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Abstract Extended dynamicmode decomposition (EDMD) (Williams et al. in J Non-
linear Sci 25(6):1307–1346, 2015) is an algorithm that approximates the action of the
Koopman operator on an N -dimensional subspace of the space of observables by
sampling at M points in the state space. Assuming that the samples are drawn either
independently or ergodically from some measure μ, it was shown in Klus et al. (J
Comput Dyn 3(1):51–79, 2016) that, in the limit as M → ∞, the EDMD operator
KN ,M converges to KN , where KN is the L2(μ)-orthogonal projection of the action
of the Koopman operator on the finite-dimensional subspace of observables. We show
that, as N → ∞, the operator KN converges in the strong operator topology to the
Koopman operator. This in particular implies convergence of the predictions of future
values of a given observable over any finite time horizon, a fact important for prac-
tical applications such as forecasting, estimation and control. In addition, we show
that accumulation points of the spectra of KN correspond to the eigenvalues of the
Koopman operator with the associated eigenfunctions converging weakly to an eigen-
function of the Koopman operator, provided that the weak limit of the eigenfunctions
is nonzero. As a by-product, we propose an analytic version of the EDMD algorithm
which, under some assumptions, allows one to construct KN directly, without the use
of sampling. Finally, under additional assumptions, we analyze convergence ofKN ,N

(i.e., M = N ), proving convergence, along a subsequence, to weak eigenfunctions (or
eigendistributions) related to the eigenmeasures of the Perron–Frobenius operator. No
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assumptions on the observables belonging to a finite-dimensional invariant subspace
of the Koopman operator are required throughout.

Keywords Koopman operator · Dynamic mode decomposition · Convergence ·
Spectrum

Mathematics Subject Classification 37-XX · 37A30 · 47Nxx

1 Introduction

Recently, there has been an expanding interest in utilizing the spectral expansion-based
methodology that enabled progress in data-driven analysis of high-dimensional non-
linear systems. The research was initiated in Mezić (2005) and Mezić and Banaszuk
(2004), using composition (Koopman) operator representation originally defined
in Koopman (1931). The framework is being used for model reduction, identification,
prediction, data assimilation and control of deterministic (e.g., Budisić et al. 2012;
Mauroy and Goncalves 2017; Rowley et al. 2009; Williams et al. 2015; Brunton et al.
2016b; Giannakis et al. 2015; Korda and Mezić 2016) as well as stochastic dynamical
systems (e.g., Takeishi et al. 2017; Riseth and Taylor-King 2017; Wu and Noé 2017).
This has propelled the theory to wide use on a diverse set of applications such as fluid
dynamics (Sharma et al. 2016; Glaz et al. 2016), power grid dynamics (Raak et al.
2016), neurodynamics (Brunton et al. 2016a), energy efficiency (Georgescu andMezić
2015), molecular dynamics (Wu et al. 2017) and data fusion (Williams et al. 2015).

Numerical methods for approximation of the spectral properties of the Koopman
operator have been considered since the inception of the data-driven analysis of dis-
sipative dynamical systems (Mezić and Banaszuk 2004; Mezić 2005). These belong
to the class of generalized Laplace analysis (GLA) methods (Mezić 2013). An alter-
native line of algorithms, called the dynamic mode decomposition (DMD) algorithm
(Schmid 2010; Rowley et al. 2009), has also been advanced, enabling concurrent data-
driven determination of approximate eigenvalues and eigenvectors of the underlying
DMD operator. The examples of DMD-type algorithms are (1) the companion matrix
method proposed by Rowley et al. (2009), (2) the SVD-based DMD developed by
Schmid (2010), (3) the Exact DMD method introduced by Tu et al. (2014), (4) the
Extended DMD (Williams et al. 2015). The relationship between these methods and
the spectral operator properties of the Koopman operator was first noticed in Rowley
et al. (2009), based on the spectral expansion developed in Mezić (2005). However,
rigorous results in this direction are sparse. Williams et al. (2015) provided a result,
the corollary of which is that the spectrum of the EDMD approximation is contained
in the spectrum of the Koopman operator provided the observables belong to a finite-
dimensional invariant subspace of the Koopman operator and the data matrix is of
the same rank. The work of Arbabi and Mezić (2016) suggested that an alternative
assumption to the finite rank is that the number of sampling points M goes to infinity
even though the results of Arbabi and Mezić (2016) still implicitly rely on a finite-
dimensional assumption.
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The work (Klus et al. 2016) showed that, assuming either independent identically
distributed (iid) or ergodic sampling from a measure μ, the EDMD operator on N
observables constructed using M samples, KN ,M , converges as M → ∞ to KN ,
where KN is the L2(μ)-orthogonal projection of the action of the Koopman operator
on the finite-dimensional subspace of observables. In this work, we show that KN

converges to K in the strong operator topology. As a result, predictions of a given
observable obtained using KN or KN ,M over any finite prediction horizon converge
in the L2(μ) norm (as N or N and M tend to infinity) to its true values. In addition,
we show that, as N → ∞, accumulation points of the spectra of KN correspond
to eigenvalues of the Koopman operator and the associated eigenfunctions converge
weakly to an eigenfunction of the Koopman operator, provided that the weak limit of
the eigenfunctions is nonzero. The results hold in a very general setting with minimal
underlying assumptions. In particular, we do not assume that the finite-dimensional
subspace of observables is invariant under the action of the Koopman operator or that
the dynamics is measure preserving.

As a by-product of our results, we propose an analytic version of the EDMD algo-
rithmwhich allows one to constructKN directly, without the need for sampling, under
the assumption that the transition mapping of the dynamical system is known analyt-
ically and the N -dimensional subspace of observables is such that the integrals of the
products of the observables precomposed with the transition mapping can be evalu-
ated in closed form. This method is not immediately useful for large-scale data-driven
applications that the EDMD was originally designed for, but it may prove useful in
control applications (e.g., Korda and Mezić 2016), where model is often known, or
for numerical studies of Koopman operator approximations on classical examples,
eliminating the sampling error in both cases.

Finally, we analyze convergence of KN ,N , i.e., the situation where the number
of samples M and the number of observables N are equal. Under the additional
assumptions that the sample points lie on the same trajectory and the mapping T
is a homeomorphism, we prove convergence along a subsequence to weak eigenfunc-
tions (or eigendistributions in the sense of Gelfand and Shilov 1964) of the Koopman
operator, which also turn out to be eigenmeasures of the Perron–Frobenius operator.

