
J Nonlinear Sci (2018) 28:269–304
https://doi.org/10.1007/s00332-017-9407-0

On the Quasistatic Limit of Dynamic Evolutions
for a Peeling Test in Dimension One

Giuliano Lazzaroni1 · Lorenzo Nardini2

Received: 17 November 2016 / Accepted: 1 August 2017 / Published online: 17 August 2017
© The Author(s) 2017. This article is an open access publication

Abstract The aim of this paper is to study the quasistatic limit of a one-dimensional
model of dynamic debonding. We start from a dynamic problem that strongly cou-
ples the wave equation in a time-dependent domain with Griffith’s criterion for the
evolution of the domain. Passing to the limit as inertia tends to zero, we find that
the limit evolution satisfies a stability condition; however, the activation rule in Grif-
fith’s (quasistatic) criterion does not hold in general, thus the limit evolution is not
rate-independent.
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1 Introduction

In models that predict the growth of cracks in structures, it is often assumed that
the process is quasistatic. The quasistatic hypothesis is that inertial effects can be
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neglected since the time scale of the external loading is very slow, or equivalently the
speed of the internal oscillations is very large if compared with the speed of loading.
The resulting evolutions are rate-independent, i.e. the system is invariant under time
reparametrisation.

Starting from the scheme proposed in Francfort and Marigo (1998), quasistatic
crack growth has been extensively studied in themathematical literature. The existence
of quasistatic evolutions in fracture mechanics has been proved in several papers
concerning globally minimising evolutions (Dal Maso and Toader 2002; Chambolle
2003; Francfort and Larsen 2003; Dal Maso et al. 2005; Dal Maso and Zanini 2007;
Dal Maso and Lazzaroni 2010; Cagnetti and Toader 2011; Lazzaroni 2011; Crismale
et al. 2016) and vanishing-viscosity solutions (Negri and Ortner 2008; Cagnetti 2008;
Knees et al. 2008, 2010; Lazzaroni and Toader 2011; Artina et al. 2017; Almi 2017;
Crismale and Lazzaroni 2016). We refer to Bourdin et al. (2008) for a presentation
of the variational approach to fracture and to Mielke and Roubíček (2015) for the
relations with the abstract theory of rate-independent systems. These results also show
that quasistatic evolutions may present phases of brutal crack growth (appearing as
time discontinuities in the quasistatic scale). In order to study fast propagations of
cracks, a dynamical analysis is needed, since inertial effects have to be accounted for.

On the other hand, in the case of dynamic fracture, only preliminary existence
results were given (Nicaise and Sändig 2007; Dal Maso and Larsen 2011; Dal Maso
and Lucardesi 2016; Dal Maso et al. 2016). The main difficulty is that the equations of
elastodynamics for the displacement have to be satisfied in a time-dependent domain
(i.e. the body in its reference configuration, minus the growing crack), while the
evolution of the domain is prescribed by a first-order flow rule. The resulting PDE
system is strongly coupled, as in other models of damage or delamination [see, e.g.
Frémond and Nedjar (1996), Bonetti et al. (2005), Bonetti and Bonfanti (2008), Rocca
and Rossi (2014, 2015), Heinemann and Kraus (2015b, a) for viscous flow rules and
Roubíček (2009, 2010, 2013a, b), Larsen et al. (2010), Rossi and Roubíček (2011),
Bartels and Roubíček (2011), Babadjan and Mora (2015), Lazzaroni et al. (2014),
Roubíček and Tomassetti (2015), Maggiani and Mora (2016) and Rossi and Thomas
(2016) for rate-independent evolutions of internal variables].

In few cases, it has been shown that the quasistatic hypothesis is a good approxima-
tion, that is, the dynamic solutions converge to a rate-independent evolution as inertia
tends to zero. This was proved in Roubíček (2013a) and Lazzaroni et al. (2014) for
damage models, including a damping term in the wave equation, and in Dal Maso and
Scala (2014) in the case of perfect plasticity. On the other hand, even in finite dimen-
sion there are examples of singularly perturbed second-order potential-type equations
(where the inertial term vanishes and the formal limit is an equilibrium equation),
such that the dynamic solutions do not converge to equilibria (Nardini 2017). In finite
dimension, if the equations include a friction term whose coefficient tends to zero as
inertia vanishes, then the dynamic evolutions converge to a solution of the equilibrium
equation (Agostiniani 2012).

In this paper we develop a “vanishing inertia” analysis for a model of dynamic
debonding in dimension one. More precisely, we consider a peeling test for a perfectly
flexible thin film initially attached to a rigid substrate; the process is assumed to depend
only on one of the two variables parametrising the film. This model was studied in
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Fig. 1 The curve x �→ (x + h(t, x), u(t, x)) representing the debonding of the film. The displacement
associated to the point x0 is (h(t, x0), u(t, x0))

Dumouchel et al. (2008), Lazzaroni et al. (2012) and Dal Maso et al. (2016) and, as
already observed in Freund (1990, Section 7.4), it is related to dynamic fracture since
it features a coupling between the wave equation, satisfied in the debonded part of the
film, and a flow rule for the evolution of the debonding front.

We now describe themechanical system under consideration and the relatedmathe-
matical problem. In an orthogonal coordinate system (x, y, z), the film is parametrised
on the half plane {(x, y, z) : x ≥ 0, z = 0}. Its deformation at time t ≥ 0 is given
by (x, y, 0) �→ (x+h(t, x), y, u(t, x)). Specifically, the deformed configuration is
parametrised by the scalar functions h and u, while the second component is assumed
to be constant and therefore it will be ignored in the following discussion. See Fig. 1.

The film is partially bonded to the rigid substrate {(x, 0) : x ≥ 0}. In the reference
configuration the debonded region is {(x, 0) : x ≤ �(t)}, where t �→ �(t) is a non-
decreasing function satisfying the initial condition �0 := �(0) > 0. As a consequence,
for x ≥ �(t) we have h(t, x) = u(t, x) = 0. At the endpoint x = 0 the vertical
displacement u(t, 0) is prescribed. Assuming inextensibility, by linear approximation
we obtain

h(t, x) = 1

2

∫ +∞

x
ux (t, ξ)2dξ.

Then the unknowns of the problem are the vertical displacement u and the debonding
front �.

In this work we study the behaviour of this system when the speed of loading and
the initial velocity of the displacement are very small. More precisely, the prescribed
vertical displacement is given by wε(t) := w(εt) where w is a given function and
ε > 0 is a small parameter. The initial vertical displacement and its initial velocity
are, respectively, u0 and εu1, where u0 and u1 are two functions of x satisfying some
suitable assumptions. We use the notation (uε, �ε) to underline the dependence of the
solution on ε. Assuming that the speed of sound is constant and normalised to one,
the problem satisfied by uε is

(uε)t t (t, x) − (uε)xx (t, x) = 0, t > 0, 0 < x < �ε(t), (1.1a)

uε(t, 0) = wε(t), t > 0, (1.1b)

uε(t, �ε(t)) = 0, t > 0, (1.1c)
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uε(0, x) = u0(x), 0 < x < �0, (1.1d)

(uε)t (0, x) = εu1(x), 0 < x < �0. (1.1e)

In the paper we consider a more general dependence of w, u0, and u1 on ε, see (2.1).
The evolution of the debonding front �ε is determined by a criterion involving

the internal energy, i.e. the sum of the potential and the kinetic energy, cf. (2.8).
Specifically, this criterion involves the dynamic energy release rate, which is defined
as a (sort of) partial derivative of the internal energy with respect to the elongation
of the debonded region. We refer to the following section for its definition and for
details on its existence, which was proved in Dal Maso et al. (2016). In this intro-
duction we only stress that the dynamic energy release rate at time t , denoted by
Gε(t), depends only on the debonding speed �̇ε(t) and on the values of uε(s, x) for
s ≤ t .

The flow rule for the evolution of the debonding front is called Griffith’s criterion
and reads as

�̇ε(t) ≥ 0, (1.2a)

Gε(t) ≤ κ(�ε(t)), (1.2b)

�̇ε(t) [Gε(t) − κ(�ε(t))] = 0, (1.2c)

for a.e. t > 0, where κ : [0,+∞) → [c1, c2], 0 < c1 < c2, is the local toughness
of the glue between the film and the substrate and �ε(0) = �0. This criterion is a
consequence of a maximum dissipation principle, see also Dal Maso et al. (2016,
Section 2.2), and is a condition of Kuhn–Tucker type. Indeed, Eq. (1.2c) states that
(1.2a) may hold as a strict inequality only if (1.2b) holds as an equality.

The existence of a unique solution (uε, �ε) in a weak sense was proved under
suitable assumptions in Dal Maso et al. (2016), see also below. Notice the strong
coupling between (1.1) and (1.2): indeed, the variable �ε appears in the domain of
(1.1a), while Gε in (1.2) depends on uε. This is typical of dynamic fracture, too.

In fact, the peeling test is closely related to fracture. The debonded part of the
film, here parametrised on the interval (0, �ε(t)), corresponds to the uncracked
part of a body subject to fracture; both domains are monotone in time, though in
opposite directions, increasing in our case, decreasing in the fracture problem. The
debonding propagation t �→ �ε(t) corresponds to the evolution of a crack tip. The
debonding front �ε(t) has the role of a free boundary just as a crack. However,
notice that cracks are discontinuity sets for the displacement, where a homogeneous
Neumann condition is satisfied since they are traction free; in contrast, in the peel-
ing test the displacement is continuous at �ε(t) because of the Dirichlet constraint
(1.1c): the debonding front is a discontinuity set for the displacement derivatives
and represents a free boundary between {x : uε(x, s) = 0 for every s ≤ t} and
{x : uε(x, s) �= 0 for some s ≤ t}.

In this work we perform an asymptotic analysis of (1.1) and (1.2) as ε tends to
zero, i.e. we study the limit of the system for quasistatic loading. Some results in this
direction were given in Dumouchel et al. (2008) and Lazzaroni et al. (2012) in the
specific case of a piecewise constant toughness.
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It is convenient to consider the rescaled functions

(uε(t, x), �ε(t)) :=
(
uε

(
t

ε
, x

)
, �ε

(
t

ε

))
.

