Nonlinear
Science

n a

 α α

CrossMark

Navier–Stokes–Voigt Equations with Memory in 3D Lacking Instantaneous Kinematic Viscosity

Francesco Di Plinio[1](http://orcid.org/0000-0002-2099-8272) · Andrea Giorgini² · Vittorino Pata² · Roger Temam³

Received: 1 February 2017 / Accepted: 30 October 2017 / Published online: 8 November 2017 © Springer Science+Business Media, LLC 2017

Abstract We consider a Navier–Stokes–Voigt fluid model where the instantaneous kinematic viscosity has been completely replaced by a memory term incorporating hereditary effects, in presence of Ekman damping. Unlike the classical Navier–Stokes– Voigt system, the energy balance involves the spatial gradient of the past history of the velocity rather than providing an instantaneous control on the high modes. In spite of this difficulty, we show that our system is dissipative in the dynamical systems sense and even possesses regular global and exponential attractors of finite fractal dimension. Such features of asymptotic well-posedness in absence of instantaneous high modes dissipation appear to be unique within the realm of dynamical systems arising from fluid models.

Communicated by Edriss S. Titi.

B Francesco Di Plinio francesco.diplinio@virginia.edu

> Andrea Giorgini andrea.giorgini@polimi.it

Vittorino Pata vittorino.pata@polimi.it

Roger Temam temam@indiana.edu

- ¹ Department of Mathematics, University of Virginia, Kerchof Hall, Charlottesville, VA 22904-4137, USA
- ² Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milan, Italy
- ³ Institute for Scientific Computing and Applied Mathematics, Indiana University, Rawles Hall, Bloomington, IN 47405, USA

Keywords Navier–Stokes–Voigt equations · Ekman damping · Memory kernels · Dissipation · Exponential attractors

Mathematics Subject Classification 35B40 · 35Q30 · 37L30 · 45K05

1 Introduction

Let $\Omega \subset \mathbb{R}^3$ be a bounded domain with smooth boundary $\partial \Omega$, and let $\alpha > 0$ and $\beta \ge 0$ be given constants. For $t > 0$, we consider the dimensionless form of the Navier– Stokes–Voigt (NSV) equations with memory and Ekman damping in the unknown velocity $u = u(x, t)$ and pressure $\pi = \pi(x, t)$

$$
\begin{cases} \partial_t (u - \alpha \Delta u) - \int_0^\infty g(s) \Delta u (t - s) \mathrm{d}s + \beta u + (u \cdot \nabla) u + \nabla \pi = f, \\ \mathrm{div} \, u = 0, \end{cases} \tag{1.1}
$$

where *f* is an assigned external forcing term, subject to the *nonslip* boundary condition

$$
u_{|\partial\Omega} = 0.\t\t(1.2)
$$

The function $g : [0, \infty) \to \mathbb{R}$, usually called memory kernel, is supposed to be convex nonnegative, smooth on $\mathbb{R}^+ = (0, \infty)$, vanishing at infinity and satisfying the normalization condition

$$
\int_0^\infty g(s) \mathrm{d} s = 1.
$$

In fact, in the last display, 1 may be replaced with any constant $\gamma > 0$ without any essential difference in the analysis that follows. The system is supplemented with the initial conditions

$$
u(0) = u_0
$$
 and $u(-s)_{|s>0} = \varphi_0(s)$, (1.3)

where u_0 and $\varphi_0(\cdot)$ are prescribed data. The initial velocity u_0 and the past history of the velocity φ_0 , which need only be defined for almost every $s > 0$, will play a different role in the translation of (1.1) into an evolution system, as detailed in the subsequent Sect. [3.](#page-7-0) The drag/friction term βu , widely used in geophysical hydrodynamics, is known as Ekman damping. The coefficient β is the Ekman pumping/dissipation constant, induced by the so-called Ekman layer appearing at the bottom of a rotating fluid (see [Pedlosky 1987\)](#page-33-0). The term β*u* is also referred to as the Rayleigh friction and employed in oceanic models such as the viscous Charney–Stommel barotropic ocean circulation model of the gulf stream. In the last decades, in connection with damped Euler and Navier–Stokes equations, several models involving dissipative terms of Ekman type have been considered in order to study the limit case of vanishing viscosity (see e.g. [Chepyzhov et al. 2011;](#page-32-0) [Constantin and Ramos 2007](#page-32-1); [Ilyin et al. 2004\)](#page-32-2).

In literature the NSV system was introduced by [Oskolkov](#page-32-3) [\(1973](#page-32-3)) as a model for the motion of a Kelvin–Voigt elastic incompressible fluid. The system reads as

$$
\begin{cases} \partial_t (u - \alpha \Delta u) - \Delta u + (u \cdot \nabla)u + \nabla \pi = f, \\ \text{div } u = 0. \end{cases}
$$
 (1.4)

The global well-posedness of (1.4) , along with the existence of a finite dimensional global attractor, has been established in connection with numerical simulations of turbulent flows in statistical equilibrium, see [Kalantarov and Titi](#page-32-4) [\(2009\)](#page-32-4) and references therein. Letting the viscoelastic length scale α go to zero we recover the three-dimensi[onal](#page-32-5) [Navier–Stokes](#page-32-5) [system.](#page-32-5) [In](#page-32-5) [this](#page-32-5) [regard,](#page-32-5) [the](#page-32-5) [recent](#page-32-5) [contribution](#page-32-5) [\(](#page-32-5)Coti Zelati and Gal [2015\)](#page-32-5) improves on the results of [Kalantarov and Titi](#page-32-4) [\(2009\)](#page-32-4) by proving the existence of a family of exponential attractors parameterized by the length scale α which converges to the (weak) exponential attractor of the Navier–Stokes system as $\alpha \rightarrow 0$.

More recently, Gal and Tachim-Medjo have proposed in [\(2013](#page-32-6)) a NSV system incorporating hereditary effects of the form

$$
\begin{cases} \partial_t (u - \alpha \Delta u) - v \Delta u - (1 - v) \int_0^\infty g(s) \Delta u (t - s) ds + (u \cdot \nabla) u + \nabla \pi = f, \\ \text{div } u = 0, \end{cases}
$$
 (1.5)

for some parameter $v \in (0, 1)$. This model has been derived by considering a Cauchy stress tensor that takes both the Newtonian and the viscoelastic contributions into account. From the physical viewpoint, the integrodifferential term is introduced to describe non-Newtonian fluids. In [Gal and Tachim-Medjo](#page-32-6) [\(2013\)](#page-32-6) the assumption $\nu \in$ $(0, 1)$ leads to a model where instantaneous and memory-type viscous terms coexist (see also [Gatti et al. 2005\)](#page-32-7). When $\nu = 1$, the system [\(1.5\)](#page-2-1) collapses into [\(1.4\)](#page-2-0), while the limit case $v = 0$ corresponds to the situation where the concentration of polymers totally prevails over the solvent. Also, the formal choice of the memory kernel *g* equal to the Dirac mass at 0^+ in [\(1.5\)](#page-2-1) corresponds to the NSV system [\(1.4\)](#page-2-0). The well-posedness an[d](#page-32-6) [the](#page-32-6) [asymptotic](#page-32-6) [properties](#page-32-6) [of](#page-32-6) [\(1.5\)](#page-2-1) [have](#page-32-6) [been](#page-32-6) [achieved](#page-32-6) [in](#page-32-6) Gal and Tachim-Medjo [\(2013](#page-32-6)). The main result is the existence of finite dimensional exponential attractors for the related dynamical system. In addition, replacing the memory kernel *g* with a family of suitable rescalings g_{ε} converging to the Dirac mass (see point III of Sect. [9\)](#page-29-0), the corresponding family of ε -exponential attractors is proved to be robust in the limit $\varepsilon \to 0$, where the system [\(1.4\)](#page-2-0) is recovered. Such a stability property has been previously exploited in [Gatti et al.](#page-32-7) [\(2005\)](#page-32-7), where the asymptotic behavior of a two-dimensional Jeffreys model is shown to converge to its Navier–Stokes (formal) limit.

The dissipative nature of the above-mentioned NSV type models is relatively easy to understand. The energy conservation law associated to [\(1.4\)](#page-2-0) yields the cumulative dissipation integral

$$
\int_0^T \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x \mathrm{d}t \tag{1.6}
$$

which allows to keep the high modes of the solution, and in turn the nonlinear terms of critical character, under control when showing the existence of an absorbing set in the phase space. When instantaneous and hereditary kinematic viscosity coexist as in (1.5) , a weaker hereditary dissipation term (see (4.2) below) involving the high modes of the past history of the velocity averaged over time appears in the energy balance *in addition to* [\(1.6\)](#page-2-2).

The *key novel feature* of the model [\(1.1\)](#page-1-0), and of the analysis we will perform herein, is that we are able to *establish dissipativity* and asymptotic well-posedness in the dynamical systems sense, namely, existence of an absorbing set and of a finite dimensional attractor—*even when the instantaneous viscosity term leading to the dissipation integral* [\(1.6\)](#page-2-2) *is absent*, and therefore no instantaneous control on the high modes is assumed, provided that the much weaker, and physically relevant, Ekmantype damping term βu is taken into account together with the hereditary dissipation integral [\(4.2\)](#page-12-0).

The fact that the coupled effect of the hereditary analogue of (1.6) with the Ekman term is enough to guarantee asymptotic well-posedness of the system is, in our view, rather striking. In fact, to our knowledge, there are no theoretical results regarding nonlinear systems whose high modes dissipation features are purely hereditary as those of (1.1) . In order to explain the general picture in the realm of incompressible fluid models, consider the following more general system:

$$
\begin{cases} \partial_t (u - \alpha \Delta u) - \gamma \int_0^\infty g(s) \Delta u(t - s) ds + \beta u + (u \cdot \nabla) u + \nabla \pi = f, \\ \text{div } u = 0. \end{cases} \tag{1.7}
$$

Note that [\(1.1\)](#page-1-0) corresponds to $\gamma = 1$ in [\(1.7\)](#page-3-0). We can distinguish three further cases in [\(1.7\)](#page-3-0):

- *Navier–Stokes system with memory* ($\alpha = 0, \beta = 0, \gamma > 0$). Well-posedness, in particular uniqueness, is out of reach for this system, even in dimension two. The two-dimensional case, when instantaneous viscosity is present and therefore [\(1.6\)](#page-2-2) appears in the energy balance, has been dealt with in [Gatti et al.](#page-32-7) (2005) .
- *Euler–Voigt system with damping* $(\alpha > 0, \beta > 0, \gamma = 0)$.
- This model is a regularization of the Euler system. The well-posedness in the natural phase space together with the existence of strong solutions has been proved in [Larios and Titi](#page-32-8) [\(2010\)](#page-32-8) when $\beta = 0$. Nevertheless, a careful inspection of the techniques of [Larios and Titi](#page-32-8) [\(2010](#page-32-8)) shows that the addition of the low modes damping/driving term β*u* would not suffice to establish the dissipative nature of the system.
- *Navier–Stokes–Voigt system with memory* $(\alpha > 0, \beta = 0, \gamma > 0)$.

The well-posedness in the natural phase space can be easily proved as in the previous case. Here the memory term provides an integrated in time control of ∇*u*. However, the dissipativity seems to be an insurmountable task unless dissipation for the low modes (that is, the Ekman term) is taken into account.