The paper is organized as follows: In Sect. 2, we introduce the setting of EDMD. In
Sect. 3, we show that EDMD is an orthogonal projection of the action of the Koopman
operator on a finite subspace of observables with respect to the empirical measure
supported on sample points drawn from a measure μ. In Sect. 4, we show that this
projection converges to the L2(μ)-projection of the action of the Koopman operator.
In Sect. 5, we analyze the convergence of the EDMD approximations as the dimension
of the subspace N goes to infinity, showing convergence in strong operator topology
and convergence of the eigenvalues along a subsequence plus weak convergence of the
associated eigenfunctions. In Sect. 6, we show convergence of finite-horizon predic-
tions. Section 7 describes the analytic construction of KN . Section 8 contains results
for the case when M = N and only convergence to weak eigenfunctions, along a
subsequence, is proven. We conclude in Sect. 9.
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Notation

The spaces of real and complex numbers are denoted byR andCwithRn×k andCn×k

denoting the corresponding real and complex n × k matrices; the real and complex
column vectors are denoted byRn := R

n×1 andCn := C
n×1. The complex conjugate

of a ∈ C is denoted by a. Given a matrix A ∈ C
n×k , A� denotes its transpose and

AH denotes its Hermitian transpose (i.e., A�
i, j = A j,i and AH

i, j = A j,i ). The Moore–

Penrose pseudoinverse of a matrix A is denoted by A†. The Frobenius norm of a

matrix A is denoted by ‖A‖F =
√∑

i, j |Ai, j |2. Given a vector c ∈ C
n , the symbol

‖c‖2 :=
√∑

i |ci |2 denotes its Euclidean norm.

2 Extended Dynamic Mode Decomposition

We consider a discrete time dynamical system

x+ = T (x) (1)

with T :M → M, whereM is a topological space,1 and we assume that we are given
snapshots of data

X = [x1, . . . , xM ], Y = [y1, . . . , yM ] (2)

satisfying yi = T (xi ). We do not assume that the data points line on a single trajectory
of (1).

Given a vector space of observables F such that ψ :M → C and ψ ◦ T ∈ F for
every ψ ∈ F , we define the Koopman K:F → F by

Kψ = ψ ◦ T,

where ◦ denotes the pointwise function composition. Given a set of linearly indepen-
dent basis functions ψi ∈ F , i = 1, . . . , N , and defining

FN := span {ψ1, . . . , ψN } , (3)

the EDMD constructs a finite-dimensional approximation KN ,M :FN → FN of the
Koopman operator by solving the least-squares problem

min
A∈CN×N

‖Aψ(X) − ψ(Y)‖2F = min
A∈CN×N

M∑
i=1

‖Aψ(xi ) − ψ(yi )‖22, (4)

1 We choose to work in the general setting of dynamical systems on arbitrary topological spaces which
encompass dynamical systems on finite-dimensional manifolds (in which case one can regardM as a subset
of Rn ), as well as infinite-dimensional dynamical systems, arising, for example, from the study of partial
differential equations or dynamical systems with control inputs (Korda and Mezić 2016).
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where

ψ(X) = [ψ(x1), . . . ,ψ(xM )], ψ(Y) = [ψ(y1), . . . ,ψ(yM )]

and

ψ(x) = [ψ1(x), . . . , ψN (x)]�.

Denoting
AN ,M = ψ(Y)ψ(X)†, (5)

a solution2 to (4), the finite-dimensional approximation of the Koopman operator

KN ,M :FN → FN

is then defined by
KN ,Mφ = cHφ AN ,Mψ (6)

for any φ = cHφ ψ , cφ ∈ C
N (i.e., for any φ ∈ FN ). The operatorKN ,M will be referred

to as the EDMD operator.

3 EDMD as L2 Projection

To the best of our knowledge, the results of this section and Sect. 4 were first obtained
in Klus et al. (2016, Section 3.4) and hinted at already in Williams et al. (2015). Here,
we rephrase these results in a form more suitable for our purposes.

From here on, we assume3 that F = L2(μ), where μ is a given positive measure
onM. This assumption in particular implies that the basis functions ψi in (3) belong
to L2(μ) and hence FN is a closed (but not necessarily invariant) subspace of L2(μ).
Note that the measure μ is not required to be invariant for (1) and hence the Koopman
operator K is not necessarily unitary. In practical applications, the measure μ will
typically be the uniform measure onM or other measure from which samples can be
drawn efficiently.

We recall that given an arbitrary positive measure ν on M, the space L2(ν) is the
Hilbert space of all measurable functions φ:M → C satisfying

‖φ‖L2(ν) :=
√∫

M
|φ(x)|2 dν(x) < ∞.

Assuming FN is a closed subspace of L2(ν), the L2(ν)-projection of a function φ ∈
L2(ν) onto FN ⊂ L2(ν) is defined by

2 In general, the solution to (4) may not be unique; however, the matrix AN ,M = ψ(Y)ψ(X)†, where ·†
denotes the Moore–Penrose pseudoinverse, is always uniquely defined and AN ,M is always a minimizer
in (4).
3 SinceK:F → F , the assumption ofF = L2(μ) implies that the composition relation φ ◦T , φ ∈ L2(μ),
gives rise to a well-defined operator from L2(μ) to L2(μ). In particular, this implies that ‖φ1 ◦ T − φ2 ◦
T ‖L2(μ) = 0 whenever ‖φ1 − φ2‖L2(μ) = 0 and that

∫
M |φ ◦ T |2 dμ < ∞ for all φ ∈ L2(μ).
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Pν
Nφ = argmin

f ∈FN

‖ f −φ‖L2(ν) = argmin
f ∈FN

∫

M
| f −φ|2 dν = argmin

c∈CN

∫

M
|cHψ−φ|2 dν.

(7)
Now, given the data points x1, . . . , xM from (2), we define the empirical measure μ̂M

by

μ̂M = 1

M

M∑
i=1

δxi , (8)

where δxi is the Dirac measure at xi . In particular, the integral of a function φ with
respect to μ̂M is given by

∫

M
φ(x)dμ̂M (x) = 1

M

M∑
i=1

φ(xi ).