After this time rescaling, the problem solved by (uε, �ε) consists of the equation of
elastodynamics complemented with initial and boundary conditions

ε2uε
t t (t, x) − uε

xx (t, x) = 0, t > 0, 0 < x < �ε(t), (1.3a)

uε(t, 0) = w(t), t > 0, (1.3b)

uε(t, �ε(t)) = 0, t > 0, (1.3c)

uε(0, x) = u0(x), 0 < x < �0, (1.3d)

uε
t (0, x) = u1(x), 0 < x < �0, (1.3e)

and coupled with Griffith’s criterion

�̇ε(t) ≥ 0, (1.4a)

Gε(t) ≤ κ(�ε(t)), (1.4b)

�̇ε(t)
[
Gε(t) − κ(�ε(t))

] = 0, (1.4c)

where Gε(t) = Gε(
t
ε
) and �ε(0) = �0. Notice that the speed of sound is now 1

ε
.

Indeed, in the quasistatic limit the timescale of the internal oscillations is much faster
than the timescale of the loading.

The existence of a unique solution (uε, �ε) to the coupled problem (1.3) and (1.4)
for a fixed ε > 0 is guaranteed by Dal Maso et al. (2016, Theorem 3.5), provided the
data are Lipschitz and the local toughness is piecewise Lipschitz; moreover it turns out
that uε is Lipschitz in time and space and �ε is Lipschitz in time. (See also Theorem 2.3
below.) The strategy employed there to prove the existence result relies on the specific
one-dimensional setting of the model. Indeed, it is possible to write the solution uε of
the wave equation (1.3a) in terms of a one-dimensional function f ε; more precisely,
uε(t, x) depends on f ε(x ± εt) through the D’Alembert formula (2.4). On the other
hand, the dynamic energy release rate Gε can also be expressed as a function of f ε,
so Griffith’s criterion (1.4) reduces to a Cauchy problem which has a unique solution.

In this work, in order to study the limit of the solutions (uε, �ε) as ε → 0, we use
again the one-dimensional structure of the model. First we derive an a priori bound for
the internal energy, uniform with respect to ε; to this end, it is convenient to write the
internal energy in terms of f ε, see Proposition 3.1. The uniform bound allows us to
find a limit pair (u, �). More precisely, since the functions �ε are non-decreasing and
�ε(T ) < L , Helly’s Theorem provides a subsequence εk such that �εk converges for
every t to a (possibly discontinuous) non-decreasing function �. On the other hand,
the uniform bound on uεk in L2(0, T ; H1(0, L)) guarantees the existence of a weak
limit u. We call (u, �) the quasistatic limit of (uε, �ε).

The issue is now to pass to the limit in (1.3) and (1.4) and to understand the
properties of the quasistatic limit. As for the vertical displacement, in our first main
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result (Theorem 3.5) we find that the equilibrium equations are satisfied, i.e. u solves
the limit problem

uxx (t, x) = 0, t > 0, 0 < x < �(t), (1.5a)

u(t, 0) = w(t), t > 0, (1.5b)

u(t, �(t)) = 0, t > 0. (1.5c)

More precisely, for a.e. t , u(t, ·) is affine in (0, �(t)) and u(t, x) = −w(t)
�(t) x + w(t).

To prove this, we exploit a technical lemma stating that the graphs of �εk converge to
the graph of � in the Hausdorff metric, see Lemma 3.4. We remark that in general the
initial conditions (1.3d) and (1.3e) do not pass to the limit since there may be time
discontinuities, even at t = 0.

Nextwe study the flow rule satisfied by the limit debonding evolution �.We question
whether it complies with the quasistatic formulation of Griffith’s criterion,

�̇(t) ≥ 0, (1.6a)

Gqs(t) ≤ κ(�(t)), (1.6b)[
Gqs(t) − κ(�(t))

]
�̇(t) = 0, (1.6c)

where Gqs is the quasistatic energy release rate, that is, the partial derivative of the
quasistatic internal energy with respect to the elongation of the debonded region.
Notice that in the quasistatic setting the internal energy consists of the potential term
only, so (1.6) is the formal limit of (1.4) as ε → 0.

Condition (1.6a) is guaranteed byHelly’s Theorem.By passing to the limit in (1.4b),
we also prove that (1.6b) holds. For this result we use again the D’Alembert formula
for uε and find the limit f of the one-dimensional functions f ε. In fact, ḟ turns out
to be related to ux through an explicit formula, as we see in Theorem 3.11, which is
our second main result.

In contrast, (1.6c) is in general not satisfied. This was already observed in the
earlier paper (Lazzaroni et al. 2012), which presents an example of dynamic solutions
whose limit violates (1.6c). The singular behaviour of these solutions is due to the
choice of a toughness with discontinuities. Indeed, when the debonding front meets
a discontinuity in the toughness, a shock wave is generated. The interaction of such
singularities causes strong high-frequency oscillations of the kinetic energy, which
affects the limit as the wave speed tends to infinity.

In the present paper, we continue the discussion of this kind of behaviour by provid-
ing an explicit case where (1.6c) does not hold in the limit even if the local toughness
is constant and the other data are smooth. (See Sect. 4 and Remark 4.2). In our new
example, the initial conditions are not at equilibrium, in particular the initial position
u0 is not affine in (0, �0). Therefore, due to the previous results, the quasistatic limit
cannot satisfy the initial condition, i.e. it has a time discontinuity at t = 0. More-
over, our analysis of the limit evolution (u, �) shows that the internal energy given
through the initial conditions is not relaxed instantaneously; its effects persist in a
time interval where the evolution does not satisfy (1.6c). The surplus of initial energy,
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instantaneously converted into kinetic energy, cannot be quantified in a purely qua-
sistatic analysis. For this reason the usual quasistatic formulation (1.6) is not suited to
describe the quasistatic limit of our dynamic process.

2 Existence and Uniqueness Results

In this section we provide an outline of the results of existence and uniqueness for the
coupled problem (1.3) and (1.4) for fixed ε > 0, proved in Dal Maso et al. (2016).
The only difference with respect to Dal Maso et al. (2016) is that the speed of sound
is 1

ε
instead of 1.

We consider the following generalisation of problem (1.3),

ε2uε
t t (t, x) − uε

xx (t, x) = 0, t > 0, 0 < x < �ε(t), (2.1a)

uε(t, 0) = wε(t), t > 0, (2.1b)

uε(t, �ε(t)) = 0, t > 0 (2.1c)

uε(0, x) = uε
0(x), 0 < x < �0, (2.1d)

uε
t (0, x) = uε

1(x), 0 < x < �0. (2.1e)

We require that

wε ∈ C̃0,1(0,+∞), uε
0 ∈ C0,1([0, �0]), uε

1 ∈ L∞(0, �0), (2.2a)

where

C̃0,1(0,+∞) := { f ∈ C0([0,+∞)) : f ∈ C0,1([0, T ]) for every T > 0},

and the compatibility conditions

uε
0(0) = wε(0), uε

0(�0) = 0. (2.2b)

To give the notion of solution, for the moment we assume that the evolution of
the debonding front t �→ �ε(t) is known. More precisely, we fix �0 > 0 and
�ε : [0,+∞) → [�0,+∞) Lipschitz and such that

0 ≤ �̇ε(t) <
1

ε
, for a.e. t > 0, (2.3a)

�ε(0) = �0. (2.3b)

We introduce the sets

�ε := {(t, x) : t > 0, 0 < x < �ε(t)},
�ε

T := {(t, x) : 0 < t < T, 0 < x < �ε(t)}
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and the spaces

H̃1(�ε) := {u ∈ H1
loc(�

ε) : u ∈ H1(�ε
T ), for every T > 0},

C̃0,1(�ε) := {u ∈ C0(�ε) : u ∈ C0,1(�ε
T ) for every T > 0},

The notion of solution is given in the following sense.

Definition 2.1 We say that uε ∈ H̃1(�ε) (resp. in uε ∈ H1(�ε
T )) is a solution to (2.1)

if ε2uε
t t − uε

xx = 0 holds in the sense of distributions in �ε (resp. �ε
T ), the boundary

conditions (2.1b) and (2.1c) are intended in the sense of traces and the initial conditions
(2.1d) and (2.1e) are satisfied in the sense of L2(0, �0) and H−1(0, �0), respectively.

Condition (2.1e) makes sense since uε
x ∈ L2(0, T ; L2(0, �0)) and, by the wave

equation, uε
xx , u

ε
t t ∈ L2(0, T ; H−1(0, �0)), therefore uε

t ∈ H1(0, T ; H−1(0, �0)) ⊂
C0([0, T ]; H−1(0, �0)). Arguing as in Dal Maso et al. (2016, Section 1), it is possible
to uniquely solve (2.1) by means of the D’Alembert formula, as it is stated in the next
proposition.

Proposition 2.2 Assume (2.2) and (2.3). Then, there exists a unique solution uε ∈
H1(�ε) to problem (2.1), according to Definition 2.1. Moreover, uε ∈ C̃0,1(�ε) and
is expressed through the formula

uε(t, x) = wε(t+εx) − 1

ε
f ε(t+εx) + 1

ε
f ε(t−εx), (2.4)

where f ε ∈ C̃0,1(−ε�0,+∞) is determined by

wε(t + ε�ε(t)) − 1

ε
f ε(t + ε�ε(t)) + 1

ε
f ε(t − ε�ε(t)) = 0, for every t > 0, (2.5)

and

f ε(s) = εwε(s) − ε

2
uε
0

( s
ε

)
− ε2

2

∫ s
ε

0
uε
1(x)dx − εwε(0) + ε

2
uε
0(0),

for every s ∈ [0, ε�0], (2.6a)

f ε(s) = ε

2
uε
0

(
− s

ε

)
− ε2

2

∫ − s
ε

0
uε
1(x)dx − ε

2
uε
0(0), for every s ∈ (−ε�0, 0].

