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Abstract We consider a Navier–Stokes–Voigt fluid model where the instantaneous
kinematic viscosity has been completely replaced by a memory term incorporating
hereditary effects, in presence of Ekman damping.Unlike the classicalNavier–Stokes–
Voigt system, the energy balance involves the spatial gradient of the past history of
the velocity rather than providing an instantaneous control on the high modes. In spite
of this difficulty, we show that our system is dissipative in the dynamical systems
sense and even possesses regular global and exponential attractors of finite fractal
dimension. Such features of asymptotic well-posedness in absence of instantaneous
high modes dissipation appear to be unique within the realm of dynamical systems
arising from fluid models.
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1 Introduction

Let� ⊂ R
3 be a bounded domain with smooth boundary ∂�, and let α > 0 and β ≥ 0

be given constants. For t > 0, we consider the dimensionless form of the Navier–
Stokes–Voigt (NSV) equations with memory and Ekman damping in the unknown
velocity u = u(x, t) and pressure π = π(x, t)

⎧
⎨

⎩

∂t (u − α�u) −
∫ ∞

0
g(s)�u(t − s)ds + βu + (u · ∇)u + ∇π = f,

div u = 0,
(1.1)

where f is an assigned external forcing term, subject to the nonslip boundary condition

u|∂� = 0. (1.2)

The function g : [0,∞) → R, usually called memory kernel, is supposed to be con-
vex nonnegative, smooth on R

+ = (0,∞), vanishing at infinity and satisfying the
normalization condition

∫ ∞

0
g(s)ds = 1.

In fact, in the last display, 1 may be replaced with any constant γ > 0 without any
essential difference in the analysis that follows. The system is supplemented with the
initial conditions

u(0) = u0 and u(−s)|s>0 = ϕ0(s), (1.3)

where u0 and ϕ0(·) are prescribed data. The initial velocity u0 and the past history of
the velocityϕ0, which need only be defined for almost every s > 0, will play a different
role in the translation of (1.1) into an evolution system, as detailed in the subsequent
Sect. 3. The drag/friction term βu, widely used in geophysical hydrodynamics, is
known as Ekman damping. The coefficient β is the Ekman pumping/dissipation con-
stant, induced by the so-called Ekman layer appearing at the bottom of a rotating
fluid (see Pedlosky 1987). The term βu is also referred to as the Rayleigh friction and
employed in oceanic models such as the viscous Charney–Stommel barotropic ocean
circulation model of the gulf stream. In the last decades, in connection with damped
Euler and Navier–Stokes equations, several models involving dissipative terms of
Ekman type have been considered in order to study the limit case of vanishing viscos-
ity (see e.g. Chepyzhov et al. 2011; Constantin and Ramos 2007; Ilyin et al. 2004).

In literature the NSV system was introduced by Oskolkov (1973) as a model for
the motion of a Kelvin–Voigt elastic incompressible fluid. The system reads as
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{
∂t (u − α�u) − �u + (u · ∇)u + ∇π = f,

div u = 0.
(1.4)

The global well-posedness of (1.4), along with the existence of a finite dimensional
global attractor, has been established in connection with numerical simulations of
turbulent flows in statistical equilibrium, see Kalantarov and Titi (2009) and ref-
erences therein. Letting the viscoelastic length scale α go to zero we recover the
three-dimensional Navier–Stokes system. In this regard, the recent contribution (Coti
Zelati and Gal 2015) improves on the results of Kalantarov and Titi (2009) by proving
the existence of a family of exponential attractors parameterized by the length scale α
which converges to the (weak) exponential attractor of the Navier–Stokes system as
α → 0.

More recently, Gal and Tachim-Medjo have proposed in (2013) a NSV system
incorporating hereditary effects of the form

⎧
⎨

⎩

∂t (u − α�u) − ν�u − (1 − ν)

∫ ∞

0
g(s)�u(t − s)ds + (u · ∇)u + ∇π = f,

div u = 0,
(1.5)

for some parameter ν ∈ (0, 1). This model has been derived by considering a Cauchy
stress tensor that takes both the Newtonian and the viscoelastic contributions into
account. From the physical viewpoint, the integrodifferential term is introduced to
describe non-Newtonian fluids. In Gal and Tachim-Medjo (2013) the assumption ν ∈
(0, 1) leads to a model where instantaneous and memory-type viscous terms coexist
(see also Gatti et al. 2005). When ν = 1, the system (1.5) collapses into (1.4), while
the limit case ν = 0 corresponds to the situation where the concentration of polymers
totally prevails over the solvent. Also, the formal choice of the memory kernel g
equal to the Dirac mass at 0+ in (1.5) corresponds to the NSV system (1.4). The
well-posedness and the asymptotic properties of (1.5) have been achieved in Gal
and Tachim-Medjo (2013). The main result is the existence of finite dimensional
exponential attractors for the related dynamical system. In addition, replacing the
memory kernel g with a family of suitable rescalings gε converging to the Dirac
mass (see point III of Sect. 9), the corresponding family of ε-exponential attractors
is proved to be robust in the limit ε → 0, where the system (1.4) is recovered. Such
a stability property has been previously exploited in Gatti et al. (2005), where the
asymptotic behavior of a two-dimensional Jeffreys model is shown to converge to its
Navier–Stokes (formal) limit.

The dissipative nature of the above-mentioned NSV type models is relatively easy
to understand. The energy conservation law associated to (1.4) yields the cumulative
dissipation integral

∫ T

0

∫

�

|∇u|2 dxdt (1.6)

which allows to keep the high modes of the solution, and in turn the nonlinear terms
of critical character, under control when showing the existence of an absorbing set in
the phase space. When instantaneous and hereditary kinematic viscosity coexist as in
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(1.5), a weaker hereditary dissipation term (see (4.2) below) involving the high modes
of the past history of the velocity averaged over time appears in the energy balance in
addition to (1.6).

The key novel feature of the model (1.1), and of the analysis we will perform
herein, is that we are able to establish dissipativity and asymptotic well-posedness—
in the dynamical systems sense, namely, existence of an absorbing set and of a finite
dimensional attractor—even when the instantaneous viscosity term leading to the
dissipation integral (1.6) is absent, and therefore no instantaneous control on the high
modes is assumed, provided that the much weaker, and physically relevant, Ekman-
type damping term βu is taken into account together with the hereditary dissipation
integral (4.2).

The fact that the coupled effect of the hereditary analogue of (1.6) with the Ekman
term is enough to guarantee asymptotic well-posedness of the system is, in our view,
rather striking. In fact, to our knowledge, there are no theoretical results regarding
nonlinear systems whose high modes dissipation features are purely hereditary as
those of (1.1). In order to explain the general picture in the realm of incompressible
fluid models, consider the following more general system:

⎧
⎨

⎩

∂t (u − α�u) − γ

∫ ∞

0
g(s)�u(t − s)ds + βu + (u · ∇)u + ∇π = f,

div u = 0.
(1.7)

Note that (1.1) corresponds to γ = 1 in (1.7). We can distinguish three further cases
in (1.7):

• Navier–Stokes system with memory (α = 0, β = 0, γ > 0).
Well-posedness, in particular uniqueness, is out of reach for this system, even in
dimension two. The two-dimensional case, when instantaneous viscosity is present
and therefore (1.6) appears in the energy balance, has been dealt with in Gatti et al.
(2005).