We remark that the EDMD subspace FN defined in (3) is a closed subspace of both

L2(μ̂M ) and L2(μ) and hence the projections Pμ
N and P μ̂M

N are well defined.
Now, we are ready to state the following characterization of KN ,Mφ:

Theorem 1 Let μ̂M denote the empirical measure (8) associated to the sample points
x1, . . . , xM and assume that the N × N matrix

Mμ̂M = 1

M

M∑
i=1

ψ(xi )ψ(xi )
H =

∫

M
ψψH dμ̂M (9)

is invertible. Then, for any φ ∈ FN

KN ,Mφ = P μ̂M
N Kφ = argmin

f ∈FN

‖ f − Kφ‖L2(μ̂M ), (10)

i.e.,
KN ,M = P μ̂M

N K|FN , (11)

where K|FN :FN → F is the restriction of the Koopman operator to FN .

Proof Since the matrix Mμ̂M is invertible, the least-squares problem (4) has a unique
solution given by

ai =
⎛
⎝

M∑
j=1

ψ(x j )ψ(x j )
H

⎞
⎠

−1
M∑
j=1

ψ(x j )ψi (y j ),

where aHi ∈ C
1×N is the i th row of AN ,M . Therefore,

AH
N ,M =

⎛
⎝

M∑
j=1

ψ(x j )ψ(x j )
H

⎞
⎠

−1
M∑
j=1

ψ(x j )ψ(y j )
H.
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On the other hand, analyzing the minimization problem on the right-hand side of (10),
we get for any φ = cHφ ψ

argmin
f ∈FN

‖ f − Kφ‖L2(μ̂M ) = argmin
c∈CN

1

M

M∑
i=1

(
cHψ(xi ) − cHφ ψ(yi )

)2

with the unique minimizer (since the minimized functions is strictly convex in c)

c =
⎛
⎝

M∑
j=1

ψ(x j )ψ(x j )
H

⎞
⎠

−1
M∑
j=1

ψ(x j )ψ(y j )
Hcφ = AH

N ,Mcφ.

Hence, argmin f ∈FN
‖ f − Kφ‖L2(μ̂M ) = cHψ = cHφ AN ,Mψ = KN ,Mφ as desired,

where we used (6) in the last equality. 	

Theorem 1 says that for any function φ ∈ FN , the EDMD operator KN ,M computes
the L2(μ̂M )-orthogonal projection of Kφ on the subspace spanned by ψ1, . . . , ψN .

Remark 1 If the assumption that the matrix Mμ̂M is invertible does not hold, then the
solution to the projection problem on the right-hand side of (10) may not be unique.4

The action of the EDMD operator KN ,M [which is defined uniquely by (5) and (6)]
then selects one solution to the projection problem. In concrete terms, we have

KN ,Mφ ∈ Argmin f ∈FN
‖ f − Kφ‖L2(μ̂M ),

where Argmin f ∈FN
‖ f − Kφ‖L2(μ̂M ) denotes the set of all minimizers of ‖ f −

Kφ‖L2(μ̂M ) among f ∈ FN .

4 Convergence of KN,M as M → ∞
Thefirst step in understanding convergence of EDMD is to understand the convergence
of KN ,M as the number of samples M tends to infinity. In this section, we prove that

KN ,M → KN ,

where
KN = Pμ

NK|FN , (12)

provided that the samples x1, . . . , xM are drawn independently from a given prob-
ability distribution μ (e.g., uniform distribution for compact M or Gaussian for if
M = R

n).

4 To be more specific, if the matrix Mμ̂M
is not invertible, the solution to (10) may not be unique when

viewed as a member of L2(μ). When viewed as a member of L2(μ̂M ), the solution is unique (since it is a
projection onto a closed subspace of a Hilbert space). This is because in this case two functions from FN
belonging to distinct L2(μ) equivalence classes may fall into the same L2(μ̂M ) equivalence class.
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Assumption 1 (μ independence) The basis functions ψ1, . . . , ψN are such that

μ
{
x ∈ M | cHψ(x) = 0

}
= 0

for all nonzero c ∈ C
N .

This is a natural assumption ensuring that the measure μ is not supported on a zero
level set of a linear combination of the basis functions used. It is satisfied if μ is
any measure with the support equal to M in conjunction with the majority of most
commonly used basis functions such as polynomials and radial basis functions with
unbounded support (e.g., Gaussian, thin plate splines). This assumption in particular
implies that thematrixMμ̂M defined in (9) is invertiblewith probability one forM ≥ N
if x j ’s are iid samples from μ.

Lemma 1 If Assumption 1 holds, then for any φ ∈ F we have with probability one

lim
M→∞ ‖P μ̂M

N φ − Pμ
Nφ‖ = 0, (13)

where ‖·‖ is any norm onFN (which are all equivalent sinceFN is finite dimensional).

Proof We have

Pμ
Nφ = argmin

f ∈FN

∫

M
| f − φ|2 dμ = ψH argmin

c∈CN

∫

M
|cHψ − φ|2 dμ

= ψH argmin
c∈CN

[
cHMμc − 2Re

{
cHbμ,φ

}]
,

where

Mμ =
∫

M
ψψH dμ ∈ C

N×N , bμ,φ =
∫

M
ψφ dμ ∈ C

N

and we dropped the constant term in the last equality which does not influence the
minimizer. ByAssumption 1, thematrixMμ is invertible and henceHermitian positive
definite. Therefore, the unique minimizer is c = M−1

μ bμ,φ . Hence,

Pμ
Nφ = bHμ,φM

−1
μ ψ .

On the other hand, the same computation shows that

P μ̂M
N φ = bH

μ̂M ,φ
M−1

μ̂M
ψ

with

bμ̂M ,φ =
∫

M
ψφ dμ̂M = 1

M

M∑
i=1

ψ(xi )φ(xi )
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and with the matrix Mμ̂M defined in (9) guaranteed to be Hermitian positive definite
by Assumption 1 with probability one for M ≥ N . The result then follows by the
strong law of large numbers which ensures that

lim
M→∞

(
bH
μ̂M ,φ

M−1
μ̂M

)
= bHμ,φM

−1
μ

with probability one since thematrix function A �→ A−1 is continuous and the samples
xi are iid. 	

Theorem 2 If Assumption 1 holds, then we have with probability one for all φ ∈ FN

lim
M→∞ ‖KN ,Mφ − KNφ‖ = 0, (14)

where ‖ · ‖ is any norm on FN . In particular

lim
M→∞ ‖KN ,M − KN‖ = 0, (15)

where ‖ · ‖ is any operator norm and

lim
M→∞ dist

(
σ(KN ,M ), σ (KN )

) = 0, (16)

where σ(·) ⊂ C denotes the spectrum of an operator and dist(·, ·) the Hausdorff
metric on subsets of C.