(2.6b)

By derivation of (2.4) we obtain

uε
t (t, x) = ẇε(t+εx) − 1

ε
ḟ ε(t+εx) + 1

ε
ḟ ε(t−εx), (2.7a)

uε
x (t, x) = εẇε(t+εx) − ḟ ε(t+εx) − ḟ ε(t−εx). (2.7b)
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Formula (2.7a) guarantees that, for every t , uε
t (t, ·) is defined a.e. in (0, �ε(t)). In this

paper we always use ḟ to indicate the derivative of a function f of only one variable
(even if that variable is not the time).

The last observation and the existence of a unique solution to (2.1) stated in Propo-
sition 2.2 allow us to define the internal energy

Eε(t; �ε, wε) :=
∫ �ε(t)

0

[
ε2

2
uε
t (t, x)

2 + 1

2
uε
x (t, x)

2
]
dx . (2.8)

In the previous expression the internal energy is a functional of �ε and wε, while uε is
the unique solution of (2.1) corresponding to the prescribed debonding evolution �ε

and to the data of the problem. Using (2.7), then (2.8) reads as

Eε(t; �ε, wε) = 1

ε

∫ t+ε�ε(t)

t
[εẇε(s) − ḟ ε(s)]2ds + 1

ε

∫ t

t−ε�ε(t)
ḟ ε(s)2ds. (2.9)

We now give the notion of dynamic energy release rate which is used to give the cri-
terion for the (henceforth unknown) evolution of the debonding front �ε. Specifically,
the dynamic energy release rate Gε

α(t0) at time t0 corresponding to a speed 0 < α < 1
ε

of the debonding front is defined as

Gε
α(t0) := lim

t→t+0

Eε(t0; λε, zε) − Eε(t; λε, zε)

(t − t0)α
,

where λε ∈ C0,1([0,+∞)) is such that λε(t) = �ε(t) for every 0 ≤ t ≤ t0, λ̇ε < 1
ε

for a.e. t > 0, and

1

h

∫ t0+h

t0

∣∣λ̇ε(t) − α
∣∣ dt → 0, as h → 0+,

while

zε(t) =
{

wε(t), t ≤ t0,

wε(t0), t > t0.

In Dal Maso et al. (2016, Section 2), it is proved that, given �ε and wε, the limit above
exists for a.e. t0 > 0 and for every α ∈ (0, 1

ε
). Moreover, it is expressed in terms of

f ε through the following formula:

Gε
α(t) = 2

1 − εα

1 + εα
ḟ ε(t−ε�ε(t))2. (2.10)

This also shows that Gε
α depends on the choice of λε only through α, and therefore,

the definition is well posed. We also extend by continuity this definition to the case
α = �̇ε(t) = 0, by setting

Gε
0(t) := 2 ḟ ε(t−ε�ε(t))2.
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Thus, by (2.10), we have monotonicity with respect to α:

Gε
α(t0) < Gε

0(t0), for every α ∈
(
0,

1

ε

)
, Gε

α(t0) → 0 for α → 1−,

for a.e. t0 > 0.
We require that the evolution of the debonding front �ε follows Griffith’s criterion

�̇ε(t) ≥ 0, (2.11a)

Gε

�̇ε(t)
(t) ≤ κ(�ε(t)), (2.11b)

�̇ε(t)
[
Gε

�̇ε(t)
(t) − κ(�ε(t))

]
= 0, (2.11c)

where the local toughness is assumed to be a piecewise Lipschitz and upper semicon-
tinuous function with a finite number of discontinuities

κ : [0,+∞) → [c1, c2], 0 < c1 < c2. (2.12)

Notice that �̇ε(t) and Gε

�̇ε(t)
(t) are well defined for a.e. t and (2.10) gives

Gε

�̇ε(t)
(t) = 2

1 − ε�̇ε(t)

1 + ε�̇ε(t)
ḟ ε(t−ε�ε(t))2. (2.13)

The criterion (2.11) is derived by using the following maximum dissipation principle:
for a.e. t > 0

�̇ε(t) = max

{
α ∈

[
0,

1

ε

)
: κ(�ε(t))α = Gε

α(t)α

}
.

This implies that for a.e. t > 0, if �̇ε(t) > 0, then κ(�ε(t)) = Gε

�̇ε(t)
(t), while if

�̇ε(t) = 0, then κ(�ε(t)) ≥ Gε

�̇ε(t)
(t) = Gε

0(t), thus (2.11) follows. Combining (2.11)
with (2.13), we have an equivalent formulation of this evolution criterion. Indeed,
�ε satisfies Griffith’s criterion if and only if it is solution of the following Cauchy
problem:

⎧⎪⎨
⎪⎩

�̇ε(t) = 1

ε

2 ḟ ε(t − ε�ε(t))2 − κ(�ε(t))

2 ḟ ε(t − ε�ε(t))2 + κ(�ε(t))
∨ 0,

�ε(0) = �0,

(2.14)

for a.e. t > 0.
The following existence and uniqueness result for the coupled problem (2.1) and

(2.14) for fixed ε > 0 was proved in Dal Maso et al. (2016, Theorem 3.5, Remark
3.6). The case of a toughness depending also on the debonding speed is addressed
in the subsequent paper (Lazzaroni and Nardini 2017), where we discuss existence,
uniqueness, and quasistatic limit.
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Theorem 2.3 Let T > 0, assume (2.2), and let the local toughness κ be as in
(2.12). Then, there is a unique solution (uε, �ε) ∈ C0,1(�ε

T ) × C0,1([0, T ]) to the
coupled problem (2.1) and (2.14). Moreover, there exists a constant Lε

T satisfying
�̇ε ≤ Lε

T < 1
ε
.

3 A Priori Estimate and Convergence

In this section we study the limit as ε → 0 of the solutions (uε, �ε) to the coupled
problem (2.1) and (2.14). We fix T > 0 and make the following assumptions on the
data: there exists w ∈ C0,1([0, T ]) such that

wε ∗
⇀ w weakly* in W 1,∞(0, T ), (3.1a)

uε
0 is bounded in W 1,∞(0, �0), (3.1b)

εuε
1 is bounded in L∞(0, �0). (3.1c)

Notice that (3.1b) and (3.1c) imply that the initial internal energy associated with
uε(0, ·) is uniformly bounded with respect to ε.

3.1 A Priori Bounds

We start from a uniform bound on the internal energy Eε. To this end, it is convenient
to express it as in (2.9). Following Dal Maso et al. (2016, Prop. 1.14), we find the
energy balance for fixed ε > 0:

Eε(t; �ε, wε) − Eε(0; �ε, wε) +
∫ �ε(t)

�0

κ(x)dx

+
∫ t

0
[εẇε(s) − 2 ḟ ε(s)]ẇε(s)ds = 0. (3.2)

In the next proposition we derive an a priori bound for Eε, uniformly with respect to
ε. First, we introduce the functions

ϕε(t) := t − ε�ε(t) and ψε(t) := t + ε�ε(t). (3.3)

In view of Theorem 2.3, �̇ε ≤ Lε
T < 1

ε
, and therefore, these functions are equi-

Lipschitz. Then, we define

ωε(t) := ϕε((ψε)−1(t)),

which is also equi-Lipschitz, since

0 < ω̇ ≤ 1 − εLε
T

1 + εLε
T

< 1

for a.e. 0 ≤ t ≤ T .
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Proposition 3.1 Assume (2.2), (3.1), and let κ be as in (2.12). Then, there exists C > 0
such that Eε(t) ≤ C for every ε > 0 and for every t ∈ [0, T ]. Moreover, we have

‖ ḟ ε‖L∞(−ε�0,T ) ≤ C, (3.4)

uniformly in ε.

Proof We need to estimate the last term in (3.2). To this end, we notice that it is
sufficient to get a uniform bound for ḟ ε in L∞ as in (3.4). Then the conclusion readily
follows from the bounds on the initial conditions and on the toughness.

In order to obtain (3.4), we first estimate ḟ ε in [−ε�0, ε�0]. By differentiating (2.6)
and using the assumptions (3.1), we see that

ess sup
t∈[−ε�0,ε�0]

| ḟ ε(t)| ≤ ε‖ẇε‖L∞(0,T ) + 1

2
‖u̇ε

0‖L∞(0,�0) + ε

2
‖uε

1‖L∞(0,�0) ≤ C, (3.5)

for some positive constant C > 0.
Then, we need to extend the estimate to [0, T ]. To this end, we mimick the

construction for the existence of a solution [see Dal Maso et al. (2016, Theorem
1.8)]. More precisely, we define tε0 := ε�0 and, iteratively, tεi := (ωε)−1(tεi−1) =
ψε((ϕε)−1(tεi−1)). Let also s

ε
i+1 := (ϕε)−1(tεi ) for i ≥ 0. See Fig. 2.

By differentiating the “bounce formula” (2.5), we find that

ḟ ε(t+ε�ε(t)) = εẇε(t+ε�ε(t)) + 1 − ε�̇ε(t)

1 + ε�̇ε(t)
ḟ ε(t−ε�ε(t)). (3.6)

Then we have

ess sup
t∈[tε0 ,tε1 ]

| ḟ (t)| = ess sup
s∈[0,sε1]

| ḟ ε(s+ε�ε(s))| ≤ ε‖ẇε‖L∞(0,T ) + ‖ ḟ ε‖L∞(−ε�0,ε�0)) ≤ C,

where the uniform bound follows from (3.5) up to changing the value of C . This
implies that

ess sup
t∈[−ε�0,tε1 ]

| ḟ (t)| ≤ C.

We iterate this argument and use the fact that the maximum number of “bounces,”
i.e. the number of times we apply formulas (2.5) and (3.6), is bounded.More precisely,
there exists Nε such that T ∈ (tεNε

, tεNε+1] and, since �0 > 0, we have that Nε ≤ T
2ε�0

.
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Fig. 2 Construction of the
sequences {sεi } and {tεi }
employed in the proof of
Proposition 3.1

Therefore,

ess sup
t∈
[
tεNε

,T
] | ḟ ε(t)| ≤ ess sup

t∈
[
tεNε

,tεNε+1

] | ḟ ε(t)| ≤ ε‖ẇε‖L∞ + ess sup
t∈
[
tεNε−1,t

ε
Nε

] | ḟ ε(t)|

≤ 2ε‖ẇε‖L∞ + ess sup
t∈
[
tεNε−2,t

ε
Nε−1

] | ḟ ε(t)| ≤ · · · ≤ Nεε‖ẇε‖L∞

+ ess sup
t∈[tε0 ,tε1 ]

| ḟ ε(t)|

≤ T

2�0
‖ẇε‖L∞ + ess sup

t∈[tε0 ,tε1 ]
| ḟ ε(t)| ≤ C.

