
J Nonlinear Sci (2018) 28:423–442
https://doi.org/10.1007/s00332-017-9413-2

Periodic Solution and Stationary Distribution of
Stochastic Predator–Prey Models with Higher-Order
Perturbation

Qun Liu1,2 · Daqing Jiang1,3,4

Received: 21 November 2016 / Accepted: 15 September 2017 / Published online: 22 September 2017
© Springer Science+Business Media, LLC 2017
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1 Introduction

Recently, the dynamics of predator–prey models have been extensively studied due
to their theoretical and practical significance and the investigation of the predator–
prey system has long been and will continue to be one of the most interesting hot
topics in both ecology and mathematical biology (see e.g. Jia and Xue 2016; Xu et al.
2016; Freedman1980). The deterministic predator–preymodelwith general functional
response can be expressed as follows

{ dx
dt = r1x

(
1 − x

K

)− f (x)y,

dy
dt = y[−r2 − ay + m f (x)],

(1.1)

where x = x(t) and y = y(t) represent the biomass densities of the prey and predator
at time t , respectively, the parameter r1 is the intrinsic growth rate of the prey in
the absence of the predator, r2 is the death rate of the predator in the absence of the
prey, K is the environmental carrying capacity of the prey, a is the density-dependent
coefficient of the predator, m denotes the conversion rate of eaten prey into new
predator and f is a nonlinear functional response function. The parameters involved
in system (1.1) are assumed to be positive constants. The functional response function
f : R+ → R+ is generally assumed to satisfy

f is continuously differentiable, (H1)

f (0) = 0, f (x) > 0 for x > 0. (H2)

However, as far as we know, both environmental fluctuations and demographic
randomness are important components in an ecosystem (see e.g. Gard 1984, 1986).
May (2001) has revealed that due to continuous fluctuations in the environment, the
birth rates, death rates, carrying capacities, competition coefficients and other param-
eters involved in the system should exhibit random fluctuation to a greater or lesser
extent. Hence, the deterministic predator–prey model has some limitations to predict
the future dynamics accurately and the stochastic one can make it (see e.g. Zhao and
Yuan 2016; Liu et al. 2016; Zhang et al. 2015). Motivated by this, in this paper, we
introduce the higher-order perturbation into system (1.1) because the random pertur-
bation may be dependent on square of variables x and y, respectively and hence we
obtain the following stochastic predator–prey model with higher-order perturbation

⎧⎨
⎩ dx =

[
r1x

(
1 − x

K

)
− f (x)y

]
dt + σ11xdB11(t) + σ12x

2dB12(t),

dy = y[−r2 − ay + m f (x)]dt + σ21ydB21(t) + σ22y2dB22(t),
(1.2)

where Bi j (t) are mutually independent standard Brownian motions, σ 2
i j > 0 are the

intensities of the white noise, i, j = 1, 2.
For biological reality, we assume that f (x) satisfies H1 and H2. Again, for the sake

of clarity, we make two further classifications of assumptions for the generic nature
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f ∈ C2([0,+∞); (0,+∞)) and
f (x)

x
≤ c1 for any x ∈ (0,+∞), where c1 > 0.

(H3)

f ′′(x) ≥ c2 for any x ∈ (0,+∞),where c2 is a constant. (H4)

Note that the function f includes some special functional responses.

(i) Lotka–Volterra type or Holling type I:

f (x) = nx,

where n > 0 is a constant.

(ii) Holling type II:

f (x) = nx

a + x
,

where n > 0 and a > 0 are constants and a is called the half-saturation constant.

(iii) Generalized Holling type III or sigmoidal:

f (x) = nx2

ax2 + bx + 1
,

where n and a are positive constants and b is a constant.When b = 0, it is the so-called
Holling type III response function. When b > −2

√
a (so that ax2+bx +1 > 0 for all

x ≥ 0), it is called the generalized Holling type III or sigmoidal functional response.

(iv) Generalized Holling type IV or Monod-Haldane:

f (x) = nx

ax2 + bx + 1
,

where n and a are positive constants and b is a constant. When b = 0, it is called the
Holling type IV functional response.
There are still some other types of functional response such as:

f (x) = 1 − e−λx , λ > 0 (IvIev functional response),

f (x) = arctan x .

On the other hand, it is well known that biological populations encounter fluctuations
that occur in a more or less periodic fashion, due to the seasonal effects of weather
condition, food supplies, mating habits, individual lifecycle, hunting and harvesting,
etc., the birth rate, the death rate of the population and other parameters will exhibit
a more or less periodicity. Hence, it is interesting to investigate the dynamics of
population models with periodic environmental changes. However, to the best of our
knowledge, there has been no result related periodic solutions of predator–preymodels
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with higher-order perturbation. In this paper, corresponding to system (1.2), we shall
consider the following nonautonomous periodic system

⎧⎨
⎩ dx =

[
r1(t)x

(
1 − x

K

)
− f (x)y

]
dt + σ11(t)xdB11(t) + σ12(t)x

2dB12(t),

dy = y[−r2(t) − a(t)y + m(t) f (x)]dt + σ21(t)ydB21(t) + σ22(t)y2dB22(t),

(1.3)

where the parameter functions ri (t), a(t), m(t) and σi j (t) are positive and continuous
functions of period T and T is a positive constant, i, j = 1, 2. One aim of this paper
is to establish sufficient conditions for the existence of nontrivial positive periodic
solutions to system (1.3).