Proof For any fixed φ ∈ FN , we have by Theorem 1

KN ,Mφ = P μ̂M
N Kφ = P μ̂M

N (φ ◦ T ).

By definition of KNφ, we have KNφ = Pμ
N (φ ◦ T ) and therefore (14) holds from

Lemma 1 with probability one. Since FN is finite dimensional, (14) holds with prob-
ability one for all basis functions of FN and hence by linearity for all φ ∈ FN .
Convergence in the operator norm (15) and spectral convergence (16) follows from (14)
since the operators KN ,M and KN are finite dimensional. 	

Theorem 2 tells us that in order to understand the convergence of KN ,M to K it is
sufficient to understand the convergence ofKN toK. This convergence is analyzed in
Sect. 5.

4.1 Ergodic Sampling

The assumption that the samples x1, . . . , xM are drawn independently from the distri-
butionμ can be replaced by the assumption that (T,M, μ) is ergodic and the samples
x1, . . . , xM are the iterates of the dynamical system starting from some initial con-
dition x ∈ M, i.e., xi = T i (x). Provided that Assumption 1 holds, both Lemma 1
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and Theorem 2 hold without change; the statement “with probability one” is now
interpreted with respect to drawing the initial condition x from the distribution μ.
The proofs follow exactly the same argument; only the strong law of large numbers is
replaced by the Birkhoff’s ergodic theorem in Lemma 1.

5 Convergence of KN to K
In this section, we investigate convergence of KN to K in the limit as N goes to
infinity. Since the operatorKN is defined onFN rather thanF , we extend the operator
to all of F by precomposing with Pμ

N , i.e., we study the convergence of KN Pμ
N =

Pμ
NKPμ

N :F → F toK:F → F as N → ∞. Note that as far as spectrum is concerned,
precomposing with Pμ

N just adds a zero to the spectrum.
To simplify notation, in what follows we denote the L2(μ) norm of a function f

by

‖ f ‖ := ‖ f ‖L2(μ) =
√∫

M
| f |2 dμ

and the usual L2(μ) inner product by

〈 f, g〉 :=
∫

M
f g dμ.

5.1 Preliminaries

Before stating our results, we recall several concepts from functional analysis and
operator theory.

Definition 1 (Bounded operator) An operator A:F → F defined on a Hilbert space
F is bounded if

‖A‖ := sup
f ∈F , ‖ f ‖=1

‖A f ‖ < ∞.

The quantity ‖A‖ is referred as the norm of A.

Definition 2 (Convergence in strong operator topology) A sequence of bounded oper-
atorsAi :F → F defined on a Hilbert spaceF convergences strongly (or in the strong
operator topology) to an operator A:F → F if

lim
i→∞ ‖Ai g − Ag‖ (17)

for all g ∈ F .

Definition 3 (Weak convergence) A sequence of elements fi ∈ F of a Hilbert space
F converges weakly to f ∈ F , denoted fi

w−→ f , if
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lim
i→∞〈 fi , g〉 = 〈 f, g〉 (18)

for all g ∈ F .

We emphasize that Definition 2 pertains to convergence of operators defined on F ,
whereas Definition 3 pertains to convergence of elements of F . We also remark that
strong convergence of fi → f (i.e., ‖ fi − f ‖ → 0) implies weak convergence,
but not vice versa. Similarly, convergence in the strong operator topology implies
convergence in the weak operator topology (i.e., Ai g

w−→ Ag for all g), but does not
imply convergence in the operator norm (i.e., ‖Ai − A‖ → 0).

In our setting of F = L2(μ), the statements (17) and (18) translate to the require-
ments that, respectively,

lim
i→∞

√∫

M
|Ai g − Ag|2 dμ = 0 and lim

i→∞

∫

M
fi g dμ =

∫

M
f g dμ

for all g ∈ L2(μ).
For the remainder of this work, we invoke the following assumption:

Assumption 2 The following conditions hold:

1. The Koopman operator K:F → F is bounded.
2. The observables ψ1, . . . , ψN defining FN are selected from a given orthonormal

basis of F , i.e., (ψi )
∞
i=1 is an orthonormal basis of F .

The first part of the assumption holds for instance when T is invertible, Lipschitz with
Lipschitz inverse and μ is the Lebesgue measure on M (or any measure absolutely
continuous w.r.t. the Lebesgue measure with bounded and strictly positive density).
The second part of the assumption is nonrestrictive as any countable dense subset of
F can be turned into an orthonormal basis using the Gram–Schmidt process.

5.2 Convergence in Strong Operator Topology

In this section, we prove convergence in the strong operator topology (Definition 2)
of KN Pμ

N to K. First, we need the following immediate lemma:

Lemma 2 If (ψi )
∞
i=1 form an orthonormal basis of F = L2(μ), then Pμ

N converge
strongly to the identity operator I and in addition ‖I − PN‖ ≤ 1 for all N .

Proof Let φ = ∑∞
i=1 ciψi with ‖φ‖ = 1. Then, by Parseval’s identity

∑∞
i=1 |ci |2 = 1

and

‖Pμ
Nφ − φ‖ =

∥∥∥∥
∞∑

i=N+1

ciψi

∥∥∥∥ =
∞∑

i=N+1

|ci |2 → 0

with
∑∞

i=N+1 |ci |2 ≤ 1 for all N . 	
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Now, we are ready to prove strong convergence of Pμ
NKPμ

N to K.

Theorem 3 If Assumption 2 holds, then the sequence of operatorsKN Pμ
N = Pμ

NKPμ
N

converges strongly to K as N → ∞, i.e.,

lim
N→∞

∫

M
|KN Pμ

Nφ − Kφ|2 dμ = 0

for all φ ∈ F .

Proof Let φ ∈ F be given. Then, writing φ = Pμ
Nφ + (I − Pμ

N )φ we have

‖Pμ
NKPμ

Nφ − Kφ‖ = ‖(Pμ
N − I

)KPμ
Nφ + K(

Pμ
N − I

)
φ‖

≤ ‖(Pμ
N − I

)KPμ
Nφ‖ + ‖K‖‖(I − Pμ

N )φ‖
≤ ‖(Pμ

N − I
)Kφ‖ + ‖(Pμ

N − I
)‖‖KPμ

Nφ − Kφ‖
+ ‖K‖‖(I − Pμ

N

)
φ‖ → 0

byLemma2 and by the fact thatKPμ
N φ → Kφ sinceK is continuous byAssumption 2.

