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Abstract We show that the emerging field of discrete differential geometry can be
usefully brought to bear on crystallization problems. In particular, we give a simpli-
fied proof of the Heitmann–Radin crystallization theorem (Heitmann and Radin in J
Stat Phys 22(3):281–287, 1980), which concerns a system of N identical atoms in
two dimensions interacting via the idealized pair potential V (r) = +∞ if r < 1,
−1 if r = 1, 0 if r > 1. This is done by endowing the bond graph of a general
particle configuration with a suitable notion of discrete curvature, and appealing to
a discrete Gauss–Bonnet theorem (Knill in Elem Math 67:1–7, 2012) which, as its
continuous cousins, relates the sum/integral of the curvature to topological invariants.
This leads to an exact geometric decomposition of the Heitmann–Radin energy into (i)
a combinatorial bulk term, (ii) a combinatorial perimeter, (iii) a multiple of the Euler
characteristic, and (iv) a natural topological energy contribution due to defects. An
analogous exact geometric decomposition is also established for soft potentials such as
the Lennard–Jones potential V (r) = r−6−2r−12, where two additional contributions
arise, (v) elastic energy and (vi) energy due to non-bonded interactions.
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1 Introduction

At low temperature, atoms andmolecules typically self-assemble into crystalline order.
The challenge to derive this fundamental phenomenon from a mathematical model of
the interatomic interactions is known as the crystallization problem (for a recent review
see Blanc and Lewin 2015). In the limit of zero temperature and long time, observed
configurations are expected to correspond to minimizers of the interaction energy,
and so the crystallization problem amounts to proving that energy minimizers exhibit
crystalline order.

Our goal in this paper is to understand an important initial result on crystallization
in two dimensions in a new way, by introducing and exploiting a discrete differential
geometry viewpoint. We hope that this approach will also aid future progress on the
many open crystallization problems, including 3D ones. In a companion paper [8], our
approach will be used for developing a rigorous understanding of basic defects occur-
ring at non-minimal but low energy for the models studied here. For an application to
uniqueness questions see De Luca and Friesecke (2017).

The important crystallization result we are concerned with is due to Heitmann and
Radin (1980). One starts from the prototypical Lennard–Jones energy for a system of
N identical atoms with positions x1, . . . , xN ∈ R

d ,

EV (x1, . . . , xN ) =
∑

i< j

V (|xi − x j |) (1.1)

where V is the Lennard–Jones (p, 2p) potential

Vp,2p(r) = r−2p − 2r−p (p > 0). (1.2)

(see Fig. 1). Here we have normalized the optimal interparticle distance to 1 and the
associated potential energy to −1. This energy numerically exhibits crystallization.
SeeWales (1997) for a list of numerical minimizers in three dimensions for p = 6 and
N up to 110. The model (1.1)–(1.2) plays an important role in the physics literature
on large systems of atoms above and below the crystallization temperature (see, e.g.,
Allen and Tildesley 1987; Thompson and Troian 1997; Wales 1997; Cameron and
Vanden-Eijnden 2014). For further information about model energies for many-atom
systems, including highly accurate quantum-mechanical ones, we refer to the recent
survey article (Friesecke and Theil 2015). As regards mathematical results, even in
dimension d = 2 crystallization of minimizers has not been proved rigorously (see the
end of this introduction for further discussion of this point), but Heitmann and Radin
established the beautiful result that when the potential is simplified to

VHR(r) =

⎧
⎪⎨

⎪⎩

+∞, r < 1

−1, r = 1

0, r > 1,

(1.3)

then all minimizers are up to rotation and translation subsets of the triangular lattice

L = {ie + jf : i, j ∈ Z}, e =
(
1
0

)
, f =

(
1/2√
3/2

)
. (1.4)
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Fig. 1 The Lennard–Jones potential (1.2) for p = 2 (left), 6 (middle) and 20 (right)

We note that the Heitmann–Radin potential is the large-p limit of the Lennard–Jones
potential, i.e., limp→∞ Vp,2p(r) = VH R(r); physically, one is taking a “brittle limit”
in which the width of the well of the pair potential is compressed to zero and bonds
immediately break upon increasing the interparticle distance. For finer information
about the minimizers of (1.1), (1.3) such as their asymptotic shape see Au Yeung et al.
(2012), Schmidt (2013) and Davoli et al. (2017), and for an analogous result in the
presence of a three-body potential favouring bond angles of 2π/3 see Mainini and
Stefanelli (2014).

Roughly, our new approach to understanding the Heitmann–Radin result is as fol-
lows. First, endow the bond graph of a particle configuration with a suitable notion
of discrete (combinatorial) curvature which vanishes on the expected ground state
graphs. Second, “integrate” over the whole configuration and use a discrete version of
the Gauss–Bonnet theorem from differential geometry to obtain a purely topological
contribution to the total energy. Third, show that this contribution as well as the bulk
energy (of which more below) can be eliminated, and minimize just the remaining
energy contributions. This strategy can be summarized in the following diagram:

particle configuration −→ bond graph −→ curvature −→ simplified energy.

