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Abstract In this review paper, we will present different data-driven dimension reduc-
tion techniques for dynamical systems that are based on transfer operator theory aswell
as methods to approximate transfer operators and their eigenvalues, eigenfunctions,
and eigenmodes. The goal is to point out similarities and differences between methods
developed independently by the dynamical systems, fluid dynamics, and molecular
dynamics communities such as time-lagged independent component analysis, dynamic
mode decomposition, and their respective generalizations. As a result, extensions and
best practices developed for one particular method can be carried over to other related
methods.

Keywords Koopman operator · Perron-Frobenius operator · Model reduction ·
Data-driven methods
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1 Introduction

The numerical solution of complex systems of differential equations plays an impor-
tant role in many areas such as molecular dynamics,fluid dynamics, mechanical as
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well as electrical engineering, and physics. These systems often exhibit multi-scale
behavior which can be due to the coupling of subsystems with different time scales—
for instance, fast electrical and slow mechanical components—or due to the intrinsic
properties of the system itself—for instance, the fast vibrations and slow conforma-
tional changes of molecules. Analyzing such problems using transfer operator-based
methods is often infeasible or prohibitively expensive from a computational point of
view due to the so-called curse of dimensionality. One possibility to avoid this is to
project the dynamics of the high-dimensional system onto a lower-dimensional space
and to then analyze the reduced system representing, for instance, only the relevant
slow dynamics, see, for example, Pérez-Hernández et al. 2013; Froyland et al. 2014.

In this paper, we will introduce different methods such as time-lagged independent
component analysis (TICA) (Molgedey and Schuster 1994; Pérez-Hernández et al.
2013; Schwantes and Pande 2013) and dynamic mode decomposition (DMD) (Schmid
2010;Chen et al. 2012; Tu et al. 2014;Kutz et al. 2016) to identify the dominant dynam-
ics using only simulation data or experimental data. Itwas shown that thesemethods are
related to Koopman operator approximation techniques (Koopman 1931; Mezić 2005;
Rowley et al. 2009; Budišić et al. 2012). Extensions of the aforementioned methods
called the variational approach of conformation dynamics (VAC) (Noé and Nüske
2013; Nüske et al. 2014, 2016) developed mainly for reversible molecular dynam-
ics problems and extended dynamic mode decomposition (EDMD) (Williams et al.
2015a, b; Klus et al. 2016) can be used to compute eigenfunctions, eigenvalues, and
eigenmodes of the Koopman operator (and its adjoint, the Perron–Frobenius operator).
Interestingly, although the underlying ideas, derivations, and intended applications of
these methods differ, the resulting algorithms share a lot of similarities. The goal of
this paper is to show the equivalence of different data-driven methods which have
been widely used by the dynamical systems, fluid dynamics, and molecular dynam-
ics communities, but under different names. Hence, extensions, generalizations, and
algorithms developed for one method can be carried over to its counterparts, result-
ing in a unified theory and set of tools. An alternative approach to data-driven model
reduction—also related to transfer operators and their generators—would be to use dif-
fusion maps (Nadler et al. 2006; Coifman et al. 2008; Ferguson et al. 2011; Giannakis
2015). Manifold learning methods, however, are beyond the scope of this paper.

The outline of the paper is as follows: Sect. 2 briefly introduces transfer opera-
tors and the concept of reversibility. In Sect. 3, different data-driven methods for the
approximation of the eigenvalues, eigenfunctions, and eigenmodes of transfer opera-
tors will be described. The theoretical background and the derivation of these methods
will be outlined in Sect. 4. Section 5 addresses open problems and lists possible future
work.

2 Transfer Operators and Reversibility

In the literature, the term transfer operator is sometimes used in different contexts.
In this section, we will briefly introduce the Perron–Frobenius operator, the Perron–
Frobenius operator with respect to the equilibrium density, and the Koopman operator.
All these three operators are, according to our definition, transfer operators.
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2.1 Guiding Example

Our paper will deal with data-driven methods to analyze both stochastic and deter-
ministic dynamical systems. To illustrate the concepts of transfer operators and their
spectral components, we first introduce a simple stochastic dynamical system that will
be revisited throughout the paper.

Example 2.1 Consider the following one-dimensional Ornstein–Uhlenbeck process,
given by an Itô stochastic differential equation1 of the form:

dX t = −αD X t dt + √
2D dW t .

Here, {Wt }t≥0 is a one-dimensional standard Wiener process (Brownian motion), the
parameter α is the friction coefficient, and D = β−1 is the diffusion coefficient. The
stochastic forcing usually models physical effects, most often thermal fluctuations and
it is customary to call β the inverse temperature.

The transition density of theOrnstein–Uhlenbeck process, i.e., the conditional prob-
ability density to find the process near y a time τ after it had been at x , is given by

pτ (x, y) = 1
√
2π σ 2(τ )

exp

(

−
(
y − x e−αDτ

)2

2 σ 2(τ )

)

, (1)

where σ 2(τ ) = α−1
(
1 − e−2αDτ

)
. Figure 1a shows the transition densities for differ-

ent values of τ . More details can be found in Pavliotis (2014). For complex dynamical
systems, the transition density is not known explicitly, but must be estimated from
simulation or measurement data.

In this work we will describe the dynamics of a system in terms of dynamical
operators such as the propagatorPτ , which is defined by the transition density pτ (x, y)

and propagates a probability density of Brownian walkers in time by

pt+τ (x) = Pτ pt (x).

See Fig. 1b for the time evolution of the Ornstein–Uhlenbeck process initiated from
a localized starting condition. It can be seen that the distribution spreads out and
converges toward a Gaussian distribution, which is then invariant in time. For this
simple dynamical system we can give the equation for the invariant density explicitly:

π(x) = 1√
2π α−1

exp

(
− x2

2 α−1

)
, (2)

which is a Gaussian whose variance is decreasing with increasing friction and decreas-
ing temperature. ��

1 A general time-homogeneous Itô stochastic differential equation is given by dXt = −α(Xt ) Xt dt +
σ(Xt ) dWt , where α : R

d → R
d and σ : R

d → R
d×d are coefficient functions, and {Wt }t≥0 is a

d-dimensional standard Wiener process.
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Fig. 1 a Transition density function of the Ornstein–Uhlenbeck process for different values of τ . If τ is
small, values starting in x will stay close to it. For larger values of τ , the influence of the starting point x
is negligible. Densities converge to the equilibrium density, denoted by π . Here, α = 4 and D = 0.25. b
Evolution of the probability to find the dynamical system at any point x over time t , after starting with a
peaked distribution at t = 0. We show the resulting distributions at times t = 0.1, and t = 1, and t = 10.
The system relaxes toward the stationary density π(x)

2.2 Transfer Operators

Let {Xt }t≥0 be a time-homogeneous2 stochastic process defined on the bounded state
space X ⊂ R

d . It can be genuinely stochastic or it might as well be deterministic,
such that there is a flow map �τ : X → X with �τ (Xt ) = Xt+τ for τ ≥ 0. Let the
measure3 P denote the law of the process {Xt }t≥0 that we will study in terms of its
statistical transition properties. To this end, under some mild regularity assumptions4

which are satisfied by Itô diffusions with smooth coefficients (Hopf 1954; Krengel
1985), we can give the following definition.