Then, the uniform bound on ḟ ε holds in [−ε�0, T ], thus (3.4) is proved. 
�
Remark 3.2 Formula (2.7a) guarantees that, for every t ∈ [0, T ], uε

t (t, ·) is defined
a.e. in (0, �ε(T )). Moreover, the uniform bound on the internal energy implies that

‖εuε
t (t, ·)‖L2(0,�ε(t)) ≤ C for every t ∈ [0, T ], (3.7)
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where C > 0 is independent of ε and t .

3.2 Convergence of the Solutions

The a priori bound on the energy allows the passage to the limit in �ε.

Proposition 3.3 Assume (2.2), (3.1), and (2.12). Let (uε, �ε) be the solution to the
coupled problem (2.1) and (2.14). Then, there exists L > 0 such that �ε(T ) ≤ L.
Moreover, there exists a sequence εk → 0 and an increasing function � : [0, T ] →
[0, L] such that

�εk (t) → �(t)

for every t ∈ [0, T ].
Proof Since the local toughness κ is bounded from below, a direct consequence of
Proposition 3.1 is that the sequence of functions �ε(t) is bounded uniformly in ε.
Indeed, the term− ∫ t

0 ẇε(s)[εẇ(s)−2 ḟ ε(s)]ds in the energy balance (3.2) is bounded,
as one can see applying the Cauchy–Schwartz inequality and using (3.4). Therefore

∫ �ε(t)

�0

κ(x)dx = −Eε(t; �ε, wε) + Eε(0; �ε, wε) −
∫ t

0
ẇε(s)[εẇε(s) − 2 ḟ ε(s)]ds

is uniformly bounded. Since κ ≥ c1, it follows that there exists C > 0 such that

c1(�
ε(t) − �0) ≤ C, (3.8)

uniformly in ε and for every t ∈ [0, T ]. Then, using Helly’s selection principle on the
sequence of uniformly bounded and increasing functions �ε, it is possible to extract
a sequence �εk (t) pointwise converging to an increasing function �(t) for every t ∈
[0, T ]. 
�

We now prove a technical lemma stating that the graphs of �εk converge to the
graph of � in the Hausdorff metric. We employ the following notation for the graph of
a function:

Graph � := {(t, �(t)) : 0 ≤ t ≤ T }.
The same notation will be used for the graph of �ε. Since t �→ �(t) may be discontin-
uous, we consider its extended graph

Graph∗� := {(t, x) ∈ [0, T ] × [0, L] : �(t−) ≤ x ≤ �(t+)},

where �(t−) (resp. �(t+)) is the left-sided (resp. right-sided) limit of � at t . Given
A ⊂ [0, T ] × [0, L] and η > 0 we set

(A)η := {(t, x) ∈ [0, T ] × [0, L] : d((t, x), A) < η},
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where d is the Euclidean distance, and we call (A)η the open η-neighbourhood of A.
We also recall that, given two non-empty sets A, B ⊂ [0, T ]× [0, L], their Hausdorff
distance is defined by

dH(A, B) = max

{
sup
a∈A

d(a, B), sup
b∈B

d(b, A)

}
.

Notice that
if dH(A, B) ≤ η, then A ⊂ (B)η and B ⊂ (A)η. (3.9)

We say that a sequence Ak converges to A in the sense ofHausdorff if dH(Ak, A) → 0.
The Hausdorff convergence of Graph �εk to Graph∗� will be used in the proof of

Theorem 3.5. To prove that Graph �εk converges to Graph∗� in the sense of Hausdorff,
in the following lemma we employ the equivalent notion of Kuratowski convergence,
whose definition is recalled below.

Lemma 3.4 The sets Graph �εk converge to Graph∗� in the sense of Hausdorff.

Proof In order to prove this result we show that Graph�εk converges to Graph∗� in the
sense of Kuratowski in the compact set [0, T ]×[0, L]. Since these sets are closed, the
Kuratowski convergence implies that Graph �εk converges to Graph∗� in the sense of
Hausdorff, cf. Ambrosio and Tilli (2004, Proposition 4.4.14). We recall that Graph �εk

converges to Graph∗� in the sense of Kuratowski if the following two conditions are
both satisfied:

(i) Let (t, x)∈[0, T ] × [0, L] and let (tk, xk) ∈ Graph �εk be a sequence such that
(tkn , xkn ) → (t, x) for some subsequence. Then, (t, x) ∈ Graph∗�.

(ii) For every (t, x) ∈ Graph∗� there exists a whole sequence such that (tk, xk) ∈
Graph �εk and (tk, xk) → (t, x).

We prove condition (i) arguing by contradiction. Let thus (t, x) ∈ [0, T ] × [0, L]
and (tk, xk) ∈ Graph �εk be such that (tk, xk) → (t, x) up to a subsequence (not
relabelled) and assume that (t, x) /∈ Graph∗�, i.e. x /∈ [�(t−), �(t+)]. We consider
the case where x < �(t−), the case x > �(t+) being analogous. By assumption, there
exists k0 ∈ N such that for every k ≥ k0 we have �εk (tk) < �(t−). By the definition
of �(t−) and the monotonicity of �, there exists η > 0 such that �εk (tk) < �(t−η) for
every k ≥ k0. For k large, we have tk > t − η. Therefore, by the monotonicity of �εk ,
we get

�εk (t − η) ≤ �εk (tk) < �(t − η),

which leads to contradiction, by the pointwise convergence of �εk (t − η).
We now prove condition (ii). Let (t, x) ∈ Graph∗�. Then, for every η > 0 we

have �(t − η) ≤ x ≤ �(t + η). We claim that there is a sequence xk → x such that
xk ∈ [�εk (t−η), �εk (t+η)]. Specifically, if �(t−η) < x < �(t+η) we take xk := x ; if
x = �(t−η) we take xk := �εk (t−η); if x = �(t+η) we take xk := �εk (t+η); in each
case by pointwise convergence we conclude that xk → x . Then, by continuity and
monotonicity of �εk , there exists tk ∈ [t−η, t+η] such that �εk (tk) = xk . We conclude
by the arbitrariness of η. 
�
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We now investigate on the limit behaviour of uε. The next theorem shows that the
limit displacement solves problem (1.5).

Theorem 3.5 Assume (2.2), (3.1), and (2.12). Let (uε, �ε) be the solution to the cou-
pled problem (2.1) and (2.14). Let L and εk be as in Proposition 3.3. Then,

uεk ⇀ u weakly in L2(0, T ; H1(0, L)), (3.10)

where

u(t, x) =
{

−w(t)
�(t) x + w(t) for a.e. (t, x) : x < �(t),

0 for a.e. (t, x) : x ≥ �(t).
(3.11)

Proof We recall that uεk (t, x) = 0 whenever x > �εk (T ). By Proposition 3.1 and
by (2.8), uεk

x is bounded in L∞(0, T ; L2(0, L)) and therefore in L2(0, T ; L2(0, L))

as well. We can thus extract a subsequence (not relabelled) and find a function q ∈
L2(0, T ; L2(0, L)) such that

uεk
x ⇀ q in L2(0, T ; L2(0, L)). (3.12)

We have

uεk (t, x) = wε(t) +
∫ x

0
uεk
x (t, ξ)dξ, (3.13)

for every (t, x) ∈ �
εk
T . In particular, uεk is bounded in L2(0, T ; L2(0, L)) and (up to

extracting a further subsequence, not relabelled) there exists u ∈ L2(0, T ; L2(0, L))

such that
uεk ⇀ u in L2(0, T ; L2(0, L)). (3.14)

We remark that at this stage of the proof the limit displacement u may depend on the
subsequence extracted in (3.14); however, at the end of the proof we shall show the
explicit formula (3.11), which implies that the limit is the same on the whole sequence
εk extracted in Proposition 3.3.

We now pick a function p(t, x) ∈ L2(0, T ; L2(0, L)) and integrate (3.13) over
(0, T ) × (0, L). By the Fubini Theorem we obtain

∫ T

0

∫ L

0
uεk (t, x)p(t, x)dxdt

=
∫ T

0

∫ L

0
wε(t)p(t, x)dxdt +

∫ T

0

∫ L

0
p(t, x)

(∫ x

0
uεk
x (t, ξ)dξ

)
dxdt

=
∫ T

0

∫ L

0
wε(t)p(t, x)dxdt +

∫ T

0

∫ L

0

(∫ L

ξ

p(t, x)dx

)
uεk
x (t, ξ)dξdt

=
∫ T

0

∫ L

0
wε(t)p(t, x)dxdt +

∫ T

0

∫ L

0
uεk
x (t, ξ)P(t, ξ)dξdt,
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where P(t, ξ) = ∫ L
ξ

p(t, x)dx is still in L2(0, T ; L2(0, L)) by the Jensen inequality.
Using (3.1a), (3.12), and (3.14), we find

u(t, x) = w(t) +
∫ x

0
q(t, ξ)dξ,

for a.e. (t, x) ∈ (0, T ) × (0, L). This shows that q = ux . We thus have proved that
uεk ⇀ u in L2(0, T ; H1(0, L)).

We now prove (3.11). We employ Lemma 3.4, which can be rephrased as follows
by using the open η-neighbourhood of Graph∗� and (3.9): for every η ∈ (0, �0) and
for k sufficiently large we have

Graph �εk ⊂ (Graph∗�)η, (3.15)

see Fig. 3. Hence, we pick a test function v ∈ H1((0, T )×(0, L)) such that v(t, 0) = 0
and v(t, x) = 0 whenever (t, x) ∈ (Graph∗�)η. By integration by parts in time and
space, the equation solved by uεk gives

0 =
∫ T

0

∫ L

0

(
ε2k u

εk
t t − uεk

xx

)
vdxdt

= −
∫ T

0

∫ L

0

(
ε2k u

εk
t vt − uεk

x vx

)
dxdt + ε2k

∫ L

0
uεk
t (T, x)v(T, x)dx

− ε2k

∫ �0

0
u1(x)v(0, x)dx − ε2k

∫ L

�0

uεk
t ((�εk )−1(x), x)v((�εk )−1(x), x)dx

−
∫ T

0
uεk
x (t, �εk (t))v(t, �εk (t))dt +

∫ T

0
uεk
x (t, 0)v(t, 0)dt. (3.16)

Notice that the boundary term in the last expression makes sense since (�εk )−1(x) is
defined for a.e. x ∈ [0, L].

