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Abstract Formally second-order correct, mathematical descriptions of long-crested
water waves propagating mainly in one direction are derived. These equations are
analogous to the first-order approximations of KdV- or BBM-type. The advantage of
these more complex equations is that their solutions corresponding to physically rele-
vant initial perturbations of the rest state may be accurate on a much longer timescale.
The initial value problem for the class of equations that emerges from our deriva-
tion is then considered. A local well-posedness theory is straightforwardly established
by a contraction mapping argument. A subclass of these equations possess a special
Hamiltonian structure that implies the local theory can be continued indefinitely.
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1 Introduction

Long-crested water waves propagating shoreward are commonplace in the shallow-
water zone of large bodies of water. Waves of this general form are easily generated in
laboratory settings as well. If a standard xyz—coordinate system is adopted in which
z increases in the direction opposite to which gravity acts, such waves are often taken
to propagate along the x-axis, say in the direction of increasing values, and to be
independent of the y-coordinate. In this case, if dissipation and surface tension effects
are ignored, the fluid assumed to be incompressible and the motion irrotational, the
standard representation of the velocity field and the free surface is provided by the
Euler equations for the motion of a perfect fluid with the boundary behavior at the free
surface determined by the Bernoulli condition. On typical geophysical length scales,
these equations provide reasonably good approximations of what is actually observed
in nature. In detail, this system has the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�ϕ = 0, 0 < y < h0 + η(x, t),

∂yϕ = 0, y = 0,

∂tη = ∂yϕ − ∂xη · ∂xϕ, y = h0 + η(x, t),

∂tϕ = gη − 1
2 (∂xϕ)2 − 1

2 (∂yϕ)2, y = h0 + η(x, t).

(1.1)

Here, the bottom is taken to be flat, horizontal and located at z = 0, though theory
with a slowly varying bottom can easily be derived along the same lines (see Bona and
Chen 1997). The undisturbed depth is h0 while the dependent variable, η = η(x, t), is
the deviation of the free surface from its rest position (x, h0) at time t . Thus, the depth
of the water column over the spatial point (x, 0) on the bottom, at time t , is h(x, t) =
h0 + η(x, t). The dependent variable φ = φ(x, y, t) is the velocity potential which is
defined throughout the flow domain and whose existence owes to the fact that the fluid
is incompressible and irrotational. Hence, (u(x, z, t), v(x, z, t)) = ∇φ(x, z, t) is the
velocity field at the point (x, z) in the flow domain at time t . Here, ∇ connotes the
gradient with respect to the spatial variables only. Of course, for this formulation to
make sense, it must be the case that the free surface remains a graph over the bottom,
a presumption that overlies the developments here. It deserves remark that the system
(1.1) can be rewritten in a Hamiltonian form, as Zakharov (1968) pointed out almost
50 years ago.

Beginning already in the first half of the nineteenth century, simpler models have
been posited, in part because the approximation using (1.1) is both analytically and
computationally recalcitrant. Note in particular that the location of the free surface is
part of the problem, so that twoboundary conditions at the free surface are needed for its
determination. Observe also that the temporal derivatives only appear in the boundary
conditions, making the problem further nonstandard. Moreover, the precision one
might hope for from using the Euler equations is not always useful in practice. If
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the input data have significant error, there may be little point in the higher accuracy
afforded by the Euler system (1.1) as opposed to cruder approximations.

The largest steps forward in the nineteenth century study of approximate models
were taken by Boussinesq in the 1870s (see especially his opus Boussinesq 1877). The
coupled systems of equationswhich nowbear his name arewell known to theoreticians
and they and their relatives find frequent use in practical situations (see, e.g., Boczar-
Karakiewicz et al. 2003; Bona and Chen 1997). In addition to the presumption that
the wave motion is long-crested, so sensibly one-dimensional, they subsist on the
assumption that the wave amplitudes and wavelengths encountered in the evolution
are, respectively, small and large relative to the undisturbed depth h0 of the liquid over
the horizontal, featureless bottom. More precisely, their derivation needs that

α = A

h0
� 1, β = h20

l2
� 1, S = α

β
= Al2

h30
≈ 1. (1.2)

Here, A is a typical amplitude of the wave motion in question while l is a typical
wavelength. The assumption that the Stokes’ number S = α

β
is of order one effectively

means that nonlinear and dispersive effects are balanced. Boussinesq also derived a
model, now called the Korteweg–de Vries (KdV) equation, which was a specialization
of the coupled systems, formally valid for waves traveling only in one direction, say
in the direction of increasing values of x .

Almost a century later, Peregrine (1966) and Benjamin et al. (1972) returned to
Boussinesq’s unidirectional model

ηt + ηx + 3

2
ηηx + 1

6
ηxxx = 0 (1.3)

(the Korteweg–de Vries equation, commonly referred to as the KdV equation) and
derived an equivalent version known as the regularized long-wave equation (RLW
equation) or theBBMequation. In termsof the dependent variableη(x, t), this equation
takes the form

ηt + ηx + 3

2
ηηx − 1

6
ηxxt = 0 (1.4)

in the unscaled, non-dimensional variables

x = 1

h0
x̄, t =

√
g

h0
t̄ and η = 1

h0
η̄.

Here, the constant g is the acceleration due to gravity while x̄, t̄ and η̄ are laboratory
or field variables, all measured in the unit of length consistent with the values of h0
and g.

Models like the BBM and KdV equations are known to provide good approxima-
tions of unidirectional solutions of the full water wave problem (1.1) on the so-called
Boussinesq timescale, 1

β
≈ 1

α
(see Alazman et al. 2006; Bona et al. 2005, 1983). They
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are also known to predict laboratory observations with reasonable accuracy on similar
timescales (see Bona et al. 1981; Hammack 1973; Hammack and Segur 1974).

In some applications, notably coastal engineering and ocean wave modeling, the
waves need to be followed on timescales longer than the Boussinesq timescale (for
example, see Boczar-Karakiewicz et al. 2003 and references therein). In such situ-
ations, a higher-order approximation to the water wave problem might prove to be
useful as it would be formally valid on the square 1

β2 ≈ 1
α2 of the long, Boussinesq

timescale. Such models have appeared in the literature before (see Olver 1984a, b
for early examples). It is our purpose here to put forward a class of such higher-
order correct, unidirectional evolution equations and to provide analysis relating to
the fundamental issue of Hadamard well-posedness for a subclass. Models will be
isolated that are not only a formally second-order correct approximation of the full,
two-dimensional water wave problem, but also possesses a Hamiltonian structure. As
Olver pointed out in his pioneering work (Olver 1984b), this helpful aspect is more
difficult to attain in higher-order models that formally are faithful to the overlying
Euler equations than in the first-order correct KdV or BBM models. Indeed, the fifth-
order model appearing in Olver (1984b) does not in fact have a Hamiltonian structure,
as Olver points out.

The notion of well-posedness which is featured here was put forward by Hadamard
more than a century ago in a lecture the well-known French mathematician gave at
Princeton University (see Hadamard 1902). In his conception, a problem is well-
posed subject to given auxiliary data when there corresponds a unique solution which
depends continuously on variations in the specified supplementary data. Hadamard
points out that if the problem is lacking these properties, it will probably be useless
in practical applications. Auxiliary data brought from real-world situations typically
features at least a small amount of error. If the model were to respond discontinuously
to these small perturbations, the reproducibility of the model predictions in laboratory
and field settingswould be compromised and likewise their use in real situationswould
be suspect.

To clarify the role of the size restrictions (1.2), it is often helpful to rescale the
variables. For example, in the context of Eq. (1.4), change variables by letting η ↪→ αη,
and (x, t) ↪→ √

β(x, t). In the new variables, η and its first few partial derivatives
with respect to x and t are presumed to be of order one and the equation takes the
form

ηt + ηx + 3

2
αηηx − 1

6
βηxxt = 0. (1.5)

In this scaling, the role of the small parameters is more apparent. Moreover, the error
term made in the approximation, which is set to zero in (1.5), is quadratic in the small
parameters α and β. Because of this latter aspect, even though the solution and its
derivatives remains of order one, the ignored error can accumulate and have an order-
one effect on the solution on a timescale of size 1

α2 ≈ 1
β2 and hence the need for a

higher-order correct model if longer spatial distances are in question.
The starting point of our derivation of higher-order KdV–BBM-type equations is

the paper Bona et al. (2002) (and see also the earlier note Bona andChen 1997) where a
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several-parameter variant of the classical Boussinesq system of two coupled equations
was derived. TheseBoussinesq systems are derivedwithout the assumption of one-way
propagation and can therefore countenance long-crested waves propagating in both
directions. The theory in Bona et al. (2002) assumes incompressibility, irrotationality,
long-crestedness and the size conditions enunciated in (1.2). Boussinesq systems were
formally derived at both first and second order in the small parameters α and β. In
dimensionless, scaled variables as appearing in (1.5), the family of formally first-order
correct systems has the form

{
ηt + wx + α(wη)x + β

(
awxxx − bηxxt

) = 0,

wt + ηx + αwwx + β
(
cηxxx − dwxxt

) = 0.
(1.6)

The variable η is proportional to the deviation of the free surface from its rest position
at the point x at time t , as it was in (1.4), while w = w(x, t) is proportional to the
horizontal velocity at a certain depth z0, say, at the point (x, z0, t) in the flow domain.
(The velocity w is scaled by

√
gh0 to make it non-dimensional and then by α to make

it of order one.) The constants a, b, c and d are not arbitrary. They satisfy the relations

{
a = 1

2

(
θ2 − 1

3

)
λ, b = 1

2

(
θ2 − 1

3

)
(1 − λ),

c = 1
2 (1 − θ2)μ, d = 1

2 (1 − θ2)(1 − μ),
(1.7)

so that a+b+c+d = 1
3 . In the same, order-one, independent and dependent variables,

the second-order correct systems are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ηt + wx + β (awxxx − bηxxt ) + β2 (a1wxxxxx + b1ηxxxxt )

= −α(ηw)x + αβ

(

b(ηw)xxx −
(

a + b − 1

3

)

(ηwxx )x

)

,

wt + ηx + β (cηxxx − dwxxt ) + β2 (c1ηxxxxx + d1wxxxxt )

= −αwwx+αβ ((c+d)wwxxx−c(wwx )xx−(ηηxx )x+(c+d−1)wxwxx ) ,

(1.8)

where the additional constants a1, b1, c1, d1 are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = −1

4

(
θ2 − 1

3

)2
(1 − λ) + 5

24

(
θ2 − 1

5

)2
λ1,

b1 = − 5

24

(
θ2 − 1

5

)2
(1 − λ1),

c1 = 5

24
(1 − θ2)

(
θ2 − 1

5

)
(1 − μ1),

d1 = −1

4

(
1 − θ2

)2
μ − 5

24
(1 − θ2)

(
θ2 − 1

5

)
μ1.