	


5.3 Weak Spectral Convergence

Unfortunately, strong converge does not in general guarantee convergence of the spec-
tra of the operators. This is guaranteed only if the operators converge in the operator
norm.5 An important exception to this is the case of FN being an invariant subspace,
i.e., K f ∈ FN for all f ∈ FN in which case the spectra of KN and K|FN coincide.
Here, however,we do not assume thatFN is invariant and prove certain spectral conver-
gence results in a weak sense. In particular, we prove convergence of the eigenvalues
of KN along a subsequence and weak convergence of the associated eigenfunctions
(see Definition 3), provided that the weak limit of the eigenfunctions is nonzero.

Theorem 4 If Assumption 2 holds and λN is a sequence of eigenvalues of KN with
the associated normalized eigenfunctions φN ∈ FN , ‖φN‖ = 1, then there exists a
subsequence (λNi , φNi ) such that

lim
i→∞ λNi = λ, φNi

w−→ φ,

where λ ∈ C and φ ∈ F are such that Kφ = λφ. In particular, if ‖φ‖ �= 0, then λ is
an eigenvalue of K with eigenfunction φ.

Proof First, observe that since KNφN = λNφN with φN ∈ FN , we also have
Pμ
NKPμ

NφN = λNφN . Hence, |λN | ≤ ‖Pμ
NKPμ

N ‖ ≤ ‖K‖ < ∞ by Assumption 2
and the fact that ‖Pμ

N ‖ ≤ 1. Therefore, the sequence λN is bounded. Since φN is

5 A sequence of operatorsAi converges in the operator norm to an operatorA if limi→∞ ‖Ai −A‖ = 0.
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normalized and hence bounded, by weak sequential compactness of the unit ball of a
Hilbert space [which follows from the Banach–Alaoglu theorem (Rudin 1973, Theo-
rems 3.15) and Eberlein–Šmulian theorem (Dunford and Schwartz 1971)], there exists
a subsequence (λNi , φNi ) such that λNi → λ and φNi

w−→ φ.
It remains to prove that (λ, φ) is an eigenvalue–eigenfunction pair ofK. For ease of

notation, set λi = λNi and φi = φNi . Denote K̂i = KNi P
μ
Ni

= Pμ
Ni
KPμ

Ni
and observe

that K̂iφi = λiφi for all i . Then, we have

Kφ = K̂i (φ − φi ) + (K − K̂i )φ + K̂iφi .

Taking the inner product with an arbitrary f ∈ F and using the fact that K̂iφi = λiφi ,
we get

〈Kφ, f 〉 = 〈K̂i (φ − φi ), f 〉 + 〈(K − K̂i )φ, f 〉 + 〈λiφi , f 〉.

Now, the second term on the right-hand side 〈(K− K̂i )φ, f 〉 → 0 since K̂i converges
strongly to K by Theorem 3. The last term 〈λiφi , f 〉 → 〈λφ, f 〉 since λi → λ and
φi

w−→ φ. It remains to show that the first term converges to zero. We have

〈K̂i (φ − φi ), f
〉 = 〈

Pμ
Ni
KPμ

Ni
(φ − φi ), f

〉 = 〈K(
Pμ
Ni

φ − φi
)
, Pμ

Ni
f
〉
,

where we used the fact that Pμ
Ni

is self-adjoint and φi ∈ FNi and hence Pμ
Ni

φi = φi .

Denote hi := K(Pμ
Ni

φ − φi ). We will show that hi
w−→ 0. Indeed, denoting K� the

adjoint of K, we have

〈K(
Pμ
Ni

φ − φi
)
, f

〉 = 〈(
Pμ
Ni

φ − φ + φ − φi
)
,K� f

〉 = 〈
Pμ
Ni

φ − φ, K� f
〉

+ 〈
φ − φi , K� f

〉 → 0,

since Pμ
Ni

converges strongly to the identity (Lemma 2) and φi
w−→ φ. Finally, we show

that 〈hi , Pμ
Ni

f 〉 → 0. We have

〈
hi , P

μ
Ni

f
〉 = 〈

hi , P
μ
Ni

f − f
〉 + 〈hi , f 〉.

The second term goes to zero since hi
w−→ 0. For the first term, we have

〈
hi , P

μ
Ni

f − f
〉 ≤ ‖hi‖‖Pμ

Ni
f − f ‖ → 0

since Pμ
Ni

converges strongly to the identity operator (Lemma 2) and hi is bounded

since K is bounded by Assumption 2, ‖Pμ
Ni

‖ ≤ 1 and ‖φi‖ ≤ 1. Therefore, we
conclude that

〈Kφ, f 〉 = lim
i→∞〈λiφi , f 〉 = 〈λφ, f 〉
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Fig. 1 Graph of the functions
φN (x) = √

2 sin(2πNx) for
N = 1 and N = 10. These
functions satisfy ‖φN ‖L2 = 1

and φN
w−→ 0 as N → ∞. If

such φN happen to be
eigenfunctions of KN with
eigenvalues λN , then the
accumulation points of the
sequence (λN )∞N=1 need not be
eigenvalues of the Koopman
operator
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for all f ∈ F . Therefore, Kφ = λφ. 	

Example As an example demonstrating that the assumption that the weak limit of
φN is nonzero is important, consider M = [0, 1], T (x) = x and μ the Lebesgue
measure on [0, 1]. In this setting, the Koopman operator K: L2(μ) → L2(μ) is the
identity operator with the spectrum being the singleton σ(K) = {1}. However, given
any λ ∈ C and the sequence of functions φN = √

2 sin(2πNx), we have

KφN − λφN = φN − λφN = (1 − λ)
√
2 sin(2πNx)

w−→ 0

with ‖φN‖2 = ∫ 1
0 2 sin2(2πNx) dx = 1. Therefore, if φN were the eigenfunctions

of KN with eigenvalues λN → λ �= 1, then the sequence λN would converge to a
spurious eigenvalue λ. Fortunately, in this case, we have σ(KN ) = {1} and hence no
spurious eigenvalues exist; however, in general, we cannot rule out this possibility, at
least not as far as the statement of Theorem 4 goes. See Fig. 1 for illustration.

This example, with the highly oscillatory functions φN , may motivate practical
considerations in detecting spurious eigenvalues, e.g., using Sobolev-type (pseudo)
norms

∫
M ‖∇φN‖2 dμ or other metrics of oscillatoriness. See e.g., Giannakis (2016)

for the use of Sobolev norms in the context of Koopman data analysis and forecasting.