Definition 2.2 The transition density function pτ : X × X → [0, ∞] of a process
{Xt }t≥0 is defined by

P[Xt+τ ∈ A | Xt = x] =
∫

A

pτ (x, y) dy,

2 We call a stochastic process {Xt }t≥0 time-homogeneous, or autonomous, if it holds for every t ≥ s ≥ 0
that the distribution of Xt conditional to Xs = x only depends on x and (t − s). It is the stochastic analogue
of the flow of an autonomous (time-independent) ordinary differential equation.
3 For a measure-theoretic discussion of this construction, please refer to Klus et al. (2016). For our pur-
poses, it is sufficient to equip X with the standard Lebesgue measure. In particular, if not stated otherwise,
measurability of a set A ⊂ X is meant with respect to the Borel σ -algebra.
4 These conditions are called interchangeably absolute continuity,μ-compatibility, or null preservingness.
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for every measurable set A. Here and in what follows, P[ · |E] denotes probabilities
conditioned on the event E. That is, pτ (x, y) is the conditional probability density of
Xt+τ = y given that Xt = x .

For 1 ≤ r ≤ ∞, the spaces Lr (X) denote the usual spaces of r -Lebesgue integrable
functions, which is a Banach space with the corresponding norm ‖ · ‖Lr .

Definition 2.3 Let pt ∈ L1(X) be the probability density and ft ∈ L∞(X) an observ-
able of the system. For a given lag time τ :

(a) The Perron–Frobenius operator or propagator Pτ : L1(X) → L1(X) is defined
by

Pτ pt (x) =
∫

X

pτ (y, x) pt (y) dy.

(b) The Koopman operator Kτ : L∞(X) → L∞(X) is defined by

Kτ ft (x) =
∫

X

pτ (x, y) ft (y) dy = E[ ft (Xt+τ ) | Xt = x].

Both Pτ and Kτ are linear but infinite-dimensional operators which are adjoint
to each other with respect to the standard duality pairing 〈·, ·〉, defined by 〈 f, g〉 =∫
X

f (x) g(x) dx . The homogeneity of the stochastic process {Xt }t≥0 implies the so-
called semigroup property of the operators, i.e., Pτ+σ = PτPσ and Kτ+σ = KτKσ

for τ, σ ≥ 0. In other words, these operators describe time-stationary Markovian
dynamics. While the Perron–Frobenius operator describes the evolution of densities,
the Koopman operator describes the evolution of observables. For the analysis of the
long-term behavior of dynamical systems, densities that remain unchanged by the
dynamics play an important role (one can think of the concept of ergodicity).

Definition 2.4 A density π is called an invariant density or equilibrium density if
Pτ π = π . That is, the equilibrium density π is an eigenfunction of the Perron–
Frobenius operator Pτ with corresponding eigenvalue 1.

In what follows, Lr
π (X) denotes the weighted Lr -space of functions f such that

‖ f ‖Lr
π

:= ∫
X

| f (x)|rπ(x) dx < ∞. While one can consider the evolution of densities
with respect to any density, we are particularly interested in the evolution with respect
to the equilibrium density. From this point on, we assume there is a unique invariant
density. This assumption is typically satisfied for molecular dynamics applications,
where the invariant density is given by the Boltzmann distribution.

Definition 2.5 Let L1
π (X) � ut (x) = π(x)−1 pt (x) be a probability density with

respect to the equilibrium density π . Then the Perron–Frobenius operator (propaga-
tor) with respect to the equilibrium density, denoted by Tτ , is defined by

Tτ ut (x) =
∫

X

π(y)

π(x)
pτ (y, x) ut (y) dy.

123



990 J Nonlinear Sci (2018) 28:985–1010

The operators Pτ and Kτ can be defined on other spaces Lr and Lr ′
, with r �= 1

and r ′ �= ∞, see (Baxter and Rosenthal 1995; Klus et al. 2016) for more details. By
defining the weighted duality pairing 〈 f, g〉π = ∫

X
f (x) g(x) π(x) dx for f ∈ Lr

π (X)

and g ∈ Lr ′
π (X), where 1

r + 1
r ′ = 1, Tτ defined on Lr ′

π (X) is the adjoint of Kτ defined
on Lr

π (X) with respect to 〈·, ·〉π :

〈Kτ f, g〉π = 〈 f, Tτ g〉π .

For more details, see (Lasota and Mackey 1994; Schütte et al. 1999; Froyland et al.
2013; Noé and Nüske 2013; Nüske et al. 2014; Klus et al. 2016; Wu et al. 2017). The
two operatorsPτ and Tτ are often referred to as forward operators, whereasKτ is also
called backward operator, as they are the solution operators of the forward (Fokker–
Planck) and backward Kolmogorov equations (Lasota and Mackey 1994, Section 11),
respectively.

2.3 Spectral Decomposition of Transfer Operators

In what follows, let Aτ denote one of the transfer operators defined above, i.e., Pτ ,
Tτ , or Kτ . We are particularly interested in computing eigenvalues λ	(τ ) ∈ C and
eigenfunctions ϕ	 : X → C of transfer operators, i.e.,

Aτ ϕ	 = λ	(τ ) ϕ	.

Note that the eigenvalues depend on the lag time τ . For the sake of simplicity, we
will often omit this dependency. The eigenvalues and eigenfunctions of transfer oper-
ators contain important information about the global properties of the system such as
metastable sets or fast and slow processes and can also be used as reduced coordinates,
see (Dellnitz and Junge 1999; Schütte et al. 1999; Mezić 2005; Schütte and Sarich
2013; Froyland et al. 2013, 2014) and references therein.