We now show that each summand in (3.16) converges to zero as k → ∞. Using
(3.7) we obtain

ε2k

∫ L

0
uεk
t (T, x)v(T, x)dx ≤ εk‖εkuεk

t (T, ·)‖L2(0,L)‖v(T, ·)‖L2(0,L) → 0.

Integrating (3.7) in time we find that − ∫ T
0

∫ L
0 ε2k u

εk
t vtdxdt → 0. Moreover,

−ε2k

∫ �0

0
u1(x)v(0, x)dx → 0,
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Fig. 3 The set (Graph∗�)η and the rectangle R employed in the proof of Theorem 3.5

since εku1 is bounded by (3.1c). We also notice that

ε2k

∫ �εk (T )

�0

uεk
t ((�εk )−1(x), x)v((�εk )−1(x), x)dx

= −ε2k

∫ T

0
uεk
t (t, �εk (t))v(t, �εk (t))�̇εε

k (t)dt = 0,

since v(t, x) = 0 in (Graph∗�)η and (3.15). Finally,

∫ T

0
uεk
x (t, 0)v(t, 0)dt = 0

by assumption on v. This implies that in the limit we find

∫ T

0

∫ �(t)

0
uxvx = 0, (3.17)

for every test function v in H1((0, T ) × (0, L)) such that v(t, 0) = 0 and v(t, x) = 0
whenever (t, x) ∈ (Graph∗�)η.

Finally, we prove that the limit function u(t, ·) is affine in [0, �(t)] for every t . We
fix a rectangle R := (t1, t2)× (0, �), with t1, t2 ∈ [0, T ] and 0 < � < �(t1), see Fig. 3.
Let v be of the form v(t, x) = α(t)β(x), with α ∈ H1

0 (t1, t2) and β ∈ H1
0 (0, �). Then,

by (3.17) we know that

∫ t2

t1
α(t)

(∫ �

0
ux (t, x)β̇(x)dx

)
dt = 0.
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Applying twice the Fundamental Lemma of Calculus of Variations, we find a(t) and
b(t) such that

u(t, x) = a(t)x + b(t), (3.18)

for a.e. (t, x) ∈ R. Then, by the arbitrariness of R, Eq. (3.18) is satisfied almost
everywhere in {(t, x) : x < �(t)}.

On the other hand, in the region {(t, x) : x ≥ �(t)} we have u(t, x) = uεk (t, x) =
0. Then we obtain the boundary condition u(t, �(t)) = 0 for a.e. t . By the weak
convergence of uεk to u and by (3.1a) we also recover the boundary condition u(t, 0) =
w(t) for every t . This implies, together with (3.18), that

u(t, x) = −w(t)

�(t)
x + w(t),

for a.e. t ∈ [0, T ] and a.e. x ∈ [0, �(t)], while u = 0 for x > �(t). 
�

3.3 Convergence of the Stability Condition

At this stage of the asymptotic analysis we have found a limit pair (u, �) that describes
the evolution of the debonding when the speed of the external loading tends to zero.
We now investigate on the limit of Griffith’s criterion (2.11) and we question whether
the limit pair (u, �) satisfies the quasistatic version of this criterion, i.e. whether (u, �)

is a rate-independent evolution according to the definition below.
Given a non-decreasing function λ : [0, T ] → [0, L] and an external loading w ∈

C0,1([0, T ]) as above, for every t ∈ [0, T ] the internal quasistatic (potential) energy
governing the process is

Eqs(t; λ,w) := min

{
1

2

∫ λ(t)

0
v̇(x)2dx : v ∈ H1(0, L), v(0) = w(t), v(λ(t)) = 0

}
,

where v̇ denotes the derivative of v with respect to x , as always in this paper for
functions of only one variable. As in Sect. 2, we define the quasistatic energy release
rate Gqs as the opposite of the derivative of Eqs(t; λ,w) with respect to λ, i.e.

Gqs(t) := −∂λEqs(t; λ,w).

Notice that ∂λ has to be interpreted as a Gâ teaux differential with respect to the
function λ, indeed the displacement u depends on λ. The expression of Gqs(t) is
simplified by taking into account that an equilibriumdisplacement is affine in (0, λ(t)),
see Remark 3.7.

Definition 3.6 (Rate-independent evolution) Let λ : [0, T ] → [0, L] be a non-
decreasing function and v ∈ L2(0, T ; H1(0, L)). We say that (v, λ) is a rate-
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independent evolution if it satisfies the equilibrium equation for a.e. t ∈ [0, T ],

vxx (t, x) = 0, for 0 < x < λ(t), (3.19a)

v(t, 0) = w(t), (3.19b)

v(t, x) = 0, for x ≥ λ(t), (3.19c)

and the quasistatic formulation of Griffith’s criterion for a.e. t > 0,

λ̇(t) ≥ 0, (3.20a)

Gqs(t) ≤ κ(λ(t)), (3.20b)[
Gqs(t) − κ(λ(t))

]
λ̇(t) = 0. (3.20c)

Remark 3.7 By (3.19), we know that v(t, x) = [− w(t)
λ(t) x+w(t)

]∨0 for a.e. t ∈ [0, T ].
Then, the quasistatic energy release rate can be explicitly computed and is given by

Gqs(t) = w(t)2

2λ(t)2
= 1

2
vx (t, λ(t))2.

Moreover, under the additional assumption that λ ∈ AC([0, T ]), (3.20c) is equivalent
to the energy-dissipation balance that reads as follows:

Eqs(t; λ,w) − Eqs(0; λ,w) +
∫ λ(t)

λ0

κ(x)dx +
∫ t

0
vx (s, 0)ẇ(s)ds = 0, (3.21)

for every t ∈ [0, T ]. Indeed, we use again the formula for v and differentiate (3.21)
with respect to t , obtaining for a.e. t ∈ [0, T ]

w(t)ẇ(t)

λ(t)
+ λ̇(t)

[
− w(t)2

2λ(t)2
+ κ(λ(t))

]
− w(t)ẇ(t)

λ(t)
= 0,

which is (3.20c). Therefore, Definition 3.6 complies with the usual notion of rate-
independent evolution satisfying a first-order stability and an energy-dissipation
balance, see Mielke and Roubíček (2015).

Notice that (3.19) and (3.20) do not prescribe the behaviour of the system at time
discontinuities. In order to determine suitable solutions, additional requirements can
be imposed, e.g. requiring that the total energy is conserved also after jumps in time.

Remark 3.8 By (3.20c), we deduce that three different regimes for the evolution of a
rate-independent debonding front λ are possible: λ is constant in a time subinterval,
or it has a jump, or it is of the form

λ(t) = w(t)√
2κ(λ(t))

.
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Notice that, in the case of a non-decreasing local toughness κ , the quasistatic energy
functional

Eqs(λ) = w

2λ
+
∫ λ

0
κ(x)dx

is convex. This implies that a rate-independent evolution is a global minimizer for the
total quasistatic energy.

We now consider the pair (u, �) obtained in Proposition 3.3 and Theorem 3.5. We
want to verify if (u, �) satisfies Definition 3.6. First, we observe that by construction
(cf. the application of Helly’s theorem in Proposition 3.3) t �→ �(t) is non-decreasing,
thus (3.20a) automatically holds for a.e. t .

Next, we show that (3.20b) is satisfied. We first prove a few technical results.

Lemma 3.9 Let�beaboundeddomain inRN and gn → 1 inmeasure,with gn : � →
R equibounded. Then, gn → 1 strongly in L2(�).

Proof Fix η, δ > 0. By the convergence in measure of the sequence gn , there exists
n0 ∈ N and a set

Aδ := {x : |gn − 1| > δ}
such that |Aδ| < η for every n > n0. Therefore,

∫
�

|gn − 1|2dx =
∫
Aδ

|gn − 1|2dx +
∫

�\Aδ

|gn − 1|2dx

≤ C
∫
Aδ

dx +
∫

�

δ2dx,

where C > 0. In the last passage we have used the equiboundedness of gn . The
arbitrariness of η and δ leads to the conclusion of the proof. 
�
Lemma 3.10 Let � be a bounded open interval, gn : � → R a sequence of functions
such that gn → 1 in measure and let ρn : � → � such that ρ−1

n are equi-Lipschitz
and ρn → 1 uniformly in �. Then, gn ◦ ρn → 1 in measure.

Proof For every δ > 0 we have

{x : |gn ◦ ρn − 1| > δ} = ρ−1
n ({y : |gn(y) − 1| > δ}) .

Since ρ−1
n is equi-Lipschitz,

|ρ−1
n {y : |gn(y) − 1| > δ}| ≤ C |{y : |gn(y) − 1| > δ}|,

where C is a positive constant. We conclude using the convergence in measure of gn
to 1. 
�
Theorem 3.11 Assume (2.2), (2.12), and (3.1) and let (uε, �ε) be the solution to the
coupled problem (2.1) and (2.14). Let L and εk be as in Proposition 3.3. Then, for
a.e. t ∈ [0, T ] conditions (3.20a) and (3.20b) are satisfied.
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Proof By (3.4) ḟ εk is bounded in L∞(−εk�0, T ) uniformly with respect to εk . There-
fore, ḟ εk is bounded in L2(−εk�0, T ) as well. Since f εk (0) = 0, we have that f εk is
bounded in H1(−εk�0, T ) and thus, up to a subsequence (not relabelled), f εk weakly
converges to a function f in H1(0, T ). Moreover, it is possible to characterise the
limit function f in terms of w and �. If we differentiate (2.4) with respect to x we find

uε
x (t, x) = − ḟ εk (t−εk x) + εkẇ

ε
k(t+εk x) − ḟ εk (t+εk x).