As evidenced by the failure of the standard techniques for fully hereditary analogues of even very well understood systems like the two-dimensional Navier–Stokes case, the mathematical treatment of (1.1) becomes much harder in absence of the dissipation integral [\(1.6\)](#page-2-2). We overcome the intrinsic difficulty of reconstructing the necessary control on the high modes by nontrivially combining suitable energy functionals with a recent Gronwall-type lemma wih parameter (see [Pata 2011\)](#page-32-9). In fact, we are able to further weaken the nature of the low modes dissipation term βu provided the forcing *f* is taken to be regular enough: a detailed formulation is given in [\(3.2\)](#page-7-1). We believe that the technique here proposed will provide new insight in the study other systems with nonlinear terms of critical growth and very weak dissipation properties.

Structure of the Article

After recalling the relevant mathematical framework for Navier–Stokes type systems with memory in Sect. [2,](#page-4-0) (1.1) is recast in Sect. [3](#page-7-0) as an abstract evolution system in the Dafermos history space setting [\(Dafermos 1970](#page-32-10)). We prove that such an evolution system generates a strongly continuous semigroup with continuous dependence on the initial data. The more challenging part of our entire analysis is found in Sect. [4.](#page-10-0) Therein, we prove our main result which is the dissipative character of the semigroup. If no forcing term is present, the dissipative estimate remains true even if $\beta = 0$. This is the content of Sect. [5.](#page-16-0) In the presence of memory terms, which are intrinsically hyperbolic, finite time regularization of the solution cannot occur. As a substitute, in Sect. [6](#page-18-0) we show that the trajectories are exponentially attracted by more regular bounded sets. This property is relied upon in Sect. [7,](#page-22-0) where the existence of a regular exponential attractor for the semigroup of finite fractal dimension in the phase space is established. The global attractor is thus recovered as a byproduct. Precise statements are given in Theorem [7.2](#page-22-1) and Corollary [7.3,](#page-23-0) and their proofs are carried out in Sect. [8.](#page-24-0) Finally, we send to Sect. [9](#page-29-0) for several directions of future investigation.

2 Mathematical Setting and Notation

Throughout this work, $L^2(\Omega)$, $H_0^1(\Omega)$, $H^r(\Omega)$ will be the standard Lebesgue–Sobolev spaces on Ω . In particular, the external force f will be assumed to be a (constant-intime) vector of $[L^2(\Omega)]^3$.

We introduce the Hilbert space $(H, \langle \cdot, \cdot \rangle, \| \cdot \|)$ given by

$$
H = \{ u \in [L^{2}(\Omega)]^{3} : \text{div } u = 0, \ u \cdot n_{|\partial\Omega} = 0 \},
$$

n being the outward normal to $\partial\Omega$, along with the Hilbert space

$$
V = \left\{ u \in \left[H_0^1(\Omega) \right]^3 : \text{div } u = 0 \right\},\
$$

with inner product and norm

$$
\langle u, v \rangle_1 = \langle \nabla u, \nabla v \rangle \quad \text{and} \quad ||u||_1 = ||\nabla u||.
$$

We denote by V' its dual space. We will also encounter the space

$$
W = V \cap [H^2(\Omega)]^3.
$$

Calling $P: [L^2(\Omega)]^3 \to H$ the Leray orthogonal projection onto *H*, we consider the Stokes operator on *H*

$$
A = -P\Delta \quad \text{with domain} \quad \mathfrak{D}(A) = W.
$$

It is well known that *A* is a positive selfadjoint operator with compact inverse (see e.g. [Temam 2001\)](#page-33-1). This allows us to define the scale of compactly nested Hilbert spaces

$$
V^r = \mathfrak{D}(A^{\frac{r}{2}}), \quad r \in \mathbb{R},
$$

endowed with the inner products and norms

$$
\langle u, v \rangle_r = \langle A^{\frac{r}{2}} u, A^{\frac{r}{2}} v \rangle \text{ and } ||u||_r = ||A^{\frac{r}{2}} u||.
$$

In particular,

$$
V^{-1} = V'
$$
, $V^{0} = H$, $V^{1} = V$, $V^{2} = W$.

More generally (see [Boyer and Fabrie 2013](#page-32-11)),

$$
V^r = V \cap [H^r(\Omega)]^3, \quad 1 \le r \le 2,
$$

$$
V^r \subset V \cap [H^r(\Omega)]^3, \quad r > 2.
$$

We also recall the Poincaré inequality

$$
\sqrt{\lambda_1} \|u\| \le \|u\|_1, \quad \forall \, u \in V,\tag{2.1}
$$

where $\lambda_1 > 0$ is the first eigenvalue of A. The symbol $\langle \cdot, \cdot \rangle$ will also stand for the duality product between V^r and its dual space V^{-r} .

As customary, we write the trilinear form on $V \times V \times V$

$$
b(u, v, w) = \int_{\Omega} (u \cdot \nabla) v \cdot w \, dx = \sum_{i,j=1}^{3} \int_{\Omega} u_i \frac{\partial v_j}{\partial x_i} w_j \, dx,
$$

satisfying the relation

$$
b(u, v, v) = 0.
$$

The associated bilinear form $B: V \times V \rightarrow V'$ is defined as

$$
\langle B(u, v), w \rangle = b(u, v, w).
$$

Next, we turn our attention to the memory kernel. Defining

$$
\mu(s) = -g'(s),
$$

 $\bigcircled{2}$ Springer

the *prime* being the derivative, we suppose μ nonnegative, absolutely continuous, decreasing (hence $\mu' < 0$ almost everywhere), and summable on \mathbb{R}^+ with total mass

$$
\kappa = \int_0^\infty \mu(s) \, \mathrm{d} s > 0.
$$

The classical Dafermos condition will be also assumed (see [Dafermos 1970\)](#page-32-10), namely,

$$
\mu'(s) + \delta \mu(s) \le 0,\tag{2.2}
$$

for some $\delta > 0$ and almost every $s > 0$. Then, we introduce the L^2 -weighted Hilbert space on \mathbb{R}^+

$$
\mathcal{M}=L^2_{\mu}(\mathbb{R}^+;V),
$$

with inner product and norm

$$
\langle \eta, \xi \rangle_{\mathcal{M}} = \int_0^{\infty} \mu(s) \langle \eta(s), \xi(s) \rangle_1 \, ds \quad \text{and} \quad \|\eta\|_{\mathcal{M}} = \left(\int_0^{\infty} \mu(s) \|\eta(s)\|_1^2 \, ds \right)^{\frac{1}{2}},
$$

along with the infinitesimal generator of the right-translation semigroup on *M*

$$
T\eta = -\partial_s \eta
$$
 with domain $\mathfrak{D}(T) = {\eta \in \mathcal{M} : \partial_s \eta \in \mathcal{M}, \eta(0) = 0}.$

Here, $\partial_s \eta$ is the distributional derivative of $\eta(s)$ with respect to the internal variable *s*. Finally, we define the *extended memory space*

$$
\mathcal{H}=V\times\mathcal{M}
$$

endowed with the product norm

$$
|| (u, \eta)||_{\mathcal{H}}^2 = \alpha ||u||_1^2 + ||u||^2 + ||\eta||_{\mathcal{M}}^2.
$$

Due to the Poincaré inequality [\(2.1\)](#page-5-0), this norm is equivalent to the natural one on *H*.

In this work, we will also make use of higher order memory spaces. To this end, we define

$$
\mathcal{M}^1 = L^2_{\mu}(\mathbb{R}^+; W),
$$

with inner product and norm analogous to those of *M*, and the corresponding higher order extended memory space

$$
\mathcal{H}^1 = \mathbf{W} \times \mathcal{M}^1
$$

with norm

$$
|| (u, \eta) ||_{\mathcal{H}^{1}}^{2} = \alpha || u ||_{2}^{2} + || u ||_{1}^{2} + || \eta ||_{\mathcal{M}^{1}}^{2}.
$$

General Agreement

Throughout the paper, the symbols $C > 0$ and $\mathcal{Q}(\cdot)$ will denote a *generic* constant and a *generic* increasing positive function, respectively, depending only on the structural parameters of the problem, but independent of *f* (unless otherwise specified). Moreover, given a Banach space \mathcal{X} and $R > 0$, we denote by

$$
\mathbb{B}_{\mathcal{X}}(R) = \{x \in \mathcal{X} : ||x||_{\mathcal{X}} \le R\}
$$

the ball of *X* of radius *R* about zero.

3 The Dynamical System

As anticipated in the Introduction, the original problem (1.1) – (1.2) is translated into an evolution system in the so-called Dafermos past history framework [\(Dafermos 1970](#page-32-10)). First, we observe that, without any loss of generality, we can assume that $f \in H$ which amounts to changing π (by adding $Pf - f$ to $\nabla \pi$). Hence we apply the projection P to the first equation (1.1) and we transform (1.1) – (1.2) into

$$
\partial_t (u + \alpha Au) + \int_0^\infty g(s) Au(t - s) ds + \beta u + B(u, u) = f. \tag{3.1}
$$

In more generality, we will replace the damping βu with a term of the form $\beta A^{-\vartheta} u$, for some $\vartheta \geq 0$. Then, we introduce the *past history variable*

$$
\eta^t(s) = \int_0^s u(t-\sigma)d\sigma,
$$

that satisfies the differential identity

$$
\partial_t \eta^t(s) = -\partial_s \eta^t(s) + u(t).
$$

At this point, recalling the definition of the operator *T* , a formal integration by parts leads to the differential problem in the unknown variables $u = u(t)$ and $\eta = \eta^t(\cdot)$

$$
\begin{cases} \partial_t (u + \alpha Au) + \int_0^\infty \mu(s) A \eta(s) ds + \beta A^{-\vartheta} u + B(u, u) = f, \\ \partial_t \eta = T \eta + u, \end{cases}
$$
(3.2)

for some $\vartheta \ge 0$, where $\mu = -g'$. As we said, this is actually a generalization of equation [\(3.1\)](#page-7-2), which corresponds to the case $\vartheta = 0$ (the strongest damping within this class). In turn, the initial conditions (1.3) transform into

$$
u(0) = u_0 \quad \text{and} \quad \eta^0 = \eta_0,
$$

having set

$$
\eta_0(s) = \int_0^s \varphi_0(\sigma) d\sigma.
$$

We begin with the definition of weak solution.

Definition 3.1 Given $U_0 = (u_0, \eta_0) \in \mathcal{H}$, a function $U = (u, \eta) \in \mathcal{C}([0, \infty), \mathcal{H})$, with $\partial_t u \in L^2(0, \tau; V)$ for every $\tau > 0$, is a weak solution to [\(3.2\)](#page-7-1) with initial datum

$$
U(0) = (u(0), \eta^{0}) = U_0
$$

if for every test function $v \in V$ and almost every $t > 0$

$$
\langle \partial_t u, v \rangle + \alpha \langle \partial_t u, v \rangle_1 + \int_0^\infty \mu(s) \langle \eta(s), v \rangle_1 \mathrm{d}s + \beta \langle A^{-\vartheta} u, v \rangle + b(u, u, v) = \langle f, v \rangle,
$$

where η fulfills the explicit representation

$$
\eta^t(s) = \begin{cases} \int_0^s u(t-\sigma)d\sigma, & 0 < s \le t, \\ \eta^0(s-t) + \int_0^t u(t-\sigma)d\sigma, & s > t. \end{cases}
$$
\n(3.3)

Remark 3.2 Given $u \in C([0,\infty), V)$, the function $\eta = \eta^t(\cdot)$ satisfies the representation formula above if and only if it is a mild solution (in the sense of [Pazy 1983](#page-32-12)) to the nonhomogeneous linear equation

$$
\partial_t \eta = T\eta + u.
$$

Theorem 3.3 *For every initial datum* $U_0 \in \mathcal{H}$ *, system [\(3.2\)](#page-7-1) admits a unique solution* $U(t) = (u(t), \eta^t).$

Accordingly, the problem generates a dynamical system, otherwise called strongly continuous semigroup,

$$
S(t): \mathcal{H} \to \mathcal{H}, \quad t \geq 0,
$$

acting by the formula

$$
S(t)U_0=U(t).
$$

This is a one-parameter family of maps $S(t)$ on H satisfying the properties:

- $S(0) = Id_H;$
- $S(t + \tau) = S(t)S(\tau)$, for every $t, \tau \geq 0$;
- $t \mapsto S(t)U_0 \in \mathcal{C}([0,\infty), \mathcal{H})$, for every $U_0 \in \mathcal{H}$.

