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Abstract We present several algorithms for computing normally hyperbolic invariant
tori carrying quasi-periodic motion of a fixed frequency in families of dynamical
systems. The algorithms are based on a KAM scheme presented in Canadell and Haro
(JNonlinear Sci, 2016. doi:10.1007/s00332-017-9389-y), to find the parameterization
of the torus with prescribed dynamics by detuning parameters of the model. The
algorithms use different hyperbolicity and reducibility properties and, in particular,
compute also the invariant bundles and Floquet transformations. We implement these
methods in several 2-parameter families of dynamical systems, to compute quasi-
periodic arcs, that is, the parameters for which 1D normally hyperbolic invariant tori
with a given fixed frequency do exist. The implementation lets us to perform the
continuations up to the tip of the quasi-periodic arcs, for which the invariant curves
break down. Three different mechanisms of breakdown are analyzed, using several
observables, leading to several conjectures.
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1 Introduction

An important problem in dynamical systems and their applications in science and
engineering is the existence of quasi-periodic oscillations, which are geometrically
described as invariant tori. In applications, it is common to count with detuning param-
eters that the user can change to get the desired quasi-periodic response on the system
at hand. Hence, having a method to select the detuning parameter and to compute the
corresponding quasi-periodic response is very useful to control a system. Moreover,
it is also important to develop algorithms of computation that let us continue with
respect to internal (perturbation) parameters the external (detuning) parameters and
the corresponding invariant torus, and study their range of validity. In particular, a phe-
nomenon that is poorly understood is that of the breakdown of invariant tori, which is
related with loss of reducibility properties. These are the objects of this paper.

Most algorithms that have been developed to this date to compute invariant tori
consist in using Fourier approximations for the tori and solving the large systems of
equations arising from the discretization of the invariance equations by using New-
ton’s method. These large matrix methodswere originally designed to study problems
from celestial mechanics (Castellà and Jorba 2000; Jorba 2001), in the conservative
context, and later were introduced in the dissipative context (Schilder et al. 2005). It
was found that the practical use of taking frequencies as unknown could be the source
of numerical instabilities when the resonances are strong enough. It was found that
the practical use of taking frequencies as unknowns is capable to cross high-order
resonances, but that low-order resonances are the source of numerical instabilities,
since there is a strong dynamical obstruction to compute the torus with a rotational
dynamics. An alternative is fixing the frequency and then adding the detuning param-
eter as unknown (Peckham and Schilder 2007; Vitolo et al. 2011). Even though these
methods have been tested to be very efficient in many studies, we find twomajor prob-
lems. First, there are no rigorous results about the convergence of these schemes, from
the point of view of numerical analysis. In fact, these methods have been developed
rather independently of the fundamental results and methods of the so-called dissi-
pative KAM theory (Moser 1966, 1967; Broer et al. 1996). We mention, however,
the analysis of large matrices carried out in Bourgain (1997), to avoid the so-called
second Melnikov condition for elliptic eigenvalues. Second, the range of applicability
of large matrix methods is limited to cases in which the number of Fourier coefficients
of the Fourier approximations is relatively small. Hence, these methods are hardly
applicable for tori of dimension larger than 1, or in situations in which tori are about
to break. Interestingly, Vitolo et al. (2011) encourages the development of alternatives
to large matrix methods. Developing such alternative algorithms in the main purpose
of this paper.
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The development of methodologies that encompass both rigorous and numerical
approaches is very appealing. This is perhaps the most important feature of the so-
called parameterization method (Cabré et al. 2003; Haro et al. 2016), which is the
conceptual framework of this paper. We derive several Newton-like methods of com-
putation of normally hyperbolic invariant tori with a prescribed frequency in families
of dynamical systems, in the dissipative context. The setting is described in Sect. 2.
There is an underlying an a posteriori theorem that is presented in the companion
paper Canadell and Haro (2016), which provides sufficient conditions for the conver-
gence of a Newton-like method from an initial approximation. Such a theorem can
lead to (computer-assisted) proofs of existence of invariant tori in specific problems,
by checking its long list of hypotheses for an initial approximation, that could have
been obtained by using the methods of this paper or by any other means (large matrix
methods, perturbation theory, etc.). This step has not been pursued here, and we refer
to Figueras et al. (2016) for computer-assisted proofs in the Hamiltonian context,
specifically for Lagrangian invariant tori of exact symplectic maps. The computation
of normally hyperbolic invariant tori with dynamics other than a rotation using the
parameterization method is considered in Canadell (2014), Haro et al. (2016).

The algorithms are detailed in Sect. 3. The first algorithm is based on normal
hyperbolicity, and computes the torus and the stable and unstable bundles, solving
the linear equations arising from Newton’s method by performing the corrections of
the torus in the normal directions by projecting them onto the stable and unstable
directions, while the detuning parameter is chosen in order to fix the corrections of the
torus in the tangent directions. As such, this method shares some of the weaknesses
of graph transform techniques, since the speed of convergence at each step of the
Newton-like method is determined by the attraction and expansion rates in transverse
directions to the torus. This problem can be mitigated by using fast iteration methods
(Huguet et al. 2013; Canadell 2014). An alternative is using reducibility (to constant
coefficients) whenever is possible (Haro and de la Llave 2006b, 2007; Jorba and
Olmedo 2009) (see Haro et al. 2016 for some benchmarks comparing large matrix
methods with reducibility methods). In such a case, the linear equations to be solved
at each step of the Newton-like method are diagonalized in Fourier space, and then
can be solved very efficiently. In particular, for discretizations with N Fourier modes,
the memory storage is O(N ) and the computation time is O(N log N ), while when
using large matrix methods, the memory storage is O(N 2) and the computation time
is O(N 3). Moreover, the algorithms based on reducibility let the continuation cross
bifurcation parameters in which the torus changes stability properties.

The numerical explorations we present in this paper deal with continuation of one-
dimensional tori with a fixed frequency ω (the golden mean) in several two-parameter
families of dynamical systems. The two parameters play a different role: ε is a pertur-
bation parameter and a is a detuning parameter that is used to fix the dynamics on the
torus to a rotation by ω. Hence, varying ε leads to select a = a(ε) for which there is
an invariant torus with frequency ω, and to compute the typical quasi-periodic arcs in
a − ε plane (Peckham and Schilder 2007; Vitolo et al. 2011), which are the continua-
tion curves. We are mostly interested in the transitions of the dynamical properties of
the invariant torus along the continuation, and in the mechanisms of breakdown of the
torus. We emphasize that our methods let us to perform the continuations up to the tip
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of a quasi-periodic arc, at which the torus breaks down. Section 4 presents the mod-
els we study further in this paper, provides some guidelines of the implementations,
introduces several observables and presents some conjectures on the behavior of the
observables at breakdown.