• Euler–Voigt system with damping (α > 0, β > 0, γ = 0).
This model is a regularization of the Euler system. The well-posedness in the
natural phase space together with the existence of strong solutions has been proved
in Larios and Titi (2010) when β = 0. Nevertheless, a careful inspection of the
techniques of Larios and Titi (2010) shows that the addition of the low modes
damping/driving term βu would not suffice to establish the dissipative nature of
the system.

• Navier–Stokes–Voigt system with memory (α > 0, β = 0, γ > 0).
The well-posedness in the natural phase space can be easily proved as in the
previous case. Here the memory term provides an integrated in time control of∇u.
However, the dissipativity seems to be an insurmountable task unless dissipation
for the low modes (that is, the Ekman term) is taken into account.

As evidenced by the failure of the standard techniques for fully hereditary analogues
of even verywell understood systems like the two-dimensionalNavier–Stokes case, the
mathematical treatment of (1.1) becomes much harder in absence of the dissipation
integral (1.6). We overcome the intrinsic difficulty of reconstructing the necessary
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control on the high modes by nontrivially combining suitable energy functionals with
a recent Gronwall-type lemma wih parameter (see Pata 2011). In fact, we are able to
further weaken the nature of the low modes dissipation term βu provided the forcing
f is taken to be regular enough: a detailed formulation is given in (3.2). We believe
that the technique here proposed will provide new insight in the study other systems
with nonlinear terms of critical growth and very weak dissipation properties.

Structure of the Article

After recalling the relevant mathematical framework for Navier–Stokes type systems
with memory in Sect. 2, (1.1) is recast in Sect. 3 as an abstract evolution system in
the Dafermos history space setting (Dafermos 1970). We prove that such an evolution
system generates a strongly continuous semigroup with continuous dependence on
the initial data. The more challenging part of our entire analysis is found in Sect. 4.
Therein, we prove our main result which is the dissipative character of the semigroup.
If no forcing term is present, the dissipative estimate remains true even if β = 0. This
is the content of Sect. 5. In the presence of memory terms, which are intrinsically
hyperbolic, finite time regularization of the solution cannot occur. As a substitute,
in Sect. 6 we show that the trajectories are exponentially attracted by more regular
bounded sets. This property is relied upon in Sect. 7, where the existence of a regular
exponential attractor for the semigroup of finite fractal dimension in the phase space is
established. The global attractor is thus recovered as a byproduct. Precise statements
are given in Theorem 7.2 and Corollary 7.3, and their proofs are carried out in Sect. 8.
Finally, we send to Sect. 9 for several directions of future investigation.

2 Mathematical Setting and Notation

Throughout this work, L2(�), H1
0 (�), Hr (�)will be the standard Lebesgue–Sobolev

spaces on �. In particular, the external force f will be assumed to be a (constant-in-
time) vector of [L2(�)]3.

We introduce the Hilbert space (H, 〈·, ·〉, ‖ · ‖) given by

H = {u ∈ [L2(�)]3 : div u = 0, u · n|∂� = 0},
n being the outward normal to ∂�, along with the Hilbert space

V = {
u ∈

[
H1
0 (�)

]3 : div u = 0
}
,

with inner product and norm

〈u, v〉1 = 〈∇u,∇v〉 and ‖u‖1 = ‖∇u‖.
We denote by V ′ its dual space. We will also encounter the space

W = V ∩ [H2(�)]3.
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Calling P : [L2(�)]3 → H the Leray orthogonal projection onto H , we consider the
Stokes operator on H

A = −P� with domain D(A) = W .

It is well known that A is a positive selfadjoint operator with compact inverse (see e.g.
Temam 2001). This allows us to define the scale of compactly nested Hilbert spaces

V r = D(A
r
2 ), r ∈ R,

endowed with the inner products and norms

〈u, v〉r = 〈A
r
2 u, A

r
2 v〉 and ‖u‖r = ‖A

r
2 u‖.

In particular,

V −1 = V ′, V 0 = H, V 1 = V , V 2 = W .

More generally (see Boyer and Fabrie 2013),

V r = V ∩ [Hr (�)]3, 1 ≤ r ≤ 2,

V r ⊂ V ∩ [Hr (�)]3, r > 2.

We also recall the Poincaré inequality

√
λ1‖u‖ ≤ ‖u‖1, ∀ u ∈ V , (2.1)

where λ1 > 0 is the first eigenvalue of A. The symbol 〈·, ·〉 will also stand for the
duality product between V r and its dual space V −r .

As customary, we write the trilinear form on V × V × V

b(u, v, w) =
∫

�

(u · ∇)v · wdx =
3∑

i, j=1

∫

�

ui
∂v j

∂xi
w jdx,

satisfying the relation

b(u, v, v) = 0.

The associated bilinear form B : V × V → V ′ is defined as

〈B(u, v), w〉 = b(u, v, w).

Next, we turn our attention to the memory kernel. Defining

μ(s) = −g′(s),
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the prime being the derivative, we suppose μ nonnegative, absolutely continuous,
decreasing (hence μ′ ≤ 0 almost everywhere), and summable on R+ with total mass

κ =
∫ ∞

0
μ(s) ds > 0.

The classical Dafermos condition will be also assumed (see Dafermos 1970), namely,

μ′(s) + δμ(s) ≤ 0, (2.2)

for some δ > 0 and almost every s > 0. Then, we introduce the L2-weighted Hilbert
space on R

+

M = L2
μ(R

+; V ),

with inner product and norm

〈η, ξ 〉M =
∫ ∞

0
μ(s)〈η(s), ξ(s)〉1ds and ‖η‖M =

( ∫ ∞

0
μ(s)‖η(s)‖21ds

) 1
2

,

along with the infinitesimal generator of the right-translation semigroup onM

Tη = −∂sη with domain D(T ) = {
η ∈ M : ∂sη ∈ M, η(0) = 0

}
.

Here, ∂sη is the distributional derivative of η(s) with respect to the internal variable
s. Finally, we define the extended memory space

H = V × M

endowed with the product norm

‖(u, η)‖2H = α‖u‖21 + ‖u‖2 + ‖η‖2M.

Due to the Poincaré inequality (2.1), this norm is equivalent to the natural one on H.
In this work, we will also make use of higher order memory spaces. To this end,

we define

M1 = L2
μ(R

+;W),

with inner product and norm analogous to those ofM, and the corresponding higher
order extended memory space

H1 = W × M1

with norm

‖(u, η)‖2H1 = α‖u‖22 + ‖u‖21 + ‖η‖2M1 .
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General Agreement

Throughout the paper, the symbols C > 0 and Q(·) will denote a generic constant
and a generic increasing positive function, respectively, depending only on the struc-
tural parameters of the problem, but independent of f (unless otherwise specified).
Moreover, given a Banach space X and R > 0, we denote by

BX (R) = {x ∈ X : ‖x‖X ≤ R}

the ball of X of radius R about zero.

3 The Dynamical System

As anticipated in the Introduction, the original problem (1.1)–(1.2) is translated into an
evolution system in the so-called Dafermos past history framework (Dafermos 1970).
First, we observe that, without any loss of generality, we can assume that f ∈ H which
amounts to changing π (by adding P f − f to ∇π ). Hence we apply the projection P
to the first equation (1.1) and we transform (1.1)–(1.2) into

∂t (u + αAu) +
∫ ∞

0
g(s)Au(t − s)ds + βu + B(u, u) = f. (3.1)

In more generality, we will replace the damping βu with a term of the form βA−ϑu,
for some ϑ ≥ 0. Then, we introduce the past history variable

ηt (s) =
∫ s

0
u(t − σ)dσ,

that satisfies the differential identity

∂tη
t (s) = −∂sη

t (s) + u(t).

