1c2kbDr2

ma
z, (B.8)

then by (B.7) and (B.8), we obtain

L(V4) ≤ −
(

D + d1 + σ 2
2

2

)(
RS
0 − 1

)
+

3k2b3D2
(

1 − σ 2
1
2r

)2

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)
xz

1 + mx

= −λ +
3k2b3D2

(

1 − σ 2
1
2r

)2

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)
xz

1 + mx
, (B.9)

where

λ :=
(

D + d1 + σ 2
2

2

)(
RS
0 − 1

)
> 0.

Furthermore, we have (see Appendix A for a detailed derivation)

L(V5) ≤ −a

2
xθ+2 − d1

4kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+2(Dk)θ+1 zθ+1 + B, (B.10)

where B is a positive constant, depending only on the system parameters, whose
precise definition can be found in Appendix A.

It follows from (B.2), (B.9) and (B.10) that

L(V ) ≤ −Mλ +
3Mk2b3D2

(

1 − σ 2
1
2r

)2

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)
xz

1 + mx
− kbxz

y(1 + mx)

− a

2
xθ+2 − d1

4kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+2(Dk)θ+1 zθ+1

+ B + D + d1 + σ 2
2

2

= −Mλ +
3Mk2b3D2

(

1 − σ 2
1
2r

)2

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)
xz

1 + mx
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− kbxz

y(1 + mx)
− a

4
xθ+2 − d1

4kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1

− a

4
xθ+2 − d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1 + B + D + d1 + σ 2
2

2
.

In order to validate the condition A2 in Lemma 2.1 holds, we only need to construct
a bounded open set U . Define a bounded open set U as

U =
{

(x, y, z) ∈ R
3+ : ε < x <

1

ε
, ε3 < y <

1

ε3
, ε < z <

1

ε

}

,

where 0 < ε < 1 is a sufficiently small number. In the set R3+ \ U , we can choose ε

sufficiently small such that the following conditions hold

3Mk2b3D2
(

1 − σ 2
1
2r

)2

θε

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)

(θ + 1)(1 + mε)

≤ 1, (B.11)

3Mk2b3D2
(

1 − σ 2
1
2r

)2

ε

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)

(θ + 1)(1 + mε)

≤ d2(D + d1)θ+1

2θ+3(Dk)θ+1 , (B.12)

0 < ε ≤
d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)

(θ + 2)

3Mk2b3D2

(

1 − σ 2
1
2r

)2

(θ + 1)

, (B.13)

0 < ε ≤
ad2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)

(θ + 2)

12Mk2b3D2

(

1 − σ 2
1
2r

)2 , (B.14)

− kb

ε(1 + mε)
+ C ≤ −1, (B.15)

− a

4εθ+2 + C ≤ −1, (B.16)

−d2(D + d1)θ+1

2θ+3(Dkε)θ+1 + C ≤ −1, (B.17)

− d1
4(kε3)θ+1 + C ≤ −1, (B.18)
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where C is a positive constant which will be given explicitly in expression (B.22). For
convenience, we can divide Uc = R

3+ \U into six domains,

U1 = {(x, y, z) ∈ R
3+ : 0 < x ≤ ε}, U2 = {(x, y, z) ∈ R

3+ : 0 < z ≤ ε},
U3 = {(x, y, z) ∈ R

3+ : 0 < y ≤ ε3, x > ε, z > ε}, U4 =
{

(x, y, z) ∈ R
3+ : x ≥ 1

ε

}

,

U5 =
{

(x, y, z) ∈ R
3+ : z ≥ 1

ε

}

, U6 =
{

(x, y, z) ∈ R
3+ : y ≥ 1

ε3

}

.

Clearly,Uc = U1 ∪U2 ∪U3 ∪U4 ∪U5 ∪U6. Next, we prove that L(V (x, y, z)) ≤ −1
for any (x, y, z) ∈ Uc, which is equivalent to proving it on the above six domains,
respectively.

Case 1 For any (x, y, z) ∈ U1, since xz
1+mx ≤ ε

1+mε
z ≤ ε

1+mε
θ+zθ+1

θ+1 =
θε

(θ+1)(1+mε)
+ ε

(θ+1)(1+mε)
zθ+1, we have

L(V ) ≤ −Mλ +
3Mk2b3D2

(

1 − σ 2
1
2r

)2

θε

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)

(θ + 1)(1 + mε)

+
( 3Mk2b3D2

(

1 − σ 2
1
2r

)2

ε

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)

(θ + 1)(1 + mε)

− d2(D + d1)θ+1

2θ+3(Dk)θ+1

)

zθ+1 + B + D + d1

+ σ 2
2

2
≤ −2 + 1 + 0 = −1, (B.19)

which follows from (4.2), (B.11) and (B.12). Thus

L(V ) ≤ −1 on U1.

Case 2 For any (x, y, z) ∈ U2, since xz
1+mx ≤ xz ≤ εx ≤ ε θ+1+xθ+2

θ+2 = (θ+1)ε
θ+2 +

ε
θ+2 x

θ+2, we obtain

L(V ) ≤ −Mλ +
3Mk2b3D2

(

1 − σ 2
1
2r

)2

(θ + 1)ε

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)

(θ + 2)
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+
( 3Mk2b3D2

(

1 − σ 2
1
2r

)2

ε

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)

(θ + 2)
− a

4

)

xθ+1

+B + D + d1 + σ 2
2

2
≤ −2 + 1 + 0 = −1, (B.20)

which follows from (4.2), (B.13) and (B.14). Hence,

L(V ) ≤ −1, ∀(x, y, z) ∈ U2.