Finding a suitable notion of curvature which localizes a relevant part of the energy is a
long story, told in Sect. 2. As turns out, we will work with the combinatorial Puiseux
curvature [see Knill 2012 or (2.7) below] of the triangulated bond graph, i.e., the graph
obtained by adding extra edges until all non-triangular faces have been decomposed
into triangles. A recent discrete Gauss–Bonnet theorem by Knill (2012) says that this
curvature integrates to a multiple of the Euler characteristic of the bond graph (see
also Theorem 2.1 below, which extends this result to irregular boundaries as needed
here). This leads to the following exact expression for the energy (1.1), (1.3) of an
arbitrary configuration X = (x1, . . . , xN ) (see Theorem 3.1 below):

EVH R
(X) = −3N + P(X) + μ(X) + 3χ(X), (1.5)

where χ(X) is the Euler characteristic of the bond graph and μ(X) is a natural defect
measure, namely the number of additional edges due to triangulation [see (3.4)]. For
nice configurations, μ can be expressed in terms of the original bond graph as

123



72 J Nonlinear Sci (2018) 28:69–90

μ(X) = � quadrilaterals + 2 � pentagons + 3 � hexagons + · · ·

The remaining energy contribution P(X) in (1.5) is a combinatorial perimeter, defined
on nice configurations as the number of boundary edges and extended to irregular
configurations as suggested by geometric measure theory (Federer 2014), namely by
counting “wire edges” twice [see Fig. 3 and (2.4)].

The Heitmann–Radin proof of crystallization relies on the following remarkable
but somewhat mysterious inequality due to Harborth (1974): for configurations with
interparticle distance ≥ 1 and simply closed polygonal boundary,

EVH R
(X) ≥ EVH R

(X\∂ X) − 3 � ∂ X + 6.

Theproof uses an “elementary” lower boundon the inner angleα(x)between incoming
and outgoing boundary edge at the boundary vertex x (see Fig. 5),

α(x) ≥
(
�(interior edges emanating from x) + 1

)π

3
. (1.6)

Our simplified form of the Harborth inequality is

(P + μ)(X) ≥ (P + μ)(X\∂ X) + 6 (1.7)

(see Lemma 4.2). The underlying “elementary” bound (1.6) will be seen to have the
following differential-geometric meaning: The combinatorial Puiseux curvature as
introduced by Knill (2012) of the boundary of the bond graph is pointwise bounded
from below by the euclidean Puiseux curvature of the associated polygon in the plane.
See Proposition 4.1. The global inequality (1.7) will be derived from this curvature
bound by integration over the boundary and using Gauss–Bonnet.

Another interesting outcome of the differential-geometric viewpoint is a general-
ization of the decomposition (1.5) to soft potentials such as (1.2). In this case, edges
of the bond graph are taken to correspond to particle pairs whose distance lies in a
suitable neighborhood [α, β] of the optimal distance r = 1, and the energy (1.1) is
shown to satisfy

EV (X) = −3N + P(X) + 3χ(X) + μ(X) + Ee�(X) + Enbond(X), (1.8)

where Ee� is the elastic energy of the bonds which vanishes for optimal bond lengths
r = 1 [see (3.1) in Sect. 3], and Enbond the energy due to non-bonded interactions [see
(3.2)]. We emphasize that (1.8) holds for arbitrary configurations. Hence, it is poten-
tially useful not just for the study of minimizers, but also for studying crystallization
at finite temperature or analyzing the molecular dynamics of crystal formation.

What can be said about minimizers in the soft potential case? One might expect
that when V is “close” to (1.3), minimizing configurations are “close” to subsets of
a suitable lattice, up to a boundary layer of o(N ) particles. The deep insight of Theil
(2006) (see Li 2009 for an extension and Flatley and Theil 2015; Flatley et al. 2013
for a computer-aided generalization to a class of three-body potentials in 3D) that N -
particle lattice subsets achieve the optimal asymptotic energy per particle in the limit
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Fig. 2 A particle configuration and its bond graph. The coloring indicates boundary particles (Color figure
online)

N → ∞ is very suggestive of such a behavior of the positions. Unfortunately, the
methods introduced here are insufficient; in particular, the pointwise bound of discrete
Puiseux curvature by euclidean Puiseux curvature breaks down, and hence so does our
differential-geometric proof of (1.7).

2 Discrete Differential Geometry of Particle Configurations

In this section we are concerned with arbitrary N -particle configurations in the plane.
We endow them with additional mathematical structure (graph; metric; discrete cur-
vature) and derive a discrete Gauss–Bonnet theorem by adapting recent work of Knill
(2012) to general triangular graphs.

2.1 Configurations

By a configuration of a system of N identical particles in two dimensions we mean a
set X = {x1, . . . , xN } ⊂ R

2 of mutually distinct particle positions xi ∈ R
2.

2.2 Bond Graph

Discard now any detailed features of the pair potential V and just assume that it has
a unique minimum, say at r = 1. We say that two particles x and y in X are linked
by an edge, or bond, if their mutual distance lies in a suitable neighborhood, or bond
range, [α, β] around the optimal distance r = 1. Fix such a bond range [α, β], with
0 < α ≤ 1 ≤ β; the associated set of edges is

E := {{x, y} : x, y ∈ X, α ≤ |x − y| ≤ β}. (2.1)

We call the graph (X, E) the bond graph of the configuration. See Fig. 2.
Simple geometric considerations show that the bond graph is a planar graph (i.e.,

for any two different edges {x, y} and {x ′, y′}, the corresponding line segments [x, y]
and [x ′, y′] do not cross) provided

β <
√
2 dmin, (2.2)
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Fig. 3 Classification of edges

where dmin is the minimum interparticle distance min{|x − y| : x, y ∈ X, x 
= y}.
Condition (2.2) can be fulfilled by a suitable choice of the maximum bond length β

if and only if the particle configuration satisfies the mild minimal distance condition

dmin >
1√
2
. (2.3)

We remark that if a particle pair achieved equality in (2.3), its standard Lennard–
Jones (6, 12) energy would be +48, a value almost two orders of magnitude above the
binding energy V (∞) − V (1) = 1. Hence, violations of (2.3) should never occur for
planar ground state configurations of physical systems; for a rigorous proof in case of
the Lennard–Jones (6,12) energy see Blanc (2004), [8]. In the sequel we assume that
(2.2)–(2.3) are satisfied.