Example 2.6 The eigenvalues λ	 and eigenfunctions ϕ	 of Kτ associated with the
Ornstein–Uhlenbeck process introduced in Example 2.1 are given by

λ	(τ ) = e−αD (	−1) τ , ϕ	(x) = 1√
(	 − 1)! H	−1

(√
α x

)
, 	 = 1, 2, . . . ,

where H	 denotes the 	th probabilists’ Hermite polynomial (Pavliotis 2014). The
eigenfunctions of Pτ are given by the eigenfunctions ofKτ multiplied by the equilib-
rium density π , see also Fig. 2. ��

In addition to the eigenvalues and eigenfunctions, an essential part of the Koopman
operator analysis is the set of Koopman modes for the so-called full-state observable
g(x) = x . The Koopman modes are vectors that, together with the eigenvalues and
eigenfunctions, allow us to reconstruct and to propagate the system’s state (Williams
et al. 2015a). More precisely, assume that each component gi of the full-state observ-
able, i.e., gi (x) = xi for i = 1, . . . , d, can be written in terms of the eigenfunctions
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Fig. 2 Dominant eigenfunctions of the Ornstein–Uhlenbeck process computed analytically (dotted lines)
and using VAC/EDMD (solid lines). a Eigenfunctions of the Perron–Frobenius operator Pτ . b Eigenfunc-
tions of the Koopman operator Kτ

as gi (x) = ∑
	 ϕ	(x) ηi	. Defining the Koopman modes by η	 = [η1	, . . . , ηd	]T , we

obtain g(x) = x = ∑
	 ϕ	(x) η	 and thus

Kτ g(x) = E[g(Xτ ) | X0 = x] = E[Xτ | X0 = x] =
∑

	

λ	(τ ) ϕ	(x) η	. (3)

For vector-valued functions, theKoopman operator is defined to act componentwise. In
order to be able to compute eigenvalues, eigenfunctions, and eigenmodes numerically,
we project the infinite-dimensional operators onto finite-dimensional spaces spanned
by a given set of basis functions. This will be described in detail in Sect. 4.

2.4 Reversibility

We briefly recapitulate the properties of reversible systems. For many applications,
including commonly used molecular dynamics models, the dynamics in full phase
space are known to be reversible.

Definition 2.7 A system is said to be reversible if the so-called detailed balance con-
dition is fulfilled, i.e., it holds for all x, y ∈ X that

π(x) pτ (x, y) = π(y) pτ (y, x). (4)

Example 2.8 The Ornstein–Uhlenbeck process is reversible. It is straightforward to
verify that (4) is fulfilled by the transition density (1) and the stationary density (2)
for all values of x , y and τ . Also general Smoluchowski equations of a d-dimensional
system of the form

dXt = −D∇V (Xt ) dt + √
2d D dWt

with dimensionless potential V (x) are reversible. The stationary density is then given
by π ∝ exp(−V (x)) (Leimkuhler et al. 2006). ��
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As a result of the detailed balance condition, the Koopman operator Kτ and the
Perron–Frobenius operator with respect to the equilibrium density, Tτ , are identical
(hence also self-adjoint):

Kτ f =
∫

X

pτ (x, y) f (y) dy =
∫

X

π(y)

π(x)
pτ (y, x) f (y) dy = Tτ f.

Moreover, both Kτ and Pτ become self-adjoint with respect to the stationary density,
i.e.,

〈Pτ f, g〉π−1 = 〈 f, Pτ g〉π−1,

〈Kτ f, g〉π = 〈 f, Kτ g〉π .

Hence, the eigenvalues λ	 are real and the eigenfunctions ϕ	 of Kτ form an orthog-
onal basis with respect to 〈·, ·〉π . That is, the eigenfunctions can be scaled so that
〈ϕ	, ϕ	′ 〉π = δ		′ . Furthermore, the leading eigenvalue λ1 is the only eigenvalue with
absolute value 1 and we obtain

1 = λ1 > λ2 ≥ λ3 ≥ . . . ,

see, for example, Nüske et al. (2014). We can then expand a function f ∈ L2
π (X) in

terms of the eigenfunctions as f = ∑∞
	=1〈 f, ϕ	〉π ϕ	 such that

Kτ f =
∞∑

	=1

λ	(τ ) 〈 f, ϕ	〉π ϕ	. (5)

Furthermore, the eigenvalues decay exponentially with λ	(τ ) = exp(−κ	τ) with
relaxation rate κ	 and relaxation timescale t−1

	 . Thus, for a sufficiently large lag time
τ , the fast relaxation processes have decayed and (5) can be approximated by finitely
many terms. The propagator Pτ has the same eigenvalues and the eigenfunctions ϕ̃	

are given by ϕ̃	(x) = π(x) ϕ	(x).

3 Data-Driven Approximation of Transfer Operators

In this section, we will describe different data-driven methods to identify the dominant
dynamics of dynamical systems and to compute eigenfunctions of transfer operators
associated with the system, namely TICA and DMD as well as VAC and EDMD.
A formal derivation of methods to compute finite-dimensional approximations of
transfer operators—resulting in the aforementioned methods – will be given in Sect. 4.
Although TICA can be regarded as a special case of VAC, and DMD as a special case
of EDMD, these methods are often used in different settings.With the aid of TICA, for
instance, it is possible to identify themain slow coordinates and to project the dynamics
onto the resulting reduced space, which can then be discretized using conventional
Markov state models (a special case of VAC or EDMD, respectively, see Sect. 3.5).We
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will introduce the original methods—TICA and DMD—first and then extend these
methods to the more general case. Since in many publications a different notation is
used, we will first start with the required basic definitions.

In what follows, let xi , yi ∈ R
d , i = 1, . . . , m, be a set of pairs of d-dimensional

data vectors, where xi = Xti and yi = Xti +τ . Here, the underlying dynamical system
is not necessarily known, the vectors xi and yi can simply be measurement data or
data from a black box simulation. In matrix form, this can be written as

X = [
x1 x2 · · · xm

]
and Y = [

y1 y2 · · · ym
]
, (6)

with X, Y ∈ R
d×m . If one long trajectory {z0, z1, z2, . . . } of a dynamical system is

given, i.e., zi = Xt0+h i , where h is the step size and τ = nτ h the lag time, we obtain

X = [
z0 z1 · · · zm−1

]
and Y = [

znτ znτ +1 · · · znτ +m−1
]
.

That is, in this case Y is simply X shifted by the lag time τ . Naturally, if more than
one trajectory is given, the data matrices X and Y can be concatenated.