At this point, recalling the definition of the operator T , a formal integration by parts
leads to the differential problem in the unknown variables u = u(t) and η = ηt (·)

⎧
⎨

⎩

∂t (u + αAu) +
∫ ∞

0
μ(s)Aη(s)ds + βA−ϑu + B(u, u) = f,

∂tη = Tη + u,
(3.2)

for some ϑ ≥ 0, where μ = −g′. As we said, this is actually a generalization of
equation (3.1), which corresponds to the case ϑ = 0 (the strongest damping within
this class). In turn, the initial conditions (1.3) transform into
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u(0) = u0 and η0 = η0,

having set

η0(s) =
∫ s

0
ϕ0(σ )dσ.

We begin with the definition of weak solution.

Definition 3.1 Given U0 = (u0, η0) ∈ H, a function U = (u, η) ∈ C([0,∞),H),
with ∂t u ∈ L2(0, τ ; V ) for every τ > 0, is a weak solution to (3.2) with initial datum

U (0) = (u(0), η0) = U0

if for every test function v ∈ V and almost every t > 0

〈∂t u, v〉 + α〈∂t u, v〉1 +
∫ ∞

0
μ(s)〈η(s), v〉1ds + β〈A−ϑu, v〉 + b(u, u, v) = 〈 f, v〉,

where η fulfills the explicit representation

ηt (s) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ s

0
u(t − σ)dσ, 0 < s ≤ t,

η0(s − t) +
∫ t

0
u(t − σ)dσ, s > t.

(3.3)

Remark 3.2 Given u ∈ C([0,∞), V ), the function η = ηt (·) satisfies the representa-
tion formula above if and only if it is a mild solution (in the sense of Pazy 1983) to
the nonhomogeneous linear equation

∂tη = Tη + u.

Theorem 3.3 For every initial datum U0 ∈ H, system (3.2) admits a unique solution
U (t) = (u(t), ηt ).

Accordingly, the problem generates a dynamical system, otherwise called strongly
continuous semigroup,

S(t) : H → H, t ≥ 0,

acting by the formula

S(t)U0 = U (t).

This is a one-parameter family of maps S(t) on H satisfying the properties:

• S(0) = IdH;
• S(t + τ) = S(t)S(τ ), for every t, τ ≥ 0;
• t �→ S(t)U0 ∈ C([0,∞),H), for every U0 ∈ H.
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Given an initial datum U0 ∈ H, the corresponding energy at time t ≥ 0 reads

E(t) = 1

2
‖S(t)U0‖2H = 1

2

[
‖u(t)‖2 + α‖u(t)‖21 + ‖ηt‖2M

]
.

The existence of aweak solution is carried out via aGalerkin approximation scheme,
by exploiting standard energy estimates (much more immediate than the uniform ones
of the next Sect. 4), and then passing to the limit in the usual way. Indeed (see the
energy equality (4.3)), we easily get that, for any given τ > 0 and R ≥ 0,

‖U (t)‖H ≤ Q(R + τ), (3.4)

for all t ≤ τ and all initial data U (0) ∈ BH(R). In particular, the increasing function
Q does not depend on β ≥ 0. We refer the interested reader to Conti et al. (2016) for
more details on the Galerkin scheme in connection with equations with memory.

Remark 3.4 It is worth noting that the argument does not require β to be strictly
positive, nor inequality (2.2) is needed at this level. Indeed, both β > 0 and (2.2) will
come into play in connection with the dissipative properties of the semigroup.

Uniqueness is a consequence of the following continuous dependence result.

Proposition 3.5 For every τ > 0 and R ≥ 0, any two solutions U1(t) and U2(t) to
equation (3.2) fulfill the estimate

‖U1(t) − U2(t)‖H ≤ Q(R + τ)‖U1(0) − U2(0)‖H, (3.5)

for all t ≤ τ and all initial data Ui (0) ∈ BH(R).

Proof Let τ > 0 be fixed, and let U1 = (u1, η1),U2 = (u2, η2) be two solutions to
(3.2) on the time-interval [0, τ ] such that Ui (0) ∈ BH(R). Then, the difference

Ū = (ū, η̄) = U1 − U2

solves

∂t (ū + αAū) +
∫ ∞

0
μ(s)Aη̄(s)ds + βA−ϑ ū + B(u1, ū) + B(ū, u2) = 0.

Testing the equation by the admissible test function ū, we easily find

d

dt
� + 〈η̄, ū〉M ≤ −b(ū, u2, ū),

where

�(t) = 1

2
‖ū(t)‖2 + α

2
‖ū(t)‖21.
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In light of (3.4),

−b(ū, u2, ū) ≤ C‖u2‖1‖ū‖21 ≤ Q(R + τ)�,

and an integration in time yields

�(t) +
∫ t

0
〈η̄y, ū(y)〉Mdy ≤ �(0) + Q(R + τ)

∫ t

0
�(y)dy, ∀ t ≤ τ.

Observing that η̄ fulfills the representation (3.3), from Conti et al. (2016, Theorem
5.1) we learn that

1

2
‖η̄t‖2M − 1

2
‖η̄0‖2M ≤

∫ t

0
〈η̄y, ū(y)〉Mdy.

In summary,

‖Ū (t)‖2H ≤ ‖Ū (0)‖2H + Q(R + τ)

∫ t

0
‖Ū (y)‖2Hdy,

and the claim follows from the integral Gronwall lemma. ��
In particular, we draw from Proposition 3.5 that S(t) fulfills the further continuity

property

• S(t) ∈ C(H,H), for every t ≥ 0.

4 Dissipativity

The main result of this section provides a uniform-in-time a priori estimate on the
solutions U (t) = S(t)U0. To this end, we introduce the function

φ(ϑ) = ϑ − 1

2
,

and we strengthen the assumptions on the external force by requiring

f ∈ V � for some � > φ(ϑ). (4.1)

Since φ(ϑ) < ϑ , there is no harm in assuming also � ≤ ϑ . When φ(ϑ) < 0, which
is the same as saying ϑ < 1/2, we only require � = 0, i.e.

f ∈ V 0 = H,

which does not add anything to our general assumptions made at the beginning. As
expected, φ is increasing, since the influence of the damping term A−ϑ becomes
weaker when ϑ is larger.

Remark 4.1 We highlight the fact that f ∈ H in the physically relevant case ϑ = 0,
corresponding to the Ekman damping.
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Theorem 4.2 Let β > 0 be fixed, and let (4.1) hold. Then, for any initial datum
U0 ∈ H, the corresponding energy fulfills the estimate

E(t) ≤ Q(E(0))e−ωt + C‖ f ‖2�,

where ω > 0 is a universal constant depending only on the structural parameters of
the problem.

Remark 4.3 It is worth mentioning that a dissipative estimate of this kind seems to be
out of reach when β = 0.

The main consequence of Theorem 4.2 is that, when β > 0, the dynamical system
S(t) is dissipative, namely the trajectories originating from any given bounded set
belong uniformly in time to an absorbing set. By definition, this is a bounded set
B0 ⊂ H with the following property: for any bounded set B ⊂ H of initial data there
is an entering time te = te(B) ≥ 0 such that

S(t)B ⊂ B0, ∀ t ≥ te.