As an immediate corollary of Theorem 4, we get:

Corollary 1 If Assumption 2 holds and λN ,M is a sequence of eigenvalues of KN ,M

with the associated normalized eigenfunctions φN ,M ∈ FN , ‖φN ,M‖ = 1, then there
exists a subsequence (λNi ,Mj , φNi ,Mj ) such that with probability one

lim
i→∞ lim

j→∞ λNi ,Mj = λ, lim
i→∞ lim

j→∞〈φNi ,Mj , f 〉 = 〈φ, f 〉,

for all f ∈ F , where λ ∈ C and φ ∈ F are such that Kφ = λφ. In particular, if
‖φ‖ �= 0, then λ is an eigenvalue of K with eigenfunction φ.

Proof First notice that since KN ,M → KN in the operator norm (Theorem 2) and
‖KN‖ ≤ ‖K‖ < ∞, the sequence λN ,M is bounded. Since φN ,M are normal-
ized and hence bounded, we can extract a subsequence (λN ,Mj , φN ,Mj ) such that
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lim j→∞ λN ,Mj = λN ∈ C and lim j→∞ φN ,Mj = φN ∈ FN (strong convergence as
FN is finite dimensional). Then,

KNφN = (KN − KN ,Mj )φN + KN ,Mj (φN − φN ,Mj ) + KN ,Mj φN ,Mj .

Since KN ,Mj converges strongly to KN with probability one (Theorem 2) and since
φN ,Mj converges strongly to φN , the first two terms go to zero with probability one as
j tends to infinity. The last term is equal to λN ,Mj φN ,Mj and hence necessarilyKφN =
λNφN , ‖φN‖ = 1, with probability one. The result then follows from Theorem 4. 	


6 Implications for Finite-Horizon Predictions

One of the main roles of an approximation to the Koopman operator is to provide
a prediction of the evolution of a given observable, whereas obtaining accurate pre-
dictions over an infinite-time horizon cannot be expected in general from the EDMD
approximation of the Koopman operator; a prediction over any finite horizon is asymp-
totically, as N → ∞, exact when the prediction error is measured in the L2(μ) norm:

Theorem 5 Let f ∈ Fn be a given (vector) observable6 and let Assumption 2 hold.
Then, for any Ω ∈ N we have

lim
N→∞ sup

i∈{1,...,Ω}
‖(KN )i Pμ

N f − Ki f ‖ = 0. (19)

In particular, if f ∈ Fn
N0

for some N0 ∈ N, then

lim
N→∞ sup

i∈{1,...,Ω}
‖(KN )i f − Ki f ‖ = 0. (20)

Proof We proceed by induction. Let f ∈ F . For Ω = 1, the result is exactly
Theorem 3. Let the result hold form some Ω ∈ N. It is sufficient to prove that
‖(KN )Ω+1Pμ

N f − KΩ+1 f ‖ → 0 as N → ∞. We have

‖(KN )Ω+1Pμ
N f − KΩ+1 f ‖ = ‖KN (KN )Ω Pμ

N f − KKΩ f ‖ = ‖KN gN − Kg‖
≤ ‖KN g − Kg‖ + ‖KN (gN − g)‖
≤ ‖KN g − Kg‖ + ‖K‖‖gN − g‖.

where gN = (KN )Ω Pμ
N f and g = KΩ f ; in the last inequality we used the fact

that ‖KN‖ ≤ ‖K‖. The term ‖KN g − Kg‖ tends to zero by Theorem 3, whereas
the term ‖gN − g‖ → 0 by the induction hypothesis. This proves (19) for a scalar
observable f ∈ F . The general result with a vector valued observable f ∈ Fn follows

6 Wechoose to state the theorem for vector observables as this is the formof prediction typically encountered
in practice. For a vector observable f ∈ Fn , the norm ‖ f ‖ is defined by

∑n
i=1 ‖ fi‖L2(μ), where fi ∈ F

is the i th component of f .
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by applying the same reasoning to each component of f . The result (20) follows from
(19) since if f ∈ Fn

N0
for some N0 ∈ N, then Pμ

N f = f for N ≥ N0. 	

To be more specific on practical use of KN for prediction, assume that f ∈ Fn

N0

for some N0 ∈ N. Then, for all N ≥ N0 there exists a matrix CN ∈ R
n×N such

that f = CNψN , where ψN = [ψ1, . . . , ψN ]� are the observables used in EDMD.
Assume that an initial state x0 is given and the values of the observables ψN (x0) are
known and we wish to predict the value of the observable f at a state xi = T i (x0),
i.e., i steps ahead in the future. Using KN , this prediction is given by CN Ai

NψN (x0),
where

AN = lim
M→∞ AN ,M

with AN ,M defined7 in (5). Theorem 5 then says that

lim
N→∞

∫

M
‖CN Ai

NψN − f ◦ T i‖22 dμ = 0 ∀ i ∈ N. (21)

A typical application of Theorem 5 is the prediction of the future state x of the dynam-
ical system (1) with a finite-dimensional state spaceM ⊂ R

n . In this case, one simply
sets f (x) = x . A crucial feature of the predictor obtained in this way is its linearity
in the “lifted state” z = ψN (x), allowing linear tools to address a nonlinear problem.
This concept was successfully applied to model predictive control in Korda andMezić
(2016) and to state estimation in Surana and Banaszuk (2016).

Remark 2 If AN ,M is used instead of AN in Theorem 5 and Eq. (21), then the same
convergence results hold with a double limit, first taking the number of samples M to
infinity and then the number of basis functions N . In particular, we get

lim
N→∞ lim

M→∞

∫

M
‖CN Ai

N ,MψN − f ◦ T i‖22 dμ = 0 ∀ i ∈ N. (22)

7 Analytic EDMD

The results of the previous sections suggest a variation of the EDMD algorithm pro-
vided that themapping T is known in closed form and provided that the basis functions
ψi are such that the integrals of

∫
M ψiψ j dμ and

∫
M(ψi ◦T )ψ j dμ can be computed

analytically. This is the case in particular if T andψi are simple functions such as mul-
tivariate polynomials or trigonometric functions andμ is the uniform distribution over
a simple domain M such as a box or a ball, or, e.g., a Gaussian distribution over Rn .