In addition to the data, VAC and EDMD require a set of uniformly bounded basis
functions or observables, given by {ψ1, ψ2, . . . , ψk} ⊂ L∞(X). Since X is assumed
to be bounded, we have ψi ∈ Lr (X) for all i = 1, . . . , k and 1 ≤ r ≤ ∞. The basis
functions could, for instance, be monomials, indicator functions, radial basis func-
tions, or trigonometric functions. The optimal choice of basis functions remains an
open problem and depends strongly on the system. If the set of basis functions is not
sufficient to represent the eigenfunctions, the results will be inaccurate. A too large set
of basis functions, on the other hand,might lead to ill-conditionedmatrices and overfit-
ting. Cross-validation strategies have been developed to detect overfitting (McGibbon
and Pande 2015).

For a basisψi , i = 1, . . . , k, defineψ : Rd → R
k to be the vector-valued function

given by
ψ(x) = [ψ1(x), ψ2(x), . . . , ψk(x)]T . (7)

The goal then is to find the best approximation of a given transfer operator in the space
spanned by these basis functions. This will be explained in detail in Sect. 4. In addition
to the data matrices X and Y , we will need the transformed data matrices

�X = [
ψ(x1) ψ(x2) . . . ψ(xm)

]
and �Y = [

ψ(y1) ψ(y2) . . . ψ(ym)
]
. (8)

3.1 Time-Lagged Independent Component Analysis

Time-lagged independent component analysis (TICA) has been introduced in
Molgedey and Schuster (1994) as a solution to the blind source separation prob-
lem, where the correlation matrix and the time-delayed correlation matrix are used to
separate superimposed signals. The term TICA has been introduced later (Hyvärinen
et al. 2001). TDSEP Ziehe and Müller (1998), an extension of TICA, is popular in the
machine learning community. It was shown only recently that TICA is a special case
of the VAC by computing the optimal linear projection for approximating the slowest
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relaxation processes, and as such provides an approximation of the leading eigen-
values and eigenfunctions of transfer operators (Pérez-Hernández et al. 2013). TICA
is now a popular dimension reduction technique in the field of molecular dynamics
(Pérez-Hernández et al. 2013; Schwantes and Pande 2013). That is, TICA is used as
a preprocessing step to reduce the size of the state space by projecting the dynam-
ics onto the main coordinates. The time-lagged independent components are required
(a) to be uncorrelated and (b) to maximize the autocovariances at lag time τ , see
(Hyvärinen et al. 2001; Pérez-Hernández et al. 2013) for more details. Assuming
that the system is reversible, the TICA coordinates are the eigenfunctions of Tτ or
Kτ , respectively, projected onto the space spanned by linear basis functions, i.e.,
ψ(x) = x .

Let C(τ ) be the time-lagged covariance matrix defined by

Ci j (τ ) = 〈Xt,i Xt+τ, j 〉t = Eπ

[
Xt,i Xt+τ, j

]
.

Given data X and Y as defined above, estimatorsC0 andCτ for the covariancematrices
C(0) and C(τ ) can be computed as

C0 = 1
m−1

m∑

k=1

xk xT
k = 1

m−1 X X T ,

Cτ = 1
m−1

m∑

k=1

xk yT
k = 1

m−1 XY T .

(9)

The time-lagged independent components are defined to be solutions of the eigenvalue
problem

Cτ ξ	 = λ	 C0 ξ	 or C+
0 Cτ ξ	 = λ	 ξ	, (10)

respectively. In what follows, let MTICA = C+
0 Cτ , where C+

0 denotes the Moore–
Penrose pseudo-inverse of C0.

In applications, often the symmetrized estimators

C0 = 1
2m−2 (X X T + Y Y T ) and Cτ = 1

2m−2 (XY T + Y X T )

are used so that the resulting TICA coordinates become real-valued. This corresponds
to averaging over the trajectory and the time-reversed trajectory. Note that this sym-
metrization can introduce a large estimator bias that affects the dominant spectrum
of (10), if the process is non-stationary, or the distribution of the data is far from the
equilibrium of the process. In the latter case, a reweighting procedure can be applied
to obtain weighted versions of the estimators (9), to reduce that bias (Wu et al. 2017).

Example 3.1 Let us illustrate the idea behind TICA with a simple example. Consider
the data shown in Fig. 3, which was generated by a stochastic process which will
typically spend a long time in one of the two clusters before it jumps to the other. We
are interested in finding these metastable sets. Standard principal component analysis
(PCA) leads to the coordinate shown in red, whereas TICA—shown in black—takes
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Fig. 3 The difference between PCA and TICA. The top and bottom plot show the x- and y-component of
the system, respectively, the plot on the right the resulting main principal component vector and the main
TICA coordinate

time information into account and is thus able to identify the slow direction of the
system correctly. Projecting the system onto the x-coordinate will preserve the slow
process while eliminating the fast stochastic noise. ��

Algorithm 1 AMUSE algorithm to compute TICA.

1. Compute a reduced SVD of X , i.e., X = U � V T .
2. Whiten data: X̃ = �−1U T X and Ỹ = �−1U T Y .
3. Compute MTICA = X̃ Ỹ T = �−1U T XY T U�−1.
4. Solve the eigenvalue problem MTICA w	 = λ	 w	.
5. The TICA coordinates are then given by ξ	 = U�−1w	.

The TICA coordinates can be computed using AMUSE5 Tong et al. (1990) as
shown in Algorithm 1. Instead of computing a singular value decomposition of the
data matrix X in step 1, an eigenvalue decomposition of the covariance matrix X X T

could be computed, which is more efficient if m � d, but less accurate. The vectors
ξ	 computed by AMUSE are solutions of the eigenvalue problem (10), since

MTICA ξ	 =
(

X X T
)+

XY T U�−1w	

= U�−1 X̃ Ỹ T w	

5 Algorithm for Multiple Unknown Signals Extraction.
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= λ	 U�−1w	

= λ	 ξ	.

In the second line, we used the fact that (X X T )+ = U�−2U T and in the third that
w	 is an eigenvector of MTICA = X̃ Ỹ T .

3.2 Dynamic Mode Decomposition

Dynamic mode decomposition (DMD) was developed by the fluid dynamics com-
munity as a tool to identify coherent structures in fluid flows (Schmid 2010). Since
its introduction, several variants and extensions have been proposed, see (Chen et al.
2012; Tu et al. 2014; Jovanović et al. 2014; Brunton et al. 2015; Klus et al. 2016).
A review of the applications of Koopman operator theory in fluid mechanics can be
found in Mezić (2013). DMD can be viewed as a combination of a PCA in the spatial
domain and a Fourier analysis in the frequency domain (Brunton et al. 2016). It can
be shown that the DMD modes are the Koopman modes for the set of basis functions
defined by ψ(x) = x . Given again data X and Y as above, the idea behind DMD is to
assume that there exists a linear operator MDMD such that yi = MDMD xi . Since the
underlying dynamical system is in general nonlinear, this equation cannot be fulfilled
exactly and we want to compute the matrix MDMD in such a way that the Frobenius
norm of the deviation is minimized, i.e.,

min ‖Y − MDMDX‖F . (11)

The solution of this minimization problem is given by

MDMD = Y X+ = (
Y X T )(

X X T )+ = CT
τ C+

0 = MT
TICA. (12)

The eigenvalues and eigenvectors of MDMD are called DMD eigenvalues and modes,
respectively. That is, we are solving

MDMD ξ	 = λ	 ξ	.