Given an initial datum $U_0 \in H$, the corresponding energy at time $t \geq 0$ reads

$$
\mathcal{E}(t) = \frac{1}{2} \| S(t)U_0 \|_{\mathcal{H}}^2 = \frac{1}{2} \Big[\| u(t) \|^2 + \alpha \| u(t) \|_1^2 + \| \eta^t \|_{\mathcal{M}}^2 \Big].
$$

The existence of a weak solution is carried out via a Galerkin approximation scheme, by exploiting standard energy estimates (much more immediate than the uniform ones of the next Sect. [4\)](#page-10-0), and then passing to the limit in the usual way. Indeed (see the energy equality [\(4.3\)](#page-12-1)), we easily get that, for any given $\tau > 0$ and $R \ge 0$,

$$
||U(t)||_{\mathcal{H}} \le \mathcal{Q}(R+\tau),\tag{3.4}
$$

for all $t \leq \tau$ and all initial data $U(0) \in \mathbb{B}_{H}(R)$. In particular, the increasing function *Q* does not depend on $\beta \ge 0$. We refer the interested reader to [Conti et al.](#page-32-13) [\(2016\)](#page-32-13) for more details on the Galerkin scheme in connection with equations with memory.

Remark 3.4 It is worth noting that the argument does not require β to be strictly positive, nor inequality [\(2.2\)](#page-6-0) is needed at this level. Indeed, both $\beta > 0$ and (2.2) will come into play in connection with the dissipative properties of the semigroup.

Uniqueness is a consequence of the following continuous dependence result.

Proposition 3.5 *For every* $\tau > 0$ *and* $R \ge 0$ *, any two solutions* $U_1(t)$ *and* $U_2(t)$ *to equation* [\(3.2\)](#page-7-1) *fulfill the estimate*

$$
||U_1(t) - U_2(t)||_{\mathcal{H}} \leq \mathcal{Q}(R + \tau) ||U_1(0) - U_2(0)||_{\mathcal{H}},
$$
\n(3.5)

for all t $\leq \tau$ *and all initial data* $U_i(0) \in \mathbb{B}_{\mathcal{H}}(R)$ *.*

Proof Let $\tau > 0$ be fixed, and let $U_1 = (u_1, \eta_1), U_2 = (u_2, \eta_2)$ be two solutions to [\(3.2\)](#page-7-1) on the time-interval [0, τ] such that $U_i(0) \in \mathbb{B}_{\mathcal{H}}(R)$. Then, the difference

$$
U=(\bar{u},\bar{\eta})=U_1-U_2
$$

solves

$$
\partial_t \left(\bar{u} + \alpha A \bar{u} \right) + \int_0^\infty \mu(s) A \bar{\eta}(s) \mathrm{d}s + \beta A^{-\vartheta} \bar{u} + B(u_1, \bar{u}) + B(\bar{u}, u_2) = 0.
$$

Testing the equation by the admissible test function \bar{u} , we easily find

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Gamma + \langle \bar{\eta}, \bar{u} \rangle_{\mathcal{M}} \leq -b(\bar{u}, u_2, \bar{u}),
$$

where

$$
\Gamma(t) = \frac{1}{2} \|\bar{u}(t)\|^2 + \frac{\alpha}{2} \|\bar{u}(t)\|_1^2.
$$

 $\textcircled{2}$ Springer

In light of (3.4) ,

$$
-b(\bar{u}, u_2, \bar{u}) \le C \|u_2\|_1 \|\bar{u}\|_1^2 \le Q(R + \tau)\Gamma,
$$

and an integration in time yields

$$
\Gamma(t) + \int_0^t \langle \bar{\eta}^y, \bar{u}(y) \rangle_{\mathcal{M}} dy \le \Gamma(0) + \mathcal{Q}(R + \tau) \int_0^t \Gamma(y) dy, \quad \forall t \le \tau.
$$

Observing that $\bar{\eta}$ fulfills the representation [\(3.3\)](#page-8-0), from Conti et al. [\(2016](#page-32-13), Theorem 5.1) we learn that

$$
\frac{1}{2} \|\bar{\eta}^t\|_{\mathcal{M}}^2 - \frac{1}{2} \|\bar{\eta}^0\|_{\mathcal{M}}^2 \le \int_0^t \langle \bar{\eta}^y, \bar{u}(y) \rangle_{\mathcal{M}} dy.
$$

In summary,

$$
\|\bar{U}(t)\|_{\mathcal{H}}^2 \leq \|\bar{U}(0)\|_{\mathcal{H}}^2 + \mathcal{Q}(R+\tau) \int_0^t \|\bar{U}(y)\|_{\mathcal{H}}^2 dy,
$$

and the claim follows from the integral Gronwall lemma.

In particular, we draw from Proposition 3.5 that
$$
S(t)
$$
 fulfills the further continuity property

• $S(t) \in \mathcal{C}(\mathcal{H}, \mathcal{H})$, for every $t \geq 0$.

4 Dissipativity

The main result of this section provides a uniform-in-time *a priori* estimate on the solutions $U(t) = S(t)U_0$. To this end, we introduce the function

$$
\phi(\vartheta)=\vartheta-\frac{1}{2},
$$

and we strengthen the assumptions on the external force by requiring

$$
f \in V^{\varrho} \quad \text{for some} \quad \varrho > \phi(\vartheta). \tag{4.1}
$$

Since $\phi(\vartheta) < \vartheta$, there is no harm in assuming also $\rho \leq \vartheta$. When $\phi(\vartheta) < 0$, which is the same as saying ϑ < 1/2, we only require $\rho = 0$, i.e.

$$
f\in V^0=\boldsymbol{H},
$$

which does not add anything to our general assumptions made at the beginning. As expected, ϕ is increasing, since the influence of the damping term $A^{-\vartheta}$ becomes weaker when ϑ is larger.

Remark 4.1 We highlight the fact that $f \in H$ in the physically relevant case $\vartheta = 0$, corresponding to the Ekman damping.

Theorem 4.2 *Let* $\beta > 0$ *be fixed, and let* [\(4.1\)](#page-10-1) *hold. Then, for any initial datum* $U_0 \in \mathcal{H}$, the corresponding energy fulfills the estimate

$$
\mathcal{E}(t) \leq \mathcal{Q}(\mathcal{E}(0))e^{-\omega t} + C||f||_{\varrho}^{2},
$$

where $\omega > 0$ *is a universal constant depending only on the structural parameters of the problem.*

Remark 4.3 It is worth mentioning that a dissipative estimate of this kind seems to be out of reach when $\beta = 0$.

The main consequence of Theorem [4.2](#page-11-0) is that, when $\beta > 0$, the dynamical system $S(t)$ is dissipative, namely the trajectories originating from any given bounded set belong uniformly in time to an *absorbing set*. By definition, this is a bounded set *B*₀ ⊂ *H* with the following property: for any bounded set *B* ⊂ *H* of initial data there is an *entering time* $t_e = t_e(\mathcal{B}) \geq 0$ such that

$$
S(t)\mathcal{B}\subset\mathcal{B}_0,\quad\forall\,t\geq t_{\rm e}.
$$

It is then immediate to see that one can take

$$
\mathcal{B}_0=\mathbb{B}_{\mathcal{H}}(R_0),
$$

for any fixed $R_0 > \sqrt{2C} ||f||_{\rho}$, with the constant *C* of the previous statement.

The remaining of the section is devoted to the proof of Theorem [4.2.](#page-11-0) This will require a number of steps.

4.1 Technical Lemmas

The main tool needed in the proof is a Gronwall-type lemma from [Pata](#page-32-9) [\(2011\)](#page-32-9).

Lemma 4.4 Let Λ_{ε} be a family of absolutely continuous nonnegative functions on $[0, \infty)$ *satisfying for every* $\varepsilon > 0$ *small and some* $x > 0$ *and* $M \ge 0$ *the differential inequality*

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Lambda_{\varepsilon}+\varkappa\varepsilon\Lambda_{\varepsilon}\leq C\varepsilon^p\Lambda_{\varepsilon}^q+\frac{M}{\varepsilon^r},
$$

where the nonnegative parameters p, *q*,*r fulfill*

$$
p - 1 > (q - 1)(1 + r) \ge 0.
$$

Moreover, let E be a continuous nonnegative function on [0,∞) *such that*

$$
\frac{1}{m} E(t) \leq \Lambda_{\varepsilon}(t) \leq mE(t)
$$

for every $\varepsilon > 0$ *small and some m* ≥ 1 *. Then, there exists* $\omega > 0$ *such that*

$$
E(t) \leq \mathcal{Q}(E(0))e^{-\omega t} + CM.
$$

We also recall a basic interpolation result (see e.g. [Lions and Magenes 1972\)](#page-32-14). **Lemma 4.5** *Let* $a < b < c$ *. Then*

$$
||u||_b \le ||u||_c^{\overline{\omega}} ||u||_a^{1-\overline{\omega}}, \quad \forall u \in V^c,
$$

with

$$
\varpi = \frac{b-a}{c-a}.
$$

4.2 Energy Functionals

Let now

$$
U(t) = (u(t), \eta^t)
$$

be the solution to [\(3.2\)](#page-7-1) originating from a given $U_0 \in \mathcal{H}$. In what follows, we will use several times without explicit mention the Young, Hölder and Poincaré inequalities.We will also perform several formal computations, justified within a suitable regularization scheme.