The study of the mechanisms of loss of the hyperbolicity properties of an invariant
torus and its breakdown is a subject of strong interest. The most studied scenarios cor-
respond to the deterioration of the rates of contraction and expansion of the linearized
dynamics of reducible tori, that go to 1, and concerns the known as quasi-periodic
bifurcation theory (Broer et al. 1990; Chenciner and Iooss 1979a, b). Besides that,
the loss of hyperbolicity can be related with a non-uniform collision of the invariant
bundles of the torus, even in cases in which the rates are far from 1, and with loss
of reducibility properties. The study of quasi-periodic bifurcations for non-reducible
invariant tori is another of the challenging problems stated in Vitolo et al. (2011). Sev-
eral bundle merging scenarios are described in Figueras (2011), Haro and de la Llave
(2006b, 2007) for skew-product systems and Calleja and Figueras (2012) for attract-
ing tori in conformally symplectic systems. In this paper, we report the appearance of
new bundle merging scenarios in the general dissipative context, providing numerical
evidence of universal behavior through several conjectures, which are illustrated in
three examples of very different nature. In Sect. 5, we present the breakdown of a
saddle invariant torus in a 3D conservative system, due to the collision between the
tangent and the stable bundles, which are both of rank 1. In Sect. 6 we describe the
several smooth transitions from node to focus and vice versa that an attracting torus
of a 3D dissipative system suffers, prior to its destruction by the collision between
the tangent and stable bundles, being the stable bundle of rank 2. Finally, in Sect. 7,
we report on a subcritical period doubling bifurcation leading to an attracting torus
in a 3D dissipative system, and the ulterior non-smooth transitions from reducible to
non-reducible and vice versa, geometrically described as non-uniform collisions of the
slow and fast stable bundles, which explain the process of fractalization that the torus
suffers prior its breakdown. The phenomenon of fractalization had been observed in
quasi-periodically forced systems (Kaneko 1984; Nishikawa and Kaneko 1996; Sos-
novtseva et al. 1996), in the context of strange nonchaotic attractors (Grebogi et al.
1984), and some mechanisms were described in Haro and de la Llave (2006a), Jorba
and Tatjer (2008). In retrospective, the non-uniform collisions of the invariant bundles
can be understood as the formation of a strange nonchaotic attractor and a strange non-
chaotic repeller in the (projective) linearized dynamics (Haro and Puig 2006; Jorba
et al. 2007).

2 The Setting

In the following, we consider a smooth family of diffeomorphisms on the annulus
T
d ×R

n = (R/Z)d ×R
n , parameterized by a ∈ R

d : Fa : Td ×R
n → T

d ×R
n . We

also assume that each Fa is homotopic to the identity, that is:

Fa

(
x
y

)
=

(
x
0

)
+ Fa,p

(
x
y

)
,
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where Fa,p is 1-periodic in x ∈ T
d , y ∈ R

n .
We also assume that a torus K is the image of the model torus Td by an injective

immersion K : Td → T
d ×R

n that is homotopic to the zero-section of Td ×R
n , and

it is of the form

K (θ) =
(

θ

0

)
+ Kp(θ),

where Kp : Td → R
d × R

n is 1-periodic in the θ -variables. That is, K = K (Td).

Definition 2.1 We say that the torus K parameterized by K is Fa-invariant with a
quasi-periodic motion given by the frequency ω ∈ R

d if K satisfies the invariance
equation

Fa(K (θ)) = K (θ + ω). (1)

It is clear that the homotopy classes of the dynamical system Fa and of the parame-
terization K have to match. We could consider other topological properties of Fa and
K , and most of below can be repeated with small changes.

Note that (1) is an equation for K and a given the family Fa . Canadell and Haro
(2016) provides a theorem of existence of solutions of (1), for smooth families of
real-analytic maps. Here and in the following, in order to simplify the explanations of
the algorithms, we will not stress regularity properties of the family and of the tori.
In any case, a standing hypothesis when using KAM techniques is the Diophantine
condition on ω.

Definition 2.2 We say that the frequency vectorω ∈ R
d is (γ, τ )-Diophantine, where

γ > 0 and τ ≥ d, if |ω · q − p| ≥ γ |q|−τ
1 for any q ∈ Z

d \ {0} and p ∈ Z.

An important property of an embedded torus is that it is a parallelizable manifold,
and it is a framed manifold that possesses a trivialization of a normal bundle in the
ambient space. So then, the tangent bundle TK is trivial. In particular, the matrix-
valued map L : Td → R

(d+n)×d , defined as L(θ) = DK (θ), provides a global frame
for the tangent bundle. But, moreover, a normal bundle NK can be globally defined by
a matrix-valued map N : Td → R

(d+n)×n , so that the column vectors of L(θ) joined
with the column vectors of N (θ) form a basis of TK (θ)(T

d × R
n) � R

d+n . In other
words, the matrix-valued map P : Td → R

(d+n)×(d+n), obtained by juxtaposing L
and N so that P(θ) = (

L(θ) N (θ)
)
, provides an adapted frame around the torus.

Assume now thatK, parameterized by K , is Fa-invariant with a fixed frequency ω.
By taking derivatives in Eq. (1), we get the invariance equation of the tangent bundle
TK:

DFa(K (θ))L(θ) − L(θ + ω) = 0.

Then, the linearized dynamics DFa around K in the adapted frame P(θ) is given by
a block triangular matrix valued map � : Td → R

(d+n)×(d+n), defined as:

�(θ) = P(θ + ω)−1DFa(K (θ))P(θ),
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which is of the form

�(θ) =
(
Id T (θ)

O �N (θ)

)
,

where �N : Td → R
n×n , and T : Td → R

d×n measures the torsion of the normal
bundle under the action of DFa ◦ K . It is also desirable to work with a normal bundle
NK which is also invariant, so that the torsion matrix T is zero. This condition reads
as

DFa(K (θ))N (θ) − N (θ + ω)�N (θ) = 0. (2)

In such a case, the adapted frame P reduces the linearized dynamics to a block diagonal
linear skew-product (�, Rω) : Rn × T

d+n → R
n × T

d+n , so that the linear skew-
product (�N , Rω) : Rn × T

d → R
n × T

d gives the dynamics on the normal bundle.
Here, and in the following, Rω : Td → T

d denotes the rotation by ω: Rω(θ) = θ +ω.
From now on, we will consider the normal bundle invariant.

We are going now to give some definitions of normal hyperbolicity adapted to the
setting of this paper. For more general and detailed definitions, see Canadell and Haro
(2016). We will assume that the stable and unstable bundles are trivial. Since there
are cases in which non-trivial (non-orientable) bundles are easily trivialized by using
a double covering trick, we will consider the frame P defined from T̃

d = (R/2Z)d

instead of Td .

Definition 2.3 We say that the invariant torus is hyperbolically block-diagonalizable
(by the adapted frame P) if ns + nu = n and �N (θ) = blockdiag(�S(θ),�U (θ)),

where the linear skew-products (�S, Rω) : R
ns × T̃

d → R
ns × T̃

d , (�U , Rω) :
R
nu × T̃

d → R
nu × T̃

d are uniformly contracting and expanding, respectively.

Sometimes, it is possible to choose a frame in such a way that the linearization
becomes a constant matrix.

Definition 2.4 We say that the invariant torus is reducible to a constant matrix (by the
adapted frame P) if �N is a constant n × n matrix. We will refer to the eigenvalues of
�N as to the eigenvalues or Floquet multipliers of the torus.

There are cases in which, moreover, there are n different rates of growth.

Definition 2.5 We say that the invariant torus is completely reducible (by the adapted
frame P) if the normal dynamics is reduced to a diagonal real constant matrix �N =
diag(λd+1, . . . , λd+n), with different entries, which are the eigenvalues or Floquet
multipliers of the torus.