The above equations already illustrate the close relationship with TICA, cf. (10). The
DMD modes are the right eigenvectors of MDMD, whereas the TICA coordinates are
defined to be the right eigenvectors of the transposed matrix MTICA. Hence, the TICA
coordinates are the left eigenvectors of the DMD matrix and the DMD modes the left
eigenvectors of the TICA matrix. This is consistent with the results that will be pre-
sented in the VAC and EDMD subsections below: The TICA coordinates represent the
Koopman eigenfunctions projected onto the space spanned by linear basis functions,
i.e., ψ(x) = x , while the DMD modes are the corresponding Koopman modes.

Similar to AMUSE, the DMD modes and eigenvalues can be obtained without
explicitly computing MDMD by using a reduced singular value decomposition of X .
Standard and exact DMD are presented in Algorithm 2. The standard DMDmodes are
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simply the exact DMD modes projected onto the range of the matrix X , see Tu et al.
(2014).

Algorithm 2 Standard and exact DMD.
1. Compute compact SVD of X , given by X = U � V T .
2. Define MDMD = U T Y V �−1.
3. Compute eigenvalues and eigenvectors of MDMD, i.e., MDMD w	 = λ	 w	.
4. The DMD mode corresponding to the eigenvalue λ	 is defined as

a) ξ	 = Uw	. (Standard DMD)

b) ξ	 = 1

λ
Y V �−1w	. (Exact DMD)

Remark 3.2 TICA and standard DMD are closely related. When comparing with the
AMUSE formulation, we obtain

MTICA = X̃ Ỹ T = �−1U T XY T U�−1 = � U T MTICA U�−1 =: W�W −1

and
MDMD = U T Y V �−1 = U T MDMD U = U T MT

TICAU =: W̃ �̃W̃ −1.

The TICA coordinates are given by � = U�−1W and the standard DMD modes by
�̃ = U W̃ so that—except for the scaling �−1—AMUSE and standard DMD use the
same projection, the main difference is that the former computes the eigenvectors of
MTICA and the latter the eigenvectors of the transposed matrix MT

TICA. As a result,

AMUSE could be rewritten to compute the DMD modes if we define M
′
DMD =

Ỹ X̃ T = �−1U T Y X T U�−1 in step 3 of the algorithm and ξ	 = U� w	 in step 5,
where w	 now denotes the eigenvectors of M

′
DMD.

3.3 Variational Approach of Conformation Dynamics

The variational approach of conformation dynamics (VAC) (Noé and Nüske 2013;
Nüske et al. 2014, 2016) is a generalization of the frequently used Markov state mod-
eling framework that allows arbitrary basis functions and is similar to the variational
approach in quantum mechanics (Nüske et al. 2014). As described above, VAC and
EDMD (see below) require—in addition to the data—a set of basis functions (also
called dictionary), given by ψ . The variational approach is defined only for reversible
systems—EDMD does not require this restriction—and computes eigenfunctions of
Tτ or Kτ , respectively. Using the data matrices �X and �Y defined in (8), C0 and Cτ

defined in (9) for the transformed data can be estimated as
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C0 = 1
m−1

m∑

k=1

ψ(xk) ψ(xk)
T = 1

m−1�X�T
X ,

Cτ = 1
m−1

m∑

k=1

ψ(xk) ψ(yk)
T = 1

m−1�X�T
Y .

In what follows, let MVAC = C+
0 Cτ for the transformed datamatrices�X and�Y . The

matrix MVAC can be regarded as a finite-dimensional approximation ofKτ (orTτ , since
the system is assumed to be reversible; the derivation is shown in Sect. 4), respectively.
Eigenfunctions of the operator can then be approximated by the eigenvectors of the
matrix MVAC. Let ξ	 be an eigenvector of MVAC, i.e.,

MVAC ξ	 = λ	 ξ	,

and ϕ	(x) = ξ∗
	 ψ(x), where ∗ denotes the conjugate transpose. Since

Kτ ϕ	(x) ≈ (MVAC ξ	)
∗ ψ(x) = λ	 ξ∗

	 ψ(x) = λ	 ϕ	(x),

we obtain an approximation of the eigenfunctions of Kτ . The derivation will be
described in detail in Sect. 4.

3.4 Extended Dynamic Mode Decomposition

Extended dynamic mode decomposition (EDMD), a generalization of DMD, can be
used to compute finite-dimensional approximations of the Koopman operator, its
eigenvalues, eigenfunctions, and eigenmodes (Williams et al. 2015a, b). It was shown
in Klus et al. (2016) that EDMD can be extended to approximate also eigenfunction of
the Perron–Frobenius operator with respect to the density underlying the data points.
With the notation introduced above, theminimization problem (11) for the transformed
data matrices �X and �Y can be written as

min ‖�Y − MEDMD�X‖F . (13)

The solution—see also (12)—is given by

MEDMD = �Y �+
X = (

�Y �T
X

)(
�X�T

X

)+ = CT
τ C+

0 = MT
VAC.

That is, instead of assuming a linear relationship between the data matrices X and
Y , EDMD aims at finding a linear relationship between the transformed data matri-
ces �X and �Y . Eigenfunctions of the Koopman operator are then given by the left
eigenvectors ξ	 of MEDMD, i.e.,

ϕ	(x) = ξ∗
	 ψ(x).
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The derivation of EDMDcan be found in Sect. 4. Since the left eigenvectors of MEDMD
are the right eigenvectors of MVAC, VAC and EDMD are equivalent as they compute
exactly the same eigenvalue and eigenfunction approximations for a data and basis
set.

As shown in Klus et al. (2016), EDMD can also be used to approximate the Perron–
Frobenius operator as follows:

M̃EDMD = (
�X�T

Y

)(
�X�T

X

)+ = Cτ C+
0 .