It is then immediate to see that one can take

B0 = BH(R0),

for any fixed R0 >
√
2C‖ f ‖ρ , with the constant C of the previous statement.

The remaining of the section is devoted to the proof of Theorem 4.2. This will
require a number of steps.

4.1 Technical Lemmas

The main tool needed in the proof is a Gronwall-type lemma from Pata (2011).

Lemma 4.4 Let �ε be a family of absolutely continuous nonnegative functions on
[0,∞) satisfying for every ε > 0 small and some � > 0 and M ≥ 0 the differential
inequality

d

dt
�ε + �ε�ε ≤ Cε p�q

ε + M

εr
,

where the nonnegative parameters p, q, r fulfill

p − 1 > (q − 1)(1 + r) ≥ 0.

Moreover, let E be a continuous nonnegative function on [0,∞) such that

1

m
E(t) ≤ �ε(t) ≤ m E(t)
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for every ε > 0 small and some m ≥ 1. Then, there exists ω > 0 such that

E(t) ≤ Q(E(0))e−ωt + C M.

We also recall a basic interpolation result (see e.g. Lions and Magenes 1972).

Lemma 4.5 Let a < b < c. Then

‖u‖b ≤ ‖u‖�c ‖u‖1−�
a , ∀ u ∈ V c,

with

� = b − a

c − a
.

4.2 Energy Functionals

Let now

U (t) = (u(t), ηt )

be the solution to (3.2) originating from a given U0 ∈ H. In what follows, we will use
several timeswithout explicitmention theYoung,Hölder andPoincaré inequalities.We
will also perform several formal computations, justifiedwithin a suitable regularization
scheme.

We introduce the (nonnegative) functional

�(t) = −1

2

∫ ∞

0
μ′(s)‖ηt (s)‖21ds, (4.2)

satisfying the equality (see e.g. Grasselli and Pata 2002)

� = −〈Tη, η〉M.

Hence, recalling that b(u, u, u) = 0, the basic multiplication of (3.2) by U inH gives

d

dt
E + β‖u‖2−ϑ + � = 〈 f, u〉. (4.3)

Next, in order to handle the possible singularity of μ at zero, borrowing an idea
from (Pata 2006) we fix s∗ > 0 such that

∫ s∗

0
μ(s)ds ≤ κ

2
.

Setting

μ∗(s) =
{
μ(s∗), 0 < s ≤ s∗,
μ(s), s > s∗,
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we consider the further functional

�(t) = − 4

κ

∫ ∞

0
μ∗(s)〈ηt (s), u(t)〉1ds.

Lemma 4.6 For any ε > 0, we have the differential inequality

d

dt
� + ‖u‖21 ≤ 8μ(s∗)

κ2
� + 4

ακε
‖η‖2M + αε‖∂t u‖21. (4.4)

Proof We start from the identity

d

dt
� + 4

κ

∫ ∞

0
μ∗(s)‖u‖21ds = − 4

κ

∫ ∞

0
μ∗(s)〈Tη(s), u〉1ds

− 4

κ

∫ ∞

0
μ∗(s)〈η(s), ∂t u〉1ds.

According to the assumptions on μ and the definition of μ∗, we get

4

κ

∫ ∞

0
μ∗(s)‖u‖21ds ≥ 4

κ

∫ ∞

s∗
μ∗(s)‖u‖21ds ≥ 2‖u‖21.

Integrating by parts, and using (2.2), we find the controls

− 4

κ

∫ ∞

0
μ∗(s)〈Tη(s), u〉1ds = − 4

κ

∫ ∞

s∗
μ′(s)〈η(s), u〉1ds

≤ 4
√
2μ(s∗)
κ

‖u‖1� 1
2

≤ ‖u‖21 + 8μ(s∗)
κ2

�,

and

− 4

κ

∫ ∞

0
μ∗(s)〈η(s), ∂t u〉1ds ≤ 4

κ

∫ ∞

0
μ∗(s)‖η(s)‖1‖∂t u‖1ds

≤ 4

κ

∫ ∞

0
μ(s)‖η(s)‖1‖∂t u‖1ds

≤ αε‖∂t u‖21 + 4

ακε
‖η‖2M.

Collecting the estimates above, we meet the thesis. ��
Finally, we define the functional

�(t) = 2β‖u(t)‖2−ϑ .
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Lemma 4.7 We have the differential inequality

d

dt
� + 2α‖∂t u‖21 ≤ C‖η‖2M + C‖ f ‖2 + C‖u‖‖u‖31. (4.5)

Proof Differentiating in time we find

d

dt
� + 4‖∂t u‖2 + 4α‖∂t u‖21 = 4〈 f, ∂t u〉 − 4〈η, ∂t u〉M − 4b(u, u, ∂t u).

Since

4〈 f, ∂t u〉 − 4〈η, ∂t u〉M ≤ α‖∂t u‖21 + C‖η‖2M + C‖ f ‖2,

while, by interpolation and the Young inequality,

−4b(u, u, ∂t u) ≤ C‖u‖ 1
2 ‖u‖

3
2
1 ‖∂t u‖1 ≤ α‖∂t u‖21 + C‖u‖‖u‖31,

we obtain (4.5). ��

4.3 Proof of Theorem 4.2

Denoting

ν = min
{ακδ

32
, 1

}
,

we introduce the family of energy functionals depending on the parameter ε > 0

�ε(t) = E(t) + νε�(t) + ε2�(t).

It is apparent that the control

1

2
E(t) ≤ �ε(t) ≤ 2E(t) (4.6)

holds for any ε small enough. Collecting (4.3)–(4.5) we deduce the family of differ-
ential inequalities

d

dt
�ε + νε‖u‖21 +

(
1 − 8μ(s∗)νε

κ2

)
� −

( 4ν

ακ
+ Cε2

)
‖η‖2M + αε2‖∂t u‖21 ≤ �ε,

having set

�ε = −β‖u‖2−ϑ + 〈 f, u〉 + C‖ f ‖2 + Cε2‖u‖‖u‖31.
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Since by (2.2)

δ

2
‖η‖2M ≤ �,

from the very definition of ν we find

(
1 − 8μ(s∗)νε

κ2

)
� −

( 4ν

ακ
+ Cε2

)
‖η‖2M ≥ 1

2
� −

( 4ν

ακ
+ Cε2

)
‖η‖2M

≥
( δ

4
− 4ν

ακ
− Cε2

)
‖η‖2M

≥ δ

16
‖η‖2M,

provided that ε > 0 is sufficiently small. This gives

d

dt
�ε + νε‖u‖21 + δ

16
‖η‖2M + αε2‖∂t u‖21 ≤ �ε.

In light of (2.1) and (4.6), it is apparent that the latter inequality can be rewritten in
the form

d

dt
�ε + 2�ε�ε + αε2‖∂t u‖21 ≤ �ε,

for every ε > 0 small and a suitably fixed � > 0. We are left to estimate the term�ε.
To this end, let us put

p = 4(1 + ϑ)

1 + 2ϑ
, q = 3 + 4ϑ

1 + 2ϑ
, r = ϑ − �

1 + ϑ
.