Reducibility properties are very important in dynamics, since they provide full
information about the linearization around an invariant torus, see Eliasson (2001),
Jorba and Simó (1992, 1996). These reducibility properties, which are usually present
in KAM theory, are, however, often violated. We will present several examples in the
context of this paper in which reducibility properties do not hold.
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In the following, we present three different algorithms for the computation of quasi-
periodic invariant tori in the three cases defined above. Two of them are adapted to
reducible tori, and the other works in non-reducible cases.

3 Three Newton-Like Algorithms for Computing Quasi-Periodic Tori

In the setting defined in the previous section, our goal is to compute a parameterization
K of a quasi-periodic normally hyperbolic invariant torus (QP-NHIT for short) under
Fa by adjusting the detuning parameter a, as well as their invariant normal bundles.
In the following, we explain how to perform one step of a Newton-like method to
solve the invariance equations (1) and (2). The specific form of �N determines three
different algorithms.

We start with a parameterization K of an approximateQP-NHIT and its correspond-
ing parametera, an approximate invariant normal bundle N and its linearized dynamics
�N . That is, the error functions E : Td → R

d+n and Ered : Td → R
(d+n)×(d+n)

defined as

E(θ) = Fa(K (θ)) − K (θ + ω), (3)

Ered(θ) = P(θ + ω)−1DFa(K (θ))P(θ) − �(θ), (4)

which give the error in the invariance equation of the torus and the error in the linearized
dynamics, respectively, are assumed to be “small” (using appropriate norms). Then,
the aim of one step of the Newton-like method is to compute their corresponding
corrections 	K ,	a,	N ,	N and to obtain new better approximations K̄ = K +
	K , ā = a + 	a, N̄ = N + 	N , �̄N = �N + 	N . Hence, under appropriate non-
degeneracy properties and the smallness of the errors, the error estimates of the new
approximations are quadratically small with respect to the initial errors. The procedure
is repeated until we achieve the desired error tolerance.

Since we are working with periodic functions to represent the objects and the
internal dynamics is a rotation Rω, it is natural to represent them in Fourier series.
Then, if f is a periodic function, we denote by

f (θ) =
∑
k∈Zd

fke
2π ikθ

its Fourier series. Also, the average of f is defined as 〈 f 〉 = f0.

3.1 Substep 1: Correction of the Torus K and Its Parameter a

We consider the correction of the torus expressed in terms of the adapted frame, as
	K (θ) = P(θ)ξ(θ) where ξ : T

d → R
d+n is a periodic function. Note that the

correction preserves the homotopy class of the torus. Then, by substituting the new
approximations K̄ and ā in (1) and using first-order Taylor expansions, we obtain the
following expression
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0 = Fa(K (θ) + P(θ)ξ(θ)) − K (θ + ω) − P(θ + ω)ξ(θ + ω)

= Fa(K (θ)) + DFa(K (θ))P(θ)ξ(θ) + ∂Fa
∂a

(K (θ))	a

− K (θ + ω) − P(θ + ω)ξ(θ + ω) + O2

= E(θ) + ∂Fa
∂a

(K (θ))	a + P(θ + ω)�(θ)ξ(θ) − P(θ + ω)ξ(θ + ω) + O2,

(5)

where we apply definitions (3) and (4) above, and O2 collect the quadratically small
terms. Then, multiplying the previous expression (5) by P(θ + ω)−1 and neglecting
the quadratically small terms, we obtain the following cohomological equation

η(θ) = �(θ)ξ(θ) − ξ(θ + ω) + B(θ)	a, (6)

where η(θ) = −P(θ + ω)−1E(θ) represents the error of the approximate solution
(K , a) in the adapted frame and B(θ) is given by

B(θ) = P(θ + ω)−1 ∂Fa
∂a

(K (θ)).

Since � is a block diagonal matrix with blocks the identity matrix and �N , we split
Eq. (6) into tangent and normal components, so that the substep reduces to solving
the following block diagonal system:

ηL(θ) − BL(θ)	a = ξ L(θ) − ξ L(θ + ω), (7)

ηN (θ) − BN (θ)	a = �N (θ)ξ N (θ) − ξ N (θ + ω). (8)

We will use the indices L and N for the tangent and normal components.

3.1.1 Tangent Cohomological Equation

We have to solve Eq. (7). To do so, we first choose the correction 	a as

	a = −〈BL〉−1〈ηL〉, (9)

provided that 〈BL(θ)〉 is an invertible matrix, so that the left-hand size of (7) has zero
average.

Remark 3.1 In this setting, the correction of the detuning parameter a has a clear
geometrical and dynamical explanation: it is made along the tangent bundle of the
torus in order to fix the internal dynamics.

In particular, Eq. (7) splits into d equations corresponding to the d tangent direc-
tions:

ξ i (θ) − ξ i (θ + ω) = η̃i (θ), (10)
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where η̃(θ) := η(θ) − B(θ)	a, for i = 1, . . . , d, and with 	a known. Hence, the
solution of each equation (10), for i = 1, . . . , d, is obtained by solving them order by
order in terms of their Fourier modes:

ξ ik = ηik − (BL
k 	a)i

1 − e2π ikω
, k 	= 0.

Notice that denominators do not vanish since rotation ω is assumed to be Diophan-
tine. Notice also that the first mode ξ i0 is free.

Remark 3.2 In Canadell and Haro (2016), we gave an explicit formula for this term
ξ i0 to obtain a zero average of the periodic first component of the torus. In this paper,
we choose ξ i0 = 0 for all i to simplify. The normalization 〈K x

p〉 = 0 can be done at
the end of the procedure.

3.1.2 Normal Cohomological Equation

Once we have obtained the tangent correction of the torus and the correction of the
adjusting parameter a, we compute the normal correction by solving Eq. (8). We
redefine now Eq. (8) as:

η̃N (θ) = �N (θ)ξ N (θ) − ξ N (θ + ω), (11)

where η̃N (θ) := ηN (θ) − BN (θ)	a is known, since 	a is given by (9). Then, the
specific form of �N gives us three different ways of solving Eq. (11). We will detail
these three different cases later in Sect. 3.3.

At the end of this first step of the algorithm, we obtain new approximations K̄ and
ā for which the new error Ē(θ) = Fā(K̄ (θ)) − K̄ (θ + ω) is quadratically small with
respect to E(θ). We then redefine K = K̄ , a = ā and recompute P .

3.2 Substep 2: Correction of the Normal Bundles

We recompute the error Ered(θ) in (4) for the new values K and a. We look for the
correction of N of the form 	N (θ) = P(θ)QN (θ), where QN : Td → R

(d+n)×n is
a periodic matrix map, and the correction 	N , to obtain new approximations N̄ and
�̄N . By substituting N̄ and �̄N in Eq. (2), we obtain

0 = DF(K (θ))N̄ (θ) − N̄ (θ + ω)�̄N (θ)

= DF(K (θ))
(
N (θ) + P(θ)QN (θ)

)
− (

N (θ + ω) + P(θ + ω)QN (θ + ω)
)
(�N (θ) + 	N (θ))

= P(θ + ω)EN
red(θ) + (P(θ + ω)�(θ) + P(θ + ω)Ered(θ))QN (θ)

− P(θ + ω)QN (θ + ω)�N (θ) − N (θ + ω)	N (θ)

− P(θ + ω)QN ( f (θ))	N (θ).
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Hence, by multiplying the previous equation by P(θ + ω)−1 and neglecting quadrat-
ically small terms, we obtain the following cohomological equation:

−EN
red(θ) = �(θ)QN (θ) − QN (θ + ω)�N (θ) −

(
O

	N (θ)

)
.