It is important to note that the Perron–Frobenius operator is computed with respect
to the density underlying the data matrices. That is, if X is sampled from a uniform
distribution, we obtain the eigenfunctions of the Perron–Frobenius operator Pτ . If
we, on the other hand, use one long trajectory, the underlying density converges to the
equilibrium density π and we obtain the eigenfunctions of the Perron–Frobenius oper-
ator with respect to the equilibrium density, denoted by Tτ . An approach to compute
the equilibrium density from off-equilibrium data is proposed in Wu et al. (2017).

Example 3.3 Let us consider the Ornstein–Uhlenbeck process introduced in Exam-
ple 2.1. Here, α = 4 and D = 0.25. The lag time is defined to be τ = 1. We generated
105 uniformly distributed test points in [−2, 2] and used a basis comprising monomi-
als of order up to 10.With the aid of EDMD,we computed the dominant eigenfunctions
of the Perron–Frobenius operatorPτ and the Koopman operatorKτ (which is identical
to Tτ here due to reversibility). The results are shown in Fig. 2. The corresponding
eigenvalues are given by

λ1(τ ) = 1.00, λ2(τ ) = 0.37, λ3(τ ) = 0.13, λ4(τ ) = 0.049,

which is a good approximation of the analytically computed eigenvalues (Exam-
ple 2.6). ��

In order to approximate the Koopman modes, let ϕ(x) = [ϕ1(x), . . . , ϕk(x)]T be
the vector of eigenfunctions and

� = [
ξ1 ξ2 . . . ξk

]

the matrix that contains all left eigenvectors of MEDMD. Furthermore, define B ∈
R

d×k such that g(x) = B ψ(x). That is, the full-state observable is written in terms
of the basis functions6. Since ϕ(x) = �∗ ψ(x), this leads to g(x) = B ψ(x) =
B (�∗)−1ϕ(x). Thus, the 	th column vector of the matrix η = B (�∗)−1 represents
the Koopman mode η	 required for the reconstruction of the dynamical system, see
(3).

6 The easiest way to accomplish this is by adding the observables xi , i = 1, . . . , d, to the set of basis
functions.
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Fig. 4 Relationships between data-driven methods. While VAC was derived for reversible dynamical
systems, the derivation of EDMD covers non-reversible dynamics as well

3.5 Relationships with Other Methods

For particular choices of basis functions, VAC and EDMD are equivalent to other
methods (see also Nüske et al. 2016; Klus et al. 2016):

1. If we chooseψ(x) = x , we obtain TICA andDMD, respectively. That is, the TICA
coordinates are the eigenfunctions of the Koopman operator projected onto the
space spanned by linear basis functions and the DMD modes are the correspond-
ing Koopman modes. (Note that in this case B = I and the matrix η = (�∗)−1

contains the right eigenvectors of MEDMD.) In many applications of TICA, the
basis functions are modified to have zero mean. For reversible processes, this
eliminates the stationary eigenvalue λ1 = 1 and its eigenfunction ϕ1 ≡ 1. The
largest eigenpair then approximates the slowest dynamical eigenvalue and eigen-
function, respectively.

2. If the set of basis functions comprises indicator functions1A1 , . . . , 1Ak for a given
decomposition of the state space into disjoint sets A1, . . . , Ak , VAC and EDMD
result in Ulam’s method Ulam (1960) and thus a Markov state model (MSM).

These relationships are shown in Fig. 4. Detailed examples illustrating the use of VAC
and EDMD can be found in Nüske et al. (2014), Williams et al. (2015a), Klus et al.
(2016).
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3.6 Examples

3.6.1 Double Gyre

Let us consider the autonomous double gyre, which was introduced in Shadden et al.
(2005), given by the SDE

dXt = −π A sin(π Xt ) cos(π Yt ) + ε dWt,1,

dYt = π A cos(π Xt ) sin(π Yt ) + ε dWt,2

on the domain X = [0, 2] × [0, 1] with reflecting boundary. For ε = 0, there is no
transport between the left half and the right half of the domain and both subdomains are
invariant sets with measure 1

2 , cf. (Froyland and Padberg 2009; Froyland and Padberg-
Gehle 2014). For ε > 0, there is a small amount of transport due to diffusion and the
subdomains are almost invariant. For the Koopman operator Kτ , this means that for
ε = 0 the characteristic functions ϕ̃1 = 1[0,1]×[0,1] and ϕ̃2 = 1[1,2]×[0,1] are both
eigenfunctions with corresponding eigenvalue 1. If, on the other hand, ε > 0, then the
two-dimensional eigenspace subdivides into two one-dimensional eigenspaces with
eigenvalues λ1 = 1 and λ2 = 1 − O(ε) and eigenfunctions ϕ1 = 1[0,2]×[0,1] and
ϕ2 ≈ ϕ̃1 − ϕ̃2. Typical trajectories of the system are shown in Fig. 5a. Using the
parameters A = 0.25 and ε = 0.05, we integrated 105 randomly generated test points
using the Euler–Maruyama scheme with step size h = 10−3.

For the computation of the eigenfunctions, we choose a set of radial basis functions
whose centerswere given by themidpoints of an equidistant 50×25 box discretization,
and a lag time τ = 3. The resulting nontrivial leading eigenfunctions of the Koopman
operator computed with EDMD are shown in Fig. 5b. The two almost invariant sets are
clearly visible. The eigenfunctions of the Perron–Frobenius operator exhibit similar
patterns (but “rotating” in the opposite direction).

3.6.2 Deca Alanine

As a second example, we illustrate what has become a typical workflow for the appli-
cation of VAC/EDMD in molecular dynamics, using deca alanine as a model system.
Deca alanine is a small peptide comprised of ten alanine residues, and it has been used
as a test system many times before. Here, we analyze equilibrium simulations of 3µs
total simulation time using the Amber03 force field, see (Nüske et al. 2014, 2016) for
the detailed simulation setup. A set of important quantities for our analysis are the
leading implied timescales

tm = − τ

log |λm | , (14)

for m = 2, 3, . . .. Implied timescales are independent of the lag time (Pazy 1983,
Theorem 2.2.4). However, if they are estimated using (14) and an approximation to
the eigenvalues λm obtained from VAC/EDMD, the timescales will be underestimated
(see Sect. 4.2.1) and the error will decrease as a function of the lag time (Djurdjevac
et al. 2012). Approximate convergence of implied timescales with increasing lag time
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Fig. 5 a Typical trajectories (of different lengths) of the double gyre system for ε = 0.05. The initial states
are marked by dots. Due to the diffusion term, particles can cross the separatrix (dashed line). The gray lines
show the trajectories with the same initial conditions for ε = 0. b Leading eigenfunctions of the Koopman
operator associated with the double gyre system computed using EDMD

has become a standard model validation criterion in molecular dynamics (Prinz et al.
2011).