(1.9)

The parameter θ has physical significance. It is determined by the height above the
bottom at which the horizontal velocity is specified initially and whose evolution is
being followed. In the earlier notation, θ = 1 − z0. Because the vertical variable is
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scaled by the undisturbed depth h0 in these descriptions, θ must lie in the interval
[0, 1]. The other values, λ,μ, λ1 and μ1 are modeling parameters and can in principle
take any real value. Thus, the coefficients appearing in the higher-order Boussinesq
systems form a restricted, eight-parameter family. Notice that if terms quadratic in
α and β are dropped, the second-order system (1.8) reduces to the first-order system
(1.6).

The velocity field in the rest of the flow is determined by an associated approxima-
tion of the velocity potential in the flow domain. The latter is derived from a knowledge
of w (see Bona et al. 2002, 2013).

Local in time well-posedness of the Cauchy problem for the systems (1.6) and (1.8)
was studied in Bona et al. (2002) and Bona et al. (2004). Not all of these systems are
even linearly well-posed. Indeed, the recent foray (Ambrose et al. 2017) shows that
many of those not linearly well-posed are in fact not locally well-posed when the
nonlinearity is taken into account. The fact that some of the family is ill-posed has the
advantage of eliminating them from consideration when real-world approximation is
the goal.

These systems were further extended in Bona et al. (2005) to include waves that are
fully three-dimensional, and not just long-crested motions. Rigorous estimates were
also provided for the difference between solutions of the full water wave problem and
solutions of the first-order models. A further extension of Bona et al. (2005) is given
in Lannes and Saut (2006), where Boussinesq systems in the Kadomtsev–Petviashvili
(KP) scaling are derived. The latter situation is intermediate between the long-crested
regime where transverse motion is ignored entirely and three-dimensional Boussinesq
systems that allow strong transverse disturbance, a regime that is often referred to as
allowing for weakly transverse long waves. A detailed survey of results of this sort
can be found in Saut’s lecture notes (Saut) or the recent monograph of Lannes (2013).

As hinted already, when long-crested waves are essentially moving in only one
direction, onemight prefer to use a unidirectionalmodel because less auxiliary data are
needed to initiate it. Theory developed in Alazman et al. (2006) has shown rigorously
that predictions of first-order Boussinesq systems and those of their unidirectional
counterpart (1.4) are the same to the neglected order, provided the wave motion is
initiated unidirectionally. This gives rigorous credence to the utility of such unidirec-
tional models since the bidirectional models are known to be a good approximation
of solutions of the full Euler system in the Boussinesq regime of small amplitude and
long wavelength.

We stress thatwhile the higher-order, unidirectionalmodels put forward here are for-
mally correct on the square of the Boussinesq timescale, no proof of this exists. Indeed,
considering the difficulty encountered in showing the first-order correct, Boussinesq
systems are faithful to the full, inviscid water wave problem (1.1) on the Boussinesq
timescale and showing the KdV–BBM approximations (1.3)–(1.4) are true to their
overlying Boussinesq system, a rigorous result for the systems derived here on the
square of the Boussinesq timescale is likely to be challenging. One can show that the
higher-order terms do not do damage to the original KdV–BBM approximation of the
full water wave problem on the Boussinesq timescale, provided sufficiently smooth
initial data are countenanced. This point is not addressed here as it would take us
afield of the main developments. It is also the case that one can show directly and
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rigorously that the linearized, higher-order, unidirectional model is faithful to the lin-
earized Boussinesq system on this very long timescale, again, provided the initial data
have enough regularity. However, these results are far from what one would like to
have in hand.

The present contribution proceeds as follows. In the next section,we derive formally
from the second-order Boussinesq equations a class of second-order KdV–BBM-type
equations. Also in the next section, function class notation is introduced and our main
results about the higher-order, unidirectional models are stated. Section 3 provides
proofs of the results stated in Sect. 2.2, while Sect. 4 features commentary about the
choice of the parameters θ, λ, μ, λ1, μ1 and another parameter ρ to be introduced
presently. Section 5 is devoted to a discussion of the linear dispersion relation. Finally,
in Sect. 6 some concluding remarks are recorded.

2 Derivation of the Models and the Main Results

The formal derivation of a class of higher-order, unidirectional equations, togetherwith
a precise statement of results about their well-posedness is the topic of this section.

2.1 Model Equations

The starting point is the collection (1.8) of higher-order Boussinesq systems derived
in Bona et al. (2002). The parameters a, b, · · · c1, d1 are those presented in (1.7)
and (1.9). As we are working in the Boussinesq regime where the Stokes’ number
S = α

β
≈ 1, the two small parameters α and β are treated on an equal footing. Thus,

O(α) = O(β), O(αβ) = O(β2), etc.
In case the wave motion is essentially in one direction, say in the direction of

increasing values of x , we will show how to reduce such Boussinesq systems to the
single, fifth-order model,

ηt + ηx − βγ1ηxxt + βγ2ηxxx + β2δ1ηxxxxt + β2δ2ηxxxxx + α
3

4
(η2)x

+ αβ
(
γ (η2)xxx − 7

48
(η2x )x

)
− α2 1

8
(η3)x = 0.

(2.1)

The constants γ1, γ2, δ1, δ2 and γ depend upon the parameters a, b, . . . in (1.8) and
will be displayed presently.

Passage from the Boussinesq systems (1.8) to the unidirectional models (2.1) fol-
lows the same line of argument as did the passage from the first-order system (1.6) to
the mixed KdV–BBM equations

ηt + ηx + 3

2
αηηx + νβηxxx −

(1

6
− ν

)
βηxxt = 0, (2.2)

where ν = 1
2 (a + c) = 1

4

[
θ2(λ − μ) − 1

3λ + μ
]
depends upon θ, λ and μ and can

formally take any real value. [See Alazman et al. 2006; Constantin and Lannes 2009
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and, in the internal wave context, Duchêne (2014). A special case of this model may
be found in Bona and Varlmov (2005) for a moving boundary problem].

As described in Bona (2000), at the lowest order of approximation wherein the
parameters are small enough that even the first-order terms in α and β may be dropped,
the system (1.8) becomes the one-dimensional wave equation, viz.

{
ηt + wx = 0, wt + ηx = 0,

η(x, 0) = f (x), w(x, 0) = g(x),
(2.3)

where f (x) and g(x) are the initial disturbances of the surface and the horizontal
velocity, respectively. The solution to (2.3) is

⎧
⎪⎪⎨

⎪⎪⎩

η(x, t) = 1

2

[
f (x + t) + f (x − t)

]
− 1

2

[
g(x + t) − g(x − t)

]
,

w(x, t) = 1

2

[
g(x + t) + g(x − t)

]
− 1

2

[
f (x + t) − f (x − t)

]
.

For the left-propagating component to vanish, one must have f = g, in which case
η(x, t) = f (x − t),

ηt + ηx = 0 and w = η.

Notice in particular that in the Boussinesq regime, when most of the propagation is to
the right, it appears that

ηt = −ηx + O(α, β), as α, β → 0, (2.4)

a point that will play a significant role in what follows.
At the next order when one keeps terms of first order in α and β, the standard ansatz

used in Alazman et al. (2006) was that

w = η + αA + βB (2.5)

where A = A(η, . . .) and B = B(ηxx , ηxt , . . .) turn out to be simple polynomial
functions ofη and its first fewpartial derivatives. Indeed, substituting (2.5) into thefirst-
order system (1.6) and dropping all terms of quadratic order in the small parameters
α and β leads to the pair

{
ηt + ηx + αAx + βBx + α(η2)x + β

(
aηxxx − bηxxt

) = 0,

ηt + αAt + βBt + ηx + αwwx + β
(
cηxxx − dηxxt

) = 0,
(2.6)

of equations. Demanding that these be consistent, and making use of the fact derived
from (2.4) that At = −Ax + O(α, β) and similarly for B, it is determined that

A = −1

4
η2 and B = 1

2

(
(c − a)ηxx + (b − d)ηxt

)
. (2.7)
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Using these relations in either of the equations in (2.6) leads to the KdV–BBM equa-
tions (2.2) with ν as advertised above.

If one again makes use of the low-order relation (2.4) between ∂x and ∂t , Eq. (2.2)
can be reduced further to the pure BBM equation (1.5). (The same equation can also
be obtained by particular choices of θ, λ and μ).

It was shown inAlazman et al. (2006) that not only does this procedure lead formally
to KdV–BBM-type equations of the form displayed in (2.2), but that if the Boussinesq
system is initiated with data (η0, w0) that satisfies (2.5), then its solution (η,w) has
η well approximated by the solution ηBBM of (1.5), initiated with η0, and the velocity
w that the Boussinesq system generates is shown to be well approximated by using
the BBM amplitude ηBBM and the formula (2.5) to define a BBM horizontal velocity
wBBM.