Case 3 For any (x, y, z) ∈ U3, one can get that

L(V ) ≤ − kbxz

y(1 + mx)
− a

4
xθ+2 − d1

4kθ+1 y
θ+1

−d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1 − a

4
xθ+2 − d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1

+
3Mk2b3D2

(

1 − σ 2
1
2r

)2

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)
xz

1 + mx
+ B + D + d1 + σ 2

2

2

≤ − kbxz

y(1 + mx)
− a

4
xθ+2 − d1

4kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1 + C

≤ − kbxz

y(1 + mx)
+ C

< − kbε2

ε3(1 + mε)
+ C

= − kb

ε(1 + mε)
+ C

≤ −1, (B.21)

which follows from (B.15) and

C = sup
(x,y,z)∈R3+

{

− a

4
xθ+2 − d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1

+
3Mk2b3D2

(

1 − σ 2
1
2r

)2

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)
xz

1 + mx
+ B + D + d1 + σ 2

2

2

}

.

(B.22)
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Therefore,

L(V ) ≤ −1 on U3.

Case 4 For any (x, y, z) ∈ U4, one can see that

L(V ) ≤ − kbxz

y(1 + mx)
− a

4
xθ+2 − d1

4kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1

− a

4
xθ+2 − d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1

+
3Mk2b3D2

(

1 − σ 2
1
2r

)2

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)
xz

1 + mx
+ B + D + d1 + σ 2

2

2

≤ − kbxz

y(1 + mx)
− a

4
xθ+2 − d1

4kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1 + C

≤ −a

4
xθ+2 + C

< − a

4εθ+2 + C

≤ −1, (B.23)

which follows from (B.16). So

L(V ) ≤ −1, ∀(x, y, z) ∈ U4.

Case 5 When (x, y, z) ∈ U5, one can obtain that

L(V ) ≤ − kbxz

y(1 + mx)
− a

4
xθ+2 − d1

4kθ+1 y
θ+1

− d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1 − a

4
xθ+2 − d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1

+
3Mk2b3D2

(

1 − σ 2
1
2r

)2

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)
xz

1 + mx
+ B + D + d1 + σ 2

2

2

≤ − kbxz

y(1 + mx)
− a

4
xθ+2 − d1

4kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1 + C

≤ −d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1 + C

< − d2(D + d1)θ+1

2θ+3(Dkε)θ+1 + C ≤ −1, (B.24)
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which follows from (B.17). Consequently

L(V ) ≤ −1 on U5.

Case 6 If (x, y, z) ∈ U6, one can see that

L(V ) ≤ − kbxz

y(1 + mx)
− a

4
xθ+2 − d1

4kθ+1 y
θ+1

− d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1 − a

4
xθ+2 − d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1

+
3Mk2b3D2

(

1 − σ 2
1
2r

)2

d2(D + d1)(a + mr)

(

d2 + σ 2
3
2

)
xz

1 + mx
+ B + D + d1 + σ 2

2

2

≤ − kbxz

y(1 + mx)
− a

4
xθ+2 − d1

4kθ+1 y
θ+1 − d2(D + d1)θ+1

2θ+3(Dk)θ+1 zθ+1 + C

≤ − d1
4kθ+1 y

θ+1 + C

< − d1
4(kε3)θ+1 + C

≤ −1, (B.25)

which follows from (B.18). As a result

L(V ) ≤ −1, ∀(x, y, z) ∈ U6.

Obviously, from (B.19), (B.20), (B.21), (B.23), (B.24) and (B.25), we obtain that
for a sufficiently small ε,

L(V (x, y, z)) ≤ −1, ∀(x, y, z) ∈ R
3+ \U.

Hence, the condition A2 in Lemma 2.1 holds.

Appendix C: Detailed Calculation of the Last Integral of (5.16)

J1:=
∫ ∞

0
xπ(x)dx = Qσ−2

1

∫ ∞

0
x

2r
σ21

−1
e
− 2a

σ21
x
dx

= Qσ−2
1

∫ ∞

0

(
σ 2
1

2a

) 2r
σ21

−1

t
2r
σ21

−1
e−t σ

2
1

2a
dt = Qσ−2

1

(
σ 2
1

2a

) 2r
σ21 �

(
2r

σ 2
1

)
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= σ 2
1

2a

�

(
2r
σ 2
1

)

�

(
2r
σ 2
1

− 1

) = σ 2
1

2a

(
2r

σ 2
1

− 1

)

= r − σ 2
1
2

a

and

J2 :=
∫ ∞

0
x2π(x)dx = Qσ−2

1

∫ ∞

0
x

2r
σ21 e

− 2a
σ21

x
dx

= Qσ−2
1

∫ ∞

0

(
σ 2
1

2a

) 2r
σ21 t

2r
σ21 e−t σ

2
1

2a
dt = Qσ−2

1

(
σ 2
1

2a

) 2r
σ21

+1

�

(
2r

σ 2
1

+ 1

)

=
(

σ 2
1

2a

)2�

(
2r
σ 2
1

+ 1

)

�

(
2r
σ 2
1

− 1

)

=
(

σ 2
1

2a

)2 2r

σ 2
1

(
2r

σ 2
1

− 1

)

=
r

(

r − σ 2
1
2

)

a2
.

Hence, we have

∫ ∞

0

(

x − r

a

)2

π(x)dx =
∫ ∞

0

(

x2 − 2r

a
x + r2

a2

)

π(x)dx = J2 − 2r

a
J1 + r2

a2

=
r

(

r − σ 2
1
2

)

a2
− 2r

a
· r − σ 2

1
2

a
+ r2

a2
= rσ 2

1

2a2
.
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