Finally, by writing the correction matrix QN as

QN (θ) =
(
QLN (θ)

QNN (θ)

)
,

where QLN is a d × n matrix and QNN is a n× n matrix, the equation above splits into
the following two equations:

− ELN
red(θ) = QLN (θ) − QLN (θ + ω)�N (θ), (12)

−ENN
red (θ) = �N (θ)QNN (θ) − QNN (θ + ω)�N (θ) − 	N (θ). (13)

The way to solve these two equations depends on the form of �N . We will detail the
different options in the following subsection.

Remark 3.3 Wecan solve numerically Eqs. (11), (12) and (13) by their straightforward
discretization in Fourier modes, to obtain large linear systems of equations whose
unknowns are the Fourier coefficients. The methods we present here rely in dynamical
properties of the torus that avoid solving large linear systems.

Summarizing, after the second substep, we obtain new approximations N̄ and �̄N ,
and so a new adapted frame P̄(θ) = (

L̄(θ) N̄ (θ)
)
, that improves the error Ered(θ).

We have to repeat substeps 1 and 2 until we reach the desired error tolerance.

3.3 Specification of the Algorithms

Whereas the solution of Eq. (7) does not depend on �N , the form we choose for �N

provides different ways to solve Eqs. (11), (12) and (13).

3.3.1 An Algorithm Based on Hyperbolic Block-Diagonalizability

If we assume that the invariant torus is hyperbolically block-diagonalizable, then the
matrix-valued map �N (θ) is a block diagonal matrix with contracting and expanding
submatrices, see Definition 2.3. Consequently, Eq. (11) splits into stable and unstable
components:

η̃S(θ) = �S(θ)ξ S(θ) − ξ S(θ + ω), (14)

η̃U (θ) = �U (θ)ξU (θ) − ξU (θ + ω), (15)
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and Eq. (12) splits into the following two equations:

− ELS
red(θ) = QLS(θ) − QLS(θ + ω)�S(θ), (16)

−ELU
red(θ) = QLU (θ) − QLU (θ + ω)�U (θ). (17)

Also, in this setting, the corrections of the (approximate) stable and unstable bundles
are performed in the complementary directions. That is, the correction matrix QNN is
chosen as follows

QNN (θ) =
(

O QSU (θ)

QUS(θ) O

)
,

so that the “missing” blocks QSS and QUU are taken to be zero. Hence, Eq. (13) splits
into the four different equations below:

− EUS
red(θ) = �U (θ)QUS(θ) − QUS(θ + ω)�S(θ), (18)

−ESU
red(θ) = �S(θ)QSU (θ) − QSU (θ + ω)�U (θ), (19)

−ESS
red(θ) = −	S(θ), (20)

−EUU
red (θ) = −	U (θ), (21)

from which we obtain directly the correction of the linearized normal dynamics in
Eqs. (20) and (21).

Notice that Eqs. (14), (15), (16), (17), (18), (19) are solvable under hyperbolicity
conditions by simple iteration using the contracting principle, which will converge to
the solutions ξ S, ξU , QLS, QLU , QSU and QUS , respectively.

Remark 3.4 Fast iterative methods for solving cohomology equations (14), (15), (16),
(17), (18), (19) have been designed in Huguet et al. (2013) (see also Canadell 2014),
reducing m iterations of simple iteration method to log2 m.

3.3.2 An Algorithm Based on Reducibility

We consider here the reducible case, that is, we assume �N is a constant matrix, see
Definition 2.4. Then, we rewrite Eqs. (11) and (12) in terms of the Fourier coefficients
as follows:

η̃N
k = �Nξ N

k − ξ N
k e

2π ikω, (22)

−ELN
redk = QLN

k − QLN
k e2π ikω�N . (23)

By normal hyperbolicity, the term (�N − e2π ikωId) is invertible for all k ∈ Z
d , and

we get the solution of Eq. (22) by isolating the term ξ N
k :

ξ N
k = (�N − e2π ikωId)−1η̃N

k ,
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for each k. Moreover, we solve Eq. (23) by isolating the unknown QLN
k , and its corre-

sponding solution is

QLN
k = −ELN

redk

(
Id − e2π ikω�N

)−1
,

for all k ∈ Z
d .

Remark 3.5 In general, the condition for the matrix (�N − e2π ikω) to be invertible for
all k ∈ Z

d , that is

λ − e2π ikω 	= 0,

for each λ ∈ Spec(�N ), is referred to as a first Melnikov condition. One can also
consider directions in the normal bundle that are normally elliptic, that correspond
to complex eigenvalues of modulus 1. We emphasize that, in KAM theory, Melnikov
condition is Diophantine-like.

Since �N is a constant matrix, then so is its correction 	N . Hence, we rewrite
Eq. (13) in terms of Fourier coefficients as the following system:

− ENN
red 0 = �N Q

NN
0 − QNN

0 �N − 	N , k = 0, (24)

−ENN
red k = �N Q

NN
k − QNN

k e2π ikω�N , k 	= 0. (25)

By choosing QNN
0 = 0 in Eq. (24), which corresponds to the constant Fourier term,

we obtain the correction of the dynamics on the normal bundles, which is of the form

	N = ENN
red 0.

Then, to obtain the other k 	= 0 Fourier terms of the solution QNN , we solve Eqs. (25)
as n2-dimensional linear systems.

Remark 3.6 The hypothesis for solvability of Eq. (25) for all k ∈ Z
d \ {0} is a second

Melnikov condition

λi − e2π ikωλ j 	= 0,

where λi , λ j ∈ Spec(�N ) (again, in KAM theory the appropriate condition is
stronger). In particular, real and complex Floquet multipliers, that is, the eigenval-
ues on �N , can appear in the reducible case.

Remark 3.7 Notice that in this case, instead of solving Eqs. (11), (12) and (13) by
using simple iteration as in the algorithm based on hyperbolic block-diagonalizability,
we solve them term by term in Fourier modes. This update leads to a faster algorithm,
as long as the torus is reducible.
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3.3.3 An Algorithm Based on Complete Reducibility

We consider now the completely reducible case, see Definition 2.5. Hence, we
assume �N = diag(λd+1, . . . , λd+n) and its correction is of the form 	N =
diag(δd+1, . . . , δd+n). Then, Eq. (11) splits into n equations corresponding to their n
normal components, which are diagonalized in the Fourier space:

η̃ik = λiξ
i
k − e2π ikωξ ik ,

for i = d + 1, . . . , d + n, k ∈ Z
d . Then, as long as a first Melnikov condition is

satisfied, see Remark 3.5, the Fourier coefficients of the solutions are

ξ ik = η̃ik

λi − e2π ikω , (26)

for i = d + 1, . . . , d + n, k ∈ Z
d . In particular, under the condition of normal

hyperbolicity, |λi | 	= 1 for all i , and there are no resonances in (26).
Equations (12) and (13) are also diagonal in the Fourier space. In this case, we use

the following notation for the correction of the bundles

QN (θ) = (Qi, j (θ)),

where i = 1, . . . , n + d, j = d + 1, . . . , d + n. Then, Eqs. (12) and (13) split into
(d+n)×n equations, which can be classified in the following three different equation
types:

i ≤ d, i 	= j : −Ei, j
red(θ) = Qi, j (θ) − Qi, j (θ + ω)λ j ,

i > d, i 	= j : −Ei, j
red(θ) = λi Q

i, j (θ) − Qi, j (θ + ω)λ j ,

i > d, i = j : −Ei,i
red(θ) = λi Q

i,i (θ) − Qi,i (θ + ω)λi − δi ,

for j = d + 1, . . . , d + n. We solve each of these three equations in terms of Fourier
modes, obtaining:

i ≤ d, i 	= j : Qi, j
k =

(
Ei, j
red

)
k

λ j e2π ikω − 1
, ∀k ∈ Z

d .