Besides the white noise, predator–prey models may be disturbed by the colored
noise, namely the telegraph noise which can make the system switch from one envi-
ronmental regime to another (Luo and Mao 2007). Now we take a further step by
considering the telegraph noise (Luo and Mao 2007; Takeuchi et al. 2006). The tele-
graph noise can be illustrated as a switching between two or more environmental
regimes which differ by factors such as humidity and temperature (Du et al. 2004;
Slatkin 1978). For example, the growth rate for some fish in dry season will be much
different from it in rainy season. The switching between environmental regimes is
often memoryless and the waiting time for the next switch follows the exponential
distribution (Settati and Lahrouz 2014). Thus, the regime switching can be modeled
by a continuous time Markov chain (r(t))t≥0 taking values in a finite state space
S = {1, . . . , N }. Hence system (1.2) with regime switching takes the following form⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx=
[
r1(r(t))x

(
1− x

K

)
− f (x)y

]
dt + σ11(r(t))xdB11(t)

+ σ12(r(t))x2dB12(t),

dy = y[−r2(r(t)) − a(r(t))y + m(r(t)) f (x)]dt + σ21(r(t))ydB21(t)

+ σ22(r(t))y2dB22(t).

(1.4)

Since stochastic system (1.4) is perturbed by higher-order perturbation under regime
switching, the existence of ergodic stationary distribution is an important question.
However, to the best of our knowledge, there has been no result related this. In the
present paper, we attempt to do some work in this field to fill the gap. The theory we
used is developed by Zhu and Yin (2007). This method has been utilized by many
authors (see e.g. Settati and Lahrouz 2014; Li et al. 2011; Zu et al. 2015). Studying
such a problem is meaningful and challenging. The key difficulty is how to construct
a suitable stochastic Lyapunov function and a bounded domain which is a subset of
R
2+ = {x = (x1, x2) ∈ R

2 : xi > 0, i = 1, 2}. Thus, the other aim of this paper is to
establish sufficient conditions for the existence of an ergodic stationary distribution
of solutions to the model (1.4).

The organization of this paper is as follows. In Sect. 2, we shall recall some fun-
damental theory and present two theorems concerning the existence and uniqueness
of global positive solutions to systems (1.3) and (1.4), respectively. In Sect. 3, for the

123



J Nonlinear Sci (2018) 28:423–442 427

system (1.3), we show that system (1.3) has a nontrivial positive T -periodic solution.
In Sect. 4, for the system (1.4), we establish sufficient conditions for positive recur-
rence and the existence of an ergodic stationary distribution to the solutions. Finally,
some concluding remarks are presented to end this paper.

2 Preliminaries

In this section, we shall introduce some notations and lemmas which will be used later.
Throughout this paper, unless otherwise specified, let (�,F , {Ft }t≥0,P) be a com-

plete probability space with a filtration {Ft }t≥0 satisfying the usual conditions (i.e., it
is increasing and right continuous while F0 contains all P-null sets) and let Bi j (t) be
mutually independent standard Brownian motions defined on the complete probabil-
ity space, i, j = 1, 2. Denote R

n+ = {(x1, . . . , xn) ∈ R
n : xi > 0, i = 1, . . . , n}

and Zn×n = {A = (ai j )n×n : ai j ≤ 0, i 	= j}. Let r(t), t ≥ 0 be a right-
continuous Markov chain on the probability space (�,F , {Ft }t≥0,P) taking values
in a finite state space S = {1, . . . , N }. For any vector g = (g(1), . . . , g(N )),
let ĝ = mink∈S{g(k)} and ğ = maxk∈S{g(k)}. If f is an integrable function on
[0,+∞), define 〈 f 〉T = 1

T

∫ T
0 f (s)ds. If f is a bounded function on [0,+∞),

define f u = supt∈[0,+∞) f (t), f l = inf t∈[0,+∞) f (t). Assume that the generator
Γ = (γi j )N×N of the Markov chain is given by

P{r(t + �t) = j |r(t) = i} =
{

γi j �t + o(�t), if i 	= j,
1 + γi i �t + o(�t), if i = j,

where �t > 0, γi j ≥ 0 is the transition rate from i to j if i 	= j , while
∑N

i=1 γi j = 0.
In this paper, we assume that γi j > 0 for i 	= j . Suppose further that the Markov
chain r(t) is irreducible, which implies that Markov chain r(t) has a unique stationary
distribution π = (π1, . . . , πN ) which can be determined by the equation

πΓ = 0

subject to

N∑
h=1

πh = 1 and πh > 0 for any h ∈ S.

We assume that Brownian motions Bi j (·) are independent of the Markov chain r(·),
ri (k), a(k), m(k) and σi j (k) are all positive constants for each k ∈ S, i, j = 1, 2.

For the sake of convenience, we introduce some results concerning periodicMarkov
processes. For more details, we refer the reader to Khasminskii (2012).