If a higher-order approximation is needed, then it is natural to posit the higher-order
ansatz

w = η + αA + βB + αβC + β2D + α2E (2.8)

analogous to (2.5) (see, for example, Dullin et al. 2003; Lannes 2013). The functions
A, B,C, D and E will again turn out to be polynomial functions of η and its partial
derivatives. It deserves remark that the presumption (2.8) was already pursued in Olver
(1984a) and in subsequent publications, but the fifth-order partial differential equations
that emerged do not have a Hamiltonian structure.

Substituting (2.8) into the system (1.8) and ignoring terms that are at least cubic in
the small parameters α and β leads to the pair of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηt = − ηx−αAx−βBx−αβCx−β2Dx−α2Ex+bβηxxt−b1β
2ηxxxxt−aβηxxx

− aαβAxxx − aβ2Bxxx − a1β
2ηxxxxx − (αη2 + α2Aη + αβBη)x

+ bαβ(η2)xxx − (a + b − 1

3
)αβ(ηηxx )x ,

ηt = − ηx−αAt−βBt−αβCt−β2Dt − α2Et + dβηxxt + dαβAxxt + dβ2Bxxt

− d1β
2ηxxxxt − cβηxxx − c1β

2ηxxxxx − αηηx − α2(ηA)x − αβ(ηB)x

− cαβ(ηηx )xx + (c + d)αβηηxxx − αβ(ηηxx )x + (c + d − 1)αβηxηxx .

(2.9)

Demanding that these two equations be consistent (at the first order) leads to the
formulas (2.7) for A and B at order α and β, respectively, as one would expect. Our
goal is to derive a fifth-order, one-way model which, in addition to being Hamiltonian,
has a linear dispersion relation which matches that of the full water wave system (1.1)
up to and including the order β2 terms, so presenting an error which is formally of
order β3 (recall that α ≈ β in the present development). The laboratory experiments
reported inBona et al. (1983)make it clear that the error in the phase velocity dominates
the overall error, at least for moderately sized waves. Hence, getting the dispersion
relation right to the order we are working seems important. Indeed, if the dispersion
relation is not correct to order β2, the model definitely is not second-order correct in
the limit of very small values of α (e.g., linear theory).
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It will be helpful to introduce an auxiliary parameter ρ, viz.

B = 1

2
(c − a + ρ)ηxx + 1

2
(b − d + ρ)ηxt . (2.10)

Of course, at the first order, this is equivalent to the version with ρ = 0, but at the next
order, ρ can be chosen so that the resulting second-order, one-way model has certain,
desirable properties. This will be discussed in more detail in Sect. 4. Of special interest
will be the value

ρ = b + d − 1

6
. (2.11)

This will turn out to be perspicuous, though we do not insist on it for the nonce.
With this value of B, the mixed KdV–BBM equation (2.2) resulting from the first-

order approximation turns out to be

ηt + ηx + 3

2
αηηx + ν̃βηxxx −

(1

6
− ν̃

)
βηxxt = 0,

where ν̃ = 1
2 (a + c+ ρ). Notice that if (2.11) holds, then ν̃ = 1

12 . Therefore, to insist
on the consistency of the two equations in (2.9) at the second order in α and β, we use
the approximation

ηt = −ηx − 3

2
αηηx − ν̃βηxxx+

(1

6
− ν̃

)
βηxxt + O(α2, β2, αβ), as α, β → 0.

(2.12)

Using the approximation (2.12) along with the forms of A and B given, respectively,
in (2.7) and (2.10) in the system (2.9), there appear more terms involving order αβ, β2

and α2. Equating the terms of order αβ in (2.9) leads to the equation

C =
[
1

8
(a + 4b + 2c − d) + 3

16
(a + b − c − d) + 3

8
ρ

]

(η2)xx

+13

24
ηηxx + 11

48
η2x .

Likewise, equating the terms containing β2 in (2.9) yields

D = −
[
1

2
(b1 − d1) + 1

4
(b − d + ρ)

(

a − d + 1

6

)

+ 1

4
d(c − a + ρ)

]

ηxxxt

−
[
1

2
(a1 − c1) + 1

4
(c − a + ρ)

(

a + 1

6

)

− 1

12
ρ

]

ηxxxx .

Finally, balancing the terms containing α2 in the system (2.9), one obtains

E = 1

8
η3.
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Putting the expressions for A, B,C, D and E in either of the equations in (2.9),
using the relation (2.12) and taking note of the formula ηηxxx = 1

2 (η
2)xxx − 3

2 (η
2
x )x ,

there appears the evolution equation

ηt + ηx − γ1βηxxt + γ2βηxxx + δ1β
2ηxxxxt + δ2β

2ηxxxxx

+ 3

2
αηηx + αβ

(
γ (η2)xxx − 7

48
(η2x )x

)
− 1

8
α2(η3)x = 0,

(2.13)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1 = 1
2 (b + d − ρ),

γ2 = 1
2 (a + c + ρ),

δ1 = 1
4

[
2(b1 + d1) − (b − d + ρ)

( 1
6 − a − d

) − d(c − a + ρ)
]
,

δ2 = 1
4

[
2(a1 + c1) − (c − a + ρ)

( 1
6 − a

) + 1
3ρ

]
,

γ = 1
24

[
5 − 9(b + d) + 9ρ

]
.

(2.14)

Remark 2.1 As our analysis so far has been predicated on the abcd-system (1.8), the
relation a+b+c+d = 1

3 has been used while calculatingC and D, and consequently
the values of the parameters introduced in (2.14). In this situation, one readily obtains
that γ1 + γ2 = 1

6 , γ = 1
24 (5 − 18γ1) and δ2 − δ1 = 19

360 − 1
6γ1 (see (4.3) below).

Thus, Eq. (2.13) effectively has only two free parameters, namely γ1 and δ1. This
aspect plays no particular role in the well-posedness theory to follow. However, it does
become important when the issue of insuring the system is Hamiltonian is addressed.
Detailed discussion of these issues may be found in Sects. 4 and 5.

If instead, one were to relax the relation a + b+ c+ d = 1
3 when computing C, D

and elsewhere, the resulting model would be

ηt + ηx − γ1βηxxt + γ2βηxxx + δ1β
2ηxxxxt + δ2β

2ηxxxxx

+ 3

2
αηηx + αβ

(
σ1(η

2)xxx − σ2(η
2
x )x

)
− 1

8
α2(η3)x = 0,

(2.15)

where γ1, γ2 are as in (2.14), δ1, δ2 satisfy the relation

δ2 − δ1 = 1

4
ρ(a + b + c + d) + 1

8

[
(b − d)2 − (a − c)2

] + 1

2
(a1 − b1 + c1 − d1)

and σ1, σ2 are given by

{
σ1 = 1

24

[
4 + 3(a − 2b + c − 2d) + 9ρ

]
,

σ2 = 1
48

[
4 + 9(a + b + c + d)

]
.
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The more general Eq. (2.15) reduces to (2.13) when a + b + c + d = 1
3 . An in-

depth analysis of the general model (2.15) could be interesting. Such a more general
model might arise if surface tension effects were taken into account in the original
Boussinesq system. Depending upon the undisturbed depth, another small parameter
may arise in this situation and one must deal with its relation to α and β. What the
corresponding second-order correct model looks like would depend upon how these
parameters compare to one another. This potentially interesting project is not pursued
here. Our focus remains upon the one-way model (2.13) corresponding to the second-
order water wave system (1.8) for which dispersion considerations mentioned earlier
demand that a + b + c + d = 1

3 .

While the derivation is formal, we expect the equation (2.13) to have the same sort
of properties that its first-order correct analog (1.5) does as regards approximating uni-
directional solutions of the second-order Boussinesq system (1.8) and, consequently,
solutions of the full water wave problem. However, as already mentioned, rigorous
theory to this effect is not available as it is at first order.

Models like (2.13) have appeared in the literature before (cf. Dullin et al. 2003when
the surface tension is set to 0 and the wide ranging article Johnson 2002 together with
the references contained in these articles). For example, the equation (2.19) in Dullin
et al. (2003), in the zero surface tension regime, appears in our class of equations
(see the discussion in Sects. 4 and 5). Especially interesting in the present context
is the class of models introduced in Dullin et al. (2004). These models are derived
formally by using a Kodama transformation combined with a smoothing operator to
derive a family of integrable water wave equations that includes the Camassa–Holm
equation and a fifth-order KdV-type equation. While these models are Hamiltonian
and all have the correct linear dispersion relation to the second order, the Hamil-
tonian structure does not allow a global well-posedness theory to be mounted (for
local well-posedness, see Mustafa 2006 and the several references to earlier work
contained therein). Indeed, it transpires that these models do not in fact have global
smooth solutions, but can form singularities in finite time. This is of course at odds
with the underlying presumptions about regularity that go into the sort of formal
expansions used in Dullin et al. (2004) and in the present essay. Another problem
with this class of models is that the dependent variable that eventually emerges is
not a physical one, and so not amenable to direct measurement. To return to the
wave amplitude, what we call η, requires applying the Kodama transformation, a
non-local, nonlinear operator involving ∂−1

x . As ∂x has a kernel, its non-local inverse
does not necessarily act well on the sort of Sobolev-type function classes appear-
ing here and in some of the well-posedness theory for the models derived in Dullin
et al. (2004). The present family of model is written directly in terms of η and is
globally well posed, so not suffering from these drawbacks. Moreover, if lateral
boundary conditions arise, as they always do in practice, passing back and forth
between η and their new variable u is going to present problems. (See Chen 2018
for recent theory concerning boundary value problems for one of the models derived
here).