By (3.10) and (3.11), we know that, up to a subsequence,

uεk
x ⇀ −w

�
in L2(0, T ; L2(0, L)).

For every p ∈ L2(0, T ) we have

lim
k→∞

∫ L

0

∫ T

0
uεk
x (t, x)p(t)dtdx

= − lim
k→∞

∫ L

0

∫ T

0

[
ḟ εk (t−εk x) + ḟ εk (t+εk x)

]
p(t)dtdx

= − lim
k→∞

∫ L

0

∫ T−εk x

−εk x
ḟ εk (s)p(s + εk x)dsdx

− lim
k→∞

∫ L

0

∫ T+εk x

εk x
ḟ εk (s)p(s − εk x)dsdx

= −
∫ L

0

∫ T

0
2 ḟ (t)p(t)dtdx,

by the continuity in L2 with respect to translations and the weak convergence of ḟ εk .
Therefore,

ḟ (t) = w(t)

2�(t)
for a.e. t ∈ [0, T ]. (3.22)

Since f εk (0) = 0, we have f (0) = 0. Therefore,

f (t) =
∫ t

0

w(s)

2�(s)
ds.

We now use Griffith’s condition (2.11b) and (2.13) in order to find that, for every
subinterval (a, b) ⊂ (0, T ),

∫ b

a

√
κ(�εk (t))dt ≥

∫ b

a

√
Gεk (t)dt =

∫ b

a

√
2gεk (t) ḟ

εk (ϕε
k (t))dt, (3.23)

where gεk (t) := 1−εk �̇
εk (t)

1+εk �̇
εk (t)

and ϕε
k (t) is as in (3.3). Since ϕ̇εk (t) ≤ 1, we can continue

(3.23) and find that
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∫ b

a

√
Gεk (t)dt ≥

∫ b

a

√
2gεk (t) ḟ

εk (ϕεk (t))ϕ̇εk (t)dt

=
∫ T

−εk�0

1(ϕεk (a),ϕεk (b))(s)
√
2gεk ((ϕ

εk )−1(s)) ḟ εk (s)ds. (3.24)

By Čebyšëv’s inequality and by the fact that, by (3.8), �εk is uniformly bounded, we
now show that ε�̇εk → 0 in measure. Indeed, for every η > 0 there exists a constant
C = C(η) > 0 such that

∣∣{t ∈ [0, T ] : εk �̇
εk (t) > η}∣∣ ≤ 1

η
εk

∫ T

0
�̇εk (t)dt ≤ εkC.

This implies that gεk converges in measure to one. Since ϕεk is equi-Lipschitz,
then Lemma 3.10 ensures that gεk ◦ (ϕεk )−1 → 1 in measure. By Lemma 3.9,
gεk ((ϕ

εk )−1) → 1 strongly in L2(0, T ). Finally, since 1(ϕεk (a),ϕεk (b)) strongly con-
verges to 1(a,b) in L2(0, T ) (because ϕεk (t) → t uniformly) and since ḟ εk ⇀ ḟ in
L2(0, T ), then the right-hand side of (3.24) tends to

∫ b

a

√
2 ḟ (s)ds =

∫ b

a

√
Gqs(t)ds

as k → ∞, where the equality follows by (3.22). Therefore,

∫ b

a

√
Gqs(t)dt ≤ lim sup

k

∫ b

a

√
κ(�εk (t)dt.

By the Fatou lemma and by upper semicontinuity of κ , we find that

lim sup
k

∫ b

a

√
κ(�εk (t))dt ≤

∫ b

a
lim sup

k

√
κ(�εk (t))dt ≤

∫ b

a

√
κ(�(t))dt.

Using the arbitrariness of (a, b), we obtain

Gqs(t) = w(t)2

2�(t)2
= 2 ḟ (t)2 ≤ κ(�(t))

for a.e. t ∈ [0, T ], thus (3.20b) is proved. 
�
Remark 3.12 We recall that Theorem 3.5 guarantees only that uεk converges to u
weakly in L2(0, T ; H1(0, L)). If in addition we knew that

uεk (t, ·) ⇀ u(t, ·) weakly in H1(0, L) for every t ∈ [0, T ], (3.25)

then it would be possible also to pass to the limit in the activation condition (2.11c)
obtaining (3.20c).
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To this end, besides (3.1) we assume that wεk converges to w strongly in
H1(0, T ), that uεk

0 converges to u0 strongly in H1(0, �0), and that εu1 converges
to 0 strongly in L2(0, �0), i.e. the initial kinetic energy tends to zero. Then, by
(3.25) the lower semicontinuity of the potential energy ensures that Eqs(t; �,w) ≤
lim infk→∞ Eεk (t; �εk , wεk ). Passing to the limit in (3.2) and using (3.22), we obtain
an energy inequality; the opposite inequality derives from (3.20b) with arguments
similar to Remark 3.7. We thus obtain (3.21) which is equivalent to the activation
condition (at least in time intervals with no jumps).

However, conditions (3.25) and (3.21) may not hold in general, as shown in the
example of the following section. The example shows that in general (2.11c) does not
pass to the limit and (3.20c) is not satisfied, even in the case of a constant toughness.

4 Counterexample to the Convergence of the Activation Condition

We now show an explicit case where the convergence of (2.11c)–(3.20c) fails.
A first counterexample to the convergence of the activation condition was presented

in Lazzaroni et al. (2012). In this case, the singular behaviour is due to the choice of a
toughness with discontinuities. More precisely, in Lazzaroni et al. (2012) it is assumed
that κ(x) = κ1 in (�1, �1 + δ) and κ(x) = κ2 for x /∈ (�1, �1 + δ), where κ1 < κ2,
�1 > �0, and δ is sufficiently small; this models a short defect of the glue between the
film and the substrate.

In this section we show an example of singular behaviour arising even if the local
toughness is constant. For simplicity we set κ := 1

2 . Moreover, we fix the external
loading

wε(s) := s + 2

(√
1 + ε2 − ε

⌊
1

ε

⌋)

and the initial conditions

�0 := 2, uε
1(x) := 1,

uε
0(x) :=

{(
2ε

⌊ 1
ε

⌋− √
1 + ε2

)
x + 2

(√
1 + ε2 − ε

⌊ 1
ε

⌋)
, 0 ≤ x ≤ 1,

−√
1 + ε2x + 2

√
1 + ε2, 1 ≤ x ≤ 2.

(4.1a)

Here �·� denotes the integer part. Notice that wε is a perturbation of w(s) := s, uε
0 is a

perturbation of a “hat function” u0(x) := x∧(2−x), and (2.2b) is satisfied; see Fig. 4.
Moreover, the initial kinetic energy 1

2‖εuε
1‖2L2(0,�0)

= 1
2‖εuε

t (0, ·)‖2L2(0,�0)
tends to

zero. The specific choice made in (4.1) simplifies the forthcoming computations;
however, the same qualitative behaviour can be observed even without perturbations.

4.1 Analysis of Dynamic Solutions

We now study the solutions (uε, �ε) to the coupled problem (2.1) and (2.14). Using
(2.4) and (2.6) we find the following expression for f ε in [−2ε, 2ε],
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Fig. 4 The initial datum uε
0 in the example of Sect. 4. We have uε

0(0) = 2(
√
1 + ε2 − ε� 1ε �), uε

0(1) =√
1 + ε2, and uε

0(2) = 0

f ε(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f ε
1 (t) := ε+√

1+ε2

2 t + ε2
⌊ 1

ε

⌋
, aε

0 ≤ t ≤ aε
1,

f ε
2 (t) := ε+√

1+ε2

2 t − ε
⌊ 1

ε

⌋
t, aε

1 ≤ t ≤ aε
2,

f ε
3 (t) := ε+√

1+ε2

2 t − ε2
⌊ 1

ε

⌋
, aε

2 ≤ t ≤ aε
3,

(4.2)

where aε
0 := −ε�0 = −2ε, aε

1 := −ε, aε
2 := ε, and aε

3 = 2ε.
Notice that ḟ ε is constant in every interval (aε

i−1, a
ε
i ), for i = 1, 2, 3.

By (2.14) we have

�̇ε(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�̇ε
1 := 1

ε

2( ḟ ε
1 )

2−κ

2( ḟ ε
1 )

2+κ
∨ 0 = 1√

1+ε2
, bε

0 < t < bε
1,

�̇ε
2 := 1

ε

2( ḟ ε
2 )

2−κ

2( ḟ ε
2 )

2+κ
∨ 0 = 0, bε

1 < t < bε
2,

�̇ε
3 := 1

ε

2( ḟ ε
3 )

2−κ

2( ḟ ε
3 )

2+κ
∨ 0 = 1√

1+ε2
bε
2 < t < bε

3,

(4.3)

where bε
0 := 0 and

bε
i := bε

i−1 + 1

1 − ε�̇ε
i

(
aε
i − aε

i−1

)
. (4.4)

Since ḟ ε is constant in (aε
i−1, a

ε
i ) for i = 1, 2, 3, also �̇ε is constant in the intervals

(bε
i−1, b

ε
i ). We obtain bε

1 = 1
1−ε�̇ε

i
ε, bε

2 = bε
1 + 2ε, and bε

3 = bε
2 + 1

1−ε�̇ε
i
ε.

We remark that in (4.3) �̇ε
2 = 0 because of (2.11). Indeed, for every ε > 0 we have

2( ḟ ε
2 )2 ≤ κ since ∣∣∣∣ε +

√
1 + ε2 − 2ε

⌊
1

ε

⌋∣∣∣∣ ≤ 1. (4.5)

Then (2.11b) is satisfied as a strict inequality, by (2.13), and therefore, (2.11c) implies
that the debonding speed in this second interval is zero.