Definition 2.1 A stochastic process ξ(t) = ξ(t, ω) (−∞ < t < +∞) is said to be
periodic with period T if for every finite sequence of numbers t1, . . . , tn the joint
distributions of random variables ξ(t1 + h), . . . , ξ(tn + h) are independent of h; here
h = kT , k = ±1,±2, . . .
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Khasminskii (2012) showed that a Markov process z(t) is T -periodic if and only if
its transition probability function is T -periodic and the function P0(t, A) = P{X (t) ∈
A} satisfies the equation

P0(s, A) =
∫
Rd

P0(s, dz)P(s, z, s + T, A) ≡ P0(s + T, A),

here A ∈ B and B is a σ -algebra.
Consider the following equation

X (t) = X (t0) +
∫ t

t0
b(s, X (s))ds +

k∑
r=1

∫ t

t0
σr (s, X (s))dBr (s), X ∈ R

d , (2.1)

where the vectors b(s, z), σ1(s, z), . . . , σk(s, z) (s ∈ [t0, T ], z ∈ R
d) are continuous

functions of (s, z) and satisfy the following conditions

|b(s, z) − b(s, z̄)| +
k∑

r=1

|σr (s, z) − σr (s, z̄)| ≤ B|z − z̄|,

|b(s, z)| +
k∑

r=1

|σr (s, z)| ≤ B(1 + |z|), (2.2)

in every cylinder I ×U , where B is a constant and I is a subset of R+. Let C2 denote
the family of functions on I × U which are twice continuously differentiable with
respect to z1, . . . , zd and continuously differentiable with respect to t .

Lemma 2.1 Suppose that the coefficients of (2.1) are T -periodic in t and satisfy the
condition (2.2) in every cylinder I ×U, and suppose further that there exists a function
V (t, z) ∈ C2 in I ×U which is T -periodic in t and satisfies the following conditions:

(i) inf|z|>r
V (t, z) → ∞ as r → ∞; (2.3)

(ii) LV (t, z) ≤ −1 ontheoutsideofsomecompactset, (2.4)

where the operator L is defined by

L = ∂

∂t
+

d∑
i=1

bi (t, z)
∂

∂zi
+ 1

2

d∑
i, j=1

ai j (t, z)
∂2

∂zi∂z j
, ai j =

k∑
r=1

σ i
r (t, z)σ

j
r (t, z).

Then there exists a solution of (2.1) which is a T -periodic Markov process.

The Lemma 2.1 has been proved by Khasminskii in his monograph (Khasminskii
2012), Chapter 3, p. 80. Readers can refer to this book for details.

Remark 2.1 According to the proof of Lemma 2.1, the linear growth condition is only
used to guarantee the existence and uniqueness of the solution to Eq. (2.1).
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Now we are in the position to give some results on the stationary distribution for
stochastic differential equations under regime switching. For more details, we refer
the reader to Zhu and Yin (2007). Let (X (t), r(t)) be the diffusion process described
by the following equation

dX (t) = b(X (t), r(t))dt + σ(X (t), r(t))dB(t), X (0) = x0, r(0) = r, (2.5)

where B(·) and r(·) are the d-dimensional Brownian motion and the right-continuous
Markov chain in the above discussion, respectively, and b(·, ·) : R

n × S → R
n ,

σ(·, ·) : Rn × S → R
n×d satisfying σ(x, k)σ T (x, k) = (di j (x, k)). For each k ∈ S,

let V (·, k) be any twice continuously differentiable function, the operator L can be
defined by

LV (x, k) =
n∑

i=1

bi (x, k)
∂V (x, k)

∂xi
+ 1

2

n∑
i, j=1

di j (x, k)
∂2V (x, k)

∂xi∂x j
+

N∑
l=1

γklV (x, l).

The following lemma gives a criterion for the ergodic stationary distribution of the
solution (X (t), r(t)) to system (2.5).

Lemma 2.2 (Zhu and Yin 2007) If the following conditions are satisfied:

(i) γi j > 0 for any i 	= j ;
(ii) for each k ∈ S, D(x, k) = (di j (x, k)) is symmetric and satisfies

�|ζ |2 ≤ 〈D(x, k)ζ, ζ 〉 ≤ �−1|ζ |2 forall ζ ∈ R
n,

with some constant � ∈ (0, 1] for all x ∈ R
n;

(iii) there exists a nonempty open setD with compact closure, satisfying that, for each
k ∈ S there is a nonnegative function V (·, k) : DC → R such that V (·, k) is
twice continuously differentiable and that for some α > 0,

LV (x, k) ≤ −α for any (x, k) ∈ DC × S,

then (X (t), r(t)) of system (2.5) is ergodic and positive recurrent. That is to
say, there exists a unique stationary distribution μ(·, ·) such that for any Borel
measurable function f (·, ·) : Rn × S → R satisfying

N∑
k=1

∫
Rn

| f (x, k)|μ(dx, k) < +∞,

we have

P

{
lim

t→+∞
1

t

∫ t

0
f (X (s), r(s))ds =

N∑
k=1

∫
Rn

f (x, k)μ(dx, k)

}
= 1.
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Under the above assumptions of f (x) and using the same method as in Li et al.
(2011), we can obtain that stochastic systems (1.3) and (1.4) has a unique global
positive solution, respectively. Since the proofs are standard, we present the following
two theorems concerning the existence and uniqueness of global positive solutions for
stochastic systems (1.3) and (1.4) without proof.