It is also worth to note that if α = O(β
1
2 ) instead of α = O(β), then a Camassa–

Holm-type equation emerges, namely
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ηt + ηx − γ1βηxxt + γ2βηxxx + 3

2
αηηx

+ αβ
(
γ (η2)xxx − 7

48
(η2x )x

)
− 1

8
α2(η3)x = 0.

The two higher-order, linear, dispersive terms drop off because they are now negligible
compared to the remaining terms. However, as one would expect for models where
the nonlinear effects are more dominant, the formal temporal range of validity for this
model, in terms of the wavelength parameter β, is only of order O(β−1). That is to
say, the formal error between the model predictions and those of the full water wave
problem is of order O(β2t). If the two fifth-order dispersive terms are left in place,
then higher-order nonlinear terms deserve keeping as well to maintain a uniform level
of approximation. On the other hand, insofar as the largest part of the error resides in
incorrect phase speeds, keeping these terms could be useful in practical situations, even
in this more nonlinear situation. After all, the experiments in Bona et al. (1983) show
that BBM-type equations maintain engineering-level approximation in the long-wave
regime, even for Stokes numbers in the mid-20s, which is to say α/β ≈ 25.

For the analysis that follows, the small parameters α and β are not relevant. Revert-
ing to non-dimensional, but unscaled variables, which are denoted surmounted with

a tilde, namely η̃(x̃, t̃) = α−1η(β
1
2 x̃, β

1
2 t̃) and then dropping the tildes yields the

fifth-order, KdV–BBM-type equation

ηt + ηx − γ1ηxxt + γ2ηxxx + δ1ηxxxxt + δ2ηxxxxx

+ 3

4
(η2)x + γ (η2)xxx − 7

48
(η2x )x − 1

8
(η3)x = 0. (2.16)

In many circumstances, boundary value problems may be the most practically inter-
esting. However, one usually starts with the pure initial value problem to get an idea
of what may be true for more complicated problems. This latter problem, wherein we
search for a solution of (2.16) subject to η(x, 0) being specified for all x ∈ R, will be
the subject of further mathematical consideration.

We conclude this subsection with the observation that approximate models like the
one displayed in (2.16) can be derived by expanding the Dirichlet–Neumann operator
in the Zakharov–Craig–Sulem formulation (see, for example, Lannes 2013 and the
references therein). An approach using the Dirichlet to Neumann operator does have
as a component the rigorous theory pertaining to this operator. And if one is expanding
the Hamiltonian rather than the dependent variables themselves, one is guaranteed a
Hamiltonian equation. However, it does not guarantee that the dispersion relation
so obtained fits the full dispersion to the order of the terms being kept. Nor does it
guarantee that the resulting equation provides a well-posed problem. A good example
of what can go wrong appears in Ambrose et al. (2012) and Ambrose et al. (2014),
where this technique was applied to a deep-water situation. Similar problems arise for
the Kaup–Boussinesq system, which is formally Hamiltonian, but is ill-posed even in
smooth function classes (see Ambrose et al. 2017).

The classical expansion used here allows for choices of parameters that guarantees
both local well-posedness and, in a special case, Hamiltonian structure. It also has the
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advantage of producing a model that behaves well with respect to the imposition of
non-trivial boundary conditions (see Chen 2018).

2.2 Mathematical Theory

Equation (2.16) above formally describes the propagation of unidirectional waves.
Naturally, one would like to have a theory that shows solutions of this system closely
track associated solutions of the higher-order Boussinesq systems (1.8) on the longer

timescale O
(

1
β2

)
. Logically prior to such a result is the fundamental issue of the

well-posedness of the Cauchy problem associated with (2.16). It is to this latter issue
that attention is now turned. To be useful in comparing the unidirectional model with
its overlying bidirectional analog, one naturally needs a well-posedness theory that
is valid at least on the longer timescale O( 1

β2 ). Better still would be a global well-
posedness theory so that issues of finite time singularity formation do not intrude upon
the practical use of such models.

As mentioned earlier, the notion of well-posedness used is the standard one.We say
that the Cauchy problem for an equation is locally well-posed in a Banach space X of
functions of the spatial variable if corresponding to given initial data in X there exists
a non-trivial time interval [0, T ] and a unique continuous curve in X , defined at least
for t ∈ [0, T ] that solves the equation in an appropriate sense. It is also demanded
that this solution varies continuously with variations of the initial data. If the above
properties are true for any bounded time interval, we say that the Cauchy problem is
globally well-posed in X .

For the local well-posedness theory, it is important that the coefficients γ1 and δ1
appearing, respectively, in front of the ηxxt and ηxxxxt -terms be nonnegative. The
problem is linearly ill-posed if this is not the case, as one can see by taking the
linear part of equation (3.1) in the next section. (The special cases where δ1 = 0 and
γ1 > 0 is also locally well-posed, but will not be considered here.) It will be presumed
henceforth that γ1 ≥ 0 and δ1 > 0 to be the case. Discussion of concrete conditions
for this to be the case are forthcoming in Sect. 4. Indeed, it will be shown that there
are plenty of choices of the fundamental parameters θ, λ, μ, λ1, μ1 and ρ for which
γ1, δ1 are positive.

Local well-posedness will be obtained by using multilinear estimates combined
with a contraction mapping argument. The local theory does not depend upon special
choices of the parameters in the problem other than the positivity of γ1 and δ1. In
general, Eq. (2.16) does not have an obvious Hamiltonian structure. However, by
suitably choosing the parameters, it can be put intoHamiltonian form.TheHamiltonian
structure allows one to infer bounds on solutions that lead to global well-posedness.
As seen in the recent simulations of solutions of some of the first-order systems (Bona
and Chen 2016), lack of Hamiltonian structure often seems to go along with lack of
global well-posedness for arbitrarily sized data.

While solutions of the system (2.16) will not approximate solutions of the full
water wave problem (1.1) without considerable smoothness (see Bona et al. 2005), a
modern thrust in the analysis of dispersive partial differential equations is to provide
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local and global well-posedness theory in relatively large function classes. While
mostly of mathematical interest, theory in such low-regularity classes can be useful
in the analysis of numerical schemes for approximating solutions of such equations,
especially when the lower-order norms can be given time-independent bounds.

To obtain a global well-posedness result for initial data with lower-order Sobolev
regularity, we use a high-low frequency splitting technique. Such splitting methods
have roots at least as far back as the work of M. Schonbek and her collaborators
(see Amick et al. 1989; Schonbek 1981 for example). In the context of BBM-type
equations, it was applied in Bona and Chen (2009) and Bona and Tzvetkov (2009)
to obtain sharper well-posedness results. More subtle splitting appears in the work of
Bourgain [see, e.g., Bourgain 1998 and the references therein, as well as the further
developments in Fonseca et al. (1999), Fonseca et al. (2002) for example].

Before announcing the main results, the mostly standard notation that will be used
throughout is recorded. If f is a function defined on the real line R, then f̂ denotes
its Fourier transform, namely

f̂ (ξ) = 1√
2π

∫

R

e−i xξ f (x)dx .

The space of square-integrable, measurable functions defined on a measurable subset
� of Euclidean space will be denoted L2(�). In fact, throughout, � will always be R

or R
2 and we will usually not bother to display the set, but just write L2 for L2(R),

etc. The L2-based Sobolev space of order s ∈ R will be denoted by Hs = Hs(R) =
(1 − �)−s/2L2 as usual. If f : R × [0, T ] → R, the mixed Lq

T L
p
x -norm of f is

‖ f ‖Lq
T L

p
x

=
(∫ T

0

(∫

R

| f (x, t)|p dx
)q/p

dt

)1/q

,

with the usual modification when p or q is ∞. An analogous definition is used for the
othermixed norms L p

x L
q
T , with the order of integration in time and space interchanged.

In the notation L p
x L

q
T or L p

T L
q
x , T is replaced by t when the interval [0, T ] is instead the

whole real lineR. For T > 0 and s ∈ R,C([0, T ]; Hs)denotes the space of continuous
maps from [0, T ] to Hs with its usual norm, ‖u‖C([0,T ];Hs ) := supt∈[0,T ] ‖u(x, ·)‖Hs .

We use c orC to denote various space- and time-independent constants whose exact
values may vary from one line to the next. The notation A � B connotes an estimate
of the form A ≤ cB for some c, while A ∼ B means A � B and B � A. The notation
a+ stands for a + ε for any ε > 0, no matter how small.

Here are the main results. The first one is about the local well-posedness in Hs(R),
s ≥ 1.

Theorem 2.2 Assume γ1, δ1 > 0. For any s ≥ 1 and for given η0 ∈ Hs(R), there exist
a time T = T (‖η0‖Hs ) and a unique function η ∈ C([0, T ]; Hs) which is a solution
of the IVP for (2.16), posed with initial data η0. The solution η varies continuously in
C([0, T ]; Hs) as η0 varies in Hs.

With more regularity and a further restriction on the coefficients of the equation,
global well-posedness holds, as the next theorem attests.
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Theorem 2.3 Assume γ1, δ1 > 0. Let s ≥ 3
2 and γ = 7

48 . Then the solution to the
IVP associated with (2.16) given by Theorem 2.2 can be extended to arbitrarily large
time intervals [0, T ]. Hence the problem is globally well-posed in this case.

3 Well-Posedness Theory in Hs, s ≥ 1

Local well-posedness will be established using multilinear estimates combined with
a contraction mapping argument. Global well-posedness in the spaces Hs with s ≥ 2
is obtained via energy-type arguments together with the local theory. For values of
s below 2, the global theory results from splitting the initial data into a small, rough
part and a smooth part and writing evolution equations for each of these in such a way
that the sum of the results of the separate evolutions provides a solution of the original
problem.