We introduce the (nonnegative) functional

$$
\Pi(t) = -\frac{1}{2} \int_0^\infty \mu'(s) \|\eta'(s)\|_1^2 \mathrm{d}s,\tag{4.2}
$$

satisfying the equality (see e.g. [Grasselli and Pata 2002\)](#page-32-15)

$$
\Pi = -\langle T\eta, \eta \rangle_{\mathcal{M}}.
$$

Hence, recalling that $b(u, u, u) = 0$, the basic multiplication of [\(3.2\)](#page-7-1) by *U* in *H* gives

$$
\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E} + \beta \|u\|_{-\vartheta}^2 + \Pi = \langle f, u \rangle. \tag{4.3}
$$

Next, in order to handle the possible singularity of μ at zero, borrowing an idea from [\(Pata 2006](#page-32-16)) we fix $s_* > 0$ such that

$$
\int_0^{s_*} \mu(s) \mathrm{d} s \leq \frac{\kappa}{2}.
$$

Setting

$$
\mu_*(s) = \begin{cases} \mu(s_*,), & 0 < s \le s_*, \\ \mu(s), & s > s_*, \end{cases}
$$

we consider the further functional

$$
\Phi(t) = -\frac{4}{\kappa} \int_0^\infty \mu_*(s) \langle \eta^t(s), u(t) \rangle_1 \mathrm{d}s.
$$

Lemma 4.6 *For any* $\varepsilon > 0$ *, we have the differential inequality*

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Phi + \Vert u \Vert_1^2 \le \frac{8\mu(s_*)}{\kappa^2} \Pi + \frac{4}{\alpha\kappa\varepsilon} \Vert \eta \Vert_{\mathcal{M}}^2 + \alpha\varepsilon \Vert \partial_t u \Vert_1^2. \tag{4.4}
$$

Proof We start from the identity

$$
\frac{d}{dt}\Phi + \frac{4}{\kappa} \int_0^\infty \mu_*(s) \|u\|_1^2 ds = -\frac{4}{\kappa} \int_0^\infty \mu_*(s) \langle T\eta(s), u \rangle_1 ds \n- \frac{4}{\kappa} \int_0^\infty \mu_*(s) \langle \eta(s), \partial_t u \rangle_1 ds.
$$

According to the assumptions on μ and the definition of μ_* , we get

$$
\frac{4}{\kappa}\int_0^\infty \mu_*(s)\|u\|_1^2\mathrm{d}s \geq \frac{4}{\kappa}\int_{s_*}^\infty \mu_*(s)\|u\|_1^2\mathrm{d}s \geq 2\|u\|_1^2.
$$

Integrating by parts, and using (2.2) , we find the controls

$$
-\frac{4}{\kappa} \int_0^\infty \mu_*(s) \langle T\eta(s), u \rangle_1 \mathrm{d}s = -\frac{4}{\kappa} \int_{s_*}^\infty \mu'(s) \langle \eta(s), u \rangle_1 \mathrm{d}s
$$

$$
\leq \frac{4\sqrt{2\mu(s_*)}}{\kappa} \|u\|_1 \Pi^{\frac{1}{2}}
$$

$$
\leq \|u\|_1^2 + \frac{8\mu(s_*)}{\kappa^2} \Pi,
$$

and

$$
-\frac{4}{\kappa} \int_0^\infty \mu_*(s) \langle \eta(s), \partial_t u \rangle_1 ds \le \frac{4}{\kappa} \int_0^\infty \mu_*(s) \|\eta(s)\|_1 \|\partial_t u\|_1 ds
$$

$$
\le \frac{4}{\kappa} \int_0^\infty \mu(s) \|\eta(s)\|_1 \|\partial_t u\|_1 ds
$$

$$
\le \alpha \varepsilon \|\partial_t u\|_1^2 + \frac{4}{\alpha \kappa \varepsilon} \|\eta\|_{\mathcal{M}}^2.
$$

Collecting the estimates above, we meet the thesis.

Finally, we define the functional

$$
\Psi(t) = 2\beta \|u(t)\|_{-\vartheta}^2.
$$

Lemma 4.7 *We have the differential inequality*

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Psi + 2\alpha \|\partial_t u\|_1^2 \le C \|\eta\|_{\mathcal{M}}^2 + C \|f\|^2 + C \|u\| \|u\|_1^3. \tag{4.5}
$$

Proof Differentiating in time we find

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Psi + 4\|\partial_t u\|^2 + 4\alpha \|\partial_t u\|^2 = 4\langle f, \partial_t u \rangle - 4\langle \eta, \partial_t u \rangle_{\mathcal{M}} - 4b(u, u, \partial_t u).
$$

Since

$$
4\langle f,\partial_t u\rangle - 4\langle \eta,\partial_t u\rangle_{\mathcal{M}} \leq \alpha \|\partial_t u\|_{1}^2 + C \|\eta\|_{\mathcal{M}}^2 + C \|f\|^2,
$$

while, by interpolation and the Young inequality,

$$
-4b(u, u, \partial_t u) \leq C ||u||^{\frac{1}{2}} ||u||_1^{\frac{3}{2}} ||\partial_t u||_1 \leq \alpha ||\partial_t u||_1^2 + C ||u|| ||u||_1^3,
$$

we obtain (4.5) .

4.3 Proof of Theorem [4.2](#page-11-0)

Denoting

$$
v = \min\left\{\frac{\alpha \kappa \delta}{32}, 1\right\},\
$$

we introduce the family of energy functionals depending on the parameter $\varepsilon > 0$

$$
\Lambda_{\varepsilon}(t) = \mathcal{E}(t) + \nu \varepsilon \Phi(t) + \varepsilon^2 \Psi(t).
$$

It is apparent that the control

$$
\frac{1}{2}\mathcal{E}(t) \le \Lambda_{\varepsilon}(t) \le 2\mathcal{E}(t) \tag{4.6}
$$

holds for any ε small enough. Collecting [\(4.3\)](#page-12-1)–[\(4.5\)](#page-14-0) we deduce the family of differential inequalities

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Lambda_{\varepsilon}+\nu\varepsilon\|u\|_{1}^{2}+\Big(1-\frac{8\mu(s_{*})\nu\varepsilon}{\kappa^{2}}\Big)\Pi-\Big(\frac{4\nu}{\alpha\kappa}+C\varepsilon^{2}\Big)\|\eta\|_{\mathcal{M}}^{2}+\alpha\varepsilon^{2}\|\partial_{t}u\|_{1}^{2}\leq\Theta_{\varepsilon},
$$

having set

$$
\Theta_{\varepsilon} = -\beta \|u\|_{-\vartheta}^2 + \langle f, u \rangle + C \|f\|^2 + C \varepsilon^2 \|u\| \|u\|_{1}^3.
$$

Since by (2.2)

$$
\frac{\delta}{2} \|\eta\|_{\mathcal{M}}^2 \leq \Pi,
$$

from the very definition of ν we find

$$
\left(1 - \frac{8\mu(s_*)v\epsilon}{\kappa^2}\right)\Pi - \left(\frac{4v}{\alpha\kappa} + C\epsilon^2\right)\|\eta\|_{\mathcal{M}}^2 \ge \frac{1}{2}\Pi - \left(\frac{4v}{\alpha\kappa} + C\epsilon^2\right)\|\eta\|_{\mathcal{M}}^2
$$

$$
\ge \left(\frac{\delta}{4} - \frac{4v}{\alpha\kappa} - C\epsilon^2\right)\|\eta\|_{\mathcal{M}}^2
$$

$$
\ge \frac{\delta}{16}\|\eta\|_{\mathcal{M}}^2,
$$

provided that $\varepsilon > 0$ is sufficiently small. This gives

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Lambda_{\varepsilon}+\nu\varepsilon\|u\|_{1}^{2}+\frac{\delta}{16}\|\eta\|_{\mathcal{M}}^{2}+\alpha\varepsilon^{2}\|\partial_{t}u\|_{1}^{2}\leq\Theta_{\varepsilon}.
$$

In light of (2.1) and (4.6) , it is apparent that the latter inequality can be rewritten in the form

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Lambda_{\varepsilon} + 2\varkappa\varepsilon\Lambda_{\varepsilon} + \alpha\varepsilon^2 \|\partial_t u\|_1^2 \leq \Theta_{\varepsilon},
$$

for every $\varepsilon > 0$ small and a suitably fixed $x > 0$. We are left to estimate the term Θ_{ε} . To this end, let us put

$$
p = \frac{4(1+\vartheta)}{1+2\vartheta}, \quad q = \frac{3+4\vartheta}{1+2\vartheta}, \quad r = \frac{\vartheta - \varrho}{1+\vartheta}.
$$

Observe that p, q, r comply with the hypotheses of Lemma [4.4.](#page-11-1) In particular, $r < 1$. Then, by [\(4.6\)](#page-14-1) and Lemma [4.5](#page-12-2) with $a = -\vartheta$, $b = -\varrho$, $c = 1$ and $\varpi = r$,

$$
\langle f, u \rangle \le \|f\|_{\varrho} \|u\|_{1}^{r} \|u\|_{-\vartheta}^{1-r}
$$

$$
\le \frac{\beta}{2} \|u\|_{-\vartheta}^{2} + C \|f\|_{\varrho}^{\frac{2}{1+r}} \|u\|_{1}^{\frac{2r}{1+r}}
$$

$$
\le \frac{\beta}{2} \|u\|_{-\vartheta}^{2} + \varkappa \varepsilon \Lambda_{\varepsilon} + \frac{C \|f\|_{\varrho}^{2}}{\varepsilon^{r}}
$$

By the same token, using now $a = -\vartheta$, $b = 0$, $c = 1$ and $\varpi = \vartheta/(1 + \vartheta)$, and subsequently applying the Young inequality with exponents $2(1 + \vartheta)$ and $p/2$,

$$
C\varepsilon^{2} \|u\| \|u\|_{1}^{3} \leq C\varepsilon^{2} \|u\|_{-\vartheta}^{\frac{1}{1+\vartheta}} \|u\|_{1+\vartheta}^{\frac{3+4\vartheta}{1+\vartheta}}
$$

$$
\leq C\varepsilon^{2} \|u\|_{-\vartheta}^{\frac{1}{1+\vartheta}} \Lambda_{\varepsilon}^{\frac{2q}{p}}
$$

$$
\leq \frac{\beta}{2}||u||_{-\vartheta}^2 + C\varepsilon^p \Lambda_\varepsilon^q.
$$

Summarizing (recall that $V^{\varrho} \subset H$), we obtain the estimate

$$
\Theta_{\varepsilon} \leq \varkappa \varepsilon \Lambda_{\varepsilon} + C \varepsilon^{p} \Lambda_{\varepsilon}^{q} + \frac{C \|f\|_{\varrho}^{2}}{\varepsilon^{r}},
$$

and we end up with the differential inequality

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Lambda_{\varepsilon} + \varkappa \varepsilon \Lambda_{\varepsilon} + \alpha \varepsilon^2 \| \partial_t u \|^2_1 \leq C \varepsilon^p \Lambda_{\varepsilon}^q + \frac{C \| f \|^2_{\varrho}}{\varepsilon^r}.
$$
 (4.7)

Using again [\(4.6\)](#page-14-1), the desired conclusion follows from an application of Lemma [4.4.](#page-11-1) \Box

Once one has Theorem [4.2,](#page-11-0) an integration of [\(4.7\)](#page-16-1) for a fixed $\varepsilon > 0$ provides a useful estimate needed in the sequel.

Corollary 4.8 Let the assumptions of Theorem [4.2](#page-11-0) hold. Then for every $t > 0$

$$
\int_0^t \|\partial_t u(y)\|_1^2 dy \le (1+t) \mathcal{Q}(\mathcal{E}(0)).
$$
 (4.8)

5 Exponential Decay of Solutions

In absence of a forcing term, Theorem [4.2](#page-11-0) establishes the exponential decay of the energy.

Corollary 5.1 *Let* $\beta > 0$ *be fixed, and let* $f \equiv 0$ *. Then, for any initial datum* $U_0 \in H$ *, the corresponding energy fulfills the decay estimate*

$$
\mathcal{E}(t) \leq \mathcal{Q}(\mathcal{E}(0))e^{-\omega t},
$$

where $\omega > 0$ *is a universal constant depending only on the structural parameters of the problem.*

Nonetheless, the conclusion above remains true also when $\beta = 0$, that is, when no extra damping of the form $βA^{-\vartheta}u$ is present. The result, however, is proved in a different way, with an argument that cannot be exported to the case of a nonzero *f* .