Theorem 2.1 For any given initial value (x(0), y(0)) ∈ R
2+, the stochastic system

(1.3) has a unique solution (x(t), y(t)) on t ≥ 0 and the solution will remain in R
2+

with probability one, that is to say, (x(t), y(t)) ∈ R
2+ for all t ≥ 0 almost surely (a.s.).

Theorem 2.2 For any given initial value (x(0), y(0), r(0)) ∈ R
2+ × S, there exists

a unique solution (x(t), y(t), r(t)) of the stochastic system (1.4) on t ≥ 0 and the
solutionwill remain inR2+×Swith probability one, namely, (x(t), y(t), r(t)) ∈ R

2+×S

for all t ≥ 0 almost surely (a.s.).

3 Existence of Nontrivial Positive T -Periodic Solution of System (1.3)

In this section, we shall show that system (1.3) admits a nontrivial positive T -periodic
solution. We first give the following assumption.

〈λ〉T > 0, where λ(t) = f (K )m(t) − r2(t) − σ 2
21(t)

2
(H5)

−Kdσ 2
11(t)

2
− K 3dσ 2

12(t)

and d is a positive constant satisfying the condition of Theorem 3.1.

Theorem 3.1 Let Assumptions (H1)–(H5) hold, if r l1 > K 2(σ 2
12)

u and there is a
constant d such that the following condition holds

d > max

{
0,

(
c(t)r1(t) − Kc2m(t)

2

r1(t) − K 2σ 2
12(t)

)u}
,

where

c(t) = f ′(K )
∫ t+T
t e

∫ t
s r1(τ )dτm(s)ds

1 − e− ∫ T0 r1(τ )dτ
.

then system (1.3) admits a nontrivial positive T -periodic solution.

Remark 3.1 It is easy to check that c(t) is a T -periodic function and satisfies the
following equation

c′(t) − r1(t)c(t) + f ′(K )m(t) = 0.
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Proof In view of Theorem2.1, one can see that for any initial value (x(0), y(0)) ∈ R
2+,

system (1.3) has a unique global positive solution (x(t), y(t)), so we can take R2+ as
the whole space. It is clear that coefficients of system (1.3) satisfy the condition (2.2).
By Lemma 2.1, in order to prove Theorem 3.1, it suffices to find aC2-function V (t, x)
which is T -periodic in t and a closed set U ⊂ R

2+ such that (2.3) and (2.4) hold.
Define a C2-function

V (t, x, y) = M[− ln y − c(t)x + d
(
x − K − K ln

x

K

)
+ (σ 2

22)
u

2al
y

+ au + Kc1d

rl2
y + Kc(t) − ω(t)] + x p + y p,

where 0 < p < 1 is a constant and M > 0 is a constant satisfying −M〈λ〉T +
f u1 + f u2 ≤ −2, the functions f1, f2 and T -periodic functions ω ∈ C1(R+;R) will
be determined later. It is easy to check that V (t, x, y) is T -periodic in t and satisfies
(2.3).

Next, we shall find a closed set U ⊂ R
2+ such that LV (t, x, y) ≤ −1 for any

(x, y) ∈ R
2+\U . Denote V1(x, y) = − ln y− c(t)x +d(x − K − K ln x

K )+ (σ 2
22)

u

2al
y+

au+Kc1d
rl2

y + Kc(t), V2(x, y) = x p + y p. Applying the Itô’s formula (Mao and Yuan

2006) to V1(x, y), one can get that

LV1 = −m(t) f (x) + r2(t) + σ 2
21(t)

2
+ a(t)y + σ 2

22(t)

2
y2

− c′(t)(x − K + K ) − c(t)r1(t)x
(
1 − x

K

)
+ c(t) f (x)y + d

(
−r1(t)

K
(x − K )2 − f (x)y + K

f (x)

x
y

+ K

2
σ 2
11(t) + K

2
σ 2
12(t)(x − K + K )2

)

− (σ 2
22)

u

2al
r2(t)y − (σ 2

22)
u

2al
a(t)y2 + (σ 2

22)
u

2al
m(t) f (x)y

− (au + Kc1d)

rl2
r2(t)y − a(t)(au + Kc1d)

rl2
y2

+ m(t)(au + Kc1d)

rl2
f (x)y + Kc′(t)

= −m(t) f (x) + r2(t) + σ 2
21(t)

2
+ a(t)y + 1

2

(
σ 2
22(t)

− (σ 2
22)

ua(t)

al

)
y2 − c′(t)(x − K ) − c(t)r1(t)

× x
(
1 − x

K

)
+ c(t) f (x)y + d

(
−r1(t)

K
(x − K )2
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− f (x)y + K
f (x)

x
y + K

2
σ 2
11(t) + K

2
σ 2
12(t)(x

− K + K )2
)