Observe that p, q, r comply with the hypotheses of Lemma 4.4. In particular, r < 1.
Then, by (4.6) and Lemma 4.5 with a = −ϑ, b = −�, c = 1 and � = r ,

〈 f, u〉 ≤ ‖ f ‖�‖u‖r
1‖u‖1−r

−ϑ

≤ β

2
‖u‖2−ϑ + C‖ f ‖

2
1+r
� ‖u‖

2r
1+r
1

≤ β

2
‖u‖2−ϑ + �ε�ε + C‖ f ‖2�

εr

By the same token, using now a = −ϑ, b = 0, c = 1 and � = ϑ/(1 + ϑ), and
subsequently applying the Young inequality with exponents 2(1 + ϑ) and p/2,

Cε2‖u‖‖u‖31 ≤ Cε2‖u‖
1

1+ϑ

−ϑ ‖u‖
3+4ϑ
1+ϑ

1

≤ Cε2‖u‖
1

1+ϑ

−ϑ �

2q
p
ε
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≤ β

2
‖u‖2−ϑ + Cε p�q

ε .

Summarizing (recall that V � ⊂ H), we obtain the estimate

�ε ≤ �ε�ε + Cε p�q
ε + C‖ f ‖2�

εr
,

and we end up with the differential inequality

d

dt
�ε + �ε�ε + αε2‖∂t u‖21 ≤ Cε p�q

ε + C‖ f ‖2�
εr

. (4.7)

Using again (4.6), the desired conclusion follows from an application of Lemma 4.4.
��

Once one has Theorem 4.2, an integration of (4.7) for a fixed ε > 0 provides a
useful estimate needed in the sequel.

Corollary 4.8 Let the assumptions of Theorem 4.2 hold. Then for every t ≥ 0

∫ t

0
‖∂t u(y)‖21dy ≤ (1 + t)Q(E(0)). (4.8)

5 Exponential Decay of Solutions

In absence of a forcing term, Theorem 4.2 establishes the exponential decay of the
energy.

Corollary 5.1 Let β > 0 be fixed, and let f ≡ 0. Then, for any initial datum U0 ∈ H,
the corresponding energy fulfills the decay estimate

E(t) ≤ Q(E(0))e−ωt ,

where ω > 0 is a universal constant depending only on the structural parameters of
the problem.

Nonetheless, the conclusion above remains true also when β = 0, that is, when
no extra damping of the form βA−ϑu is present. The result, however, is proved in a
different way, with an argument that cannot be exported to the case of a nonzero f .

Theorem 5.2 Let β = 0, and let f ≡ 0. Then, for any initial datum U0 ∈ H, the
corresponding energy fulfills the decay estimate

E(t) ≤ Q(E(0))e−ωt ,

where ω > 0 is a universal constant depending only on the structural parameters of
the problem.
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Proof For an arbitrarily given R ≥ 0, let us consider an initial datum U0 ∈ BH(R).
Since f ≡ 0, we readily see from (4.3) that

E(t) ≤ E(0). (5.1)

Setting

ν = min
{ακδ

32
, 1

}
,

for ε > 0 small to be fixed later, we define this time

�(t) = E(t) + νε�(t),

with � as in the previous section. It is apparent that

1

2
E(t) ≤ �(t) ≤ 2E(t).

In addition, we have the differential inequality

d

dt
� + νε‖u‖21 +

(
1 − 8μ(s∗)νε

κ2

)
� − 4ν

ακ
‖η‖2M ≤ ανε2‖∂t u‖21.

Repeating the calculations of the former proof, we arrive at the inequality

d

dt
� + 2�ε� ≤ αε2‖∂t u‖21, (5.2)

for some � > 0. In order to bound the right-hand side, we multiply the first equation
of (3.2) by 2ε2∂t u, to get

2αε2‖∂t u‖21 = −2ε2‖∂t u‖2 − 2ε2〈η, ∂t u〉M − 2ε2b(u, u, ∂t u).

Invoking the Poincaré inequality (2.1), standard computations togetherwith (5.1) yield

αε2‖∂t u‖21 ≤ Cε2‖u‖41 + Cε2‖η‖2M ≤ C(E(0) + 1)ε2�.

Accordingly, we end up with

d

dt
� + [

2� − C(E(0) + 1)ε
]
ε� ≤ 0.

At this point, we choose ε small enough such thatC(E(0)+1)ε ≤ �, and an application
of the Gronwall lemma entails

E(t) ≤ Q(E(0))e−ωt , (5.3)
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with ω = �ε. This is the desired inequality, except that the exponential rate ω depends
on E(0). To complete the argument, we use a rather standard trick of semigroup theory.
Due to (5.3), there is a time t0 ≥ 0, depending on E(0), such that E(t0) ≤ 1. Hence,
for t ≥ t0 we can repeat the argument above, obtaining

E(t) ≤ Q(1)e−ω(t−t0), ∀ t ≥ t0, (5.4)

where now ω > 0 is independent of E(0). Collecting (5.3), where ω = ω(E(0)), and
(5.4), we reach the desired conclusion. ��

6 Regular Exponentially Attracting Sets

It is well known that dynamical systems generated by equation with memory do not
regularize in finite time, due to the intrinsic hyperbolicity of the memory component.
In particular, this prevents the existence of absorbing sets having higher regularity
than the initial data. Nonetheless, one can still hope that trajectories originating from
bounded sets are exponentially attracted by more regular bounded sets.

Definition 6.1 A bounded set B is said to be exponentially attracting for S(t) in H
if there exists ω > 0 such that

distH(S(t)B,B ) ≤ Q(‖B‖H)e−ωt

for every bounded subset B ⊂ H.

Here, with standard notation,

distH(B1,B2) = sup
b1∈B1

inf
b2∈B2

‖b1 − b2‖H

is the Hausdorff semidistance in H between two (nonempty) sets B1 and B2.

Proposition 6.2 There exists R > 0 such that the ball

B = BH1(R )

is exponentially attracting for S(t).

It is enough showing that the ball B exponentially attracts the absorbing set B0
found in Sect. 4. To this end, for every initial data U0 = (u0, η0) ∈ B0, in the same
spirit of Temam (1997) we decompose the solution S(t)U0 into the sum

S(t)U0 = L(t)U0 + K (t)U0,

where the maps

L(t)U0 = (v(t), ξ t ) and K (t)U0 = (w(t), ζ t )
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solve the problems

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t (v + αAv) + B(u, v) +
∫ ∞

0
μ(s)Aξ(s)ds = 0,

∂tξ = T ξ + v,

(v(0), ξ0) = (u0, η0),

(6.1)

and

⎧
⎪⎪⎨

⎪⎪⎩

∂t (w + αAw) + B(u, w) +
∫ ∞

0
μ(s)Aζ(s)ds + βA−ϑw = f̃ ,

∂tζ = T ζ + w,

(w(0), ζ 0) = (0, 0),

(6.2)

with

f̃ (t) = f − βA−ϑv(t).

Existence and uniqueness of these problems are rather standard issues, since (6.1) and
(6.2) are linear with a globally Lipschitz perturbation. Following a standard procedure,
we will show that system (6.1) is exponentially stable, whereas the solutions to (6.2)
are uniformly bounded in the more regular space H1.

In what follows, the generic positive constant C may depend on ‖ f ‖ as well as on
the radius R0 of the absorbing set B0. In particular, by Theorem 4.2 we know that

‖S(t)U0‖H ≤ C. (6.3)

The proof of Proposition 6.2 is an immediate consequence of the following two lem-
mas.