3.1 Local Well-Posedness

This section will focus upon local well-posedness issues for the Cauchy problem
associated with (2.16) for given data η(x, 0) = η0(x) in Hs(R). The first step is to
write (2.16) in an equivalent integral equation format. Taking the Fourier transform
of Eq. (2.16) with respect to the spatial variable yields

η̂t + iξ η̂ + γ1ξ
2η̂t − iγ2ξ

3η̂ + δ1ξ
4η̂t

+ δ2iξ
5η̂ + 3

4
iξ η̂2 − γ iξ3η̂2 − 1

8
iξ η̂3 − 7

48
iξ η̂2x = 0,

or what is the same,

(
1 + γ1ξ

2 + δ1ξ
4
)
i η̂t = ξ

(
1 − γ2ξ

2 + δ2ξ
4
)

η̂ + 1

4

(
3ξ − 4γ ξ3

)
η̂2

− 1

8
ξ η̂3 − 7

48
ξ η̂2x . (3.1)

Because γ1, δ1 are taken to be positive, the fourth-order polynomial

ϕ(ξ) := 1 + γ1ξ
2 + δ1ξ

4,

is strictly positive. Define the three Fourier multiplier operators φ(∂x ), ψ(∂x ) and
τ(∂x ) via their symbols, viz.

φ̂(∂x ) f (ξ) := φ(ξ) f̂ (ξ),

ψ̂(∂x ) f (ξ) := ψ(ξ) f̂ (ξ) and

τ̂ (∂x ) f (ξ) := τ(ξ) f̂ (ξ), (3.2)
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where

φ(ξ) = ξ(1 − γ2ξ
2 + δ2ξ

4)

ϕ(ξ)
, ψ(ξ) = ξ

ϕ(ξ)
and τ(ξ) = 3ξ − 4γ ξ3

4ϕ(ξ)
.

With this notation, the Cauchy problem associated with Eq. (2.16) can be written
in the form

{
iηt = φ(∂x )η + τ(∂x )η

2 − 1
8ψ(∂x )η

3 − 7
48ψ(∂x )η

2
x ,

η(x, 0) = η0(x).
(3.3)

Consider first the linear IVP
{
iηt = φ(∂x )η,

η(x, 0) = η0(x),
(3.4)

whose solution is given by η(t) = S(t)η0, where Ŝ(t)η0 = e−iφ(ξ)t η̂0 is defined via
its Fourier transform. Clearly, S(t) is a unitary operator on Hs for any s ∈ R, so that

‖S(t)η0‖Hs = ‖η0‖Hs , (3.5)

for all t > 0. Duhamel’s formula allows us to write the IVP (3.3) in the equivalent
integral equation form,

η(x, t) = S(t)η0 − i
∫ t

0
S(t − t ′)

(
τ(∂x )η

2 − 1

8
ψ(∂x )η

3 − 7

48
ψ(∂x )η

2
x

)
(x, t ′)dt ′.

(3.6)

In what follows, a short-time solution of (3.6) will be obtained via the contraction
mapping principle in the space C([0, T ]; Hs). This will provide a proof of Theo-
rem 2.2.

3.1.1 Multilinear Estimates

Various multilinear estimates are now established that will be useful in the proof of the
local well-posedness result. First, we record the following “sharp” bilinear estimate
obtained in Bona and Tzvetkov (2009).

Lemma 3.1 For s ≥ 0, there is a constant C = Cs for which

‖ω(∂x )(uv)‖Hs ≤ C‖u‖Hs‖v‖Hs (3.7)

where ω(∂x ) is the Fourier multiplier operator with symbol

ω(ξ) = |ξ |
1 + ξ2

.
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It is worth noting that there is a counterexample in Bona and Tzvetkov (2009)
showing that the inequality (3.7) is false if s < 0.

Corollary 3.2 For any s ≥ 0, there is a constant C = Cs such that the inequality

‖τ(∂x )η
2‖Hs ≤ C‖η‖2Hs (3.8)

holds, where the operator τ(∂x ) is defined in (3.2).

Proof Since δ1 > 0, it follows that τ(ξ) ≤ Cω(ξ) for some constant C > 0. The
proof of the estimate (3.8) thus follows from Lemma 3.1. ��
Proposition 3.3 For s ≥ 1

6 , there is a constant C = Cs such that

‖ψ(∂x )η
3‖Hs ≤ C‖η‖3Hs . (3.9)

Proof Consider first when 1
6 ≤ s < 5

2 . In this case, it appears that

∣
∣
∣(1 + |ξ |)s ψ(ξ)

∣
∣
∣ =

∣
∣
∣

(1 + |ξ |)sξ
(1 + γ1ξ2 + δ1ξ4)

∣
∣
∣ ≤ C

1

(1 + |ξ |)3−s
.

The last inequality implies that

‖ψ(∂x )η
3‖Hs = ‖(1 + |ξ |)s ψ(ξ)η̂3(ξ)‖L2 ≤ C

∥
∥
∥
∥

1

(1 + |ξ |)3−s
η̂3(ξ)

∥
∥
∥
∥
L2

≤ C

∥
∥
∥
∥

1

(1 + |ξ |)3−s

∥
∥
∥
∥
L2

‖η̂3‖L∞ ≤ C‖η‖3L3 .

In one dimension, the Sobolev embedding theorem states in part that H
1
6 is embedded

in L3, so

‖η‖L3 ≤ C‖η‖
H

1
6
,

whence

‖ψ(∂x )η
3‖Hs ≤ C‖η‖3Hs

whenever 1
6 ≤ s < 5

2 .
On the other hand, if s > 1/2, the Sobolev space Hs is a Banach algebra. Since

|ψ(ξ)| ≤ Cω(ξ), Lemma 3.1 implies that

‖ψ(∂x )(ηη2)‖Hs ≤ C‖η‖Hs‖η2‖Hs ≤ C‖η‖3Hs ,

which completes the proof of Proposition 3.3. ��

123



J Nonlinear Sci (2018) 28:543–577 561

Remark 3.4 The reader will appreciate presently that this result is only used in case
s > 1

2 , so the full power of the last proposition is not needed in our theory. We thought
it interesting that the result holds down to s = 1

6 and note that the inequality at this
level could be useful in the setting of internal waves in the deep ocean. This point will
be investigated in future research.

Lemma 3.5 For s ≥ 1, the inequality

‖ψ(∂x )η
2
x‖Hs ≤ C‖η‖2Hs (3.10)

holds.

Proof Observe that

ψ(ξ) ≤ Cω(ξ)
1

1 + |ξ | .

The inequality (3.7) then allows the conclusion

‖ψ(∂x )η
2
x‖Hs ≤ C‖ω(∂x )η

2
x‖Hs−1 ≤ C‖ηx‖Hs−1‖ηx‖Hs−1 ≤ C‖η‖2Hs ,

since s − 1 ≥ 0. ��
The preceding ingredients are assembled to provide a proof of the local well-

posedness theorem.

Proof of Theorem 2.2 Define a mapping

�η(x, t) = S(t)η0 − i
∫ t

0
S(t−t ′)

(
τ(Dx )η

2− 1

4
ψ(∂x )η

3− 7

48
ψ(∂x )η

2
x

)
(x, t ′)dt ′.

(3.11)

The immediate goal is to show that this mapping is a contraction on a closed ball Br

with radius r > 0 and center at the origin in C([0, T ]; Hs).
As remarked earlier, S(t) is a unitary group in Hs(R) [see (3.5)], and therefore,

‖�η‖Hs ≤ ‖η0‖Hs + CT
[∥
∥τ(∂x )η

2 − 1

8
ψ(∂x )η

3 − 7

48
ψ(∂x )η

2
x

∥
∥
C([0,T ];Hs )

]
.

The inequalities (3.8), (3.9) and (3.10) lead immediately to

‖�η‖Hs ≤ ‖η0‖Hs + CT
[∥
∥η

∥
∥2
C([0,T ];Hs )

+ ∥
∥η

∥
∥3
C([0,T ];Hs )

+ ∥
∥η

∥
∥2
C([0,T ];Hs )

]
.

(3.12)

If, in fact, η ∈ Br , then (3.12) yields

‖�η‖Hs ≤ ‖η0‖Hs + CT
[
2r + r2

]
r.
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If we choose r = 2‖η0‖Hs and T = 1
2Cr(2+r) , then ‖�η‖Hs ≤ r , showing that �

maps the closed ball Br in C([0, T ]; Hs) onto itself. With the same choice of r and
T and the same sort of estimates, one discovers that � is a contraction on Br with
contraction constant equal to 1

2 as it happens. The rest of the proof is standard. ��
Remark 3.6 The following points follow immediately from the proof of the Theo-
rem 2.2:

(1) The maximal existence time Ts of the solution satisfies

Ts ≥ T̄ = 1

8Cs‖η0‖Hs (1 + ‖η0‖Hs )
, (3.13)

where the constant Cs depends only on s.
(2) The solution cannot grow too much on the interval [0, T̄ ] since

‖η(·, t)‖Hs ≤ r = 2‖η0‖Hs (3.14)

for t in this interval, where T̄ is as above in (3.13).

3.2 Global Well-Posedness

In this section, a priori deduced bounds are obtained with an eye toward extending
the local well-posedness just established. The present theory countenances the spaces
Hs(R), s ≥ 3

2 . However, we begin with a global well-posedness result in Hs(R) for
s ≥ 2.

3.2.1 Global Well-Posedness in H2

The aim here is to derive an a priori estimate in H2(R), subject to certain restrictions
on the parameters that appear in (2.16). Multiplying Eq. (2.16) by η, integrating over
the spatial domain R and integrating by parts yields

1

2

d

dt

∫

R

(
η2 + γ1η

2
x + δ1η

2
xx

)
dx + γ

∫

R

(η2)xxx η dx − 7

48

∫

R

(η2x )x η dx = 0.