In the first step, a set of internal molecular coordinates is extracted from the sim-
ulation data, to which TICA is applied. In our example, we select all 16 backbone
dihedral angles as internalmolecular coordinates. Figure 6a shows the first five implied
timescales estimated by TICA as a function of the lag time τ .

Next, a first dimension reduction is performed, where the data are projected onto
the leading M TICA eigenvectors. The number M is selected by the criterion of total
kinetic variance, that is, M is the smallest number such that the cumulative sum of the
first M squared eigenvalues exceeds 95 per cent of the total sum of squared eigenvalues
(Noé and Clementi 2015). Figure 6c shows the resulting dimension M as a function
of the lag time.

As a third step, the reduced data set is discretized by application of a clustering
method. In our case,we use k-means clustering to assign the data to 50 discrete states.A
Markov statemodel (MSM, equivalent toUlam’smethod, see above) is estimated from
the discretized time series. We show the first five implied timescales from the MSM
in Fig. 6c and observe that estimates improve compared to the TICA approximations.
Also, timescale estimates converge for lag times τ ≥ 4 ns.
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Fig. 6 Illustration of standard EDMD workflow in molecular dynamics using the deca alanine model
system. a Leading implied timescales tm (in nanoseconds) as estimated by TICA as a function of the lag
time. b Effective dimension M selected by applying the criterion of total kinetic variance to the TICA
eigenvalues. c Leading implied timescales tm estimated by a Markov state model after projecting the data
onto the first M TICA eigenvectors and discretizing this data set into 50 states using k-means. d Simple
visualization of effective coarse grained dynamics. AllMSMstates are assigned to twomacrostates using the
PCCA algorithm. An overlay of representative structures from both macrostates shows that the dynamics
between them corresponds to helix formation. Macrostates are drawn proportionally to their stationary
probability

Finally, we use the converged model at lag time τ = 4 ns for further analysis. As
the slowest implied timescale t2 dominates all others, and as it is the only one which
is larger than the lag time used for analysis (indicated by the gray line in Fig. 6c), we
attempt to extract a two-state model that captures the essential dynamics. We employ
the PCCA+ algorithm (Deuflhard andWeber 2005; Röblitz andWeber 2013) to coarse
grain all MSM states into two macrostates. Inspection of randomly selected trajectory
frames belonging to eachmacrostate reveals that the slowdynamical process in the data
corresponds to the formation of a helix, see Fig. 6d. It should be noted that this coarse
graining works well for visualization purposes, but some details need to be taken into
account. In fact, PCCA performs a fuzzy assignment of MSM states to macrostates,
where eachMSM state belongs to eachmacrostate with a certainmembership in [0, 1].
We simply assign each MSM state to the macrostate with maximal membership here.
Alternatively, we could also use a hidden Markov model (HMM) to perform the coarse
graining (Noé et al. 2013).
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4 Derivations

In this section, we will show how VAC and EDMD as well as their respective special
cases TICA and DMD can be derived and how these methods are related to eigen-
functions and eigenmodes of transfer operators.

4.1 General Dynamical Systems

Let us begin with general, not necessarily reversible dynamical systems. In order
to be able to compute eigenfunctions of transfer operators numerically, the infinite-
dimensional operators are projected onto a finite-dimensional space. We will briefly
outline how the EDMD minimization problem (13) leads to an approximation of the
Koopman operator.

Theorem 4.1 Let the process {Xt }t≥0 be Feller-continuous7. Let ψi , i = 1, . . . , k,
be the set of at least piecewise continuous basis functions of the finite-dimensional
linear space V. Let the empirical distribution of the data points x1, x2, . . . converge
weakly to the density ρ. Then the minimization problem

min
K∈Rk×k

1

m

m∑

j=1

∥∥∥ψ(y j ) − K T ψ(x j )

∥∥∥
2

2

converges, as m → ∞, almost surely to minK̂

∑k
i=1 ‖Kτψi − K̂ψi‖2ρ , where the

minimization is over all linear mappings K̂ : V → V.

Proof Let f = ∑k
i=1 ai ψi = aT ψ ∈ V be an arbitrary function, where a =

[a1, . . . , ak]T . For a single data point x j , we have for a linear mapping K̂ : V → V

with matrix representation K ∈ R
k×k that

K̂ f (x j ) =
k∑

i=1

(K a)i ψi (x j ) = aT K T ψ(x j ).

Here, the i th column of the matrix K corresponds to K̂ψi . Thus, we obtain

1

m

m∑

j=1

∥∥∥ψ(y j ) − K T ψ(x j )

∥∥∥
2

2

=
k∑

i=1

1

m

m∑

j=1

(ψi (y j ) − K̂ψi (x j ))
2

7 Aprocess {Xt }t≥0 is called Feller-continuous if themapping x �→ E[g(Xt )|X0 = x] is continuous for any
fixed continuous function g. This implies, that the Koopman operator of a Feller-continuous process has a
well-defined restriction from L∞(X) to the set of continuous functions. Any stochastic process generated by
an Itô stochastic differential equation with Lipschitz-continuous coefficients is Feller-continuous (Øksendal
2003, Lemma 8.1.4).
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m→∞−→
k∑

i=1

∫

X

(E[ψi (Xτ ) | X0 = x] − K̂ψi (x))2ρ(x) dx

=
k∑

i=1

‖Kτψi − K̂ψi‖2ρ,

where the convergence for m → ∞ is almost sure. From the first line to the second
we used that the y j are realizations of the random variables Xτ given X0 = x j , that
Xτ is a Feller-continuous process, that the ψi are (piecewise) continuous functions,
and that the sampling process of x j is independent of the noise process that decides
over Xτ given X0 = x j . ��

With the aid of the data matrices �X and �Y defined in (8), this minimization
problem can be written as

min
∥∥∥�Y − K T �X

∥∥∥
2

F
,

which is identical to (13), where now K T = MEDMD. Thus, the transposed EDMD
matrix MEDMD is an approximation of the Koopman operator. A similar setup allows
for the approximation of the Perron–Frobenius operator with respect to the data point
density ρ. For details, we refer to (Klus et al. 2016, Appendix A). Note, however,
that although the Perron–Frobenius and Koopman operators are adjoint, the matrix
representation of the discrete Perron–Frobenius operator will in general not just be
the transposed of the matrix K , unless the ansatz functions ψi are orthonormal with
respect to 〈·, ·〉ρ .

If the dynamical system is deterministic, we can already interpret the minimization
(13) for finite values of m. As shown, e.g., in Klus et al. (2016), Korda and Mezić
(2017), the solution of (13) is a Petrov–Galerkin projection of the Koopman operator
on the ansatz space V.