i > d, i 	= j : Qi, j
k =

(
Ei, j
red

)
k

λ j e2π ikω − λi
, ∀k ∈ Z

d .

i > d, i = j : Qi,i
k =

⎧⎪⎨
⎪⎩

(
Ei,i
red

)
k

λi (e2π ikω − 1)
, k 	= 0,

0, k = 0,

δi =
(
Ei,i
red

)
0
.
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Again, these equations are solvable as long as a secondMelnikov condition is satisfied,
see Remark 3.6. This is the case, for instance, under normal hyperbolicity properties
and with the complete reducibility assumption |λi | 	= |λ j | 	= 1 for i 	= j .

Remark 3.8 In the implementation of reducibility methods, one can consider complex
entries in thematrices�N and	N , just appealing to the complexification trick. One has
to be aware of resonances. See Haro and de la Llave (2007) for some implementations
of methods to cross resonances.

4 On the Implementation of the Algorithms and Conjectures of Their
Breakdown

In this section, we are going to provide some details of the implementations of the
algorithms explained in the previous section. We will also present several observables
to monitor hyperbolicity and reducibility properties of the tori. These will be used in
further sections to describe the dynamical properties along the continuations of tori.

4.1 The Models

We have implemented the algorithms of this paper for the continuation of invariant
tori of dimension 1 with a prescribed frequency, in two 2-parameter families of dif-
feomorphisms in T × R

2. Notice, however, that in the following systems the torus is
defined as R/2πZ (instead of R/Z), and slight modifications of the algorithms given
in previous section are in order.

The first model we consider is the 3D-Fattened Arnold Family (3D-FAF) (Broer
et al. 1997) given by Fa,ε : R/2πZ × R

2 → R/2πZ × R
2 defined as:

Fa,ε

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝ x + a + ε(sin(x) + y + z/2)

b(sin(x) + y)
c(sin(x) + y + z)

⎞
⎠ (29)

where b, c are fixed parameters, a ∈ R is the adjusting parameter and ε ∈ R is
the continuation parameter. Notice that this family has a constant determinant of the
Jacobian det(DFa,ε) = bc, so we can choose different parameters b and c in order to
explore different examples of normally hyperbolic invariant tori in conservative and
dissipative cases. In particular, in Sect. 5 we discuss the computation of quasi-periodic
saddle tori for a conservative case (b = 0.25, c = 4) and in Sect. 6 we study the many
node-focus transitions on the linearized dynamics of attracting tori for a dissipative
case (b = 0.5, c = 0.4).

The second model we consider is the 3D-Fattened Hénon Family (3D-FHF), given
by Fa,ε : R/2πZ × R

2 → R/2πZ × R
2 defined as:

Fa,ε

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝ x + a + dε(cos(x) + z)

1 + z − by2 + ε cos(x)
cy

⎞
⎠ (30)
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Fig. 1 Quasi-periodic arcs in the (a, ε)-plane for several families. a 3D-FAF: the purple arc corresponds to
Sect. 5 (b = 0.25, c = 4), where tori are saddle type, and orange–red arc corresponds to Sect. 6 (b = 0.5, c =
0.4), where tori are attracting, either node type (red) or focus type (orange). b 3D-FHF (b = 0.68, c = 0.1):
the red–orange arc corresponds to the skew-product case d = 0 and the green–light green arc corresponds
to d = 1, detailed in Sect. 7, where tori are either reducible (red–green) or non-reducible (orange–light
green) (Color figure online)

where b, c, d are fixed parameters, a ∈ R is the adjusting parameter and ε ∈ R is
the continuation parameter. This family is an extension of the rotating Hénon Family,
studied in Haro and de la Llave (2007), that corresponds to d = 0. In this paper, see
Sect. 7, we take d = 1 and continue a saddle torus that bifurcates into an attracting
node torus, that suffers many reducible/non-reducible transitions on the linearized
dynamics that precede the breakdown of the torus.

For the previous models, and once we have fixed the internal parameters (b, c, d),
we continue with respect to parameter ε a normally hyperbolic invariant torus with
frequency the golden mean ω = (

√
5 − 1)π , parameterized by K = Kε, and the

corresponding adjusting parameter a = a(ε). These computations produce the so-
called quasi-periodic arcs (for the golden mean frequency) in the parameter plane
(a, ε).Wehave implemented the algorithmspresented in this paper by applyingFourier
methods. In particular, we compute invariant tori and their invariant normal bundles
and their internal dynamics. Figure 1 summarizes the computations, showing different
quasi-periodic arcs. Amore detailed explanationwill be given in the following sections
with the aid of several observables (Lyapunov multipliers, angles between bundles,
Cr and Sobolev norms) that we will introduce later in this section. We are interested
not only in the dynamical phenomena that appear during the continuation, but also to
the mechanisms of breakdown that happen at the tip of the quasi-periodic arcs.

4.2 Fourier Approximations

In the implementation of the algorithms for the examples introduced in the previous
section, we use (truncated) Fourier series approximations with a given number NF
of harmonics to approximate 2π -periodic functions (notice that the angle variable in
the examples is defined modulus 2π ). This is very appropriate, since the algorithms
include the solution of cohomological equations and compositionswith rotations (such
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as K ◦ Rω). Given a periodic function g : [0, 2π ] → R, a (truncated) Fourier series
approximation is a trigonometric polynomial of the form

ĝ(θ) = ĉ0 +
NF∑
k=1

(
ĉk cos(kθ) + ŝk sin(kθ)

)
, (31)

which is an approximation of the Fourier series

g(θ) = c0 +
∞∑
k=1

(ck cos(kθ) + sk sin(kθ)) , (32)

whose amplitudes
√
c2k + s2k decrease rapidly to zero since we assume g to be a smooth

(or even real-analytic) periodic function. In order to control error estimates in the
invariance equations, we use norms in Fourier space, such as the W 0,1 norm of the
trigonometric polynomial approximation,

||ĝ||W 0,1 = |ĉ0| +
NF∑
k=1

√
ĉ2k + ŝ2k .

We can extend the definition component-wise to vectors and matrices of (approxima-
tions of) periodic functions.

Other parts of the algorithms consist in composing periodic functions with the
equations of the model (i.e. F(K (θ)), and algebraic operations. In this respect, it is
very useful to compute grid approximations, then do these operations in grid space,
and go back to Fourier space to obtain Fourier approximations of the operations. A
grid approximation of the function g is just an ordered set

{gi } = {gi = g(θi )}2NF
i=0 (33)

of evaluations of the function on the mesh
{
θi = 2π i

2NF+1 | i = 0, . . . , 2NF

}
. It is well

known that there are very efficient ways of going from the Fourier representation (31)
to the grid representation (33), and vice versa, of cost O (NF log NF), by means of
backward and forward fast Fourier transforms (FFT). One can also obtain error bounds
in the approximations of the Fourier coefficients in (32) by discrete Fourier transform
(31) (Epstein 2005; Figueras et al. 2016).