Further integrations by parts gives

1

2

d

dt

∫

R

(
η2 + γ1η

2
x + δ1η

2
xx

)
dx =

(

γ − 7

48

) ∫

R

η3x dx . (3.15)

Of course, these calculations involve derivatives of higher order than are guaranteed
to exist by assuming the initial data lies only in H2. However, one can make the
calculations using smoother solutions and then pass to the limit of rougher datamaking
use of the continuous dependence result. The idea is standard and we pass over the
details (cf. Bona and Kalisch 2000).
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From (3.15), it is clear that an a priori estimate obtains when γ = 7
48 . That such

a condition can be imposed while respecting the other mathematical limitations γ1 >

0 and δ1 > 0 will be discussed in Sect. 4. For the time being, we presume that
θ, λ, μ, λ1, μ1 and ρ have been chosen so that γ = 7

48 and γ1, δ1 > 0 still holds. In
this case, Eq. (2.16) becomes

ηt + ηx − γ1ηxxt + γ2ηxxx + δ1ηxxxxt + δ2ηxxxxx

+ 3

4
(η2)x + γ

(
η2

)

xxx − γ
(
η2x

)

x − 1

8

(
η3

)

x = 0. (3.16)

In this form, it has the conserved quantity

E(η(·, t)) := 1

2

∫

R

η2 + γ1(ηx )
2 + δ1(ηxx )

2 dx = E(η0). (3.17)

Remark 3.7 In fact, with the restriction γ = 7
48 , the equation is Hamiltonian, for there

is a second conserved quantity, namely

�(η) = 1

2

∫

R

(

−η2 − 1

2
η3 + 1

16
η4 + 7

24
ηη2x + γ2η

2
x − δ2η

2
xx

)

dx .

The system itself may be written in the Hamiltonian format

∂

∂t
∇E(η) = ∂

∂x
∇�(η)

where ∇E is the Euler derivative of E and similarly ∇� the Euler derivative of �.

The conservation law (3.17), which is essentially the H2-norm, immediately points
to the following global well-posedness result.

Theorem 3.8 Let s ≥ 2 and suppose γ1, δ1 > 0 and γ = 7
48 . Then the IVP for

Eq. (2.16) is globally well-posed in Hs(R).

Proof Following a standard argument, the global well-posedness in H2(R) is a con-
sequence of the local theory and the a priori bound implied by the conserved quantity
(3.17). To prove global well-posedness in Hk , where k ≥ 3 is an integer, we proceed
by induction on k.

Assume that η0 lies in H3. The local well-posedness theory then delivers a solution
in C([0, T ]; H3) for some T > 0. If a priori bounds on the H3-norm of η which are
finite on finite time intervals holds, then the local theory can be iterated and a global
solution results.

Differentiate Eq. (3.16) with respect to the spatial variable, multiply the resulting
equation by ηx and integrate over R. After integrations by parts in the spatial variable,
there obtains
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1

2

d

dt

∫

R

(
η2x + γ1η

2
xx + δ1η

2
xxx

)
dx + 3

4

∫

R

η3x dx

− 3γ
∫

R

η2xxηx dx − 3

8

∫

R

η3x η dx = 0.
(3.18)

Standard Sobolev embedding results show that for any time t for which the solution
exists,

‖η‖2L2
x

≤ 2E0, ‖ηx‖2L2
x

≤ 2

γ1
E0, ‖ηxx‖2L2

x
≤ 2

δ1
E0,

‖η‖2L∞
x

≤ 4√
γ1

E0, ‖ηx‖2L∞
x

≤ 4√
δ1γ1

E0,

(3.19)

where E0 = E(η0). After integrating (3.18) with respect to time over the interval
[0, t], making elementary estimates of all the terms not involving a third derivative
and using (3.19) systematically, there obtains the inequality

δ1

∫

R

η2xxx dx ≤
∫

R

(
(η0x )

2 + γ1(η0xx )
2 + δ1(η0xxx )

2
)
dx

+C
∫ t

0
‖ηx‖L∞

x

(
‖ηx‖2L2

x
+ ‖ηxx‖2L2

x
+ ‖ηx‖2L2

x
‖η‖L∞

x

)
dx

≤ δ1

∫

R

(η0xxx )
2 dx + CE0 + CE3/2

0

(
1 + E1/2

0

)
t,

from which the desired H3-bound follows.
Assuming there are in hand Hk bounds, an entirely similar energy-type calculation

reveals that the solution η has Hk+1-bounds as soon as the initial data η0 lies in Hk+1.
To obtain global well-posedness in the fractional-order Sobolev spaces Hs, s ≥ 2

not an integer, a straightforward application of nonlinear interpolation theory (see
Bona and Scott 1976; Bona et al. 2014) may be applied, thereby completing the proof
of the theorem. ��

3.2.2 Global Well-Posedness in Hs, s ≥ 3
2

The object of this subsection is to prove the secondmain result, Theorem 2.3. To estab-
lish well-posedness below the level where a priori bounds obtain, a Fourier splitting
technique will be employed wherein the data η0 is decomposed into a small, rough
part and a smooth part. As already mentioned, such decompositions are commonplace
in various contexts in the theory of partial differential equations.

Let there be given initial data η0 ∈ Hs where 1 ≤ s < 2 and a T > 0.As advertised,
the data η0 is decomposed into a small part and a smooth part, viz.

η0 = w0 + v0 where w0 ∈ H∞ and v0 ∈ Hs

is small. Such a decomposition can be effected in many ways. One that is especially
helpful in what follows is the one-parameter family {wε

0}ε>0 defined by way of their
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Fourier transforms to be

ŵε
0 = ζ(εξ)η̂0(ξ)

where ζ is an even, C∞-function defined on R, 0 ≤ ζ ≤ 1, ζ(0) = 1 and such that
1 − ζ(ξ) has a zero of infinite order at ξ = 0 while ζ decays exponentially to 0 as
|ξ | → ∞. (For example, ζ could be a cutoff function which is identically equal to
1 on the interval [−1, 1] and has support in [−2, 2].) It follows by a straightforward
computation in the Fourier transformed variables that if η0 ∈ Hs , then for r ≥ 0,

‖wε
0‖Hs+r = O

(
ε−r ) and ‖η0 − wε

0‖Hs−r = o
(
εr

)
(3.20)

as ε ↓ 0 [see, for example, Lemma 5 in Bona and Smith (1975)]. Define v0 = vε
0 =

η0−wε
0. For themoment, the dependence of both v0 andw0 upon ε will be suppressed.

The values of ε will be appropriately limited presently.
By choosing ε small enough so that ‖v0‖Hs ≤ 1 and ‖v0‖Hs ≤ 1

12CsT
, the local

well-posedness theory adduced in Theorem 2.2 assures us that if we pose v0 as initial
data for our evolution Eq. (3.16), then the solution v emanating from it will lie in
C([0, T ]; Hs) and it will not be larger than 2‖v0‖Hs over the entire time interval
[0, T ] (see Remark 3.6). It can also be insured that

‖v(·, t)‖H1 ≤ 2‖v0‖H1 for all t ∈ [0, T ],

simply by imposing the further restriction ‖v0‖H1 ≤ 1
12C1T

. This follows since the
integral operator � in (3.11) will simultaneously satisfy (3.13) and (3.14) for both the
Sobolev indices s and 1. The solutions, which are the fixed points of � in the two
spaces, must be the same by uniqueness in the larger space.

Once v is fixed and known to exist on the entire time interval [0, T ], the smooth
part w0 of the initial data is evolved according to the variable coefficient IVP

{
wt + wx − γ1wxxt + γ2wxxx + δ1wxxxxt + δ2wxxxxx + G(v,w) = 0,

w(x, 0) = w0(x),
(3.21)

where

G(v,w) := 3

2
(vw)x + 3

4
(w2)x + 2γ (vw)xxx + γ (w2)xxx

−2γ (vxwx )x − γ (w2
x )x − 3

8
(v2w)x

−3

8
(vw2)x − 1

8
(w3)x . (3.22)

If a solution w exists in C([0, T ]; Hs), then v + w provides a solution on the
time interval [0, T ] of the original problem for Eq. (3.16) with initial value η0. As
T was arbitrary, global existence is thereby concluded. Well-posedness then follows
from the local theory. That is, the continuous dependence of the solution on the initial
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data and the uniqueness of solutions within the function class C([0, T ]; Hs) derive
from the previously elucidated local well-posedness results. Thus, Theorem 2.3 will
be established as soon as (3.21) is shown to have a solution in C([0, T ]; Hs).

Proof of Theorem 2.3 As already discussed, the variable coefficient v appearing in
the nonlinearity (3.22) lies in C([0, T ]; Hs) ⊂ C([0, T ]; H1). As a first step, it is
important to show that the IVP (3.21) for w is locally well-posed in H2 and not just
in Hs . To this end, write the IVP (3.21) in the equivalent, integral equation form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w(x, t) = S(t)w0 − i
∫ t

0
S(t − t ′)

(
τ(∂x )w

2 + 2τ(∂x )wv − 1

8
ψ(∂x )w

3

− 3
8ψ(∂x )w

2v − 3
8ψ(∂x )wv2 − γψ(∂x )w

2
x − 2γψ(∂x )wxvx

)
(x, t ′)dt ′

= �(w)(x, t),

(3.23)

where the Fourier multiplier operators ψ(∂x ) and τ(∂x ) are as defined already in (3.2)
and the unitary family S(t) is the solution group for the linear Eq. (3.4).

This integral equation is studied in C([0, T ]; H2) when the variable coefficient v

lies in C([0, T ]; Hs). As w0 lies in H∞, it is clear that S(t)w0 lies in C(R; H2). Just
as in the earlier analysis of the integral Eq. (3.6), the argument proceeds by showing
that the mapping w �→ �(w) defined by the right-hand side of (3.23) is a contraction
on a ball Br of radius r about 0 in the space C([0, T0]; H2) for r large enough and T0
small enough. This will establish the local well-posedness needed for the next step in
the analysis.