− (σ 2
22)

u

2al
r2(t)y + (σ 2

22)
u

2al
m(t) f (x)y

− (au + Kc1d)

rl2
r2(t)y − a(t)(au + Kc1d)

rl2
y2

+ m(t)(au + Kc1d)

rl2
f (x)y

≤ −m(t) f (x) + r2(t) + σ 2
21(t)

2
+ a(t)y − c′(t)(x − K )

− c(t)r1(t)x(1 − x

K
) + c(t) f (x)y

+ d(−r1(t)

K
(x − K )2 + Kc1y + K

2
σ 2
11(t)

+ Kσ 2
12(t)(x − K )2 + K 3σ 2

12(t)) + m(t)(σ 2
22)

u

2al
f (x)y

− (au + Kc1d)

rl2
r2(t)y + m(t)(au + Kc1d)

rl2
f (x)y

≤ − f (K )m(t) + r2(t) + σ 2
21(t)

2
+ Kdσ 2

11(t)

2

+ K 3dσ 2
12(t) +

[
− m(t) f (x) + f (K )m(t)

− c′(t)(x − K ) + c(t)r1(t)

K
x(x − K ) − dr1(t)

K
(x − K )2

+ Kdσ 2
12(t)(x − K )2

]
+ [c(t) + m(t)(σ 2

22)
u

2al

+ m(t)(au + Kc1d)

rl2
] f (x)y

= − f (K )m(t) + r2(t) + σ 2
21(t)

2
+ Kdσ 2

11(t)

2

+ K 3dσ 2
12(t) + F(x, t) +

[
c(t) + m(t)(au + Kc1d)

rl2

+ m(t)(σ 2
22)

u

2al

]
f (x)y,

where

F(x, t) = −m(t) f (x) + f (K )m(t) − c′(t)(x − K )

+ c(t)r1(t)

K
x(x − K ) − dr1(t)

K
(x − K )2

+ Kdσ 2
12(t)(x − K )2
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and in the first inequality, we have used the fact (a+b)2 ≤ 2a2+2b2 for any a, b ∈ R.
Then

∂F(x, t)

∂x
= −m(t) f ′(x) − c′(t) + c(t)r1(t)

K
(2x − K )

− 2dr1(t)

K
(x − K ) + 2Kdσ 2

12(t)(x − K ),

∂2F(x, t)

∂x2
= −m(t) f ′′(x) + 2c(t)r1(t)

K
− 2dr1(t)

K
+ 2Kdσ 2

12(t).

Let

∂F(x, t)

∂x

∣∣∣∣
x=K

= 0,

we have

c′(t) − r1(t)c(t) + f ′(K )m(t) = 0.

On the other hand, we have

∂2F(x, t)

∂x2
≤ −m(t)c2 + 2c(t)r1(t)

K
− d(

2r1(t)

K
− 2Kσ 2

12(t)) < 0,

where the inequality holds due to the Assumption (H4) and the condition of Theo-
rem 3.1. Then we have

F(x, t) ≤ F(K , t) = 0.

Hence

LV1 ≤ − f (K )m(t) + r2(t) + σ 2
21(t)

2
+ Kdσ 2

11(t)

2
+ K 3dσ 2

12(t)

+[c(t) + m(t)(au + Kc1d)

rl2
+ m(t)(σ 2

22)
u

2al
]c1xy

= −λ(t) + [c(t) + m(t)(au + Kc1d)

rl2
+ m(t)(σ 2

22)
u

2al
]c1xy, (3.1)

where

λ(t) = f (K )m(t) − r2(t) − σ 2
21(t)

2
− Kdσ 2

11(t)

2
− K 3dσ 2

12(t).

Define the T -periodic function ω(t) satisfying

ω′(t) = λ(t) − 〈λ〉T . (3.2)
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Then combining (3.1) and (3.2), we obtain

L(V1 + ω(t)) ≤ −〈λ〉T +
[
cu + mu(au + Kc1d)

rl2
+ mu(σ 2

22)
u

2al

]
c1xy. (3.3)

Furthermore, we get

LV2 = px p−1
[
r1(t)x

(
1 − x

K

)
− f (x)y

]
+ p(p − 1)

2
σ 2
11(t)x

p

+ p(p − 1)

2
σ 2
12(t)x

p+2 + py p[−r2(t) − a(t)y

+m(t) f (x)] + p(p − 1)

2
σ 2
21(t)y

p + p(p − 1)

2
σ 2
22(t)y

p+2

≤ − p(1 − p)

2
(σ 2

12)
l x p+2 + pru1 x

p − p(1 − p)

2
(σ 2

22)
l y p+2

− prl2y
p + pc1m

uxy p. (3.4)

Combining (3.3) and (3.4), one can obtain that

LV = MLV1 + LV2

≤ M

{
−〈λ〉T +

[
cu + mu(au + Kc1d)

rl2
+ mu(σ 2

22)
u

2al

]
c1xy

}

− p(1 − p)

2
(σ 2

12)
l x p+2 + pru1 x

p − p(1 − p)

2
(σ 2

22)
l y p+2

− prl2y
p + pc1m

uxy p

= f1(x) + f2(y) + M

{
−〈λ〉T +

[
cu + mu(au + Kc1d)

rl2

+ mu(σ 2
22)

u

2al

]
c1xy

}
+ pc1m

uxy p,

where

f1(x) = − p(1 − p)

2
(σ 2

12)
l x p+2 + pru1 x

p

and

f2(y) = − p(1 − p)

2
(σ 2

22)
l y p+2 − prl2y

p.
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Denote

G(x, y) = f1(x) + f2(y) + M{−〈λ〉T +
[
cu + mu(au + Kc1d)

rl2

+ mu(σ 2
22)

u

2al

]
c1xy} + pc1m

uxy p.