Theorem 5.2 *Let* $\beta = 0$ *, and let* $f \equiv 0$ *. Then, for any initial datum* $U_0 \in H$ *, the corresponding energy fulfills the decay estimate*

$$
\mathcal{E}(t) \leq \mathcal{Q}(\mathcal{E}(0))e^{-\omega t},
$$

where $\omega > 0$ *is a universal constant depending only on the structural parameters of the problem.*

Proof For an arbitrarily given $R \geq 0$, let us consider an initial datum $U_0 \in \mathbb{B}_{H}(R)$. Since $f \equiv 0$, we readily see from [\(4.3\)](#page-12-1) that

$$
\mathcal{E}(t) \le \mathcal{E}(0). \tag{5.1}
$$

Setting

$$
v = \min\left\{\frac{\alpha \kappa \delta}{32}, 1\right\},\
$$

for $\varepsilon > 0$ small to be fixed later, we define this time

$$
\Lambda(t) = \mathcal{E}(t) + \nu \varepsilon \Phi(t),
$$

with Φ as in the previous section. It is apparent that

$$
\frac{1}{2}\mathcal{E}(t) \leq \Lambda(t) \leq 2\mathcal{E}(t).
$$

In addition, we have the differential inequality

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Lambda + \nu\varepsilon\|u\|_1^2 + \left(1 - \frac{8\mu(s_*)\nu\varepsilon}{\kappa^2}\right)\Pi - \frac{4\nu}{\alpha\kappa}\|\eta\|_{\mathcal{M}}^2 \leq \alpha\nu\varepsilon^2\|\partial_t u\|_1^2.
$$

Repeating the calculations of the former proof, we arrive at the inequality

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Lambda + 2\varkappa\varepsilon\Lambda \le \alpha\varepsilon^2 \|\partial_t u\|_1^2,\tag{5.2}
$$

for some $x > 0$. In order to bound the right-hand side, we multiply the first equation of [\(3.2\)](#page-7-1) by $2\varepsilon^2\partial_t u$, to get

$$
2\alpha\varepsilon^2\|\partial_t u\|_1^2 = -2\varepsilon^2\|\partial_t u\|^2 - 2\varepsilon^2\langle\eta,\partial_t u\rangle_{\mathcal{M}} - 2\varepsilon^2b(u,u,\partial_t u).
$$

Invoking the Poincaré inequality (2.1) , standard computations together with (5.1) yield

$$
\alpha \varepsilon^2 \|\partial_t u\|_1^2 \leq C\varepsilon^2 \|u\|_1^4 + C\varepsilon^2 \|\eta\|_{\mathcal{M}}^2 \leq C(\mathcal{E}(0) + 1)\varepsilon^2 \Lambda.
$$

Accordingly, we end up with

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Lambda + [2x - C(\mathcal{E}(0) + 1)\varepsilon]\varepsilon\Lambda \le 0.
$$

At this point, we choose ε small enough such that $C(\mathcal{E}(0)+1)\varepsilon \leq \varkappa$, and an application of the Gronwall lemma entails

$$
\mathcal{E}(t) \le \mathcal{Q}(\mathcal{E}(0))e^{-\omega t},\tag{5.3}
$$

with $\omega = \kappa \varepsilon$. This is the desired inequality, except that the exponential rate ω depends on $\mathcal{E}(0)$. To complete the argument, we use a rather standard trick of semigroup theory. Due to [\(5.3\)](#page-17-1), there is a time $t_0 \ge 0$, depending on $\mathcal{E}(0)$, such that $\mathcal{E}(t_0) \le 1$. Hence, for $t \geq t_0$ we can repeat the argument above, obtaining

$$
\mathcal{E}(t) \le \mathcal{Q}(1)e^{-\omega(t-t_0)}, \quad \forall \, t \ge t_0,\tag{5.4}
$$

where now $\omega > 0$ is independent of $\mathcal{E}(0)$. Collecting [\(5.3\)](#page-17-1), where $\omega = \omega(\mathcal{E}(0))$, and (5.4), we reach the desired conclusion. [\(5.4\)](#page-18-1), we reach the desired conclusion.

6 Regular Exponentially Attracting Sets

It is well known that dynamical systems generated by equation with memory do not regularize in finite time, due to the intrinsic hyperbolicity of the memory component. In particular, this prevents the existence of absorbing sets having higher regularity than the initial data. Nonetheless, one can still hope that trajectories originating from bounded sets are exponentially attracted by more regular bounded sets.

Definition 6.1 A bounded set B_{\star} is said to be *exponentially attracting* for $S(t)$ in H if there exists $\omega > 0$ such that

$$
dist_{\mathcal{H}}(S(t)\mathcal{B}, \mathcal{B}_{\star}) \leq \mathcal{Q}(\|\mathcal{B}\|_{\mathcal{H}}) e^{-\omega t}
$$

for every bounded subset $B \subset H$.

Here, with standard notation,

$$
dist_{\mathcal{H}}(\mathcal{B}_1, \mathcal{B}_2) = \sup_{b_1 \in \mathcal{B}_1} \inf_{b_2 \in \mathcal{B}_2} ||b_1 - b_2||_{\mathcal{H}}
$$

is the Hausdorff semidistance in H between two (nonempty) sets B_1 and B_2 .

Proposition 6.2 *There exists* $R_{\star} > 0$ *such that the ball*

$$
\mathcal{B}_{\star} = \mathbb{B}_{\mathcal{H}^1}(R_{\star})
$$

is exponentially attracting for S(*t*)*.*

It is enough showing that the ball B_{\star} exponentially attracts the absorbing set B_0 found in Sect. [4.](#page-10-0) To this end, for every initial data $U_0 = (u_0, \eta_0) \in \mathcal{B}_0$, in the same spirit of [Temam](#page-33-2) [\(1997\)](#page-33-2) we decompose the solution $S(t)U_0$ into the sum

$$
S(t)U_0 = L(t)U_0 + K(t)U_0,
$$

where the maps

$$
L(t)U_0 = (v(t), \xi^t)
$$
 and $K(t)U_0 = (w(t), \xi^t)$

solve the problems

$$
\begin{cases}\n\partial_t (v + \alpha A v) + B(u, v) + \int_0^\infty \mu(s) A \xi(s) ds = 0, \\
\partial_t \xi = T \xi + v, \\
(v(0), \xi^0) = (u_0, \eta_0),\n\end{cases}
$$
\n(6.1)

and

$$
\begin{cases}\n\partial_t (w + \alpha A w) + B(u, w) + \int_0^\infty \mu(s) A \zeta(s) ds + \beta A^{-\vartheta} w = \tilde{f}, \\
\partial_t \zeta = T \zeta + w, \\
(w(0), \zeta^0) = (0, 0),\n\end{cases}
$$
\n(6.2)

with

$$
\tilde{f}(t) = f - \beta A^{-\vartheta} v(t).
$$

Existence and uniqueness of these problems are rather standard issues, since [\(6.1\)](#page-19-0) and [\(6.2\)](#page-19-1) are linear with a globally Lipschitz perturbation. Following a standard procedure, we will show that system (6.1) is exponentially stable, whereas the solutions to (6.2) are uniformly bounded in the more regular space \mathcal{H}_1 .

In what follows, the generic positive constant *C* may depend on $||f||$ as well as on the radius R_0 of the absorbing set \mathcal{B}_0 . In particular, by Theorem [4.2](#page-11-0) we know that

$$
||S(t)U_0||_{\mathcal{H}} \leq C. \tag{6.3}
$$

The proof of Proposition [6.2](#page-18-2) is an immediate consequence of the following two lemmas.

Lemma 6.3 *For every initial datum* $U_0 \in \mathcal{B}_0$ *, we have the estimate*

$$
||L(t)U_0||_{\mathcal{H}} \leq C e^{-\omega t},
$$

where $\omega > 0$ *is a universal constant.*

Proof Let Λ be as in the proof of Theorem [5.2,](#page-16-2) with (v, ξ) in place of (u, η) . It is apparent that

$$
\frac{1}{4}||L(t)U_0||^2_{\mathcal{H}} \leq \Lambda(t) \leq ||L(t)U_0||^2_{\mathcal{H}}.
$$

Repeating the same reasonings, making use of [\(6.3\)](#page-19-2) to handle the term $b(u, v, \partial_t v)$, we find the differential inequality

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Lambda + 2\omega\Lambda \le 0
$$

for some $\omega > 0$, and the Gronwall lemma completes the argument.

Lemma 6.4 *For every initial datum* $U_0 \in \mathcal{B}_0$ *, we have the estimate*

$$
|| K(t)U_0 ||_{\mathcal{H}^1} \leq C.
$$

Proof We first note that, by virtue of (6.3) and the previous Lemma [6.3,](#page-19-3)

$$
||K(t)U_0||_{\mathcal{H}} \leq C \tag{6.4}
$$

and

$$
\|f(t)\| \leq C.
$$

We introduce the analogous functionals of Sect. [4](#page-10-0) for the variable (w, ζ) in higher order spaces. Namely,

$$
\mathcal{E}_1(t) = \frac{1}{2} ||K(t)U_0||^2_{\mathcal{H}^1},
$$

and

$$
\Pi_1(t) = -\frac{1}{2} \int_0^\infty \mu'(s) \| \zeta^t(s) \|_{\mathcal{M}^1}^2 ds.
$$

In particular, we have the identity

$$
\Pi_1 = -\langle T A^{\frac{1}{2}} \zeta, A^{\frac{1}{2}} \zeta \rangle_{\mathcal{M}} = -\langle T \zeta, \zeta \rangle_{\mathcal{M}^1}.
$$

Hence, testing the first equation of [\(6.2\)](#page-19-1) by Aw in *H* and the second one by ζ in \mathcal{M}^1 , we obtain

$$
\frac{d}{dt}\mathcal{E}_1 + b(u, w, Aw) + \beta \|w\|_{1-\vartheta}^2 + \Pi_1 = (\tilde{f}, Aw). \tag{6.5}
$$

In a similar fashion, we define

$$
\Phi_1(t) = -\frac{6}{\kappa} \int_0^\infty \mu_*(s) \langle \zeta^t(s), w(t) \rangle_2 ds,
$$

$$
\Psi_1(t) = \beta \|w(t)\|_{1-\vartheta}^2.
$$

Arguing as in Lemma [4.6,](#page-13-0) we deduce the differential inequality

$$
\frac{d}{dt}\Phi_1 + 2\|w\|_2^2 \le \frac{18\mu(s_*)}{\kappa^2} \Pi_1 + \frac{9}{\alpha\kappa\varepsilon} \|\zeta\|_{\mathcal{M}^1}^2 + \alpha\varepsilon \|\partial_t w\|_2^2, \tag{6.6}
$$

while

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Psi_1+2\|\partial_t w\|_1^2+2\alpha\|\partial_t w\|_2^2=2\langle \tilde{f},A\partial_t w\rangle-2\langle \zeta,\partial_t w\rangle_{\mathcal{M}^1}-2b(u,w,A\partial_t w).
$$

Exploiting [\(6.3\)](#page-19-2),

$$
-2b(u, w, A\partial_t w) \leq C ||w||_2 ||\partial_t w||_2,
$$

and we readily get

$$
\frac{d}{dt}\Psi_1 + \alpha \|\partial_t w\|_2^2 \le C \|\xi\|_{\mathcal{M}^1}^2 + C \|w\|_2^2 + C. \tag{6.7}
$$