2.3 Faces, Interior and Boundary

In order to study crystallization, it will be very useful to distinguish between “interior”
and “boundary” particles and edges. To this end we first introduce faces. By a face f
we mean any open, bounded and connected subset of R2 which is non-empty, disjoint
with the set of points and edges X ∪ ⋃

{x,y}∈E [x, y], and whose boundary is given

by a cycle, i.e., ∂ f = ∪k
i=1[xi−1, xi ] for some points x0, x1, . . . , xk = x0 ∈ X with

{xi−1, xi } ∈ E . The points x0, . . . , xk−1 do not need to be pairwise distinct, as a
face might contain “inner wire edges” (see Fig. 3). Note also that for non-connected
graphs, our definition differs slightly from standard conventions because ring-shaped
regions bounded by two cycles are not faces. This has the advantage that the Euler
characteristic stays unchanged under triangulation.

Edges can now be classified into four types (see Fig. 3). We say that an edge is

• a regular interior edge if it lies on the boundary of two faces,
• a regular boundary edge if it lies on the boundary of precisely one face and that
of the complement of the union of all faces,

• an outer wire edge if it does not lie on the boundary of any face,
• an inner wire edge if it lies on the boundary of precisely one face but not on that
of the complement of the union of all faces.
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The regular interior and inner wire edges are called interior edges, and the regular
boundary and outer wire edges are called boundary edges. Finally we are in a position
to distinguish mathematically between interior and boundary particles (see Fig. 2).
We say that a particle is

• an interior particle if it is incident only with interior edges, and
• a boundary particle if it is incident with no edge or with a boundary edge.

The set of boundary particles will in the sequel be denoted by ∂ X , and the set of
interior particles by int X .

2.4 Perimeter

As explained in Introduction, an important role in our analysis is played by the com-
binatorial perimeter of the bond graph. For general configurations we define it as
follows:

P(X) := �(regular boundary edges in E) + 2�(outer wire edges in E). (2.4)

We note that P is additive over connected components and coincides for connected
graphs with edge length 1 with the geometric perimeter of the set X̃ in the plane
obtained by taking the union of vertices, edges, and faces of the bond graph (X, E).
Note that the geometric perimeter, defined as the infimum of the length of simply
closed smooth curves whose interior contains X̃ , naturally counts wire edges twice.

2.5 Which Curvature relates to Energy Minimization?

As mentioned in Introduction, it is not obvious which notion of curvature will be the
most fruitful for our purposes. Here are some desiderata.

(1) Curvature should be well-defined for general (irregular) configurations.
(2) For lattices, zero curvature should single out the energy-minimizing lattices.
(3) Non-topological defects such as elastic deformation, vacancies, or flat boundaries

should not contribute to total curvature.

Condition (1) will lead to considering, along with the bond graph, its triangulation, of
which more later. Condition (3) suggests to work with a purely combinatorial notion.
Condition (2) rules out “universal” notions such as Gromov curvature (Gromov 1987;
Higuchi 2001

KGr(x) = 1 − 1

2
(edge degree of x) +

∑

y∈S1(x)

1

(face degree of y)
, (2.5)

where here and below S1(x) denotes the unit sphere with respect to the graph metric
around a point x , that is to say all y ∈ X linked to x by an edge. This is becauseGromov
curvature vanishes on all of the standard lattices such as the triangular, square, and
hexagonal lattice.
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Fig. 4 The triangulated bond
graph of the particle
configuration from Fig. 2.
Additional edges due to
triangulation of faces with more
than three edges are shown in
red (Color figure online)

Euler curvature

Keu(x) = 1 − 1

2
(edge degree of x) + 1

3
(face degree of x) (2.6)

distinguishes between these lattices, and hence satisfies condition (2), but it vio-
lates condition (3), because it yields a positive contribution from each boundary
atom.

2.6 Curvature

What turns out to work is a discrete version of Puiseux curvature, applied not to the
bond graph but the triangulated bond graph. Discrete Puiseux curvature was recently
introduced and studied in the context of subdomains of the triangular lattice by Knill
(2012), and can be thought of as a boundary-corrected version of Euler curvature,
corrected in such a way that flat boundaries have curvature zero.

First we define the triangulated bond graph. For any face of the bond graph (X, E)

with more than 3 edges, say k edges (where inner wire edges are counted twice), we
add k −3 edges connecting not already connected vertices and not crossing each other.
This yields a new graph (X, Ē) all of whose faces are triangles and which we call the
triangulated bond graph. See Fig. 4.

We now define the combinatorial Puiseux curvature of a particle configuration X
at a point x ∈ X (see Knill 2012). Denote by S1,L the unit sphere around a point in
the triangular lattice (1.4). Let

K (x) =
{

|S1,L| − |S1(x)| = 6 − |S1(x)| if x is an interior particle
1
2 |S1,L| − |S1(x)| = 3 − |S1(x)| if x is a boundary particle,

(2.7)

where S1(x) denotes the unit sphere with respect to the graphmetric in the triangulated
bondgraph (X, Ē) and |S1(x)| denotes the number of edgeswhich connect twovertices
in S1(x) and are adjacent to a facewith a corner at x . See Fig. 5. To explain themeaning
of (2.7) some remarks are in order.

First, a suitable dilation of L is the lattice expected to minimize the energy (1.1)–
(1.2) (in the limit of infinitely many particles), and hence K has the desired properties
(2) and (3). If interactions other than (1.1)–(1.2)were under consideration, e.g., angular
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K = 0

K = 3− |S1| = 1

K = 1

Keu = 0

α

Keu = π − α = π
3

α

Keu < π
3α

Fig. 5 LeftThecombinatorial Puiseux curvature of a particle configuration at a boundarypoint is determined
by the length of the unit sphere (drawn in red) in the graph metric. Right The classical Puiseux curvature of
the piecewise linear curve in the plane formed by the boundary edges is determined by the length of spheres
(drawn in red) in the euclidean metric metric (Color figure online)

terms promoting the formation of graphene sheets and nanotubes as recently studied
mathematically in Mainini and Stefanelli (2014), other reference lattices need to be
used in (2.7).