Provided that such analytical evaluation is possible, one can circumvent the sam-
pling step of EDMD and construct directly KN rather than KN ,M . Indeed, define

AN = MT,μM
−1
μ , (23)

7 In Sect. 7, we show how the matrix AN can be constructed analytically.
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where

Mμ =
∫

M
ψψH dμ, MT,μ =

∫

M
(ψ ◦ T )ψH dμ.

Then, the operator from FN to FN defined by cHψ �→ cHANψ is exactly KN =
Pμ
NK|FN .

Theorem 6 If the matrix Mμ is invertible, then for any φ = cHφ ψ ∈ FN we have

cHφ ANψ = KNφ.

Proof Given φ = cHφ ψ , we get

KNφ = Pμ
NKφ = ψH argmin

c∈CN

∫

M
[cHψ − cHφ (ψ ◦ T )]2 dμ

= ψH argmin
c∈CN

[
cHMμc − 2Re

{
cHMH

T,μcφ

}]

with the unique minimizer c = M−1
μ MH

T,μcφ (since Mμ is invertible, therefore Hermi-
tian positive definite, and hence the minimized function is strictly convex). Therefore,
as desired

KNφ = cHψ = cHφ MT,μM
−1
μ ψ = cHφ ANψ .

	

Example In order to demonstrate the use of Analytic DMD, we compare the spectra
of KN and KN ,M for various values of M . The system considered is the logistic map

x+ = 2x2 − 1, x ∈ [−1, 1].

Themeasureμ is taken to be the uniform distribution on [− 1, 1], which is not invariant
and hence the dynamics is not measure preserving. The finite-dimensional subspace
FN is the space of all polynomials of degree nomore than eight. For numerical stability,
we chose a basis of this subspace to be the Laguerre polynomials scaled such that they
are orthonormal with respect to the uniform measure on [− 1, 1]. Spectra of KN and
KN ,M for M = 102, M = 103 and M = 105 are depicted in Fig. 2. We observe that a
relatively large number of samplesM are required to obtain an accurate approximation
of the spectrum ofKN . This example demonstrates that a special care must be taken in
practice when drawing conclusions about spectral quantities based on a computation
with a small number of samples. On the other hand, Fig. 3 suggests that, at least on
this example, predictions generated by KN ,M are less affected by sampling. Indeed,
even for M = 100 the prediction accuracy of KN ,M is comparable to that of KN and
for M = 1000 the two predictions almost coincide.
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Fig. 2 Comparison of the spectra of KN (blue circles) computed using Analytic DMD and the spectra of
KN ,M for different values of M (red crosses) (Color figure online)

Fig. 3 Comparison of
predictions generated using KN
and using KN ,M for different
values of M
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8 Convergence of KN,N

In this section, we investigate what happens when we simultaneously increase the
number of basis functions N and the number of samples M . We treat the special case
of M = N for which interesting conclusions can be drawn. Set therefore M = N and
denote λN = λN ,N any eigenvalue of KN ,N and φN = φN ,N ∈ FN , ‖φN‖C(M) = 1,
the associated eigenfunction, where ‖φ‖C(M) = supx∈M |φ(x)|; such normalization
is possible if the basis functionsψi are continuous andM compact, which we assume
in this section. First notice that, assuming Mμ̂N invertible, for N = M the system of
equations

ψ(Y) = Aψ(X)

with the unknown A ∈ R
N×N has a solution and hence the minimum in the least-

squares problem (4) is zero. In other words, for any f ∈ FN , the EDMD operator
KN ,N applied to f matches the value of the Koopman operator applied to f on the
samples points x1, . . . , xN :

(K f )(xi ) = (KN ,N f )(xi )
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for all f ∈ FN . This relation is in particular satisfied for the eigenfunctions φN of
KN ,N , obtaining

(φN ◦ T )(xi ) = λNφN (xi ).

Multiplying by an arbitrary h ∈ F and integrating with respect to the empirical
measure supported on the sample points (8), we get

∫

M
h · (φN ◦ T ) dμ̂N = λN

∫

M
hφN dμ̂N . (24)

Define the linear functional LN :C(M) → C by

LN (h) =
∫

M
h φN dμ̂N ,

and

(KLN )(h) =
∫

M
h · (φN ◦ T ) dμ̂N .

With this notation, the relationship (24) becomes

KLN = λN LN .

Since ‖φN‖C(M) = 1, we have ‖LN‖ = suph∈C(M)
|LN (h)|
‖h‖C(M)

≤ 1 and ‖KLN‖ ≤ 1.

Therefore, assuming separability8 of C(M), by the Banach–Alaoglu theorem (e.g.,
Rudin 1973, Theorems 3.15, 3.17) there exists a subsequence, along which these
functionals converge in the weak� topology9 to some functionals L ∈ C(M)� and
KL ∈ C(M)� satisfying

KL = λL ,

where λ is an accumulation point of λN . Furthermore, by the Riesz representation
theorem the bounded linear functionals L and KL can be represented by complex-
valued measures ν and Kν onM satisfying

Kν = λν.

We remark that KL and Kν are here merely symbols for the weak� limit of KLN and
its representation as a measure; in particular, the functional KL is not necessarily of
the form (KL)(h) = ∫

M h · (ρ ◦ T ) dμ for some function ρ.

8 A sufficient condition for C(M) to be separable is M compact and metrizable.
9 A sequence of functionals Li ∈ C(M)� converges in the weak� topology if limi→∞ Li ( f ) = L( f ) for
all f ∈ C(M).
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In order to get more understanding of Kν (and hence KL), we need to impose
additional assumptions on the structure of the problem. In particular, we assume that
the mapping T :M → M is a homeomorphism and that the points x1, . . . , xN lie on
a single trajectory, i.e., xi+1 = T (xi ). With this assumption, Eq. (24) reads

1

N

N∑
i=1

h(xi )φN (xi+1) = λN
1

N

N∑
i=1

h(xi )φN (xi ), (25)

where we set xN+1 := T (xN ). The left-hand side of (25) is

1

N

N∑
i=1

h(xi )φN (xi+1) = 1

N

N∑
i=1

h(T−1xi )φN (xi ) + 1

N

[
h(xN )φN (xN+1)

− h(T−1x1)φN (x1)
]

=
∫

M
h ◦ T−1 dνN + 1

N

[
h(xN )φN (xN+1)−h(T−1x1)φN (x1)

]
,

(26)

where νN is themeasure φNdμ̂N . Setting ξN := h(xN )φN (xN+1)−h(T−1x1)φN (x1),
the relation (25) becomes

∫

M
h ◦ T−1 dνN + 1

N
ξN = λN

∫

M
h dνN .