The summands in the integral equation that only feature w may be handled just as
before and suitable estimates are forthcoming sinceweareworking in H2 (see the proof
of Theorem 2.2). The following lemma provides the extra information needed to com-
plete the argument in favor of� being a contraction mapping on Br ⊂ C([0, T0]; H2)

for suitable T0 and r .

Lemma 3.9 Suppose 1 ≤ s < 2. Then for f ∈ Hs and g ∈ H2, there are constants
C depending only on s such that

‖τ(∂x ) f g‖H2 ≤ C‖ f ‖Hs‖g‖H2 , ‖ψ(∂x ) f
2g‖H2 ≤ C‖ f ‖2Hs‖g‖H2 ,

‖ψ(∂x ) f g
2‖H2 ≤ C‖ f ‖Hs‖g‖2H2 , ‖ψ(∂x ) fx gx‖H2 ≤ C‖ f ‖Hs‖g‖H2 .

(3.24)
Proof As τ(∂x ) is a bounded map from Hr to Hr+1, it follows that

‖τ(∂x ) f g‖H2 ≤ C‖ f g‖H1 ≤ C‖ f ‖H1‖g‖H1 ≤ C‖ f ‖Hs‖g‖H2.

The operator ψ(∂x ) maps Hr to Hr+3. Consequently, we have

‖ψ(∂x ) f
2g‖H2 ≤ C‖ f 2g‖H1 ≤ C‖ f ‖2

H1‖g‖H1 ≤ C‖ f ‖2Hs‖g‖H2 ,

‖ψ(∂x ) f g
2‖H2 ≤ C‖ f g2‖H1 ≤ C‖ f ‖H1‖g‖2H1 ≤ C‖ f ‖Hs‖g‖2

H2 ,

‖ψ(∂x ) fx gx‖H2 ≤ C‖ fx gx‖L2 ≤ C‖ fx‖L2‖gx‖L∞ ≤ C‖ f ‖Hs‖g‖H2 ,

and the results are established. ��
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It is straightforward to use the smoothing estimates (3.24) to show that the mapping
� is a contraction on a suitably chosen ball about the origin in C([0, T0]; H2) for T0
small enough, which is the content of the following proposition.

Proposition 3.10 The IVP (3.21) is locally well-posed in H2.

It remains only to show that the local in time solution w of (3.21) can be continued
to the entire time interval [0, T ]. This in turn will be settled as soon as a priori bounds
on w in H2 are provided which are valid on [0, T ]. To see such a bound obtains,
multiply Eq. (3.21) byw, integrate over R and integrate by parts in the spatial variable
to obtain

1

2

∂

∂t

∫

R

(
w2 + γ1w

2
x + δ1w

2
xx

)
dx = 3

2

∫

R

vwwxdx − 2γ
∫

R

(vw)xwxx dx

− 2γ
∫

R

vx (wx )
2 dx

− 3

8

∫

R

v2w wx dx − 3

8

∫

R

v w2 wx dx .

(3.25)

The intermediate computations are justified as before by the use of the continuous
dependence results in H2 for w and H1 for v. Let X (t) := ∫

R

(
w2 + γ1w

2
x + δ1w

2
xx

)

dx . Then, X (t) is equivalent to the square of the H2-norm of w(·, t).
The next task is to obtain an upper bound on the right-hand side of (3.25) in terms

of ‖w‖H2 and ‖v‖H1 . The fact that ‖w‖L∞ and ‖wx‖L∞ are both bounded by ‖w‖H2

and elementary estimates implies that

∂X (t)

∂t
≤ C

((‖v‖H1 + ‖v‖2H1

)‖w‖2H2 + ‖v‖H1‖w‖3H2

)

≤ C
((‖v‖H1 + ‖v‖2H1

)X (t) + ‖v‖H1X (t)
3
2

)
.

(3.26)

Recall that ‖v(·, t)‖H1 ≤ 2‖v0‖H1 on the entire interval [0, T ]. In consequence, (3.26)
can be extended thusly:

∂X (t)

∂t
≤ 2C‖v0‖H1

(
X (t) + X (t)

3
2

)
.

Notice that, because of (3.20),

‖v0‖H1 = o(εs−1) = ν(ε)εs−1 where ν(ε) → 0 as ε → 0. (3.27)

If �(t) is the solution of

d�

dt
= 2C‖v0‖H1

(
�(t) + �(t)

3
2

)
(3.28)
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with �(0) = X (0), then a Gronwall-type argument implies that X (t) ≤ �(t) for all
t for which � is finite. The solution of (3.28) is

σ(t) = σ(0)eCt‖v0‖H1

1 − σ(0)
(
eCt‖v0‖H1 − 1

) ≤ σ(0)eCT ‖v0‖H1

1 − σ(0)
(
eCT ‖v0‖H1 − 1

) , (3.29)

provided the right-hand side is positive and finite, where σ(t)2 = �(t). Of course, as
long as 0 ≤ y ≤ 1, say, then ey − 1 ≤ ey. Since T is fixed and ‖v0‖H1 is small for
small values of ε, the right-hand side of (3.29) may be bounded above by

σ(0)eCT ‖v0‖H1

1 − CTeσ(0)‖v0‖H1
.

The latter will provide the desired upper bound needed to continue the solution w to
the entire time interval [0, T ] as soon as

σ(0)‖v0‖H1 <
1

CeT
. (3.30)

As σ(0) is equivalent to the H2-norm of w0, (3.20) implies that σ(0) ≤ Cεs−2.

Combining this with (3.27), it is seen that

σ(0)‖v0‖H1 = o
(
ε2s−3

)
as ε ↓ 0.

Consequently, if s ≥ 3
2 and ε small enough, (3.30) is valid and the result is proved. ��

4 Parameter Restrictions

The class of partial differential Eq. (2.16) is all formally equivalent models for long-
crested, small amplitude, long waves on the surface of an ideal fluid over a flat bottom.
The hope is that they approximate solutions of the full water mwave problem for an
ideal fluid with an error that is of order O

(
β3t

)
over a timescale at least of order

O
(
β−2

)
. Rigorous theory to this effect, but only on the shorter, Boussinesq timescale

O
(
β−1

)
, is available for the lower order, unidirectional models (2.2) by combining

results in Alazman et al. (2006), Bona et al. (2005) and Bona et al. (1983).
It deserves remark that various models already existing in the literature are special-

izations of the class of models displayed in (2.13). For example, the model derived in
Dullin et al. (2003) in it’s zero surface tension limit, and see also Johnson (2002) and
Marchant and Smyth (1990), appears by taking ρ = b + d and an appropriate choice
of λ1. As will be clear momentarily, this model, like the one in Olver (1984b), is not
Hamiltonian.

Despite the fact that themodels are formally equivalent, theymayhaveverydifferent
mathematical properties. When it comes time to choose one of the models for use in
a real-world situation, one naturally wants to have good mathematical properties at
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hand. This was discussed in some detail in Bona et al. (2002) and Bona et al. (2004)
in the context of the lower-order system (1.6)–(1.7).

In the present account, theory has been developed that implies the local well-
posedness of the initial value problem for a subclass of our unidirectional models.
Local well-posedness is a minimal requirement for the use of such models in practice.
We also found an additional condition which allows the local theory to be continued
indefinitely. It is especially noteworthy that this condition implies the equation to
have a Hamiltonian structure. The full water wave model also has a Hamiltonian
structure, and experience indicates that maintaining such a Hamiltonian arrangement
in approximate models is likely to lead to better qualitative agreement with the full
model. Hence, our recommendation is to use the special versions of our equation
displayed in (3.16).

Interest is now turned to specifying conditions under which the various restrictions
on the coefficients γ1, δ1 and γ that cropped up during our analysis are valid. Recall
that these conditions were

γ1 > 0, δ1 > 0 and γ = 7

48
(4.1)

(see Theorem 3.8). The models satisfying these three conditions appear to have a
more satisfactory mathematical theory. It is worth reiterating that comparison results
indicating that such models approximate solutions of the full water wave problem
rely upon smoothness (see Alazman et al. 2006; Bona et al. 2005; Lannes 2013, for
example). The fact that, with the restrictions (4.1), the model is globally well-posed
in smooth function classes is therefore potentially very useful.

4.1 Hamiltonian Structure

The Hamiltonian structure displayed in Remark 3.7 is the key to our global well-
posedness results. It also engenders other good features in the model which are not
entered upon here.

So far, the condition γ = 7
48 is the only one for which we know existence of a

Hamiltonian structure. Looking at the formula for γ given in (2.14) and demanding
that γ = 7

48 implies that

1

24

[
5 − 9(b + d) + 9ρ

] = 7

48
.

Thus, the Hamiltonian structure is guaranteed if one chooses ρ by the formula

ρ = b + d − 1

6
, (4.2)
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which is exactly the one advertised in (2.11). In terms of the fundamental parameters
θ, λ and μ, ρ given in (4.2) is written as

ρ = 1

6

[

1 −
(

θ2 − 1

3

)

λ − 3
(
1 − θ2

)
μ

]

= 1

6
− (a + c),

where the relation a + b + c + d = 1
3 has been used.

4.2 Well-Posedness

As mentioned already, Eq. (2.16) is easily seen to be linearly ill-posed in Sobolev
classes unless the parameters γ1 and δ1 are positive. These are the more important of
the three restrictions in (4.1) as far as well-posedness is concerned. We fix the value
of ρ = b + d − 1

6 given by (4.2) for which γ1 = γ2 = 1
12 . In particular, γ1 > 0, so

that condition is met. In what follows, we discuss the condition δ1 > 0.
As noted in Remark 2.1, a straightforward calculation reveals that

δ2 − δ1 + 1

6
γ1 = 19

360
, (4.3)

regardless of the choice of the various fundamental parameters. As γ1 = 1/12, it is
further deduced that

δ2 = δ1 + 7

180
. (4.4)

Thus, the condition γ = 7/48 implies (4.2). This in turn yields (4.4). So, any value of
δ1 > 0 may be specified as long as it is consistent with choices of θ, λ, μ, λ1 and μ1.