Second, for interior particles K (x) agrees (up to an overall normalization factor
which is a matter of convention) with the Euler curvature (2.6), because in a planar
triangular graph both the edge degree and the face degree of an interior point x agree
with the number of edges in the unit sphere around x .

Third, for boundary particles, definition (2.7) is a graph-theoretic analogon of the
classical euclidean Puiseux curvature of the boundary ∂	 of a polygon 	 in R2,

Keu(x) = 1
2 |S1(x)|eu︸ ︷︷ ︸

=π

− lim
r→0

length(Sr (x) ∩ 	)

r
(x ∈ ∂	), (2.8)

where Sr (x) denotes the euclidean unit sphere of radius r around x and |Sr (x)|eu
denotes its euclidean length. See Fig. 5. The constant term in (2.8) for boundary
particles is the euclidean length of a half-sphere in flat 2D euclidean space, just as the
constant term in the second line of (2.7) is the length (w.r. to the graph metric) of the
half-sphere in the triangular lattice. The second term in (2.8) just gives the interior
angle. A deeper connection between combinatorial and euclidean Puiseux curvature
will be given in Proposition 4.1.

2.7 Triangular Graphs

By a triangular graph we mean a planar graph such that the interior of any cycle is a
union of triangular faces.
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2.8 Discrete Gauss–Bonnet

The curvature K (x) depends on the chosen triangulation, but—as we shall now see—
its sum over all x ∈ X does not; it is a topological invariant. The usefulness of
K (x) for crystallization problems stems from this property, as well as from the fact
that it is naturally related to the energy (1.1) [see (3.6) below]. Recall that the Euler
characteristic of a planar graph with v0 vertices, v1 edges and v2 faces is defined as

χ(X) :=
2∑

k=0

(−1)kvk . (2.9)

Theorem 2.1 (Discrete Gauss–Bonnet) Let (X, Ē) be any planar triangular graph.
Then ∑

x∈X

K (x) = 6χ(X) + 3
(

P(X) − �∂ X
)
. (2.10)

In particular, when (X, Ē) has simply closed polygonal boundary,

∑

x∈X

K (x) = 6χ(X), (2.11)

where here and below, we say that X, Ē has simply closed polygonal boundary if the
union of the closures of the faces of the bond graph (X, E) has simply closed boundary.

This result, and its proof, is a modest extension of recent work of Knill who estab-
lishes the discrete Gauss–Bonnet formula (2.11) for subdomains of the triangular
lattice (see Knill 2012 Section 7, and see Knill 2011 for generalizations to higher
dimension). The extra term appearing in (2.10) for irregular graphs, which we have
not seen previously in the literature, may be viewed as a topological characteristic of
“boundary defects” such as the wire edges depicted in Fig. 3.

Proof We use the second of the following three “handshake” properties (terminology
in Knill 2014) for any planar triangular graph (X, Ē). We let

V0(x) := 1, V1(x) := �(edges in S1(x)), V2(x) := �(faces inside S1(x)), (2.12)

where by a face inside S1(x) we mean a face of (X, Ē) adjacent to x (and hence to an
edge in S1(x)). Set

v0 := �(vertices in X), v1 := �(edges in X), v2 := �(faces in X),

we claim that

(1)
∑

x∈X
V0(x) = v0,

(2)
∑

x∈X
V1(x) = 2v1 − �(regular boundary edges) − 2�(outer wire edges) = 2�Ē −

P(X),
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(3)
∑

x∈X
V2(x) = 3v2.

The first property is trivial. The second one follows because each interior edge appears
as an edge in two unit spheres, each regular boundary edge appears in one unit sphere,
and each wire edge does not appear in any unit sphere. And the third property follows
from the fact that each face is triangular, and hence appears in precisely three unit
spheres.

The following Euler-like curvature will emerge naturally during the computation
below. It is reminiscent of (2.6) but uses the quantities (2.12) instead of the edge and
face degree (and we have changed normalization to obtain an integer quantity):

K̃ (x) = 6
(

V0(x) − 1

2
V1(x) + 1

3
V2(x)

)
= 6 − �edges in S1(x). (2.13)

We compute

χ(X) =
2∑

k=0

(−1)kvk (definition of Euler characteristic)

=
2∑

k=0

(−1)k
∑

x∈X

Vk(x)

k + 1
− 1

2
P(X) (handshake)

=
∑

x∈X

2∑

k=0

(−1)k Vk(x)

k + 1
− 1

2
P(X) (change order of summation)

=
∑

x∈X

K̃ (x)

6
− 1

2
P(X) (definition of Euler-like curvature)

=
∑

x∈X

K (x)

6
+ 1

2

(
� ∂ X − P(X)

)
(definition of Puiseux curvature).

This establishes the theorem. Note how the surface term in the last but one line is
cancelled, at least in the case of graphs with simply closed polygonal boundary, by
the passage from Euler-like curvature to Puiseux curvature. �

3 Geometric Energy Decomposition

We now partition the at first sight featureless energy (1.1) into various geometric and
topological contributions. The pair potential may be any function V : (0,∞) →
R∪ {+∞} which attains its minimum at r = 1 and has minimum value −1. We begin
with a trivial but useful decomposition into minus the number of bonds of the original
bond graph (X, E), elastic energy, and the energy due to non-bonded interactions.
Letting
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Ee�(X) := 1

2

∑

(x,y)∈X×X
α≤|x−y|≤β

(
V (|x − y|) − min

r>0
V (r)

)
, (3.1)

Enbond(X) := 1

2

∑

(x,y)∈X×X
|x−y|/∈[α,β]

V (|x − y|), (3.2)

we have
EV (X) = −�E + Ee�(X) + Enbond(X). (3.3)

Note that the elastic energy Ee� vanishes unless there are stretched or compressed
bonds; it is caused by particle pairs which are bonded (i.e., {x, y} belongs to the edge
set E) but whose distance is not the optimal bond length r = 1.