Since h is bounded onM (h is continuous andM compact) and ‖φN‖C(M) = 1, the
term ξN is bounded; in addition h ◦ T−1 is continuous since T is a homeomorphism
by assumption. Therefore, taking a limit on both sides, along a subsequence such that
νNi → ν weakly,10 μ̂Ni → μ weakly and λNi → λ, we obtain

∫

M
h ◦ T−1 dν = λ

∫

M
h dν (27)

for all h ∈ C(M).

8.1 Weak Eigenfunctions/Eigendistributions

To understand relation (27), note that a completely analogous computation to (26)
shows that the measure μ is invariant11 and therefore the L2(μ)-adjoint K� of the
Koopman operator [viewed as an operator from L2(μ) to L2(μ)] is given by

10 A sequence of Borel measures μi converges weakly to a measure μ if limi→∞
∫

f dμi = ∫
f dμ

for all continuous bounded functions f . This convergence is also referred to as narrow convergence and it
coincides with convergence in the weak� topology if the underlying space is compact (which is the case in
our setting).
11 A measure μ on M is invariant if μ(T−1(A)) = μ(A) for all Borel sets A ⊂ M or equivalently if∫
M f ◦ T dμ = ∫

M f dμ for all continuous bounded functions f .
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K� f = f ◦ T−1.

To see this, write

〈K f, g〉 =
∫

M
( f ◦ T )g dμ =

∫

M
( f ◦ T )(g ◦ T−1 ◦ T ) dμ

=
∫

M
f · (g ◦ T−1) dμ = 〈 f,K�g〉,

which means the operator g �→ g ◦ T−1 is indeed the L2(μ)-adjoint of K. The
relation (27) then becomes

∫

M
K�h dν = λ

∫

M
h dν (28)

or
L(K�h) = λL(h). (29)

Functionals of the form (29) were called “generalized eigenfunctions” by Gelfand
and Shilov (1964); here, we prefer to call them “weak eigenfunctions” or “eigendis-
tributions” in order to avoid confusion with generalized eigenfunctions viewed as an
extension of the notion of generalized eigenvectors from linear algebra. The measure
ν in (28) is then called “eigenmeasure.” Here, again, we emphasize the requirement
that the limiting functional L (or the measure ν) be nonzero in order for these objects
to be called eigenfunctionals/eigenmeasures.

8.2 Eigenmeasures of Perron–Frobenius

We also observe an interesting connection to eigenmeasures of the Perron–Frobenius
operator. To see this, set h := g ◦ T in (27) to obtain

∫
M g dν = λ

∫
M g ◦ T dν or,

provided that λ �= 0, ∫

M
g ◦ T dν = 1

λ

∫

M
g dν. (30)

In other words, if nonzero, the measure ν is the eigenmeasure of the Perron–Frobenius
operator with eiegnvalue 1/λ. Here, the Perron–Frobenius operator P: M(M) →
M(M), where M(M) is the space of all complex-valued measures onM, is defined
for every η ∈ M(M) and every Borel set A by

(Pη)(A) = η(T−1(A)).

The results of Sect. 8 are summarized in the following theorem:

Theorem 7 Suppose that M is a compact metric space, T is a homeomorphism,
K: L2(μ) → L2(μ) is bounded, the observables ψ1, . . . , ψN are continuous and
the sample points x1, . . . , xN satisfy xi+1 = T (xi ) for all i ∈ {1, . . . , N − 1}. Let
λN be a bounded sequence of eigenvalues of KN ,N , let φN , ‖φN‖C(M) = 1, be the
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associated normalized eigenfunctions and denote νN = φNdμ̂N . Then, there exists
a subsequence (Ni )

∞
i=1 such that νNi and μ̂Ni converge weakly to complex-valued

measures ν ∈ M(M), μ ∈ M(M) and limi→∞ λNi = λ ∈ C such that

∫

M
h ◦ T−1 dν = λ

∫

M
h dν ∀ h ∈ C(M).

In addition, the measure μ is invariant under the action of T and

∫

M
K�h dν = λ

∫

M
h dν ∀ h ∈ C(M),

where K� is the L2(μ) adjoint of K, i.e., if nonzero, ν is a weak eigenfunction (or
eigendistribution) of the Koopman operator. Furthermore, if λ �= 0, then

∫

M
h ◦ T dν = 1

λ

∫

M
h dν ∀ h ∈ C(M),

i.e., if nonzero, ν is an eigenmeaure of the Perron–Frobenius operator with eigenvalue
1/λ.

9 Conclusions

This paper analyzes the convergence of the EDMD operator KN ,M , where M is the
number of samples and N the number of observables used in EDMD. It was proven
in Klus et al. (2016) that as M → ∞, the operatorKN ,M converges toKN , the orthog-
onal projection of the action of the Koopman operator on the span of the observables
used in EDMD. We analyzed the convergence of KN as N → ∞, obtaining conver-
gence in strong operator topology to the Koopman operator and weak convergence of
the associated eigenfunctions along a subsequence together with the associated eigen-
values. In particular, any accumulation point of the spectra of KN corresponding to a
nonzero weak accumulation point of the eigenfunctions lies in the point spectrum of
the Koopman operatorK. In addition, we proved convergence of finite-horizon predic-
tions obtained using KN in the L2 norm, a result important for practical applications
such as forecasting, estimation and control. Finally, we analyzed convergence ofKN ,N

(i.e., the situation where the number of samples and the number of basis functions is
equal) under the assumptions that the sample points lie on the same trajectory. In
this case, one obtains convergence, along a subsequence, to a weak eigenfunction (or
eigendistribution) of the Koopman operator, provided that the weak limit is nonzero.
This eigendistribution turns out to be also an eigenmeasure of the Perron–Frobenius
operator. As a by-product of these results, we proposed an algorithm that, under some
assumptions, allows one to construct KN directly, without the need for sampling,
thereby eliminating the sampling error.

Future work should focus on non-asymptotic analysis, e.g., on selecting the sub-
space FN such that ‖KN −K|FN ‖ is minimized and at the same time such that FN is
rich enough in the sense of containing observables of practical interest (e.g., the state
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observable). This line of research was already investigated in the context of stochastic
systems in Wu and Noé (2017), providing an interesting and actionable method for
selecting FN .
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