At this point, setting

$$
\nu = \min\left\{\frac{\alpha \kappa \delta}{72}, 1\right\},\
$$

for some $\varepsilon > 0$ small to be determined later, we define the functional

$$
\Lambda_1(t) = \mathcal{E}_1(t) + v \varepsilon \Phi_1(t) + \varepsilon^2 \Psi_1(t),
$$

which fulfills the controls

$$
\frac{1}{2}\mathcal{E}_1(t) \leq \Lambda_1(t) \leq 2\mathcal{E}_1(t).
$$

Collecting (6.5) – (6.7) , we find the differential inequality

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Lambda_1+\nu\varepsilon\|w\|_2^2+\Big(1-\frac{18\mu(s_*)\nu\varepsilon}{\kappa^2}\Big)\Pi_1-\Big(\frac{9\nu}{\alpha\kappa}+C\varepsilon^2\Big)\|\zeta\|_{\mathcal{M}^1}^2\leq\Theta_1,
$$

where

$$
\Theta_1 = -\nu \varepsilon ||w||_2^2 + C\varepsilon^2 ||w||_2^2 + (\tilde{f}, Aw) - b(u, w, Aw) + C.
$$

On account of (6.3) – (6.4) ,

$$
(\tilde{f}, Aw) - b(u, w, Aw) \le ||\tilde{f}|| ||w||_2 + ||u||_{L^6} ||\nabla w||_{L^3} ||Aw||
$$

\n
$$
\le \frac{v\varepsilon}{4} ||w||_2^2 + C ||w||_1^{\frac{1}{2}} ||w||_2^{\frac{3}{2}} + C
$$

\n
$$
\le \frac{v\varepsilon}{2} ||w||_2^2 + C.
$$

It is then apparent that (for $\varepsilon > 0$ small)

$$
\Theta_1\leq C.
$$

Note that the constants C above depend on ε , which however will be eventually fixed. Indeed, once ε is chosen suitably small, and recasting almost word by word the proof of Theorem [4.2,](#page-11-0) we end up with

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Lambda_1 + \omega \Lambda_1 \leq C,
$$

for some $\omega > 0$. Since $\Lambda(0) = 0$, a final application of the Gronwall lemma will do. \Box

For a semigroup $S(t)$ satisfying the continuity property $S(t) \in C(H, H)$ for every $t \geq 0$, as in our case, having a *compact* exponentially attracting set is a sufficient condition in order for the *global attractor* to exist (see e.g.[Temam 1997\)](#page-33-2). By definition, this is the (unique) compact set $\mathfrak{A} \subset \mathcal{H}$ which is at the same time

- fully invariant, i.e. $S(t)\mathfrak{A} = \mathfrak{A}$ for every $t \geq 0$;
- attracting for the semigroup, i.e.

$$
\lim_{t \to \infty} \left[\text{dist}_{\mathcal{H}}(S(t)\mathcal{B}, \mathfrak{A}) \right] = 0
$$

for every bounded subset $\mathcal{B} \subset \mathcal{H}$.

Unfortunately, our attracting set B_{\star} , although closed and bounded in \mathcal{H}^1 , is not compact in *H*. Indeed, even if the embedding $V \subset H$ is compact, the same cannot be said for the embedding $M^1 \subset M$ (see [Pata and Zucchi 2001](#page-32-17) for a counterexample to compactness). Accordingly, the embedding $H^1 \subset H$ is in general not compact as well. Nevertheless, there is a general argument devised in [Pata and Zucchi](#page-32-17) [\(2001\)](#page-32-17) that allows to recover the sought compactness with a little effort, producing a compact set $B'_{\star} \subset B_{\star}$ which is still exponentially attracting. In turn, this entails the existence of the global attractor \mathfrak{A} . We do not enter into more details, since in the next sections we will prove the existence of an exponential attractor. As a byproduct, this will yield the existence of \mathfrak{A} , along with the finiteness of its fractal dimension.

7 Exponential Attractors

Definition 7.1 A compact set $\mathfrak{E} \subset \mathcal{H}$ is an *exponential attractor* for *S*(*t*) if

- $\bullet \mathfrak{E}$ is positively invariant, i.e. *S*(*t*) $\mathfrak{E} \subset \mathfrak{E}$ for every *t* ≥ 0;
- \bullet $\&$ is exponentially attracting for the semigroup;
- E has finite fractal dimension in *H*.

Recall that the fractal dimension of E in H is defined as

$$
\dim_{\mathcal{H}}(\mathfrak{E}) = \limsup_{\varepsilon \to 0} \frac{\ln N(\varepsilon)}{\ln \frac{1}{\varepsilon}},
$$

where $N(\varepsilon)$ is the smallest number of ε -balls of H necessary to cover \mathfrak{E} .

The main result of the paper reads as follows.

Theorem 7.2 *The dynamical system S*(*t*) *on H possesses an exponential attractor* E*, which is bounded in ^H*1*.*

As a consequence of the existence of a compact attracting set, *S*(*t*) possesses the global attractor \mathfrak{A} , which is the smallest among the compact attracting sets (hence contained in the exponential attractor \mathfrak{E}).

Corollary 7.3 *The dynamical system S*(*t*) *on H possesses the global attractor* A*. Moreover,* $\mathfrak A$ *has finite fractal dimension in* $\mathcal H$ *and is a bounded in* $\mathcal H^1$ *.*

The proof of Theorem [7.2,](#page-22-1) carried out in the next section, is based on an abstract result from [Danese et al.](#page-32-18) [\(2015\)](#page-32-18) (see Theorem 5.1 therein), that we report here below as a lemma, in a version specifically tailored to fit our particular problem. To this end, we will make use of the projections \mathbb{P}_1 and \mathbb{P}_2 of *H* onto its components *V* and *M*, namely,

$$
\mathbb{P}_1(u,\eta) = u \quad \text{and} \quad \mathbb{P}_2(u,\eta) = \eta.
$$

Lemma 7.4 *Let the following assumptions hold.*

- *(i) There exists* $R_{\star} > 0$ *such that the ball* $B_{\star} = \mathbb{B}_{H^1}(R_{\star})$ *is exponentially attracting.*
- *(ii) For every* $R \geq 0$ *and every* $\theta > 0$ *sufficiently large,*

$$
\int_{\theta}^{2\theta} \|\partial_t u(t)\|_1^2 dt \leq \mathcal{Q}(R+\theta),
$$

for all $u(t) = \mathbb{P}_1 S(t)U_0$ *with* $U_0 \in \mathbb{B}_{H^1}(R)$ *.*

(iii) There exists $R_1 > 0$ *with the following property: for any given* $R \geq 0$ *, there exists a nonnegative function* ψ *vanishing at infinity such that*

$$
||S(t)U_0||_{\mathcal{H}^1}\leq \psi(t)+R_1,
$$

for all $U_0 \in \mathbb{B}_{\mathcal{H}^1}(R)$ *.*

(iv) For every fixed R ≥ 0*, the semigroup S*(*t*) *admits a decomposition of the form*

$$
S(t) = L(t) + K(t)
$$

satisfying for all initial data $U_{0i} \in \mathbb{B}_{H^1}(R)$

$$
||L(t)U_{01} - L(t)U_{02}||_{\mathcal{H}} \leq \psi(t)||U_{01} - U_{02}||_{\mathcal{H}},
$$

$$
||K(t)U_{01} - K(t)U_{02}||_{\mathcal{H}^{1}} \leq \mathcal{Q}(t)||U_{01} - U_{02}||_{\mathcal{H}}.
$$

Here, both Q and the nonnegative function ψ *vanishing at infinity depend on R. Moreover, the function*

$$
\bar{\zeta}^t = \mathbb{P}_2 K(t) U_{01} - \mathbb{P}_2 K(t) U_{02}
$$

fulfills the Cauchy problem

$$
\begin{cases} \partial_t \bar{\zeta}^t = T \bar{\zeta}^t + \bar{w}(t), \\ \bar{\zeta}^0 = 0, \end{cases}
$$

for some \bar{w} *satisfying the estimate*

$$
\|\bar{w}(t)\|_1 \leq \mathcal{Q}(t) \|U_{01} - U_{02}\|_{\mathcal{H}}.
$$

Then $S(t)$ possesses an exponential attractor $\mathfrak E$ contained in the ball $\mathbb{B}_{H^1}(R_1)$ *.*

Remark 7.5 Actually, in the abstract result from [Danese et al.](#page-32-18) [\(2015\)](#page-32-18) a further assumption is needed, involving a certain operator that in our case is just the identity (and the assumption is trivially satisfied).

8 Proof of Theorem [7.2](#page-22-1)

The proof amounts to verifying the four points of the above Lemma [7.4.](#page-23-1) Indeed, **(i)** is the content of Proposition [6.2,](#page-18-2) while **(ii)** is an immediate consequence of the continuous embedding $\mathcal{H}^1 \subset \mathcal{H}$ and Corollary [4.8.](#page-16-3) Accordingly, we are left to show the validity of **(iii)** and **(iv)**. In what follows, the generic positive constant *C* may depend on $|| f ||$ and on the radius R_0 of the absorbing set B_0 .

• **Verifying (iii)** Given $R \geq 0$, let us consider the ball $\mathbb{B}_{H^1}(R)$. We easily infer from the continuous embedding $\mathcal{H}^1 \subset \mathcal{H}$ that

$$
\mathbb{B}_{\mathcal{H}^1}(R)\subset\mathbb{B}_{\mathcal{H}}(\mathcal{Q}(R)).
$$

Therefore, on account of Theorem [4.2,](#page-11-0) there exists $t_e = t_e(R)$ such that

$$
\begin{cases} \|S(t)\mathbb{B}_{\mathcal{H}^1}(R)\| \leq \mathcal{Q}(R), & \forall t \leq t_{\rm e},\\ \|S(t)\mathbb{B}_{\mathcal{H}^1}(R)\| \leq R_0, & \forall t \geq t_{\rm e}.\end{cases}
$$
(8.1)

Taking an arbitrary $U_0 \in \mathbb{B}_{H^1}(R)$, we define the higher-order energy functional

$$
\mathcal{E}_1(t) = \frac{1}{2} \| S(t) U_0 \|_{\mathcal{H}^1}^2,
$$

and the nonnegative functional

$$
\Pi_1(t) = -\frac{1}{2} \int_0^\infty \mu'(s) \| \eta^t(s) \|_{\mathcal{M}^1}^2 ds.
$$

We recall the identity

$$
\Pi_1=-\langle T\eta,\eta\rangle_{\mathcal{M}^1}.
$$

Testing the first equation of [\(3.2\)](#page-7-1) by *Au* in *H* and the second one by η in \mathcal{M}^1 , we obtain the differential equality

$$
\frac{d}{dt}\mathcal{E}_1 + \beta \|u\|_{1-\vartheta}^2 + \Pi_1(\eta) = (f, Au) - b(u, u, Au). \tag{8.2}
$$

For any $t \leq t_e$, according to (8.1) and exploiting the standard Sobolev embeddings, we have

$$
(f, Au) - b(u, u, Au) \le ||f|| ||u||_2 + ||u||_{L^6} ||\nabla u||_{L^3} ||u||_2
$$

\n
$$
\le C ||u||_2 + C ||u||_1 ||u||_2^2
$$

\n
$$
\le Q(R) ||u||_2^2 + C,
$$

which in turn gives

$$
\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}_1 \leq \mathcal{Q}(R)\mathcal{E}_1 + C.
$$

The Gronwall lemma entails

$$
\mathcal{E}_1(t) \le \mathcal{Q}(R)e^{\mathcal{Q}(R)t_e} = \mathcal{Q}(R), \quad \forall \, t \le t_e. \tag{8.3}
$$