The first term in (3.3), i.e., the number of edges in the untriangulated bond graph,
can be decomposed further. First we introduce the following defect measure which
quantifies the distance of the bond graph (X, E) from a triangular graph:

μ(X) := �Ē − �E (= number of additional edges due to triangulation) (3.4)

so that
− �E = −�Ē + μ(X). (3.5)

The first term on the right hand side of (3.5) has sufficient regularity to be amenable
to differential-geometric analysis. Recall the definitions (2.12) and the associated
“handshake” properties from Sect. 2.8. We calculate

− �Ē = −1

2

(∑

x∈X

V1(x) + P(X)
)

(by handshake)

= −3 � int X − 3

2
� ∂ X + 1

2

(∑

x∈X

K (x) − P(X)
)

(by definition of K )

= −3N +
(3
2
� ∂ X − 1

2
P(X)

)
+ 1

2

∑

x∈X

K (x) (since �X = N ). (3.6)

Combining (3.3), (3.5), (3.6), and the discrete Gauss–Bonnet theorem gives the fol-
lowing final energy decomposition which we state as a theorem. Note that the explicit
contribution from boundary particles in (3.6) and that from the curvature sum exactly
cancel, even for irregular configurations, so that the surface energy contribution
reduces to the perimeter (2.4).

Theorem 3.1 (Geometric energy decomposition) Let V : (0,∞) → R ∪ {+∞} be
any pair potential which attains its minimum at r = 1 and has minimum value −1.
For any number N of particles, any N-particle configuration X satisfying the mild
minimum distance bound (2.3), and any choice of the bond range [α, β] satisfying
(2.2), the atomistic energy (1.1) satisfies the following exact decomposition:

EV (X) = −3 N + P(X) + 3χ(X) + μ(X) + Ee�(X) + Enbond(X). (3.7)
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Here P(X) is the perimeter (2.4), χ(X) the Euler characteristic (2.9), μ(X) the defect
measure introduced in (3.4), Ee� the elastic energy (3.1), and Enbond the energy (3.2)
due to non-bonded interactions.

The different terms in this decomposition are indicative of the differentmechanisms
of energy lowering which lead to crystallized ground states of special shape: lowering
the Euler characteristic χ(X) aggregates different connected components into a single
one; lowering the perimeter P(X) condenses long chains into bulk regions; lowering
the defect measure μ means forming more and more triangular faces; lowering the
elastic energy means rigidifying stretched or compressed bonds into unit-length ones.

We now comment on some of the individual terms.
The two terms μ(X) and χ(X) were introduced with the help of triangulation, but

they are in fact independent of the triangulation. Regarding χ this was explained in
Sect. 2.3, and regarding μ this follows from the following expression in terms of the
faces f of the original bond graph (X, E):

μ(X) =
∑

f

(
P inn( f ) − 3

)
=

∑

f : f not triangle

P inn( f ) − 3 b1(X̃). (3.8)

Here P inn( f ) is the “inner perimeter” of the face f which, like the outer perimeter
(2.4), counts wire edges twice,

P inn( f ) = � regular edges in ∂ f + 2 � inner wire edges in ∂ f, (3.9)

X̃ is the closed subset in the plane formed by the union of the vertices, edges, and
triangular faces of (X, E), and b1(X̃) is its first Betti number, that is to say the rank
of its first homology group. Thus, μ consists of a perimeter term, i.e., the perimeter
of the “holes” (non-triangular faces), and a topological term which counts the number
of holes.

Finally we emphasize the following point. For typical configurations below the
crystallization temperature, the first two terms, combinatorial bulk energy and com-
binatorial surface energy, have a clear asymptotic scaling with respect to the particle
number N , namely ∼N and ∼N 1/2, but the defect measure μ and the elastic energy
Ee� do not. Hence, the above decomposition cannot be discovered via asymptotic anal-
ysis. Instead, it can be used to study different regimes, such as a single dislocation
(μ ∼ 1, Ee� ∼ log N ), a dilute dislocation density as relevant for plasticity (Garroni
et al. 2010; μ ∼ N/(log N )2), or lattice elasticity (μ = 0 and Ee� ∼ N ).

4 Adding and Removing a Closed Shell

An important idea of Heitmann and Radin (1980) in their proof of crystallization
for the potential (1.3) (see also Harborth 1974) was to analyze the energy change
when adding or removing not a single atom, but a complete layer, or “closed shell”,
of boundary atoms. This energy change can be derived in a transparent way using
discrete curvature and Gauss–Bonnet, as we show in this section.
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We begin by looking at crystallized configurations, i.e., subsets of the triangular
latticeL. Throughout this section, in the definition of the bond graph of a configuration
we require edges to be of euclidean length 1, i.e., we choose α = β = 1 in (2.1).

Lemma 4.1 (Adding a closed shell to a crystallized configuration) Let X ′ be a crys-
tallized configuration (i.e., a subset of the triangular lattice L) with simply closed
polygonal boundary. Let X be the crystallized configuration obtained by adding every
point in L linked to X ′ by an edge, i.e.,

X := X ′ ∪ {x ∈ L : there exists x ′ ∈ X ′ with |x − x ′| = 1}. (4.1)

Then the perimeter of X satisfies the upper bound

P(X) ≤ P(X ′) + 6. (4.2)

Moreover, provided, e.g., X ′ contains at most one point with negative curvature, equal-
ity holds in (4.2), and the set X also has a simply closed polygonal boundary and at
most one point with negative curvature.