With the aid of basic routines tomanipulate trigonometric polynomials and FFT, we
can implement the different algorithms presented in this paper. In reducible cases, the
algorithms simplify to equations that are diagonal in the Fourier space, so it becomes
faster to solve. In particular, we need O(NF) storage space and O(NF log NF) opera-
tions in order to perform a Newton step combined with FFT routines.

In the continuation process with respect to parameter ε, we control the step size
	ε and adapt the number of Fourier modes NF in order to get error tolerances and
tails of Fourier expansions smaller than 10−10 when solving the invariance equations.
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Table 1 Computation time of one Newton step for the different algorithms of this paper by using a usual
laptop

NF Completely red. Red. Hyp. block-diag.

128 0.0506 0.0860 0.1700

256 0.1294 0.2250 0.4475

512 0.2473 0.3133 0.5440

1024 0.4302 0.7150 1.2750

2048 0.9333 0.7350 1.3875

4096 1.4187 1.3700 2.5525

8192 2.8907 2.0400 3.8125

16,384 5.2750 5.9625 10.2050

32,768 11.6475 11.9700 24.4850

65,536 21.0425 21.0575 43.9350

131,072 51.3425 50.7920 104.690

262,144 79.2025 75.7500 151.110

524,288 140.776 170.220 274.075

1,048,576 346.405 406.400 664.240

The continuation stops when the torus reaches 220 = 1,048,576 Fourier modes or the
step size is smaller than 10−7. See Table 1 for the computation time (in seconds) of a
Newton step for all the three different algorithms explained in this paper.

We should remark that we can perform continuations till breakdown because we
use efficient methods which allow us to do reliable computations using a large num-
ber of Fourier modes, which are unapproachable by standard large matrix methods.
Moreover, the breakdown of the computation happens when the dynamical properties
of the torus deteriorate, which takes place just before the breakdown of the object is
engendered.

4.3 Functional Observables and Their Blow Up at Breakdown

In order to monitor the quality of the regularity of the torus in a continuation process,
we measure its Sobolev norms (Calleja and de la Llave 2009; de la Llave and Luque
2011) and Cr norms. These are suitable to detect the breakdown of the torus when
varying the perturbation parameter, since in such a situation these norms experiment
a blow up at a critical value. This is in contrast with smooth bifurcations such as
saddle-node or period doubling, in which the norms remain bounded.

For a real-analytic periodic function g : [0, 2π ] → C, we define the fractional
derivative g(r) : [0, 2π ] → C, for any r > 0, through the Fourier expansions:

g(r)(θ) =
∞∑
k=1

kr
((
cos

(
π
2 r

)
ck + sin

(
π
2 r

)
sk

)
cos(kθ)

+ (
cos

(
π
2 r

)
sk − sin

(
π
2 r

)
ck

)
sin(kθ)

)
.
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Then, the Cr -seminorm of g is the sup-norm of g(r),

||g||Cr = ||g(r)||∞ = max
θ∈[0,2π ]

∣∣∣g(r)(θ)

∣∣∣ , (34)

and the Wr,p-seminorm of g is the �p-norm of g(r):

||g||Wr,p =
( ∞∑
k=1

(
kr

√
s2k + c2k

)p
) 1

p

. (35)

Notice that, from the Hölder inequality with 1
q + 1

p = 1, we get the bounds

||g||Cr ≤ ||g||Wr,1 ≤
(∑
k>0

2k(r−s)q

) 1
q

||g||Ws,p ,

as long as r < s − 1
q . That is, the inclusion Ws,p ⊂ Wr,1 is closed. We will mainly

consider Sobolev seminorms Hs = Ws,2.
The numerical approximations of these seminorms are obtained from the grid and

trigonometric polynomial approximations of g. Notice that the Cr -seminorm of g in
(34) can be estimated from the grid representation of the r -derivative of the trigonomet-
ric polynomial approximation ĝ, while the Wr,p-seminorm in (35) can be estimated
directly from ĝ.

In the applications of the following three sections, we will consider the blow up of
the Cr and Hr seminorms in order to detect and to study the destruction of invariant
tori (in connection with renormalization group theory). The conjecture that formulates
this idea is given below.

Conjecture 4.1 Let Fa,ε : T × R
n → T × R

n be a family of real-analytic maps,
where a is the adjusting parameter and ε is the continuation parameter. Let (Kε, aε)

be a family of quasi-periodic normally hyperbolic invariant tori parameterized by
Kε : T → T×R

n and their adjusting parameters, where ε ∈ [0, εc[. Then, when the
torus breaks down at a critical value εc, the Sobolev and Cr critical regularities of
the torus are rc and r̂c, respectively, and:

• for r > rc the Hr seminorm blows up as

||K x
ε − id||Hr ∼ Ar

(εc − ε)Br
, (36)

when ε → εc, with a critical exponent Br = a + br, with rc = − a
b ;

• for r > r̂c the Cr seminorm blows up as

||K x
ε − id||Cr ∼ Âr

(εc − ε)B̂r
, (37)
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when ε → εc, with a critical exponent B̂r = â + b̂r , with r̂c = − â
b̂
.

Remark 4.2 These constants a, b, â, b̂ of the critical exponents Br and B̂r characterize
a universal class of breakdown, as well as the critical regularities rc and r̂c. Notice
that, from Sobolev inequalities, r̂c ≥ rc − 1

2 .

Remark 4.3 In the implementations, the conjectured behavior in the blow up of
Sobolev andCr seminormswhen approaching the breakdown of the torus are very use-
ful to extrapolate the critical parameter εc, as well as to estimate the critical regularities
rc and r̂c of the torus at breakdown.

4.4 Dynamical Observables and Their Behavior at Transitions and Breakdowns

The linearized dynamics around a quasi-periodic Fa,ε-invariant torus Kε, param-
eterized by Kε and whose internal dynamics is a rotation Rω, is provided by
the linear skew-product (DFa,ε ◦ Kε, Rω). Important information about stability is
given by its Lyapunov multipliers. By using the adapted frame P , one obtains a
conjugate linear skew-product (�, Rω) which is in block diagonal form: �(θ) =
blockdiag(Id,�N (θ)). Then, using this methodology, it is easy to separate the Lya-
punov multipliers corresponding to tangent directions to the torus, which are all equal
to 1, from the ones corresponding to normal directions, which are assumed to be
different from 1 (as long as the torus is normally hyperbolic). The analysis of the
normal linearized dynamics, given by the linear skew-product (�N , Rω), is in order.
For instance, its Lyapunov multipliers can be computed by using QR methods, or,
specially for low dimension (as in the examples of this paper, with n = 2), using
variants of power method. However, when using reducibility methods, the matrix �N

is constant and the Lyapunov multipliers are just the moduli of its eigenvalues, so
there is no need of separate algorithms for the computation of the eigenvalues. (For
reducibility, we assume that ω is Diophantine).