In order to show the existence of an absorbing set for the semigroup $S(t)$ on \mathcal{H}^1 , and similarly to the proof of Lemma [6.4,](#page-20-2) we define some further functionals. For any $t \geq t_{e}$, let

$$
\Phi_1(t) = -\frac{6}{\kappa} \int_0^\infty \mu_*(s) \langle \eta^t(s), u(t) \rangle_2 ds,
$$

and

$$
\Psi_1(t) = \beta ||u(t)||_{1-\vartheta}^2.
$$

Arguing as in Lemma [6.4,](#page-20-2)

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Phi_1 + 2\|u\|_2^2 \le \frac{18\mu(s_*)}{\kappa^2}\Pi_1 + \frac{9}{\alpha\kappa\varepsilon}\|\eta\|_{\mathcal{M}^1}^2 + \alpha\varepsilon\|\partial_t u\|_2^2,\tag{8.4}
$$

whereas a differentiation in time yields

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Psi_1+2\|\partial_t u\|_1^2+2\alpha\|\partial_t u\|_2^2=2\langle f,A\partial_t u\rangle-2\langle \eta,\partial_t u\rangle_{\mathcal{M}^1}-2b(u,u,A\partial_t u).
$$

Making use of (8.1) ,

$$
-2b(u, u, A\partial_t u) \leq C ||u||_2 ||\partial_t u||_2,
$$

and we end up with

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Psi_1 + \alpha \|\partial_t u\|_2^2 \le C \|u\|_2^2 + C \|\eta\|_{\mathcal{M}^1}^2 + C. \tag{8.5}
$$

Denoting

$$
\nu = \min\left\{\frac{\alpha \kappa \delta}{72}, 1\right\},\
$$

we define

$$
\Lambda_1(t) = \mathcal{E}_1(t) + v \varepsilon \Phi_1(t) + \varepsilon^2 \Psi_1(t),
$$

depending on $\varepsilon > 0$ to be determined later. As customary, we have the controls

$$
\frac{1}{2}\mathcal{E}_1(t) \le \Lambda_1(t) \le 2\mathcal{E}_1(t),\tag{8.6}
$$

provided ε is small enough. Moreover, adding [\(8.2\)](#page-25-0), [\(8.4\)](#page-25-1) and [\(8.5\)](#page-26-0), we are led to the differential inequality

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Lambda_1+\nu\varepsilon\|u\|_2^2+\Big(1-\frac{18\mu(s_*)\nu\varepsilon}{\kappa^2}\Big)\Pi_1-\Big(\frac{9\nu}{\alpha\kappa}+C\varepsilon^2\Big)\|\eta\|_{\mathcal{M}^1}^2\leq\Theta_1,
$$

having set

$$
\Theta_1 = -\nu \varepsilon ||u||_2^2 + (f, Au) - b(u, u, Au) + C\varepsilon^2 ||u||_2^2 + C.
$$

Since

$$
\frac{\delta}{2}\|\eta\|_{\mathcal{M}^1}^2\leq\Pi_1,
$$

we deduce that

$$
\left(1 - \frac{18\mu(s_*)v\varepsilon}{\kappa^2}\right)\Pi_1 - \left(\frac{9v}{\alpha\kappa} + C\varepsilon^2\right) \|\eta\|_{\mathcal{M}^1}^2 \ge \frac{1}{2}\Pi_1 - \left(\frac{9v}{\alpha\kappa} + C\varepsilon^2\right) \|\eta\|_{\mathcal{M}^1}^2
$$

$$
\ge \left(\frac{\delta}{4} - \frac{\delta}{8} + C\varepsilon^2\right) \|\eta\|_{\mathcal{M}^1}^2
$$

$$
\ge \frac{\delta}{16} \|\eta\|_{\mathcal{M}^1}^2,
$$

provided that $\varepsilon > 0$ is sufficiently small. Accordingly,

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Lambda_1 + \varkappa\varepsilon\Lambda_1 \leq \Theta_1,
$$

for some $x > 0$. Regarding the right-hand side Θ_1 , by interpolation and [\(8.1\)](#page-24-1), we have the estimate

$$
(f, Au) - b(u, u, Au) \leq ||f|| ||u||_2 + ||u||_{L^6} ||\nabla u||_{L^3} ||u||_2
$$

$$
\leq C \|u\|_2 + C \|u\|_2^{\frac{3}{2}}
$$

$$
\leq \varepsilon^2 \|u\|_2^2 + C.
$$

Then, up to choosing ε small enough, we find

 $\Theta \leq C$,

which in turn entails

$$
\frac{\mathrm{d}}{\mathrm{d}t}\Lambda_1 + \varkappa\varepsilon\Lambda_1 \leq C.
$$

The Gronwall lemma on the time-interval (t_e, t) together with (8.6) yield

$$
\mathcal{E}_1(t) \le \mathcal{Q}(R)e^{-\omega(t-t_e)} + C, \quad \forall \, t \ge t_e,\tag{8.7}
$$

with $\omega = \varkappa \varepsilon$. Collecting [\(8.3\)](#page-25-2) and [\(8.7\)](#page-27-0), we readily get

$$
\mathcal{E}_1(t) \leq \mathcal{Q}(R) e^{-\omega t} + C, \quad \forall t \geq 0,
$$

implying the desired conclusion.

• **Verifying (iv)** Given any initial datum $U_0 = (u_0, \eta_0)$, we consider this time the trivial splitting

$$
S(t)U_0 = L(t)U_0 + K(t)U_0
$$

where the maps

$$
L(t)U_0 = (v(t), \xi^t)
$$
 and $K(t)U_0 = (w(t), \xi^t)$

solve the problems

$$
\begin{cases}\n\partial_t (v + \alpha A v) + \int_0^\infty \mu(s) A \xi(s) ds = 0, \\
\partial_t \xi = T \xi + v, \\
(v(0), \xi^0) = (u_0, \eta_0),\n\end{cases}
$$

and

$$
\begin{cases} \partial_t (w + \alpha A w) + \int_0^\infty \mu(s) A \zeta(s) ds = f - B(u, u) - \beta A^{-\vartheta} u, \\ \partial_t \zeta = T \zeta + w, \\ (w(0), \zeta^0) = (0, 0). \end{cases}
$$

Note that $L(t)$ is a strongly continuous linear semigroup on H . Besides, $L(t)$ is exponentially stable. This can be easily seen by recasting the proof of Theorem [5.2.](#page-16-2)

Let now $R \ge 0$ be fixed, and let U_{01} , $U_{02} \in \mathbb{B}_{H^1}(R)$. Along this proof, the generic positive constant *C* is allowed to depend on *R*. Then, we decompose the difference

$$
(\bar{u}(t), \bar{\eta}^t) = S(t)U_{01} - S(t)U_{02}
$$

into the sum

$$
(\bar{u}(t), \bar{\eta}^t) = (\bar{v}(t), \bar{\xi}^t) + (\bar{w}(t), \bar{\zeta}^t),
$$

where

$$
(\bar{v}(t), \bar{\xi}^t) = L(t)U_{01} - L(t)U_{02}
$$
, and $(\bar{w}(t), \bar{\zeta}^t) = K(t)U_{01} - K(t)U_{02}$.

We first note that, on account of **(iii)**,

$$
||S(t)U_{0i}||_{\mathcal{H}^1} \leq C. \tag{8.8}
$$

Besides, the exponential stability of $L(t)$ implies the existence of a universal constant $\omega > 0$ such that

$$
||L(t)U_{01} - L(t)U_{02}||_{\mathcal{H}} \leq C e^{-\omega t} ||U_{01} - U_{02}||_{\mathcal{H}}.
$$
\n(8.9)

We are left to prove the desired estimate for the difference $(\bar{w}, \bar{\zeta})$, solution to the system

$$
\begin{cases} \partial_t \left(\bar{w} + \alpha A \bar{w} \right) + \int_0^\infty \mu(s) A \bar{\zeta}(s) ds = -B(\bar{u}, u_1) - B(u_2, \bar{u}) - \beta A^{-\vartheta} \bar{u}, \\ \partial_t \bar{\zeta} = T \bar{\zeta} + \bar{w}, \\ (\bar{w}(0), \bar{\zeta}^0) = (0, 0). \end{cases}
$$

To this end, introducing the higher-order energy

$$
\mathcal{E}_1(t) = \frac{1}{2} \| K(t)U_{01} - K(t)U_{02} \|_{\mathcal{H}^1}^2,
$$

we find the identity

$$
\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}_1 - \frac{1}{2}\int_0^\infty \mu'(s)\|\bar{\zeta}^t(s)\|_{\mathcal{M}^1}^2\mathrm{d}s = -b(\bar{u},u_1,A\bar{w}) - b(u_2,\bar{u},A\bar{w}) - \beta\langle A^{-\vartheta}\bar{u},A\bar{w}\rangle.
$$

Owing to [\(8.8\)](#page-28-0), and appealing to the embedding $W \subset [L^{\infty}(\Omega)]^3$, we have the controls

$$
-b(\bar{u}, u_1, A\bar{w}) \le C \|u_1\|_2 \|\bar{u}\|_1 \|\bar{w}\|_2
$$

\n
$$
\le C \|\bar{v}\|_1 \|\bar{w}\|_2 + C \|\bar{w}\|_2^2
$$

\n
$$
\le C \|\bar{w}\|_2^2 + C \|\bar{v}\|_1^2,
$$

$$
-b(u_2, \bar{u}, A\bar{w}) \le ||u_2||_{L^{\infty}} ||\bar{u}||_1 ||\bar{w}||_2
$$

\n
$$
\le C ||\bar{v}||_1 ||\bar{w}||_2 + C ||\bar{w}||_2^2
$$

\n
$$
\le C ||\bar{w}||_2^2 + C ||\bar{v}||_1^2,
$$

and

$$
-\beta \langle A^{-\vartheta} \bar{u}, A\bar{w} \rangle \le -\beta \langle A^{-\vartheta} \bar{v}, A\bar{w} \rangle \le C \|\bar{w}\|_2^2 + C \|\bar{v}\|_1^2.
$$

Therefore, we arrive at

$$
\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}_1 \leq C\mathcal{E}_1 + C\|\bar{v}\|_1^2.
$$

Recalling that $(\bar{w}(0), \bar{\zeta}^0) = (0, 0)$ and exploiting [\(8.9\)](#page-28-1), an application of the Gronwall lemma provides the sought inequality

$$
\mathcal{E}_1(t) \leq C \int_0^t e^{C(t-y)} \|\bar{v}(y)\|_1^2 dy \leq C e^{Ct} \|U_{01} - U_{02}\|^2.
$$

In particular, we learn that

$$
\|\bar{w}(t)\|_1 \leq C e^{Ct} \|U_{01} - U_{02}\|_{\mathcal{H}},
$$

which is exactly the last point of **(iv)** to be verified.

9 Further Developments

In this final section, we discuss some open issues that might be the object of future investigations.

I. Exploiting the techniques of this work, it is actually possible to study generalized versions of (3.1) , such as

$$
\partial_t (u + \alpha Au) + \int_0^\infty g(s) Au(t - s) ds + \beta h(u) + B(u, u) = f.
$$

for some suitable nonlinearity $h(u)$, e.g. the Brinkman-Forchheimer correction term (see e.g [Straughan 2008](#page-33-3))

$$
h(u) = a|u|^p u + bu, \quad p > 0,
$$

where $a > 0$ and $b \in \mathbb{R}$.