Proof Since X ′ is crystallized with simply closed polygonal boundary, the points in
∂ X ′ have curvature K = −1, 0, 1, or 2. See Fig. 6. Choose an orientation of the
boundary polygon formed by joining the particles in ∂ X . For any x ∈ ∂ X ′, we add
(K (x)+1) new particles with angles jπ/3 ( j = 1, . . . , K (x)+1) with respect to the
incoming edge as shown inFig. 6.This yields all particles in X\X ′, andmoreover yields
them exactly once provided X ′ contains at most one point with negative curvature. It
follows that

�(X\X ′) ≤
∑

x∈∂ X ′
(K (x) + 1) (with equality if �{x ∈ X ′ : K (x) < 0} ≤ 1)

=
∑

x∈X ′
K (x) + � ∂ X ′ (since K (x) = 0 in int X ′)

= 6χ(X ′) + � ∂ X ′ (by Gauss–Bonnet).

Since X ′ has simply closed polygonal boundary, we have χ(X ′) = 1 and � ∂ X ′ =
P(X ′). Moreover, since the additional particles in X have distance 1 from X ′, X\X ′ =
∂ X and X has no wire edges. In particular, �(X\X ′) = � ∂ X = P(X). This establishes
(4.2) and the fact that equality holds when X ′ has at most one point of negative
curvature. The additional consequences of the latter property are straightforward. The
proof of the lemma is complete. �

For typical crystalline configurations, it is easy to convince oneself that the reverse
operation—removing the boundary—lowers the perimeter by 6. A new phenomenon
occurs for non-crystalline configurations: removing the boundary can reduce the
perimeter by <6. This phenomenon is in our view the central reason why the crys-
tallization problem in two dimensions is difficult even for the HR potential (1.3), and
why it remains open for short-range smooth potentials [see Radin 1981 for a treatment
of a slightly different non-smooth potential than (1.3)]. For examples see Fig. 7.
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Fig. 6 Adding a closed shell to
a crystallized configuration X ′.
The size of this closed shell can
be counted using discrete
curvature: for each particle
x ∈ ∂ X ′ we need to add
precisely K (x) + 1 particles,
where K (x) is the combinatorial
Puiseux curvature [see (2.7);
values shown in red] (Color
figure online)

2

0

1-1

Fig. 7 A central phenomenon which makes crystallization hard to prove: removing the boundary from
a non-crystallized configuration can reduce the perimeter by fewer than 6 edges. Left an example with
unequal bond length where P(X) = 10, P(X\∂ X) = 5. Right an example with equal bond lengths where
P(X) = 16, P(X\∂ X) = 12.Note that locally near the boundary, both examples look similar to crystallized
configurations

The key to overcome this phenomenon in case of the potential (1.3) is the lemma
below, which restores the number 6 by accounting for defects.

Lemma 4.2 (Removing the boundary from a hard-sphere configuration) Let X be a
hard-sphere configuration, that is to say a configuration in R

2 with the two properties
that

(i) all euclidean interparticle distances are ≥ 1,
(ii) all edges have euclidean length 1 [i.e., α = β = 1 in (2.1)].

Assume also that X has simply closed polygonal boundary, and that X ′ = X\∂ X is
non-empty. Then

P(X) + μ(X) ≥ P(X ′) + μ(X ′) + 6. (4.3)

Moreover, if equality holds, then we must have μ(X) = μ(X ′).

The configuration in the right part of Fig. 7 shows that (4.3) can fail if the defects
terms μ(X) and μ(X ′) are dropped.

The key to the proof is the following curvature bound for hard-sphere configura-
tions. To state it we first need to deal with a certain “arbitrariness” that entered by
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triangulation. The triangulation will typically introduce extra edges emanating from
some of the boundary particles, and therefore influence the Puiseux curvature. How-
ever, for configurations with convex faces, given any fixed x ∈ ∂ X there always exists
a triangulation (X, Ē) such that no additional edges emanate from x . This suggests
to consider the following triangulation-independent variant of the Puiseux curvature
(2.7)

Kmax(x) := 2 − i(x)(
= max{K (x) : (X, Ē) is a triangulation of (X, E)}

)
, (4.4)

where here and below i(x) denotes the number of interior edges in the original bond
graph (X, E) which emanate from x . The second expression is valid when the faces
are convex (or when curved additional edges are admitted in the triangulation).

Proposition 4.1 (Discrete curvature bounds euclidean curvature) Let X be a two-
dimensional hard-sphere configuration (see Lemma 4.2) with simply closed boundary.
Then the maximal Puiseux curvature (4.4) of the boundary (with respect to any trian-
gulation (X, Ē) of the bond graph) is bounded from below by the euclidean Puiseux
curvature (2.8):

Kmax(x)

|S1,L| ≥ Keu(x)

|S1|eu for all x ∈ ∂ X. (4.5)

Here |S1,L| = 6 is the length w.r. to the graph metric of the unit sphere in the triangular
lattice, and |S1|eu = 2π is the euclidean length of the euclidean unit sphere in R

2.