Then

G(x, y) ≤
⎧⎨
⎩
G(+∞, y) → −∞, as x → +∞,

G(x,+∞) → −∞, as y → +∞,

f u1 + f u2 − M〈λ〉T ≤ −2, as x → 0+ or y → 0+.

Thus we can take 0 < ε < 1 sufficiently small such that

LV (t, x, y) ≤ −1 for any (x, y) ∈ R
2+\U,

where U = [ε, 1
ε
] × [ε, 1

ε
]. Therefore (2.4) in Lemma 2.1 is also satisfied. In view of

Lemma 2.1, one can see that system (1.3) has a nontrivial positive T -periodic solution.
This completes the proof. ��

4 Positive Recurrence and Ergodic Properties of System (1.4)

In this section, we shall establish sufficient conditions for positive recurrence and the
existence of an ergodic stationary distribution of system (1.4). Positive recurrence
and the existence of an ergodic stationary distribution in the context of predator–prey
systems mean that the predator and prey species can be persistent and coexistent in
the long term. Firstly, motivated by Remark 3.1, we shall present a lemma as follows.

Lemma 4.1 The following linear equation

f ′(K )m(k) − r1(k)c(k) +
∑
l∈S

γklc(l) = 0 (4.1)

has a solution (c(1), . . . , c(N ))T .

Proof System (1.4) can be rewritten in the following form

AC = D, (4.2)

where C ∈ R
N , D = ( f ′(K )m(1), . . . , f ′(K )m(N ))T and

A =

⎡
⎢⎢⎢⎣
r1(1) − γ11 −γ12 · · · −γ1N

−γ21 r1(2) − γ22 · · · −γ2N
...

...
...

...

−γN1 −γN2 · · · r1(N ) − γNN

⎤
⎥⎥⎥⎦ .
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Obviously, A ∈ ZN×N . For each k = 1, . . . , N , consider the leading principal sub-
matrix

Ak =

⎡
⎢⎢⎢⎣
r1(1) − γ11 −γ12 · · · −γ1k

−γ21 r1(2) − γ22 · · · −γ2k
...

...
...

...

−γk1 −γk2 · · · r1(k) − γkk

⎤
⎥⎥⎥⎦ .

Clearly, Ak ∈ Zk×k . Additionally each row of submatrix Ak has the sum

r1(i) −
k∑
j=1

γi j = r1(i) +
N∑

j=k+1

γi j ≥ r1(i) > 0, i = 1, . . . , k.

Following Lemma 5.3 in Mao and Yuan (2006), we have det Ak > 0, k = 1, . . . , N .
That is to say, we have shown that all the leading principal minors of A are positive.
Using Theorem 2.10 in Mao and Yuan (2006) leads to that A is a nonsingular M-
matrix and for the vector D ∈ R

N , the linear Equation (4.2) has a solution C =
(c(1), . . . , c(N ))T . This completes the proof. ��

Moreover, we need the following assumption.

λ :=
∑
k∈S

πkλk > 0, whereλk = f (K )m(k) − r2(k) − σ 2
21(k)

2
(H6)

− Kd1σ 2
11(k)

2
− K 3d1σ

2
12(k)

and d1 is a positive constant satisfying the condition of Theorem 4.1.

Theorem 4.1 Let Assumptions (H1)–(H4) and (H6) hold, if r̂1 > K 2σ̆ 2
12 and there

exists a constant d1 such that the following condition holds

d1 > max
{
0,maxk∈S

{
c(k)r1(k)− Kc2m(k)

2
r1(k)−K 2σ 2

12(k)

}}
,

where c(k) is the solution of Eq. (4.1), then for any given initial value (x(0), y(0), r(0))
∈ R

2+ × S, the solution (x(t), y(t), r(t)) of system (1.4) is positive recurrent and has
a unique ergodic stationary distribution μ(·, ·) in R2+ × S.