We now determine f ε for t ≥ aε
3 and �ε for t ≥ bε

3 by using (2.5) and (2.14)
recursively, cf. e.g. the proof of Proposition 3.1 for a similar construction. Because of
(4.2) and (4.3), we can immediately see that ḟ ε and �̇ε are piecewise constant. More

123



294 J Nonlinear Sci (2018) 28:269–304

precisely, ḟ ε(t) = ḟ ε
i in each interval (aε

i−1, a
ε
i ), i > 0, while �̇ε(t) = �̇ε

i in each
interval (bε

i−1, b
ε
i ), i > 0, where

aε
i+3 = aε

i+2 + 1 + ε�̇ε
i

1 − ε�̇ε
i

(
aε
i − aε

i−1

)
(4.6)

and bε
i is given by (4.4). Notice that we have used (2.5) to obtain (4.6). Using (3.6)

and recalling that ẇε = 1, we get

ḟ ε
i+3 = ε + 1 − ε�̇ε

i

1 + ε�̇ε
i

ḟ ε
i . (4.7)

Whenever �̇ε
i = 0, then ḟ ε

i+3 = ε + ḟ ε
i . On the other hand, when �̇ε

i > 0, we can plug
(2.14) in (4.7), which gives

ḟ ε
i+3 = ε +

1 − 2( ḟ ε
i )

2−κ

2( ḟ ε
i )

2+κ

1 + 2( ḟ ε
i )

2−κ

2( ḟ ε
i )

2+κ

ḟ ε
i = ε + κ

2 ḟ ε
i

. (4.8)

This suggests us to study the map h : x �→ ε + κ
2x , which has a fixed point for

x̄ = ε+√
2κ+ε2

2 = ε+√
1+ε2

2 . Notice that x̄ = ḟ ε
1 . This implies that ḟ ε

3i = ḟ ε
3i+1 = ḟ ε

1
and �̇ε

3i = �̇ε
3i+1 = �̇ε

1 for i ≥ 1. In fact, the choice of the initial datum uε
0 as in (4.1a)

has been made in order to satisfy these conditions and to simplify such formulas.
We still have to determine ḟ ε

3i+2 and �̇ε
3i+2 for i ≥ 1. To this end, we start by

showing the explicit expression of �ε in the interval (bε
3, b

ε
6). By (4.3) and (4.6), we

find
aε
4 = aε

3 + cεε, aε
5 = aε

4 + 2ε, aε
6 = aε

5 + cεε,

where

cε := 1 + ε�̇ε
1

1 − ε�̇ε
1

= 1 + 2ε√
1 + ε2 − ε

.

We have already observed that ḟ ε
6 = ḟ ε

4 = ḟ ε
1 . Moreover, by (4.7) and since �̇ε

2 = 0,
we find ḟ ε

5 = ḟ ε
2 + ε. It easily follows that

�̇ε(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�̇ε
4 = �̇ε

1 = 1√
1+ε2

, bε
3 < t < bε

4,

�̇ε
5 = �̇ε

2 = 0, bε
4 < t < bε

5,

�̇ε
6 = �̇ε

1 = 1√
1+ε2

bε
5 < t < bε

6.

Notice that �̇ε
5 = 0 holds for ε small enough, since

∣∣∣∣3ε +
√
1 + ε2 − 2ε

⌊
1

ε

⌋∣∣∣∣ ≤ 1 (4.9)

and therefore 2( ḟ ε
5 )2 = 2( ḟ ε

2 + ε)2 ≤ κ , cf. (4.5).
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We can iteratively repeat this argument as long as the following condition, analog
of (4.5) and (4.9), is satisfied:

∣∣∣∣(2i + 1)ε +
√
1 + ε2 − 2ε

⌊
1

ε

⌋∣∣∣∣ ≤ 1. (4.10)

Let

nε = min

{
n ∈ N :

∣∣∣∣(2n + 1)ε +
√
1 + ε2 − 2ε

⌊
1

ε

⌋∣∣∣∣ > 1

}
.

Notice that (2.11) implies that 2( ḟ ε
3i+2)

2 = 2( ḟ ε
2 + iε)2 ≤ κ and �̇ε

3i−1 = 0 for
every i < nε. Condition (4.10) is a threshold condition that fails after nε iterations
of this process. Direct computations show that nε = � 1

ε
�. (In fact, the choice of the

initial datum uε
0 has been made in order to obtain this equality.) In conclusion, for ε

sufficiently small and 1 ≤ i < nε, we have

ḟ ε(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ḟ ε
3i+1 = ḟ ε

1 , aε
3i < t < aε

3i+1,

ḟ ε
3i+2 = ḟ ε

2 + iε, aε
3i+1 < t < aε

3i+2,

ḟ ε
3i+3 = ḟ ε

1 , aε
3i+2 < t < aε

3i+3,

(4.11)

and

�̇ε(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�̇ε
3i+1 = �̇ε

1, bε
3i < t < bε

3i+1,

�̇ε
3i+2 = 0, bε

3i+1 < t < bε
3i+2,

�̇ε
3i+3 = �̇ε

1, bε
3i+2 < t < bε

3i+3,

(4.12)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aε
3i+1 = aε

3i + cε

(
aε
3i−2 − aε

3i−3

) = 2ε(i − 1) + 2ε 1−ciε
1−cε

+ cεε,

aε
3i+2 = aε

3i+1 + 2ε = 2εi + 2ε 1−ciε
1−cε

+ cεε,

aε
3i+3 = aε

3i+2 + cε

(
aε
3i − aε

3i−1

) = 2εi + 2ε 1−ci+1
ε

1−cε
,

bε
3i−2 = bε

3i−3 + 1
1−ε�̇ε

1

(
aε
3i−2 − aε

3i−3

) = 2εi + ciε−1
�̇ε
1

+ 2ε 1
1−ε�̇ε

1
ciε,

bε
3i−1 = bε

3i−2 + 2ε = 2ε(i + 1) + ciε−1
�̇ε
1

+ 2ε 1
1−ε�̇ε

1
ciε,

bε
3i = bε

3i−1 + 1
1−ε�̇ε

1

(
aε
3i − aε

3i−1

) = 2εi + ci+1
ε −1
�̇ε
1

.

(4.13)

Thismeans that there is a first phase, corresponding to the time interval [0, bε
3nε ], where

the material debonds according to a “stop and go” process and the speed oscillates
between 0 and �̇ε

1 (see Fig. 5).
Let us now consider the evolution for times larger than bε

3nε . Arguing as above, we
obtain

123



296 J Nonlinear Sci (2018) 28:269–304

Fig. 5 Evolution of �ε according to a “stop and go” process. Since ḟ ε is constant in each of the intervals
(aε

i , aε
i+1), by (2.7) the displacement’s derivatives are constant in each of the sectors bounded by dashed

lines. It turns out that thick dashed lines are in fact shockwaves, while thin dashed lines are not discontinuity
lines for the derivatives (cf. Remark 4.1)

ḟ ε
3nε+2 = ε + √

1 + ε2

2
= ḟ ε

1 and �̇ε
3nε+2 = �̇ε

1.

We employ (4.8) and recall that the map h : x �→ ε + κ
2x has a fixed point at x̄ = ḟ ε

1 .
Therefore, for every i ≥ nε,

{
ḟ ε
3i+1 = ḟ ε

3i+2 = ḟ ε
3i+3 = ḟ ε

1 ,

�̇ε
3i+1 = �̇ε

3i+2 = �̇ε
3i+3 = �̇ε

1.

This shows that in this second phase the debonding proceeds at constant speed �̇ε
1 for

every time.

Remark 4.1 By (2.7), (4.2), and (4.11), the displacement’s derivatives are piecewise
constant; in the (t, x) plane, their discontinuities lie on some shock waves originating
from (0, �0/2) (where the initial datum has a kink), travelling backword and forward in
the debonded film, and reflecting at boundaries; they are represented by thick dashed
lines in Fig. 5. Notice that the lines originating from (0, �0), employed in the con-
struction above and marked by thin dashed lines in Fig. 5, are not discontinuity lines,
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since ḟ ε
3i = ḟ ε

3i+1 for every i ≥ 1. This is actually a consequence of the compatibility
among uε

0, u
ε
1, and �̇ε at (0, �0), namely u̇ε

0(�0)�̇
ε(0) + uε

1(�0) = 0. We refer to Dal
Maso et al. (2016, Remark 1.12) for more details on the regularity of the solutions.

4.2 Limit for Vanishing Inertia

We now study the limit � of the evolutions �ε as ε → 0. Notice that the initial
conditions are not at equilibrium; in particular the initial position u0(x) is not of the
form

[− w(0)
�0

x + w(0)
]∨ 0. Because of (3.11), there must be a time discontinuity at

t = 0, i.e. the limit displacement u jumps to an equilibriumconfiguration.Nonetheless,
we will show that � is continuous even at t = 0. In order to determine �, the main point
is to study the limit evolution of the debonding during the first phase characterised by
the “stop and go” process illustrated above. Afterwards, during the second phase, the
evolution of the debonding will proceed at constant speed, given by limε→0 �̇ε

1 = 1.
We first compute the instant at which the first phase ends. By (4.13), we have

bε
3nε = 2ε

⌊
1

ε

⌋
+ c

� 1
ε
�+1

ε − 1

�̇ε
1

ε→0−→ e2 + 1.

On the other hand, at time bε
3nε the position of �ε is given by

�ε
(
bε
3nε

) = �0 +
(
bε
3nε − 2ε

⌊
1

ε

⌋)
�̇ε
1 = �0 + c

⌊
1
ε

⌋
+1

ε − 1
ε→0−→ e2 + 1. (4.14)

Indeed, in [0, bε
3nε ] the speed �̇ε is either zero or �̇ε

1, and the total length of the intervals
where �̇ε = 0 is 2ε� 1

ε
�.

Therefore, for t ≥ e2+1 we have �(t) = t . In the time interval [e2+1,+∞), cor-
responding to the second phase, the quasistatic limit � is a rate-independent evolution
in the sense of Definition 3.6, see also Remark 3.8.

We now explicitly find the law of the evolution of � in the first phase. Rather than
seeking an expression for t �→ �(t), it is more convenient to determine the inverse map
� �→ t (�), cf. Lazzaroni et al. (2012) for a similar computation in another example.
We consider the map

i �→ �ε(bε
3i ) = �0 + ci+1

ε − 1, (4.15)

where 1 ≤ i < nε. Notice that the last equality follows as in (4.14). We now take the
inverse of (4.15) and define

iε(�) :=
⎢⎢⎢⎣ log

(
1+�−�0

cε

)

log cε

⎥⎥⎥⎦ .