Proof of Proposition 4.1 Let x be anyboundary particle in X . Because of the euclidean
distance constraint on the particles in X , if i(x) interior edges emanate from x , then the
inner angle α(x) between the incoming and outgoing boundary edge at x (see Fig. 5)
must satisfy

α(x) ≥
(

i(x) + 1
)

· π

3
, (4.6)

as already noted by Harborth (1974). We obtain the differential-geometric meaning of
(4.6) by subtracting π from both sides and multiplying by − 1

2π :

Keu(x)

|S1|eu = π − α

2π
≤ 2 − i(x)

6
= Kmax(x)

|S1,L| . (4.7)

�
Proof of Lemma 4.2 Introduce the subset of interior edges in the (non-triangulated)
bond graph which touch the boundary,

I := {interior edges of (X, E)with at least one vertex in ∂ X}.

Moreover, abbreviate the Heitmann–Radin energy EVHR defined by (1.1)–(1.3) by EHR.
The energy difference EHR(X) − EHR(X ′) can be computed in two ways. On the one
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hand, it trivially equals the number of edges in the bond graph (X, E) with at least
one vertex in ∂ X , i.e.,

EHR(X) − EHR(X ′) = −P(X) − �I.

On the other hand, applying Theorem 3.1 to both X and X ′ gives

EHR(X) − EHR(X ′) = −3� ∂ X + (P + μ)(X) − (P + μ)(X ′) + 3(χ(X) − χ(X ′)).

Equating both expressions yields

(P + μ)(X) − (P + μ)(X ′) = 2 � ∂ X − �I + 3 (χ(X ′) − χ(X))︸ ︷︷ ︸
≥0

. (4.8)

We claim that the underbraced term is nonnegative, i.e., that χ(X ′) ≥ 1. This can be
seen as follows. Because the original graph was assumed connected, the union of the
closure of all its faces equals the complement of the “outer” region (i.e., the unbounded
connected component of the complement). Hence, the connected components of X ′ are
all simply connected, so the Euler characteristic of X ′ equals the number of connected
components of X ′.

To maximize clarity of the argument below, we split the set I of interior vertices
touching ∂ X into the two sets

I1 := {e ∈ I : precisely 1 vertex of e belong to ∂ X},
I2 := {e ∈ I : both vertices of e belong to ∂ X}.

It follows that

(P + μ)(X) − (P + μ)(X ′)
|S1,L| ≥ 2 � ∂ X − �I

|S1,L| (by (4.8))

≥ 2 � ∂ X − (�I1 + 2�I2)

|S1,L| (trivially)

=
∑

x∈∂ X Kmax(x)

|S1,L| (by (4.4))

≥
∑

x∈∂ X Keu(x)

|S1|eu (by the curvature bound (4.5))

= 1 (by classical Gauss–Bonnet). (4.9)

In the last line we have used the classical Gauss–Bonnet theorem in the plane which
says that the curvature κ of a simply closed smooth planar curve C satifies

∫

C
κ ds = 2π, (4.10)
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where ds denotes the line element (alias Hausdorff measure H1) on C. (The curvature
κ in (4.10) is defined by the relation κ(c(t)) = α′(t), where c : [0, T ] → R

2 is a
smooth anticlockwise parametrization of C and α(t) is the angle of the tangent vector
c′(t) with respect to a reference direction, measured anticlockwise.) More precisely,
we have used the limiting case where C is the piecewise linear curve given by the
union of the boundary edges of X and the measure κ ds on C is the singular measure∑

x∈∂ X Keu(x)δx . This establishes (4.3).
When equality holds in (4.3), and hence in the last inequality in (4.9), then for any

x ∈ ∂ X wemust have equality in (4.6); but this implies that all angles between any two
consecutive edges emanating from x except the outer angle between the two boundary
edges are equal to π/3, and therefore the corresponding endpoints must be joined
by an edge. This excludes the possibility that any additional edge in the triangulated
bound graph can emanate from x . The proof of Lemma 4.2 is complete. �

5 A New Proof of Crystallization in the Heitmann–Radin Model

The preceding tools allow a novel proof of the Heitmann–Radin crystallization the-
orem. One observes that geometric rigidity of minimizers follows immediately from
“topological crystallization” of the bond graph (defined below), and establishes the
latter by control of the defect measure μ(X).

Theorem 5.1 For any number N of particles in the plane, minimizing configurations
X = {x1, . . . , xN } of the Heitmann–Radin energy (1.1), (1.3) are, up to an overall
rotation and translation, subsets of the triangular lattice (1.4). For N ≥ 3, minimizers
have simply closed boundary. Moreover, there always exists a minimizer containing
at most one point with negative curvature.

Definition A configuration X with �X ≥ 3 is called topologically crystallized if it
satisfies μ(X) = 0 and (X, E) has simply closed boundary.

This property implies the asserted geometric rigidity because—as explained in
Sect. 4—in the present context edges are of length 1, whence all faces of a con-
figuration with μ(X) = 0 are equilateral triangles.

Proof First we note that for N ≤ 9 the result holds, by inspection. See Table 1 for the
minimizers in these cases. We will proceed by induction and assume that the result
holds for N up to some particle number N0 ≥ 9. We now consider N = N0 + 1, and
suppose that X is an N -particle minimizer. Note that X must be connected and have
simply closed boundary, because otherwise we could lower the energy by translating
or rotation parts of the configuration against each other. This implies, in particular,
that P(X) = � ∂ X . We need to show that μ(X) = 0.