Lemma 6.3 For every initial datum U0 ∈ B0, we have the estimate

‖L(t)U0‖H ≤ Ce−ωt ,

where ω > 0 is a universal constant.

Proof Let � be as in the proof of Theorem 5.2, with (v, ξ) in place of (u, η). It is
apparent that

1

4
‖L(t)U0‖2H ≤ �(t) ≤ ‖L(t)U0‖2H.

Repeating the same reasonings, making use of (6.3) to handle the term b(u, v, ∂tv),
we find the differential inequality

d

dt
� + 2ω� ≤ 0
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for some ω > 0, and the Gronwall lemma completes the argument. ��
Lemma 6.4 For every initial datum U0 ∈ B0, we have the estimate

‖K (t)U0‖H1 ≤ C.

Proof We first note that, by virtue of (6.3) and the previous Lemma 6.3,

‖K (t)U0‖H ≤ C (6.4)

and

‖ f̃ (t)‖ ≤ C.

We introduce the analogous functionals of Sect. 4 for the variable (w, ζ ) in higher
order spaces. Namely,

E1(t) = 1

2
‖K (t)U0‖2H1 ,

and

�1(t) = −1

2

∫ ∞

0
μ′(s)‖ζ t (s)‖2M1ds.

In particular, we have the identity

�1 = −〈T A
1
2 ζ, A

1
2 ζ 〉M = −〈T ζ, ζ 〉M1 .

Hence, testing the first equation of (6.2) by Aw in H and the second one by ζ inM1,
we obtain

d

dt
E1 + b(u, w, Aw) + β‖w‖21−ϑ + �1 = ( f̃ , Aw). (6.5)

In a similar fashion, we define

�1(t) = − 6

κ

∫ ∞

0
μ∗(s)〈ζ t (s), w(t)〉2ds,

�1(t) = β‖w(t)‖21−ϑ .

Arguing as in Lemma 4.6, we deduce the differential inequality

d

dt
�1 + 2‖w‖22 ≤ 18μ(s∗)

κ2
�1 + 9

ακε
‖ζ‖2M1 + αε‖∂tw‖22, (6.6)

while

d

dt
�1 + 2‖∂tw‖21 + 2α‖∂tw‖22 = 2〈 f̃ , A∂tw〉 − 2〈ζ, ∂tw〉M1 − 2b(u, w, A∂tw).
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Exploiting (6.3),

−2b(u, w, A∂tw) ≤ C‖w‖2‖∂tw‖2,

and we readily get

d

dt
�1 + α‖∂tw‖22 ≤ C‖ζ‖2M1 + C‖w‖22 + C. (6.7)

At this point, setting

ν = min
{ακδ

72
, 1

}
,

for some ε > 0 small to be determined later, we define the functional

�1(t) = E1(t) + νε�1(t) + ε2�1(t),

which fulfills the controls

1

2
E1(t) ≤ �1(t) ≤ 2E1(t).

Collecting (6.5)–(6.7), we find the differential inequality

d

dt
�1 + νε‖w‖22 +

(
1 − 18μ(s∗)νε

κ2

)
�1 −

( 9ν

ακ
+ Cε2

)
‖ζ‖2M1 ≤ �1,

where

�1 = −νε‖w‖22 + Cε2‖w‖22 + ( f̃ , Aw) − b(u, w, Aw) + C.

On account of (6.3)–(6.4),

( f̃ , Aw) − b(u, w, Aw) ≤ ‖ f̃ ‖‖w‖2 + ‖u‖L6‖∇w‖L3‖Aw‖
≤ νε

4
‖w‖22 + C‖w‖

1
2
1 ‖w‖

3
2
2 + C

≤ νε

2
‖w‖22 + C.

It is then apparent that (for ε > 0 small)

�1 ≤ C.

Note that the constants C above depend on ε, which however will be eventually fixed.
Indeed, once ε is chosen suitably small, and recasting almost word by word the proof
of Theorem 4.2, we end up with
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d

dt
�1 + ω�1 ≤ C,

for some ω > 0. Since �(0) = 0, a final application of the Gronwall lemma will do.
��

For a semigroup S(t) satisfying the continuity property S(t) ∈ C(H,H) for every
t ≥ 0, as in our case, having a compact exponentially attracting set is a sufficient
condition in order for the global attractor to exist (see e.g. Temam1997). By definition,
this is the (unique) compact set A ⊂ H which is at the same time

• fully invariant, i.e. S(t)A = A for every t ≥ 0;
• attracting for the semigroup, i.e

lim
t→∞

[
distH(S(t)B,A)

] = 0

for every bounded subset B ⊂ H.

Unfortunately, our attracting setB , although closed and bounded inH1, is not compact
in H. Indeed, even if the embedding V ⊂ H is compact, the same cannot be said
for the embedding M1 ⊂ M (see Pata and Zucchi 2001 for a counterexample to
compactness). Accordingly, the embedding H1 ⊂ H is in general not compact as
well. Nevertheless, there is a general argument devised in Pata and Zucchi (2001) that
allows to recover the sought compactness with a little effort, producing a compact set
B′
 ⊂ B which is still exponentially attracting. In turn, this entails the existence of

the global attractor A. We do not enter into more details, since in the next sections we
will prove the existence of an exponential attractor. As a byproduct, this will yield the
existence of A, along with the finiteness of its fractal dimension.

7 Exponential Attractors

Definition 7.1 A compact set E ⊂ H is an exponential attractor for S(t) if

• E is positively invariant, i.e. S(t)E ⊂ E for every t ≥ 0;
• E is exponentially attracting for the semigroup;
• E has finite fractal dimension inH.

Recall that the fractal dimension of E inH is defined as

dimH(E) = lim sup
ε→0

ln N (ε)

ln 1
ε

,

where N (ε) is the smallest number of ε-balls of H necessary to cover E.
The main result of the paper reads as follows.

Theorem 7.2 The dynamical system S(t) on H possesses an exponential attractor E,
which is bounded in H1.
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As a consequence of the existence of a compact attracting set, S(t) possesses the
global attractor A, which is the smallest among the compact attracting sets (hence
contained in the exponential attractor E).

Corollary 7.3 The dynamical system S(t) on H possesses the global attractor A.
Moreover, A has finite fractal dimension in H and is a bounded in H1.

The proof of Theorem 7.2, carried out in the next section, is based on an abstract
result from Danese et al. (2015) (see Theorem 5.1 therein), that we report here below
as a lemma, in a version specifically tailored to fit our particular problem. To this end,
we will make use of the projections P1 and P2 of H onto its components V and M,
namely,

P1(u, η) = u and P2(u, η) = η.

Lemma 7.4 Let the following assumptions hold.

(i) There exists R > 0 such that the ball B = BH1(R ) is exponentially attracting.

(ii) For every R ≥ 0 and every θ > 0 sufficiently large,

∫ 2θ

θ

‖∂t u(t)‖21dt ≤ Q(R + θ),

for all u(t) = P1S(t)U0 with U0 ∈ BH1(R).
(iii) There exists R1 > 0 with the following property: for any given R ≥ 0, there exists

a nonnegative function ψ vanishing at infinity such that

‖S(t)U0‖H1 ≤ ψ(t) + R1,

for all U0 ∈ BH1(R).
(iv) For every fixed R ≥ 0, the semigroup S(t) admits a decomposition of the form

S(t) = L(t) + K (t)

satisfying for all initial data U0i ∈ BH1(R)

‖L(t)U01 − L(t)U02‖H ≤ ψ(t)‖U01 − U02‖H,

‖K (t)U01 − K (t)U02‖H1 ≤ Q(t)‖U01 − U02‖H.