Since c
1
ε
ε → e2 as ε → 0, then we have

εiε(�)
ε→0−→ log (� − 1)

2
. (4.16)
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Fig. 6 Dynamic solution for ε = 0.1 (zig-zag), asymptotic limit (continuous line), and a rate-independent
evolution (dashed line)

Therefore,

t (�) = lim
ε→0

bε
iε(�) = lim

ε→0

(
2εiε(�) + ci

ε(�)+1
ε − 1

�̇ε
1

)

= log(� − 1) + � − 2, � ∈ (�0, e
2+1), (4.17)

denotes the trajectory followed by the debonding during the first phase (see Fig. 6).
Notice that t (�) is the sum of a strictly concave and an affine function, thus �(t) is
strictly convex in the first phase. It is interesting that the first phase features a strictly
positive debonding acceleration.

We can give first- and second-order laws characterising the first phase. By (4.17)
we obtain

ṫ(�) = �

� − 1
for � ∈ (2, e2+1),

hence

�̇(t) = �(t) − 1

�(t)
for t ∈ (0, e2+1)

and

�̈(t) = �(t) − 1

�(t)3
for t ∈ (0, e2+1).

As already observed, we have �̇, �̈ > 0 in the first phase. Both �̇ and �̈ are discontinuous
at t = e2+1.
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Notice that during the first phase the quasistatic limit � does not satisfy (3.20c),
thus it does not comply with the notion of rate-independent evolution given in Def-
inition 3.6. Indeed, since the local toughness is constant, Remark 3.8 implies that a
rate-independent evolution must be piecewise affine (with possible jumps); in con-
trast, (4.17) is not the equation of a line. This result is similar to the one obtained in
Lazzaroni et al. (2012) with a discontinuous local toughness: here we showed that a
singular behaviour can be observed even if the local toughness is constant.

Remark 4.2 We recall that the initial displacement uε
0 chosen in (4.1a) has a kink

at �0
2 = 1. In this section, we showed that the interaction between the two slopes

generates the “stop and go” process, which gives as a result the convergence to an
evolution that does not satisfy Definition 3.6. However, this singular behaviour can be
obtained even for a smooth initial datum. Indeed, let us consider a regularisation of uε

0,
coinciding with the original profile outside of (1− δ

2 , 1+ δ
2 ), where δ ∈ (0, 1) is fixed.

As a consequence of this choice, the function �̇ε differs from (4.12) only in a portion
of the order εδ of each interval (bε

i , b
ε
i+1). The resulting evolution of the debonding

front �ε is smooth. However, in the limit we observe the same qualitative behaviour
described above, due to the interaction of the different slopes of the initial datum. This
shows that the singular behaviour is not due to the choice of a initial datumwith a kink.

4.3 Analysis of the Kinetic Energy

The striking behaviour observed in the previous example can be explained by com-
puting the oscillations of the kinetic energy

K ε(t) := ε2

2

∫ �ε(t)

0
uε
t (t, x)

2dx . (4.18)

We recall that the displacement’s derivatives are piecewise constant, with discontinuity
lines given by shock waves originating at �0/2 (where the initial datum has a kink)
and travelling backward and forward in the debonded film (cf. Remark 4.1).

Let us introduce some notation. The sectors determined by shock waves (Fig. 7)
are divided into three families: Ti denotes a triangular sector adjacent to the time
axis (i.e. the vertical axis in figure), Si a triangular sector adjacent to the graph of �ε,
and Ri a rhomboidal sector; T0 contains the segment {0} × [aε

1, a
ε
2], S0 contains the

segment [(0, �0), (bε
1, �

ε
1)], and R0 is adjacent to T0 and S0; the families are indexed

increasingly in the direction of the time axis.
It is easy to see that the boundary conditions imply that uε

t = 1 in the sectors Ti and
uε
t = 0 in the sectors Si with i odd, i.e. those triangles corresponding to a stop phase

of the debonding front. Moreover, by (2.7a), (4.2), and (4.11) we obtain that uε
t = 1

in the sectors Si with i even. In all triangular sectors we thus have uε
t (t, x) of order at

most one, so that their contribution to the kinetic energy (4.18) is of order at most ε2.
More precisely,

ε2

2

∫
({t}×[0,�ε(t)])∩Ti

uε
t (t, x)

2dx ≤ Cε2 for every t, i,
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Fig. 7 The sectors composing �ε give different contributions to the kinetic energy K ε . The darker the
shade of grey, the larger is uε

t (t, x)
2 in that region. White sectors give a negligible contribution

for some C > 0, and the same holds for Si . In particular,

K ε(t) = O(ε2) for t = aε
3i−1 + aε

3i+1

2
and for t = aε

3i+1 + aε
3i+2

2
(4.19)

for every i ≥ 1.
We now show that the remaining rhomboids Ri give a relevant contribution to the

kinetic energy. By (2.7a), (4.2), and (4.11) we obtain for every i

uε
t (t, x) = 1 − 1

ε
ḟ ε
1 + 1

ε

(
ḟ ε
1 − ε

⌊
1

ε

⌋
+ iε

)
= 1 −

⌊
1

ε

⌋
+ i in R2i ,

uε
t (t, x) = 1 − 1

ε

(
ḟ ε
1 − ε

⌊
1

ε

⌋
+ (i + 1)ε

)
+ 1

ε
ḟ ε
1 = 1+

⌊
1

ε

⌋
− (i + 1) in R2i+1.
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To obtain the kinetic energy (4.18), we observe that the maximal t-section of each
rhomboid has length �0 = 2. Therefore,

K ε(t) = ε2
(⌊

1

ε

⌋
− i

)2

+ O(ε) for t ∈ [
aε
3i+2, b

ε
3i+1

] ∪ [
bε
3i+2, a

ε
3i+4

]
. (4.20)

This gives the maximal asymptotic amount of kinetic energy; we do not detail the
computation of the kinetic energy in other intervals. We recall that by (4.19) the
minimal asymptotic amount is zero, so the energy is oscillating.

Moreover, since (4.20) holds for i = 0, . . . , nε and since nε = � 1
ε
�, we observe

that the maximal oscillations of the kinetic energy decrease as time increases, until the
kinetic energy is close to zero for i = nε, i.e. when the non-quasistatic phase finishes
and the second phase starts. In fact, since in the second phase ḟ ε(t) = ḟ ε

1 for a.e. t ,
then uε

t is constantly equal to one, so the kinetic energy is negligible by (4.18). We
can also give an asymptotic expression for the maximal (resp., minimal) oscillations
by plugging (4.16) in (4.20) [resp., by (4.19)]:

�-lim
ε→0

(−K ε)(t) = −
(
1 − log(�(t) − 1)

2

)2

, �-lim
ε→0

(K ε)(t) = 0. (4.21)

We refer to Braides (2006) for the notion of �-convergence. A similar phenomenon
was observed in Lazzaroni et al. (2012) for a discontinuous toughness.

Summarising,

• the non-quasistatic phase, where Griffith’s quasistatic criterion fails in the limit, is
characterised by the presence of a relevant kinetic energy (of order one as ε → 0,
at each fixed time);

• during such first phase, kinetic energy oscillates and is exchanged with potential
energy at a timescale of order ε;

• overall, the total mechanical energy decreases and is transferred into energy dis-
sipated in the debonding growth;

• as time increases, the maximal oscillations of the kinetic energy decrease and
approach zero as t → e2 + 1, i.e. all of the kinetic energy is converted into
potential and dissipated energy;

• in the second (stable) phase, for t ≥ e2 + 1, the kinetic energy is of order ε2 and
does not influence the limit behaviour of the debonding evolution as ε → 0.

5 Conclusion

In this paper we have studied a dynamic peeling test and its limit for slow loading (or,
equivalently, for vanishing inertia). We have proved that the limit displacement is at
equilibrium (i.e. it is affine, see Theorem 3.5), while the limit debonding evolution is
non-decreasing and satisfies a stability condition, precisely the energy release rate is
controlled by the local toughness (Theorem 3.11). In contrast, the activation condition
(3.20c) in Griffith’s criterion is in general not satisfied in the limit as shown by the
example in Sect. 4. In fact, in that case the quasistatic energy balance does not hold,
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because of the presence of a relevant amount of kinetic energy during a first phase
[whose asymptotic limit is given by (4.17) and (4.21)].

Such phase features a strictly positive debonding acceleration. In fact, in fracture
mechanics, it was observed that the equation of motion involves crack acceleration
in finite size specimens, as that considered here (Marder 1991; Goldman et al. 2010).
The emergence of crack inertia is due to waves generated by the crack that interact
with the crack after bouncing on the boundary. A similar phenomenon is observed in
our example for the peeling test. The role of debonding acceleration in the quasistatic
limit will be matter of future investigation: this may lead to a better characterisation
of the notion of solution found in the limit.

Our example highlights the relevance of dynamical effects in debonding propa-
gation under quasistatic loading: the quasistatic approximation given by Griffith’s
criterion is not appropriate in this case since the kinetic energy can not be neglected.
A similar behaviour was observed in Lazzaroni et al. (2012), arising from toughness
defects. Our example shows a new situation where convergence to a rate-independent
solution fails, due to initial data out of equilibrium. The same phenomenon is observed
if we choose as initial condition uε

0(x) := uε((aε
3i+1 +aε

3i+2)/2, x) (with the notation
of the previous section), thus we obtain a non-quasistatic propagation even starting
from an initial datum arbitrarily close to equilibrium.

Hence, our newexample indicates that, in order to get convergence toGriffith’s crite-
rion, one should essentially consider the trivial case of an initial datum at equilibrium.
Indeed, also in finite-dimensional singularly perturbed second-order potential-type
equations, convergence to equilibrium is enforced by taking initial conditions at equi-
librium (Nardini 2017); however, choosing an initial datumat equilibrium is not needed
if such equations include a viscosity term tending to zero as inertia vanishes (Agos-
tiniani 2012). This suggests that, in the case of the peeling test, Griffith’s criterion
may hold in the quasistatic limit if the dynamic equations are damped. We leave this
question open for further research.
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