It is well known that, in virtue of Oseledets theorem, vectors associated with Lya-
punov multipliers appear in measurable invariant bundles, the so-called Lyapunov
bundles. The Lyapunov bundles corresponding to the Lyapunov multipliers smaller
than 1 span the stable bundle Ns , while the ones corresponding to Lyapunov multipli-
ers greater than 1 span the unstable bundle Nu . Both the stable and unstable bundles
of a normally hyperbolic invariant torus are smooth (and in this paper, even real-
analytic). The algorithm based on hyperbolic block-diagonalizability produces these
bundles. Hence, in order to measure the quality of the normal hyperbolicity, we will
consider not only the normal Lyapunov multipliers (that should be far from 1), but
also the angles between tangent, stable and unstable subbundles (Calleja and Figueras
2012; Haro and de la Llave 2006a, 2007). The quality of the reducibility properties of
dynamics in stable and unstable bundles is also measured by the angles between the
Lyapunov bundles spanning them.

In the examples of this paper, the dimensions are d = 1, n = 2. So, we will focus
the discussion in this case. Letχ1 = 1 be the Lyapunovmultiplier corresponding to the
tangent bundle L , and χ2, χ3 be the Lyapunovmultipliers corresponding to the normal
invariant bundle N . We will denote by αLN the infimum angle between the tangent
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and the invariant normal bundle, which is strictly positive if the torus is normally
hyperbolic. We also define, for i 	= j, αi j as the infimum angle between Lyapunov
bundles ofχi andχ j . These angles are strictly positivewhen the corresponding bundles
are continuous. The dynamics on the tangent bundle is reduced tomultiply by 1, i.e. the
linear skew-product has an eigenvalue λ1 = 1. We are also interested in reducibility
properties of the invariant normal bundle, which is isomorphic to R

2 × T. Then, we
find the following classification for a quasi-periodic normally hyperbolic invariant
torus:

• If χ2 < χ3 < 1 (resp. 1 < χ3 < χ2), the torus is attracting (resp. repelling). The
Lyapunov bundle associated with χ2 is the fast stable (resp. unstable) bundle, and
the one associated to χ3 is the slow stable (resp. unstable) bundle.

– In the reducible case, the torus is an attracting (resp. repelling) node torus.
The fast and slow stable (resp. unstable) bundles are continuous, and in fact as
smooth as the cocycle. The eigenvalues of the constant matrix�N are λ2, λ3 ∈
R, so that |λ2| = χ2 and |λ3| = χ3. The angle α23 is positive. We can define
a topological index for both bundles, as subbundles of the invariant normal
bundle.

– In the non-reducible case, the torus is a non-reducible attracting (resp.
repelling) torus. The fast and slow stable (resp. unstable) bundles are measur-
able but not continuous. We cannot assign signs to the Lyapunov multipliers
(since no eigenvalues can be defined), and we will write λ2 = ±χ2 and
λ3 = ±χ3. The angle α23 is zero.

• If χ2 = χ3 < 1 (resp. 1 < χ3 = χ2), the torus is attracting (resp. repelling).
– In the reducible case, the eigenvalues λ2 and λ3 of the constant matrix �N

have the same modulus, so |λ2| = |λ3|. Either both are real, and the torus is an
attracting (resp. repelling) degenerate node torus, or complex conjugate, and
the torus is an attracting (resp. repelling) focus torus. By convection, we take
angle α23 = 0 in this case. The argument of the eigenvalues is the rotation
number of the cocycle (�N , Rω).

– In the non-reducible case, one cannot define eigenvalues.
• If χ2 < 1 < χ3 the torus is of saddle type. A saddle torus is reducible, and the
eigenvalues of the constantmatrix�N areλ2, λ3 ∈ R, so that |λ2| = χ2, |λ3| = χ3.
The angle α23 is positive. We can define a topological index for the stable and
unstable bundles, as subbundles of the invariant normal bundle.

In a continuation of a torus with respect to a parameter, say ε, monitoring the
Lyapunov multipliers close to 1 is useful to detect quasi-periodic bifurcations, while
monitoring the angles between tangent, stable, unstable bundles, and the internal Lya-
punov bundles, are useful to detect bundle collisions and breakdowns.

Weemphasize that node and saddle types are open conditions in the parameter space,
while focus and non-reducible types are closed conditions that happen in Cantor sets of
positive measure in the parameter space. A typical and well-understood phenomenon
is the transition from a node torus to a focus torus. This corresponds to the coincidence
of the real eigenvalues at a certain critical parameter, while their corresponding fast
and slow bundles uniformly collide. At the moment of this collision, the torus is a
degenerate node torus, and after the critical value the torus is of focus type. Another

123



J Nonlinear Sci (2017) 27:1829–1868 1849

feature of this phenomenon is that the angle between the slow and fast bundles behaves
as an square root when the parameter ε goes to the critical collision parameter εc:

α23(ε) ∼ A(εc − ε)
1
2 . We describe this transition in Sect. 6. A much less known

phenomenon is when the fast and slow bundles of a node torus collide although the
Lyapunov multipliers remain separated (Jalnine and Osbaldestin 2005; Haro and de la
Llave 2006a). This collision is non-uniform and the bundles go from being smooth to
being measurable. This bundle merging scenario corresponds to a loss of reducibility
in the normal dynamics, but does not imply the immediate destruction of the torus.
Moreover, one observes that, in contrast with the previous transition, in this case
α23(ε) ∼ A(εc − ε), a conjecture that in Haro and de la Llave (2006a) was stated
in the context of quasi-periodically forced systems and that was rigorously proved in
specific cases in Bjerklöv and Saprykina (2008). We report on the appearance of this
transition in the context of this paper in Sect. 7.

In the previous circumstances, the Lyapunov multipliers in the normal directions
were far from 1 and the angle between the tangent and the invariant normal bundles
were bounded from zero, so neither torus bifurcations nor torus breakdowns were pro-
duced along the transitions (but could result in new phenomena when tuning further
parameter ε). Classical bifurcations have their counterparts in quasi-periodic bifurca-
tion theory (see e.g. Broer et al. 1990; Chenciner and Iooss 1979a, b). For instance,
if in a continuation of a node or a saddle torus we have χ3 → 1 as ε → εc, then
if λ3 → 1, the generic case is a quasi-periodic saddle-node bifurcation, while if
λ3 → −1, the generic case is a quasi-periodic period doubling bifurcation. A typical
bifurcation of focus tori is the quasi-periodic Hopf bifurcation, in which χ2 = χ3 → 1
as ε → εc, and the corresponding eigenvalues cross the unit circle (under appropriate
non-resonant conditions). The key word here is reducibility, so these quasi-periodic
bifurcations are well understood. Notice that in these bifurcations the angle between
the tangent and the invariant normal bundles αLN is bounded from zero. The situation
if the angle αLN goes to zero at a critical parameter εc, while the normal Lyapunov
multipliers remain far from 1, is dramatically different to the classical quasi-periodic
bifurcations. In this case, the condition of normal hyperbolicity is becoming more
deteriorated not because the rates of growth in the normal directions stop dominating
those in the tangent directions, but because the tangent and invariant normal bundles
approach each other (in a non-uniformway). Hence, this bundle merging scenario pro-
duces the breakdown of the torus (see Calleja and Figueras 2012 for the description
of the phenomenon for attracting invariant tori in conformally symplectic systems).
We report in Sects. 5 and 6 on such behavior in a saddle torus and in an attracting
node torus, respectively. In particular, our findings lead to the following conjecture,
that complement Conjecture 4.1.