Here, both Q and the nonnegative function ψ vanishing at infinity depend on R.
Moreover, the function

ζ̄ t = P2K (t)U01 − P2K (t)U02
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fulfills the Cauchy problem

{
∂t ζ̄

t = T ζ̄ t + w̄(t),

ζ̄ 0 = 0,

for some w̄ satisfying the estimate

‖w̄(t)‖1 ≤ Q(t)‖U01 − U02‖H.

Then S(t) possesses an exponential attractor E contained in the ball BH1(R1).

Remark 7.5 Actually, in the abstract result fromDanese et al. (2015) a further assump-
tion is needed, involving a certain operator that in our case is just the identity (and the
assumption is trivially satisfied).

8 Proof of Theorem 7.2

The proof amounts to verifying the four points of the above Lemma 7.4. Indeed,
(i) is the content of Proposition 6.2, while (ii) is an immediate consequence of the
continuous embedding H1 ⊂ H and Corollary 4.8. Accordingly, we are left to show
the validity of (iii) and (iv). In what follows, the generic positive constant C may
depend on ‖ f ‖ and on the radius R0 of the absorbing set B0.
• Verifying (iii) Given R ≥ 0, let us consider the ball BH1(R). We easily infer from
the continuous embedding H1 ⊂ H that

BH1(R) ⊂ BH(Q(R)).

Therefore, on account of Theorem 4.2, there exists te = te(R) such that

{
‖S(t)BH1(R)‖ ≤ Q(R), ∀ t ≤ te,

‖S(t)BH1(R)‖ ≤ R0, ∀ t ≥ te.
(8.1)

Taking an arbitrary U0 ∈ BH1(R), we define the higher-order energy functional

E1(t) = 1

2
‖S(t)U0‖2H1,

and the nonnegative functional

�1(t) = −1

2

∫ ∞

0
μ′(s)‖ηt (s)‖2M1ds.

We recall the identity

�1 = −〈Tη, η〉M1 .
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Testing the first equation of (3.2) by Au in H and the second one by η in M1, we
obtain the differential equality

d

dt
E1 + β‖u‖21−ϑ + �1(η) = ( f, Au) − b(u, u, Au). (8.2)

For any t ≤ te, according to (8.1) and exploiting the standard Sobolev embeddings,
we have

( f, Au) − b(u, u, Au) ≤ ‖ f ‖‖u‖2 + ‖u‖L6‖∇u‖L3‖u‖2
≤ C‖u‖2 + C‖u‖1‖u‖22
≤ Q(R)‖u‖22 + C,

which in turn gives

d

dt
E1 ≤ Q(R)E1 + C.

The Gronwall lemma entails

E1(t) ≤ Q(R)eQ(R)te = Q(R), ∀ t ≤ te. (8.3)

In order to show the existence of an absorbing set for the semigroup S(t) on H1,
and similarly to the proof of Lemma 6.4, we define some further functionals. For any
t ≥ te, let

�1(t) = − 6

κ

∫ ∞

0
μ∗(s)〈ηt (s), u(t)〉2ds,

and

�1(t) = β‖u(t)‖21−ϑ .

Arguing as in Lemma 6.4,

d

dt
�1 + 2‖u‖22 ≤ 18μ(s∗)

κ2
�1 + 9

ακε
‖η‖2M1 + αε‖∂t u‖22, (8.4)

whereas a differentiation in time yields

d

dt
�1 + 2‖∂t u‖21 + 2α‖∂t u‖22 = 2〈 f, A∂t u〉 − 2〈η, ∂t u〉M1 − 2b(u, u, A∂t u).

Making use of (8.1),

−2b(u, u, A∂t u) ≤ C‖u‖2‖∂t u‖2,
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and we end up with

d

dt
�1 + α‖∂t u‖22 ≤ C‖u‖22 + C‖η‖2M1 + C. (8.5)

Denoting

ν = min
{ακδ

72
, 1

}
,

we define

�1(t) = E1(t) + νε�1(t) + ε2�1(t),

depending on ε > 0 to be determined later. As customary, we have the controls

1

2
E1(t) ≤ �1(t) ≤ 2E1(t), (8.6)

provided ε is small enough. Moreover, adding (8.2), (8.4) and (8.5), we are led to the
differential inequality

d

dt
�1 + νε‖u‖22 +

(
1 − 18μ(s∗)νε

κ2

)
�1 −

( 9ν

ακ
+ Cε2

)
‖η‖2M1 ≤ �1,

having set

�1 = −νε‖u‖22 + ( f, Au) − b(u, u, Au) + Cε2‖u‖22 + C.

Since

δ

2
‖η‖2M1 ≤ �1,

we deduce that
(
1 − 18μ(s∗)νε

κ2

)
�1 −

( 9ν

ακ
+ Cε2

)
‖η‖2M1 ≥ 1

2
�1 −

( 9ν

ακ
+ Cε2

)
‖η‖2M1

≥
( δ

4
− δ

8
+ Cε2

)
‖η‖2M1

≥ δ

16
‖η‖2M1 ,

provided that ε > 0 is sufficiently small. Accordingly,

d

dt
�1 + �ε�1 ≤ �1,

for some � > 0. Regarding the right-hand side�1, by interpolation and (8.1), we have
the estimate

( f, Au) − b(u, u, Au) ≤ ‖ f ‖‖u‖2 + ‖u‖L6‖∇u‖L3‖u‖2
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≤ C‖u‖2 + C‖u‖
3
2
2

≤ ε2‖u‖22 + C.

Then, up to choosing ε small enough, we find

� ≤ C,

which in turn entails

d

dt
�1 + �ε�1 ≤ C.

The Gronwall lemma on the time-interval (te, t) together with (8.6) yield

E1(t) ≤ Q(R)e−ω(t−te) + C, ∀ t ≥ te, (8.7)

with ω = �ε. Collecting (8.3) and (8.7), we readily get

E1(t) ≤ Q(R)e−ωt + C, ∀ t ≥ 0,

implying the desired conclusion. ��
• Verifying (iv) Given any initial datum U0 = (u0, η0), we consider this time the
trivial splitting

S(t)U0 = L(t)U0 + K (t)U0

where the maps

L(t)U0 = (v(t), ξ t ) and K (t)U0 = (w(t), ζ t )

solve the problems

⎧
⎪⎪⎨

⎪⎪⎩

∂t (v + αAv) +
∫ ∞

0
μ(s)Aξ(s)ds = 0,

∂tξ = T ξ + v,

(v(0), ξ0) = (u0, η0),

and

⎧
⎪⎪⎨

⎪⎪⎩

∂t (w + αAw) +
∫ ∞

0
μ(s)Aζ(s)ds = f − B(u, u) − βA−ϑu,

∂tζ = T ζ + w,

(w(0), ζ 0) = (0, 0).

Note that L(t) is a strongly continuous linear semigroup onH. Besides, L(t) is expo-
nentially stable. This can be easily seen by recasting the proof of Theorem 5.2.
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Let now R ≥ 0 be fixed, and let U01,U02 ∈ BH1(R). Along this proof, the generic
positive constant C is allowed to depend on R. Then, we decompose the difference

(ū(t), η̄t ) = S(t)U01 − S(t)U02

into the sum

(ū(t), η̄t ) = (v̄(t), ξ̄ t ) + (w̄(t), ζ̄ t ),

where

(v̄(t), ξ̄ t ) = L(t)U01 − L(t)U02, and (w̄(t), ζ̄ t ) = K (t)U01 − K (t)U02.