Step 1: Competitor We construct a competitor of Y of X with the same number of
particles, as follows:

X
remove boundary−−−−−−−−→ X ′ ground state with �X ′ particles−−−−−−−−−−−−−−−→ Y ′ add � ∂ X particles−−−−−−−−−−−→ Y. (5.1)
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The first two maps are easily made precise: X ′ := X\∂ X , and Y ′ is any minimizer
subject to the number of particles being �X ′. By the induction hypothesis, Y ′ is a subset
of the triangular lattice, has simply closed boundary, and can be chosen to contain at
most one point with negative curvature. To describe the third map in (5.1) is a little
more work, since we need to add precisely d := � ∂ X particles to Y ′, to restore the
original particle number N . We do so using the following unique decomposition of
any such d ≥ 0 into the number of particles in as many additional closed shells [see
(4.1)] as possible and a remainder,

d = dm + δ < dm+1, m ∈ {0, 1, 2, . . .}, δ ∈ {0, 1, 2, . . .}. (5.2)

Hence to obtain the competitor Y in (5.1) we add m closed shells to Y ′, resulting in
a configuration Ym , and then add δ additional particles from the next shell Ym+1\Ym

which form a connected subset thereof, and such that each new particle is adjacent
to a particle with negative curvature, if the latter exists. (If �X ′ = 0, we set Y ′ = ∅
and let the first closed shell around it be the first 6-particle minimizer in Table 1.) It is
straightforward to verify using induction over m and Lemma 4.1 that

P(Ym) = P(Y ′) + 6m, dm(Y ′) = m
(

P(Y ′) + 3(m + 1)
)
. (5.3)

The remaining δ particles are added starting with a neighbor of a point with negative
curvature if such a point exists, or otherwise at the end of the longest straight side.
More precisely, in the latter case we start with a joint neighbor of the first two particles
belonging to this side. We note that adding δ additional particles in this way increases
the perimeter at most by δ, and at most by δ − 1 when δ ≥ 2. The improved bound
for δ ≥ 2 relies on the fact that N ≥ 10, because, e.g., for N = 9, the anomalous
situation can occur that Y ′ consists of a single point and Y1 of the hexagon-shaped
7-particle minimizer depicted in Table 1, in which case the perimeter increases by δ

when δ = 2.

Step 2: Absence of defects The energy decomposition (3.7) now provides a powerful
tool, because we can separately compare the individual energy contributions. By (1.5)
and the fact that X and Y have the same number of particles, we only need to compare
Euler characteristic, defect measure, and perimeter. The first two are trivial to deal
with:

0 = μ(Y ) ≤ μ(X), 1 = χ(Y ) = χ(X). (5.4)

To compare the perimeter is less trivial. We distinguish three cases, corresponding to
X having a large, moderate, or small number of boundary particles, where large/small
means large/small compared to the number d1(Y ′) of particles of a single closed shell
around Y ′.

a) Large number of boundary particles: � ∂ X ≥ d1(Y ′) + 2.
This means that eitherm ≥ 2 orm = 1, δ ≥ 2. In the first case, Y is obtained by adding
m ≥ 2 closed shells and δ ≥ 0 additional particles. By the fact that the additional
particles increases the perimeter at most by δ, Lemma 4.1, and the elementary to check
inequality that P(Y ′) + 6m < dm when m ≥ 2, we have
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Table 1 The minimizers of the Heitmann–Radin energy up to N = 12

N Minimizers N Minimizers

1 2

3 4

5 6

7 8

9 10

11 12

P(Y ) ≤ P(Ym) + δ = P(Y ′) + 6m + δ < dm(Y ′) + δ = � ∂ X = P(X).

In the second case, Y is obtained by adding one closed shell and δ ≥ 2 additional
particles. In this case P(Y ′) + 6m = d1 but, as explained at the end of Step 2, the δ

additional particles raise the perimeter by at most δ −1, so we obtain the same overall
inequality:

P(Y ) < P(Ym) + δ = P(Y ′) + 6 + δ = d1(Y
′) + δ = � ∂ X = P(X).

Hence in both cases we have P(Y ) < P(X), which together with (5.4) shows that X
is not a minimizer, contradicting our assumption. Hence case a) cannot occur.

b) Moderate number of boundary particles: � ∂ X = d1(Y ′) + 1.
In this case Y is obtained from Y ′ by adding one closed shell and attaching one
additional particle. Using the trivial fact that the additional particle raises the perimeter
at most by 1, Lemma 4.1, and the formula for d1 we estimate
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P(Y ) ≤ P(Y1) + 1 = P(Y ′) + 6 + 1 = d1(Y
′) + 1 = � ∂ X = P(X). (5.5)

Since X is a minimizer, this together with (5.4) shows that μ(X) = 0.

c) Small number of boundary particles: � ∂ X = d1(Y ′).
In this case Y is obtained from Y ′ by adding one closed shell, or a connected part in the
way described in Step 1. Using, in order of appearance, that adding only a connected
part thereof does not give higher perimeter than adding the full closed shell, Lemma4.1,
the fact that Y ′ is defect-free by the induction hypothesis, the minimizing property of
Y ′, and Lemma 4.2 yields

P(Y ) ≤ P(Y1) = P(Y ′) + 6 = P(Y ′) + μ(Y ′) + 6 ≤ (P + μ)(X ′) + 6

≤ (P + μ)(X). (5.6)

Since X is a minimizer, this together with (5.4) shows that all inequalities above
are equalities. But by Lemma 4.2, equality in the last inequality implies μ(X) =
μ(X ′). And equality in the last but one inequality implies that X ′ is a minimizer,
whence μ(X ′) = 0, by the induction hypothesis. Combining these two statements
gives μ(X) = 0.

Moreover, we have shown in both case b) and case c) that the competitor Y is also
a minimizer. Since by construction Y has at most one point with negative curvature,
this establishes the “there exists” statement in the theorem, completing the proof. �

6 Concluding Remarks

Perhaps the main advance in our derivation of Heitmann–Radin crystallization is that
the exact numerical value of the ground state energy, given by the Harborth formula
H(N ) = [3N − √

12N − 3] for the number of edges (Harborth 1974), is no longer
needed. Instead, topological crystallization is decoupled from deriving any detailed
properties of the minimizers of the lattice model; note that for lattice models, powerful
tools are available, including at finite temperature (see, e.g., Dobrushin et al. 1992).
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