4.2 Reversible Dynamical Systems

Let us now assume that the system is reversible. That is, it holds that π(x) pτ (x, y) =
π(y) pτ (y, x) for all x and y.

4.2.1 Variational Principle for the Rayleigh Trace

Wecan also derive a variational formulation for the first M eigenvalues of theKoopman
operatorKτ in the reversible setting. It is a standard result for self-adjoint operators on
a Hilbert space with bounded eigenvalue spectrum, see, for example, Bandle (1980):

Proposition 4.2 Assume that 1 = λ1 > λ2 ≥ . . . ≥ λM are the dominant eigenvalues
of the Koopman operator Kτ on L2

π . Then
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M∑

	=1

λ	 = sup
M∑

	=1

〈Kτ v	, v	〉π ,

〈v	, v	
′ 〉π = δ

		
′

(15)

The sum of the first M eigenvalues maximizes the Rayleigh trace, which is the sum
on the right-hand side of (15) over all selections of M orthonormal functions v	. The
maximum is attained for the first M eigenfunctions ϕ1, . . . , ϕM .

Proof The M-dimensional space V spanned by the functions v	 must contain an
elementuM which is orthonormal to thefirst M−1eigenfunctionsϕ	, i.e., 〈uM , ϕ	〉π =
0, 	 = 1, . . . , M − 1, and ‖uM‖π = 1. By the standard Rayleigh principle for self-
adjoint operators

〈Kτ uM , uM 〉π ≤ λM .

Next, determine a normalized element uM−1 of the orthogonal complement of uM

in V with 〈uM−1, ϕ	〉π = 0, 	 = 1, . . . , M − 2. Again, we can invoke the Rayleigh
principle to find

〈Kτ uM−1, uM−1〉π ≤ λM−1.

Repeating this argument another M − 2 times provides an orthonormal basis
u1, . . . , uM of the space V such that

M∑

	=1

〈Kτ u	, u	〉π ≤
M∑

	=1

λ	.

As theRayleigh trace is independent of the choice of orthonormal basis for the subspace
V, and the space itself was arbitrary, this proves (15). Clearly, the maximum is attained
for the first M eigenfunctions. ��

Proposition 4.2 motivates the variational approach developed in Noé and Nüske
(2013), Nüske et al. (2014) to maximize the Rayleigh trace restricted to some fixed
space of ansatz functions:

Proposition 4.3 Let V be a space of k linearly independent ansatz functions ψi given
by a dictionary as above. The set of M ≤ k mutually orthonormal functions f 	 =∑k

i=1 a	
i ψi which maximize the Rayleigh trace of the Koopman operator restricted to

V is given by the first M eigenvectors of the generalized eigenvalue problem

Cτ a	 = λ̂	 C0 a	, (16)

where a	 = (
a	

i

)k
i=1, and the matrices Cτ , C0 are given by

(Cτ )i j = 〈Kτψi , ψ j 〉π ,

(C0)i j = 〈ψi , ψ j 〉π .
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Proof First, note that for any functions f = ∑k
i=1 ai ψi and g = ∑k

i=1 bi ψi , we
have that

〈Kτ f, g〉π = aT Cτ b,

〈 f, g〉π = aT C0 b.

Let us assume that the ansatz functions are mutually orthonormal, i.e., C0 = I . Then,
maximization of the Rayleigh trace is equivalent to finding M vectors a	, such that
(
a	

)T
a	

′ = δ
		

′ and
M∑

	=1

(
a	

)T
Cτ a	 =

M∑

	=1

〈Cτ a	, a	〉

is maximal. By Proposition 4.2 applied to the operator Cτ on R
N , the vectors a	 are

given by the first M eigenvectors of Cτ . In the general case, transform the basis func-
tions into a set of mutually orthonormal functions ψ̃i via ψ̃i = ∑k

j=1 C−1/2
0 ( j, i) ψ j .

For the transformed basis, we need to compute the eigenvectors ã	 of

C−1/2
0 Cτ C−1/2

0 ã	 = λ̂	 ã	.

This is equivalent to the generalized eigenvalue problem (16), the relation between
the eigenvectors is given by

a	 = C−1/2
0 ã	.

��

5 Conclusion

In this review paper, we established connections between different data-driven model
reduction and transfer operator approximation methods developed independently by
the dynamical systems, fluid dynamics, machine learning, and molecular dynamics
communities. Although the derivations of these methods differ, we have shown that
the resulting algorithms share many similarities.

DMD, TICA andMSMs are popular methods to approximate the dynamics of high-
dimensional systems.Due to their simple basis functions, they conduct relatively rough
approximations, but when only a few spectral components are required, the approxi-
mation error can be controlled by choosing sufficiently large lag times τ (Sarich et al.
2010). The more general methods VAC and EDMD are better suited to obtain accurate
approximations of eigenfunctions. However, to ensure such an accurate approxima-
tion, one would have to deploy multiple basis functions in all coordinates and their
combinations, which is unfeasible for high-dimensional systems, and would also lead
to overfitting when estimating the eigenfunctions of the Koopman operator from a
finite data set (McGibbon and Pande 2015).

A natural approach to mitigate these problems is to construct an iterative or “deep”
approach in which the dynamical systems subspace in which a high resolution of
basis functions is required is found by multiple successive analysis steps. A common
approach is to first reduce the dimension by an inexpensive method such as TICA,
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in order to have a relatively low-dimensional space in which the eigenfunctions are
approximated with a higher-resolution method. Another possibility is to exploit low-
rank tensor approximations of transfer operators and their eigenfunctions. Tensor- and
sparse-grid-based reformulations of some of the methods described in this paper can
be found in Nüske et al. (2016), Klus and Schütte (2016), Klus et al. (2016), and
in Junge and Koltai (2009), respectively. The efficiency of these tensor decomposition
approaches depends strongly on the coupling structure; strong coupling between dif-
ferent variables typically leads to high ranks. Furthermore, some tensor formats also
depend on the ordering of variables and a permutation of the variable’s indices would
lead to different tensor decompositions. Yet another approach might be to exploit
sparsity-promoting methods using L1-regularization techniques. Basis functions that
are not required to represent the eigenfunctions of an operator can thus be eliminated
and refined adaptively. Moreover, dictionary-learning methods could be applied to
learn a basis set and to adapt the dictionary to specific data (Mairal et al. 2009). Future
work includes evaluating and combining different dimensionality reduction, tensor
decomposition, and sparsification methods to mitigate the curse of dimensionality.
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