Using the formula (2.14) for δ1 together with the formulas (1.7) and (1.9) for the
coefficients a, b, · · · , c1, d1 and (4.2) for ρ, a little algebra shows that in terms of the
fundamental parameters θ, λ, μ, λ1 and μ1,

δ1 = δ1(θ, λ, μ, λ1, μ1)

= 1

2
(b1 + d1) − 1

4

(
2b − 1

6

)(1

6
− a − d

)
− 1

4
d
(1

6
− 2a

)

= − 5

48

(
θ2 − 1

5

)[(
θ2 − 1

5

)
(1 − λ1) + (1 − θ2)μ1

]

− 1

4

[(
θ2 − 1

3

)
(1 − λ) − 1

6

][1

6
− 1

2

(
θ2 − 1

3

)
λ − 1

2
(1 − θ2)(1 − μ)

]

− 1

8
(1 − θ2)(1 − μ)

[1

6
−

(
θ2 − 1

3

)
λ
]

= 5

48

(
θ2 − 1

5

)2
λ1 − 5

48

(
θ2 − 1

5

)
(1 − θ2)μ1 + P(θ, λ, μ),

(4.5)
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where

P(θ, λ, μ) = − (3θ2 − 1)2

72
λ2 + (3θ2 − 1)(6θ2 − 1)

144
λ

− (1 − θ2)

24
μ − (5θ4 − 30θ2 + 14)

240
,

(4.6)

is a polynomial in θ, λ andμ. A study of (4.5) reveals that there are two separate cases
to consider.
Case 1: θ ∈ [0, 1] \ { 1√

5
}. In this case δ1 > 0 if and only if

λ1 >
(1 − θ2)μ1
(
θ2 − 1

5

) − 48

5

P(θ, λ, μ)
(
θ2 − 1

5

)2 =: H(θ, λ, μ,μ1). (4.7)

Since H(θ, λ, μ,μ1) is finite for any given values of θ, λ, μ and μ1, it is always
possible to choose an appropriate λ1 such that the inequality (4.7) holds true. Indeed,
there are many choices that work.
Case 2: θ = 1√

5
. In this case

δ1

( 1√
5
, λ, μ, λ1, μ1

)
= P

( 1√
5
, λ, μ

)
= − 1

450
λ2 − 1

1800
λ − 1

30
μ − 41

1200
.

Observe that the quadratic equation

P
( 1√

5
, λ, μ

)
= 0,

in (4.6) defines a parabola facing downward. The region in λ − μ space where δ1 =
P

(
1√
5
, λ, μ

)
> 0 is the shaded region inside the parabola shown in the Fig. 1.

5 The Dispersion Relation

The models derived here depend upon choices of six parameters, which have been
denoted λ, λ1, μ, μ1, θ and ρ. The parameter θ has physical significance, whereas the
others are modeling parameters and in principle, can take any real value.

As will be seen in a moment, the linearized dispersion relation for the class of
models derived here always matches that of the full water wave problem through
second order in the small parameter β. More precisely, if any of these models are
linearized about the rest state, the resulting linear partial differential equation has a
dispersion relation relating phase speed c to wave number k. A brief calculation shows
this to be

cmodel(k) = 1 − (
γ1 + γ2

)
k2 + (

δ2 − δ1 + γ 2
1 + γ1γ2

)
k4 + Fk6
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Fig. 1 Region where

P
(

1√
5
, λ, μ

)
> 0 is shaded

where k is the wave number and the coefficient F is

F = F(θ, λ, μ, λ1, μ1, ρ) = −γ1δ2 − γ2(−δ1 + γ 2
1 ) + 2γ1δ1 − γ 3

1 . (5.1)

As γ1 + γ2 = 1/6 holds independently of the choice of parameters, the second and
third terms simplify, viz.

cmodel(k) = 1 − 1

6
k2 +

(

δ2 − δ1 + 1

6
γ1

)

k4 + Fk6.

Making use of (4.4) leads to the final result

cmodel(k) = 1 − 1

6
k2 +

(
19

360

)

k4 + Fk6,

regardless of the choice of the various parameters.
For the two-dimensional water wave problem displayed in (1.1), the linearized

dispersion relationship is exactly

cEuler(k) = ±
√
tanh(k)

k
. (5.2)

For waves moving to the right, the +-sign is appropriate. One recognizes that the
Taylor expansion of the function of the right-hand side of (5.2) in the long-wave
regime (small wave number k) is
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cEuler(k) = 1 − 1

6
k2 + 19

360
k4 − 55

3024
k6 + O(k8).

In consequence, all the models put forward here are seen to satisfy the full, linear
dispersion relation through order k4. Of course, if the derivation is done correctly, this
has to be the case. If one rescales the variables so the long wavelength assumption is
measured by β as in the formalities of the derivation, then one sees that the error in
the linear part of the approximation is at worst of order β3.

It is tempting to choose the parameters θ, λ, μ, λ1, μ1 and ρ so that F matches the
next order in the dispersion relation exactly, as was done at the lower order in Bona
and Chen (1998). Hence, if the auxiliary parameters are chosen so that

F(θ, λ, μ, λ1, μ1, ρ) = − 55

3024
, (5.3)

then the linear dispersion in the model would match that of the linear water wave
problem up to and including order β3. Such a choice could have a salutary effect on
the detailed accuracy of the model, though it does not improve the overall formal level
of approximation.

Of course, one needs that the criteria for local well-posedness continue to hold in
the light of this choice. A study of the formula (5.1) for F shows that

F = −γ1δ2 − γ2
( − δ1 + γ 2

1

) + 2γ1δ1 − γ 3
1

= −γ1δ2 + δ1
(
γ2 + 2γ1

) − γ 2
1

(
γ1 + γ2

)

= −γ1δ2 + δ1

(

γ1 + 1

6

)

− 1

6
γ 2
1

= γ1

(

δ1 − δ2 − 1

6
γ1

)

+ 1

6
δ1

= − 19

360
γ1 + 1

6
δ1,

(5.4)

where the facts that γ1+γ2 = 1/6 and the relation (4.3) have been used. It is interesting
to know whether or not the relation (5.3), which implies the model dispersion relation
agrees with the exact linear dispersion relation up to order k6, is consistent with
the conditions δ1 > 0, γ1 > 0 and γ = 7

48 implying global well-posedness. The
condition γ = 7

48 requires that ρ = b + d − 1
6 as in (4.2). This in turns implies that

γ1 = 1
12 > 0. That the parameters can be chosen so that (5.3) holds is clear upon

consulting the formula (4.5) for δ1, which already presumes that ρ = b + d − 1
6 . For

example, choose θ2 ∈ ( 15 , 1), and fix λ,μ and μ1. Then δ1 is seen to have the form

δ1 = M + Nλ1

where N > 0. Clearly any value of δ1 can be achieved by a suitable choice of λ1 and
so any value of F can be achieved under the restriction ρ = b + d − 1

6 . However,
notice that (5.4) and (5.3) yield

123



574 J Nonlinear Sci (2018) 28:543–577

δ1 = 6

(
19

360

1

12
− 55

3024

)

= − 139

1680
< 0.

Hence, the requirement of Hamiltonian structure together with local well-posedness is
not consistent with the model approximating the dispersion relation at the next order
without considering O(α2, β2, αβ) terms in (2.12) and a new correction parameter
like ρ.

6 Concluding Remarks

Derived here is a class of unidirectional models for long-crested water waves that are
formally second-order correct. Basic analysis of the pure initial value problem for our
models has been developed. A local well-posedness theory in relatively weak spaces
is established under conditions on the two parameters δ1 and γ1 that appear in the
model, and which depend upon the other parameters. Global well-posedness is only
established in case the equation has a special, Hamiltonian structure. Conditions under
which both aspects obtain are given.

A comment is deserved about the focus maintained throughout on unidirectional
models. Boussinesq himself understood that his one-way model was simpler than
the coupled pair of two-way models that he first derived. It was also simpler than a
second-order in time, unidirectional model equation he had derived earlier. In both
these instances, a modern perspective on this issue is that the undirectional model
can be posed with half the auxiliary data needed to initiate the coupled system. How-
ever, unidirectionality places a severe limitation on the wave motion when it is posed
as an initial value problem. More precisely, a strict relationship between the initial
wave profile and the velocity field is implied. On the other hand, it is known that
for Boussinesq-type systems, if the initial disturbance is suitably localized and small,
then on certain temporal scales, the disturbance will decompose into a left- and a
right-going wave, each of which satisfy approximately a unidirectional equation (see
Schneider and Wayne 2000; Bona et al. 2005). Finally, it is worth noting that even
fairly steep beaches do not reflect all that much energy (see Mahony and Pritchard
1980). For very gently shelving beaches such as obtain in many nearshore zones, the
reflection is negligible as regards its effect on shaping and erosive processes. Hence,
unidirectional models seem to suffice in such circumstances.

Finally, we remark that when choosing the depth parameter θ , it is a good idea
if it is taken well inside the interval [0, 1]. While the horizontal velocity does not
appear in the unidirectional model, a formal corollary of its derivation is a prediction
of the horizontal velocity at the depth 1 − θ2. This is comprised of the formula (2.8)
expressing the horizontal velocity in terms of the functions A, B,C, D and E together
with the forms (2.7) determined for A and B and those for C, D and E . It is hard to
measure the horizontal velocity very close to the free surface, while in actual fact,
there is essentially zero velocity on the bottom because of the viscous boundary layer.
Typical velocity measurements in laboratory and field situations are made somewhere
in the middle of the water column.
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