Proof In order to prove Theorem 4.1, it suffices to verify conditions (i), (ii) and (iii)
in Lemma 2.2 hold. Assumption γi j > 0 for i 	= j in Sect. 2 shows that the condition
(i) holds. Now we prove the condition (ii). It is easy to see that
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2∑
i, j=1

ai j (x, y, k)ζi ζ j = (
σ11(k)xζ1 σ12(k)x2ζ1 σ21(k)yζ2 σ22(k)y2ζ2

)
⎛
⎜⎜⎝

σ11(k)xζ1
σ12(k)x2ζ1
σ21(k)yζ2
σ22(k)y2ζ2

⎞
⎟⎟⎠

= (σ 2
11(k)x

2 + σ 2
12(k)x

4)ζ 2
1 + (σ 2

21(k)y
2 + σ 2

22(k)y
4)ζ 2

2

≥ M1‖ζ‖2 for any (x, y, k) ∈ DC × S, ζ = (ζ1, ζ2) ∈ R
2,

where M1 = min{σ 2
11(k)x

2 + σ 2
12(k)x

4, σ 2
21(k)y

2 + σ 2
22(k)y

4}. This implies that the
condition (ii) in Lemma 2.2 is satisfied.

Now we are in the position to verify the condition (iii) in Lemma 2.2.Define a
C2-function V : R2+ × S → R as follows

V (x, y, k) = P

[
− ln y − c(k)x + d1

(
x − K − K ln

x

K

)
+ σ̆ 2

22

2â
y

+ ă + Kc1d1
r̂2

y + Kc(k) − ωk

]
+ x p + y p,

where 0 < p < 1 is a constant and P > 0 is a constant satisfying−Pλ+gu1+gu2 ≤ −2,
and functions g1, g2 are similar to functions f1 and f2 in the proof of Theorem 3.1,
ω := (ω1, . . . , ωN )T will be determined later. It is not difficult to check that there is
a unique minimum value point (x0(k), y0(k), k) of V (x, y, k).

Define a nonnegative C2-function

V̂ (x, y, k) = V (x, y, k) − V (x0(k), y0(k), k)

= P

[
− ln y − c(k)x + d1

(
x − K − K ln

x

K

)
+ σ̆ 2

22

2â
y

+ ă + Kc1d1
r̂2

y + Kc(k) − ωk

]
+ x p + y p

− V (x0(k), y0(k), k).

Denote V1 = − ln y−c(k)x+d1(x−K −K ln x
K )+ σ̆ 2

22
2â y+ ă+Kc1d1

r̂2
y+Kc(k)−ωk ,

V2 = x p + y p − V (x0(k), y0(k), k). An application of the generalized Itô’s formula
(Mao and Yuan 2006) to V1(x, y, k), we have

LV1 = −m(k) f (x) + r2(k) + σ 2
21(k)

2
+ a(k)y + σ 2

22(k)

2
y2

− c(k)r1(k)x
(
1 − x

K

)
+ c(k) f (x)y

−
∑
l∈S

γklc(l)(x − K + K ) + d1

(
−r1(k)

K
(x − K )2

− f (x)y + K
f (x)

x
y + K

2
σ 2
11(k) + K

2
σ 2
12(k)
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× (x − K + K )2
)

− σ̆ 2
22

2â
r2(k)y − σ̆ 2

22

2â
a(k)y2 + σ̆ 2

22

2â
m(k) f (x)y

− ă + Kc1d1
r̂2

r2(k)y − ă + Kc1d1
r̂2

a(k)y2

+ m(k)(ă + Kc1d1)

r̂2
f (x)y + K

∑
l∈S

γklc(l) −
∑
l∈S

γklωl

= −m(k) f (x) + r2(k) + σ 2
21(k)

2
+ a(k)y + 1

2

(
σ 2
22(k) − σ̆ 2

22a(k)

â

)
y2

− c(k)r1(k)x
(
1 − x

K

)
+ c(k) f (x)y

−
∑
l∈S

γklc(l)(x − K ) + d1

(
−r1(k)

K
(x − K )2

− f (x)y + K
f (x)

x
y + K

2
σ 2
11(k) + K

2
σ 2
12(k)

× (x − K + K )2
)

− σ̆ 2
22

2â
r2(k)y + σ̆ 2

22

2â
m(k) f (x)y

− ă + Kc1d1
r̂2

r2(k)y − ă + Kc1d1
r̂2

a(k)y2

+ m(k)(ă + Kc1d1)

r̂2
f (x)y −

∑
l∈S

γklωl

≤ −m(k) f (x) + r2(k) + σ 2
21(k)

2
+ a(k)y − c(k)r1(k)x

(
1 − x

K

)
+ c(k) f (x)y −

∑
l∈S

γklc(l)(x − K )

+ d1

(
−r1(k)

K
(x − K )2 + Kc1y + K

2
σ 2
11(k)

+ Kσ 2
12(k)(x − K )2

+ K 3σ 2
12(k)

)
+ m̆σ̆ 2

22

2â
f (x)y

− ă + Kc1d1
r̂2

r2(k)y + m(k)(ă + Kc1d1)

r̂2
f (x)y −

∑
l∈S

γklωl

≤ − f (K )m(k) + r2(k) + σ 2
21(k)

2
+ Kd1σ 2

11(k)

2

+ K 3d1σ
2
12(k) +

[
− m(k) f (x) + f (K )m(k)

+ c(k)r1(k)

K
x(x − K ) − d1r1(k)

K
(x − K )2
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+ Kd1σ
2
12(k)(x − K )2 −

∑
l∈S

γklc(l)(x − K )

]