We first note that, on account of (iii),

‖S(t)U0i‖H1 ≤ C. (8.8)

Besides, the exponential stability of L(t) implies the existence of a universal constant
ω > 0 such that

‖L(t)U01 − L(t)U02‖H ≤ Ce−ωt‖U01 − U02‖H. (8.9)

We are left to prove the desired estimate for the difference (w̄, ζ̄ ), solution to the
system

⎧
⎪⎪⎨

⎪⎪⎩

∂t (w̄ + αAw̄) +
∫ ∞

0
μ(s)Aζ̄ (s)ds = −B(ū, u1) − B(u2, ū) − βA−ϑ ū,

∂t ζ̄ = T ζ̄ + w̄,

(w̄(0), ζ̄ 0) = (0, 0).

To this end, introducing the higher-order energy

E1(t) = 1

2
‖K (t)U01 − K (t)U02‖2H1 ,

we find the identity

d

dt
E1 − 1

2

∫ ∞

0
μ′(s)‖ζ̄ t (s)‖2M1ds = −b(ū, u1, Aw̄) − b(u2, ū, Aw̄) − β〈A−ϑ ū, Aw̄〉.

Owing to (8.8), and appealing to the embeddingW ⊂ [L∞(�)]3, we have the controls

−b(ū, u1, Aw̄) ≤ C‖u1‖2‖ū‖1‖w̄‖2
≤ C‖v̄‖1‖w̄‖2 + C‖w̄‖22
≤ C‖w̄‖22 + C‖v̄‖21,
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−b(u2, ū, Aw̄) ≤ ‖u2‖L∞‖ū‖1‖w̄‖2
≤ C‖v̄‖1‖w̄‖2 + C‖w̄‖22
≤ C‖w̄‖22 + C‖v̄‖21,

and

−β〈A−ϑ ū, Aw̄〉 ≤ −β〈A−ϑ v̄, Aw̄〉 ≤ C‖w̄‖22 + C‖v̄‖21.

Therefore, we arrive at

d

dt
E1 ≤ CE1 + C‖v̄‖21.

Recalling that (w̄(0), ζ̄ 0) = (0, 0) and exploiting (8.9), an application of the Gronwall
lemma provides the sought inequality

E1(t) ≤ C
∫ t

0
eC(t−y)‖v̄(y)‖21dy ≤ CeCt‖U01 − U02‖2.

In particular, we learn that

‖w̄(t)‖1 ≤ CeCt‖U01 − U02‖H,

which is exactly the last point of (iv) to be verified. ��

9 Further Developments

In this final section, we discuss some open issues that might be the object of future
investigations.
I. Exploiting the techniques of this work, it is actually possible to study generalized
versions of (3.1), such as

∂t (u + αAu) +
∫ ∞

0
g(s)Au(t − s)ds + βh(u) + B(u, u) = f.

for some suitable nonlinearity h(u), e.g. the Brinkman-Forchheimer correction term
(see e.g Straughan 2008)

h(u) = a|u|pu + bu, p > 0,

where a > 0 and b ∈ R.
II. A further interesting problem is concerned with the analysis of nonautonomous
NSV equations in presence of singularly oscillating external forces, depending on
ε > 0, of the form

f ε(t) = f0(t) + ε−ρ f1
( t

ε

)
, ρ > 0,
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along with the formal limit obtained as ε → 0, corresponding to

f 0(t) = f0(t).

The existence of global attractors depending on ε > 0 and their stability as ε → 0
for NSV equations without memory has been addressed in Qin et al. (2012) (see also
Chepyzhov et al. 2009; Chepyzhov and Vishik 2007 for Navier–Stokes models). In
connection with memory equations, the techniques to handle singularly oscillating
forces have been introduced in the novel paper (Chepyzhov et al. 2017).
III. In place of (3.1) we may consider the family of equations

∂t (u + αAu) +
∫ ∞

0
gε(s)Au(t − s)ds + βu + B(u, u) = f. (9.1)

where

gε(s) = 1

ε
g
( s

ε

)
, ε ∈ (0, 1],

is a rescaling of the original kernel g. Such a rescaling has been firstly introduced
in Conti et al. (2006). We assume without loss of generality that

∫ ∞

0
g(s)ds = 1.

In the formal limit ε → 0 we have the distributional convergence

gε → δ0,

δ0 being the Dirac mass at 0+. Accordingly, (9.1) collapses into the NSV equation
with Ekman damping

∂t (u − α�u) − �u + βu + B(u, u) = f. (9.2)

Writing as before μ = −g′, and defining

με(s) = 1

ε2
μ

( s

ε

)
,

both (9.1) and (9.2) generate dynamical systems Sε(t), acting on their respective phase
spaces

Hε = V × Mε,

where

Mε =
{

L2
με
(R+; V ) if ε > 0,

{0} if ε = 0.
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Then, for all ε ∈ [0, 1], the semigroups Sε(t) possess exponential attractors Eε onHε.
Besides, by means of the general theory developed in Gatti et al. (2010), one can show
that the family {Eε} fulfills the following properties:

• The exponential attraction rate of Eε is uniform with respect to ε; namely, there
exist Q and ω > 0, both independent of ε, such that

distHε
(Sε(t)BHε

(R),Eε) ≤ Q(R)e−ωt , ∀ R ≥ 0.

• The (finite) fractal dimension dimHε
(Eε) is uniformly bounded with respect to ε.

• The family {Eε} is (Hölder) continuous at ε = 0; namely, there exist constants
C ≥ 0 and α ∈ (0, 1) such that

distsymHε
(Eε,E0) ≤ Cεα,

where

distsymHε
(Eε,E0) = max

{
distHε

(Eε,E0), distHε
(E0,Eε)

}

is the symmetric Hausdorff distance in Hε.

A similar project has been carried out inGal andTachim-Medjo (2013) for the equation

∂t (u + αAu) + νAu + (1 − ν)

∫ ∞

0
gε(s)Au(t − s)ds + βu + B(u, u) = f

where ν ∈ (0, 1) is a fixed parameter. However, in this case, the presence of the
instantaneous kinematic viscosity νAu renders the problem easier.
IV. An enhanced version of the previous analysis would be letting β > 0 in (9.1) to
be a free parameter as well, and then considering the double limit

ε → 0 and β → 0.

In this situation, we have a family of two-parameter semigroups Sε,β(t) acting onHε,
the limiting case S0,0(t) corresponding to the NSV equation

∂t (u − α�u) − �u + B(u, u) = f.

For every fixed ε > 0 and β > 0, the semigroup Sε,β(t) possesses an exponential
attractor Eε,β , and the same is true for the limiting semigroup S0,0(t) (see Coti Zelati
and Gal 2015). Again, the task is proving the convergence

Eε,β → E0,0

as ε → 0 and β → 0, in the sense of the symmetric Hausdorff distance. Since we
are not able to provide uniform estimates when ε > 0 and β = 0 (except in the case
when f ≡ 0), we expect to obtain the desired result under an additional constraint on
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the double limit, of the kind β ≥ F(ε), for a suitable positive function F vanishing at
zero.
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