II. A further interesting problem is concerned with the analysis of nonautonomous NSV equations in presence of singularly oscillating external forces, depending on $\varepsilon > 0$, of the form

$$
f^{\varepsilon}(t) = f_0(t) + \varepsilon^{-\rho} f_1\Big(\frac{t}{\varepsilon}\Big), \quad \rho > 0,
$$

t

along with the formal limit obtained as $\varepsilon \to 0$, corresponding to

$$
f^0(t) = f_0(t).
$$

The existence of global attractors depending on $\varepsilon > 0$ and their stability as $\varepsilon \to 0$ for NSV equations without memory has been addressed in *[Qin et al.](#page-33-4)* [\(2012\)](#page-33-4) (see also [Chepyzhov et al. 2009](#page-32-19); [Chepyzhov and Vishik 2007](#page-32-20) for Navier–Stokes models). In connection with memory equations, the techniques to handle singularly oscillating forces have been introduced in the novel paper [\(Chepyzhov et al. 2017](#page-32-21)). **III.** In place of (3.1) we may consider the family of equations

$$
\partial_t (u + \alpha Au) + \int_0^\infty g_\varepsilon(s) Au(t - s) ds + \beta u + B(u, u) = f. \tag{9.1}
$$

where

$$
g_{\varepsilon}(s) = \frac{1}{\varepsilon} g\left(\frac{s}{\varepsilon}\right), \quad \varepsilon \in (0, 1],
$$

is a rescaling of the original kernel *g*. Such a rescaling has been firstly introduced in [Conti et al.](#page-32-22) [\(2006\)](#page-32-22). We assume without loss of generality that

$$
\int_0^\infty g(s) \mathrm{d} s = 1.
$$

In the formal limit $\varepsilon \to 0$ we have the distributional convergence

$$
g_{\varepsilon}\to\delta_0,
$$

 δ_0 being the Dirac mass at 0^+ . Accordingly, [\(9.1\)](#page-30-0) collapses into the NSV equation with Ekman damping

$$
\partial_t (u - \alpha \Delta u) - \Delta u + \beta u + B(u, u) = f. \tag{9.2}
$$

Writing as before $\mu = -g'$, and defining

$$
\mu_{\varepsilon}(s) = \frac{1}{\varepsilon^2} \mu\left(\frac{s}{\varepsilon}\right),
$$

both [\(9.1\)](#page-30-0) and [\(9.2\)](#page-30-1) generate dynamical systems $S_{\varepsilon}(t)$, acting on their respective phase spaces

$$
\mathcal{H}_{\varepsilon}=V\times\mathcal{M}_{\varepsilon},
$$

where

$$
\mathcal{M}_{\varepsilon} = \begin{cases} L_{\mu_{\varepsilon}}^2(\mathbb{R}^+; V) & \text{if } \varepsilon > 0, \\ \{0\} & \text{if } \varepsilon = 0. \end{cases}
$$

 \mathcal{D} Springer

Then, for all $\varepsilon \in [0, 1]$, the semigroups $S_{\varepsilon}(t)$ possess exponential attractors $\mathfrak{E}_{\varepsilon}$ on $\mathcal{H}_{\varepsilon}$. Besides, by means of the general theory developed in [Gatti et al.](#page-32-23) [\(2010](#page-32-23)), one can show that the family $\{\mathfrak{E}_{\varepsilon}\}\)$ fulfills the following properties:

• The exponential attraction rate of $\mathfrak{E}_{\varepsilon}$ is uniform with respect to ε ; namely, there exist Q and $\omega > 0$, both independent of ε , such that

$$
\mathrm{dist}_{\mathcal{H}_{\varepsilon}}(S_{\varepsilon}(t)\mathbb{B}_{\mathcal{H}_{\varepsilon}}(R),\mathfrak{E}_{\varepsilon})\leq\mathcal{Q}(R)e^{-\omega t},\quad\forall R\geq0.
$$

- The (finite) fractal dimension dim_{*H*ε} ($\mathfrak{E}_{\varepsilon}$) is uniformly bounded with respect to ε .
- The family $\{\mathfrak{E}_{\varepsilon}\}\)$ is (Hölder) continuous at $\varepsilon = 0$; namely, there exist constants $C \geq 0$ and $\alpha \in (0, 1)$ such that

$$
\mathrm{dist}_{\mathcal{H}_{\varepsilon}}^{\mathrm{sym}}(\mathfrak{E}_{\varepsilon},\mathfrak{E}_{0})\leq C\varepsilon^{\alpha},
$$

where

$$
\mathrm{dist}_{\mathcal{H}_{\varepsilon}}^{\mathrm{sym}}(\mathfrak{E}_{\varepsilon},\mathfrak{E}_{0})=\max\left\{\mathrm{dist}_{\mathcal{H}_{\varepsilon}}(\mathfrak{E}_{\varepsilon},\mathfrak{E}_{0}),\mathrm{dist}_{\mathcal{H}_{\varepsilon}}(\mathfrak{E}_{0},\mathfrak{E}_{\varepsilon})\right\}
$$

is the symmetric Hausdorff distance in $\mathcal{H}_{\varepsilon}$.

A similar project has been carried out in [Gal and Tachim-Medjo](#page-32-6) [\(2013\)](#page-32-6) for the equation

$$
\partial_t (u + \alpha Au) + vAu + (1 - v) \int_0^\infty g_\varepsilon(s) Au(t - s) ds + \beta u + B(u, u) = f
$$

where $v \in (0, 1)$ is a fixed parameter. However, in this case, the presence of the instantaneous kinematic viscosity ν *Au* renders the problem easier.

IV. An enhanced version of the previous analysis would be letting $\beta > 0$ in [\(9.1\)](#page-30-0) to be a free parameter as well, and then considering the double limit

$$
\varepsilon \to 0 \quad \text{and} \quad \beta \to 0.
$$

In this situation, we have a family of two-parameter semigroups $S_{\varepsilon,\beta}(t)$ acting on $\mathcal{H}_{\varepsilon}$, the limiting case $S_{0,0}(t)$ corresponding to the NSV equation

$$
\partial_t (u - \alpha \Delta u) - \Delta u + B(u, u) = f.
$$

For every fixed $\varepsilon > 0$ and $\beta > 0$, the semigroup $S_{\varepsilon,\beta}(t)$ possesses an exponential attractor $\mathfrak{E}_{\varepsilon,\beta}$ $\mathfrak{E}_{\varepsilon,\beta}$ $\mathfrak{E}_{\varepsilon,\beta}$, [and](#page-32-5) [the](#page-32-5) [same](#page-32-5) [is](#page-32-5) [true](#page-32-5) [for](#page-32-5) the [limiting](#page-32-5) [semigroup](#page-32-5) $S_{0,0}(t)$ (see Coti Zelati and Gal [2015](#page-32-5)). Again, the task is proving the convergence

$$
\mathfrak{E}_{\varepsilon,\beta}\to \mathfrak{E}_{0,0}
$$

as $\varepsilon \to 0$ and $\beta \to 0$, in the sense of the symmetric Hausdorff distance. Since we are not able to provide uniform estimates when $\varepsilon > 0$ and $\beta = 0$ (except in the case when $f \equiv 0$), we expect to obtain the desired result under an additional constraint on the double limit, of the kind $\beta \geq F(\varepsilon)$, for a suitable positive function *F* vanishing at zero.

Acknowledgements F. Di Plinio was partially supported by the National Science Foundation under the Grant Nos. NSF-DMS-1500449 and NSF-DMS-1650810. R. Temam was supported by NSF DMS Grant 1510249 and by the Research Fund of Indiana University.

References

- Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models. Springer, New York (2013)
- Chepyzhov, V.V., Vishik, M.I.: Non-autonomous 2D Navier–Stokes system with singularly oscillating external force and its global attractor. J. Dyn. Differ. Equ. **19**, 655–684 (2007)
- Chepyzhov, V.V., Pata, V., Vishik, M.I.: Averaging of 2D Navier–Stokes equations with singularly oscillating forces. Nonlinearity **22**, 351–370 (2009)
- Chepyzhov, V., Vishik, M., Zelik, S.: Strong trajectory attractors for dissipative Euler equations. J. Math. Pure Appl. **96**, 395–407 (2011)
- Chepyzhov, V.V., Conti, M., Pata, V.: Averaging of equations of viscoelasticity with singularly oscillating external forces. [arXiv:1607.02732](http://arxiv.org/abs/1607.02732) (2017)
- Constantin, P., Ramos, F.: Inviscid limit for damped and driven incompressible Navier–Stokes equations in R2. Commun. Math. Phys. **275**, 529–551 (2007)
- Conti, M., Danese, V., Giorgi, C., Pata, V.: A model of viscoelasticity with time-dependent memory kernels. Am. J. Math. [arXiv:1603.07164](http://arxiv.org/abs/1603.07164) (2016)
- Conti, M., Pata, V., Squassina, M.: Singular limit of differential systems with memory. Indiana Univ. Math. J. **55**, 169–215 (2006)
- Coti Zelati, M., Gal, C.G.: Singular limits of Voigt models in fluid dynamics. J. Math. Fluid Mech. **17**, 233–259 (2015)
- Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Rat. Mech. Anal. **37**, 297–308 (1970)
- Danese, V., Geredeli, P.G., Pata, V.: Exponential attractors for abstract equations with memory and applications to viscoelasticity. Discrete Contin. Dyn. Syst. **35**, 2881–2904 (2015)
- Gal, C.G., Tachim-Medjo, T.: A Navier–Stokes–Voigt model with memory. Math. Method Appl. Sci. **36**, 2507–2523 (2013)
- Gatti, S., Giorgi, C., Pata, V.: Navier–Stokes limit of Jeffreys type flows. Phys. D **203**, 55–79 (2005)
- Gatti, S., Miranville, A., Pata, V., Zelik, S.: Continuous families of exponential attractors for singularly perturbed equations with memory. Proc. R. Soc. Edinb. Sect. A **140**, 329–366 (2010)
- Grasselli, M., Pata, V.: Uniform attractors of nonautonomous systems with memory. In: Lorenzi, A., Ruf, B. (eds.) Evolution Equations, Semigroups and Functional Analysis, Progr. Nonlinear Differential Equations Appl. No. 50, pp. 155–178. Birkhäuser, Boston (2002)
- Ilyin, A.A., Miranville, A., Titi, E.S.: Small viscosity sharp estimates for the global attractor of the 2D damped-driven Navier–Stokes equations. Commun. Math. Sci **2**, 403–425 (2004)
- Kalantarov, V.K., Titi, E.S.: Global attractors and determining modes for the 3D Navier–Stokes–Voigt equations. Chin. Ann. Math. Ser. B **30**, 697–714 (2009)
- Larios, A., Titi, E.S.: On the higher-order global regularity of the inviscid Voigt-regularization of threedimensional hydrodynamic models. Discrete Contin. Dyn. Syst. B **14**, 603–627 (2010)
- Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications. Springer, Berlin (1972)
- Oskolkov, A.P.: The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) **38**, 98–136 (1973)
- Pata, V.: Exponential stability in linear viscoelasticity. Q. Appl. Math. **64**, 499–513 (2006)
- Pata, V.: Uniform estimates of Gronwall type. J. Math. Anal. Appl. **373**, 264–270 (2011)
- Pata, V., Zucchi, A.: Attractors for a damped hyperbolic equation with linear memory. Adv. Math. Sci. Appl. **11**, 505–529 (2001)
- Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)

Qin, Y., Yang, X., Liu, X.: Averaging of a 3D Navier–Stokes–Voigt equation with singularly oscillating forces. Nonlinear Anal. Real World Appl. **13**, 893–904 (2012)

Straughan, B.: Stability and Wave Motion in Porous Media. Springer, New York (2008)

Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1997) Temam, R.: Navier–Stokes Equations. AMS Chelsea Publishing, Providence (2001)