+
(
c̆ + m̆σ̆ 2

22

2â
+ m̆(ă + Kc1d1)

r̂2

)
f (x)y −

∑
l∈S

γklωl

= − f (K )m(k) + r2(k) + σ 2
21(k)

2
+ Kd1σ 2

11(k)

2

+ K 3d1σ
2
12(k) −

∑
l∈S

γklωl + F(x, k)

+
(
c̆ + m̆σ̆ 2

22

2â
+ m̆(ă + Kc1d1)

r̂2

)
f (x)y,

where

F(x, k) = −m(k) f (x) + f (K )m(k) + c(k)r1(k)

K
x(x − K )

− d1r1(k)

K
(x − K )2 + Kd1σ

2
12(k)(x − K )2

−
∑
l∈S

γklc(l)(x − K )

and in the first inequality, we have used the fact (a+b)2 ≤ 2a2+2b2 for any a, b ∈ R.
Then

∂F(x, k)

∂x
= −m(k) f ′(x) + c(k)r1(k)

K
(2x − K ) − 2d1r1(k)

K
(x − K )

+ 2Kd1σ
2
12(k)(x − K ) −

∑
l∈S

γklc(l),

∂2F(x, k)

∂x2
= −m(k) f ′′(x) + 2c(k)r1(k)

K
− 2d1r1(k)

K
+ 2Kd1σ

2
12(k).

Let

∂F(x, k)

∂x
|x=K = 0,

we get

∑
l∈S

γklc(l) = − f ′(K )m(k) + r1(k)c(k).

On the other hand, we obtain

∂2F(x, k)

∂x2
≤ −m(k)c2 + 2c(k)r1(k)

K
− d1(

2r1(k)

K
− 2Kσ 2

12(k)) < 0,
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where the inequality holds due to the Assumption (H4) and the condition of Theo-
rem 4.1. Therefore

F(x, k) ≤ F(K , k) = 0.

Thus

LV1 ≤ − f (K )m(k) + r2(k) + σ 2
21(k)

2
+ Kd1σ 2

11(k)

2
+ K 3d1σ

2
12(k)

+
(
c̆ + m̆σ̆ 2

22

2â
+ m̆(ă + Kc1d1)

r̂2

)
c1xy

−
∑
l∈S

γklωl

= −λk +
(
c̆ + m̆σ̆ 2

22

2â
+ m̆(ă + Kc1d1)

r̂2

)
c1xy −

∑
l∈S

γklωl , (4.3)

where

λk = f (K )m(k) − r2(k) − σ 2
21(k)

2
− Kd1σ 2

11(k)

2
− K 3d1σ

2
12(k).

Since the generator matrix Γ is irreducible, let ω = (ω1, . . . , ωN )T be the solution of
the following Poisson system (see Khasminskii et al. 2007, Lemma 2.3)

Γ ω =
N∑

h=1

πhλh1 − λ,

where λ = (λ1, . . . , λN )T . This implies that

∑
l∈S

γklωl + λk =
∑
k∈S

πkλk = λ.

Substituting this equality into (4.3) gives

LV1 = −λ + (c̆ + m̆σ̆ 2
22

2â
+ m̆(ă + Kc1d1)

r̂2
)c1xy.

Following the proof of the remainder of Theorem 3.1, we can obtain that the solu-
tion (x(t), y(t), r(t)) of system (1.4) is positive recurrent and has a unique ergodic
stationary distribution μ(·, ·) in R2+ × S. This completes the proof. ��
Remark 4.1 Assume that system (1.4) is disturbed only by the white noise, then the
linear equation (4.1) has a unique solution c = m f ′(K )

r1
. And the conditions in Theo-

rem 4.1 become σ 2
12 < r1

K 2 and d > max
{
0,

m f ′(K )−mKc2
2

r1−K 2σ 2
12

}
. In other words, if these
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conditions hold, then for any initial value (x(0), y(0)) ∈ R
2+, the solution (x(t), y(t))

of system (1.2) admits a unique ergodic stationary distribution μ(·) in R2+.

Remark 4.2 From Theorems 3.1 and 4.1, one can find that if the intensities of the
noises are small, then the ergodicity and periodic solution imply that the predator and
prey species can be persistent and coexistent in the long term. Moreover, the existence
of stationary distribution implies stochastic weak stability to some extent.

5 Concluding Remarks

This paper is concerned with two stochastic predator–prey models with general func-
tional response and higher-order perturbation. For the system (1.3) with periodic
coefficients, by using Khasminskii’s theory of periodic solution, we show that sys-
tem (1.3) has a nontrivial positive T -periodic solution. For the system (1.4) disturbed
by both white and telegraph noises, we establish sufficient conditions for positive
recurrence and the existence of an ergodic stationary distribution to the solutions. The
existence of stationary distribution implies stochastic weak stability to some extent.

Some interesting topics deserve further investigation. On the one hand, one may
propose some more realistic but complex models, such as considering the effects of
impulsive perturbations on systems (1.3) and (1.4), respectively. On the other hand,
it is interesting to introduce some other environmental noises into systems (1.3) and
(1.4), such as Lévy noise, Poisson noise and so on and study some other dynamical
properties of these systems. We leave these cases as our future work.
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