Conjecture 4.4 Let Fa,ε : T × R
n → T × R

n be a family of real-analytic maps,
where a is the adjusting parameter and ε is the continuation parameter. Let (Kε, aε)

be a family of quasi-periodic normally hyperbolic invariant tori parameterized by
Kε : T → T × R

n and their adjusting parameters, where ε ∈ [0, εc[. Then, when
the torus breaks down in a bundle merging scenario at a critical value εc, the angle
between the tangent and the invariant normal bundles goes to zero as
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αLN (ε) ∼ A(εc − ε),

when ε → εc.

The previous conjecture deals with the immediate breakdown of a torus when the
reducibility is lost because the tangent bundle and the invariant normal bundle non-
uniformly collide. As we have mentioned above, the dynamics in the invariant normal
bundle can also lose the reducibility property, a phenomenon that does not imply the
immediate breakdown of the torus but that could be its cause if the less dominant
normal Lyapunov multiplier goes to 1 when varying parameter ε. Such a phenomenon
is reported in Sect. 7.

5 On the Continuation of a Saddle Torus up to Its Breakdown in a
Conservative System

In this section, we perform a continuation of a quasi-periodic saddle torus, with golden
mean frequencyω, for the 3D-FAF (29), with parameters b = 0.25, c = 4. Then, since
bc = 1, the map is volume preserving. The continuation starts at ε = 0, for which one
can determine in an explicit way the invariant torus and the invariant bundles by paper
and pencil computations. In particular, a(0) = ω. Since we continue saddle tori and
their bundles are 1-dimensional, it is natural to use the algorithm based on complete
reducibility, see Sect. 3.3.3. Hence, along the continuationwe compute the eigenvalues
λS = λ2 and λU = λ3 of the associated cocycle (with λSλU = 1), as well as we
monitor the angles between the invariant bundles αLS = α12, αLU = α13, αSU = α23.
The results are displayed in Table 2. See also Fig. 2 for some quasi-periodic saddle
tori and the angles between the tangent, stable, and unstable subbundles, spanned by
L , N S and NU , respectively.

When increasing parameter ε, the torus and its bundles are becomingmore irregular,
and the implementation of the algorithm adapts the number of Fourier modes of the
approximations up to NF = 1,048,576, the limiting number of Fourier modes in our
implementations. This is an indication that the torus is about to break at a certain param-

Table 2 Continuation of a saddle torus with respect to ε: continuation parameter, adjusting parameter,
eigenvalues of the linearized equation and angles between bundles

ε a λS λU αLS αLU αSU

0.000000 3.8832220775 0.2500000000 4.0000000000 1.23529e+00 9.67700e−01 7.53151e−01

1.000000 3.8765074834 0.2470073613 4.0484623406 5.84550e−01 7.24296e−01 4.74488e−01

1.900000 3.8627251961 0.2360025603 4.2372421662 4.06820e−02 4.85572e−01 4.55743e−01

1.980000 3.8612901228 0.2341969934 4.2699096403 1.58441e−03 4.64434e−01 4.60560e−01

1.983000 3.8612358919 0.2341236575 4.2712471286 1.48398e−04 4.63643e−01 4.60725e−01

1.983200 3.8612322755 0.2341187477 4.2713367041 5.26130e−05 4.63591e−01 4.60736e−01

1.983210 3.8612320947 0.2341185021 4.2713411844 4.78291e−05 4.63588e−01 4.60736e−01

1.983211 3.8612320766 0.2341184775 4.2713416324 4.73511e−05 4.63588e−01 4.60736e−01
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Fig. 2 Continuation of a saddle torus with respect to ε: invariant tori (left) and angles between bundles
(right)
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Fig. 3 Continuation of a saddle torus with respect to ε: angles between bundles. Left angle between bundles
with respect to ε. Right αLS close to the breakdown

eter εc. The explanation of this behavior is provided by the dynamical observables,
from which we study how the properties of normal hyperbolicity of the torus deterio-
rate. From Table 2, we observe that, in some sense, hyperbolicity properties improve
since stable and unstable Lyapunov multipliers (χS = |λS| and χU = |λU |) move apart
from the tangent Lyapunov multiplier (χ1 = 1), but they become more non-uniform
since the angle αLN between the tangent and the invariant normal bundles goes to zero.
In fact, what we observe in this example is that the angle αLS between the tangent and
stable bundles goes to zero, while the angle αLU between the tangent and unstable
bundles is far from zero. We refer to this phenomenon as to a bundle merging scenario
between the tangent and the stable bundles, which collide non-smoothly, causing the
destruction of the saddle torus. Near the breakdown, we observe a linear decay to zero
of the angle between the tangent and stable bundle, given by the expression

αLS(ε) � 0.95101870 − 0.47951222 ε.

The fit over the last 10 values of the continuation process appears in Fig. 3 (right),
which supports Conjecture 4.4. From this fit, we can extrapolate an approximation of
the critical breakdown value εc by solving αLS = 0:

εc,LS � 1.98330439.

Another indicator of the breakdown of a torus is the blow up of Sobolev and Cr

seminorms at the critical parameter εc. Table 3 and Fig. 4 illustrate this behavior in
the present example, for the H2 and C1 seminorms (the critical parameter is labeled
with a blue vertical line). In particular, the asymptotic behavior of the H2 and C1

seminorms is given by the following expressions:

H2(ε) � 0.52106152

(1.98331250 − ε)1.03657369
, C1(ε) � 1.36754056

(1.98333604 − ε)0.47751520
.

Then, the corresponding critical values for the critical parameter of breakdown are
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Table 3 Continuation of a
saddle torus with respect to ε:
H2 and C1 seminorms, and
number of Fourier modes

ε H2 C1 NF

0.000000 0.00000e+00 0.00000e+00 64

1.000000 3.93198e−01 4.51560e−01 64

1.900000 9.25609e+00 4.02912e+00 1024

1.980000 2.74229e+02 2.08560e+01 16384

1.983000 3.16805e+03 6.23433e+01 131,072

1.983200 9.23013e+03 9.98547e+01 524288

1.983210 1.01840e+04 1.04263e+02 1,048,576

1.983211 1.02901e+04 1.04738e+02 1,048,576
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Fig. 4 Continuation of a saddle torus with respect to ε: blow up of H2 and C1 seminorms

εc,H2 � 1.98331250, εc,C1 � 1.98333604,

which coincide up to five significant digits with the critical value εc,LS , and the critical
exponents are

B2 � 1.03657369, B̂1 � 0.47751520.

This blow up of the seminorms supports our assertions in Conjecture 4.1.
We have also computed the blow up for different Hr and Cr seminorms (with

r ∈ [0, 4]), obtaining their corresponding estimates εc,Hr and εc,Cr of the critical
parameter εc of the breakdown, and their critical exponents Br and B̂r . The results are
displayed in Table 4. The behavior of the critical exponents supports Conjecture 4.1,
since they satisfy

Br � −0.86158681 + 0.94921635 r, for r ≥ rc � 0.90768225,

B̂r � −0.46503572 + 0.93164713 r, for r ≥ r̂c � 0.49915435,

respectively. See also Fig. 5. Incidentally, we obtain the critical regularities in Sobolev
and Cr spaces. Notice that these approximations of the critical exponents fit better in
the range r ∈ [1.5, 2.5] for Sobolev seminorms and, in the range r ∈ [1, 2] for Cr

seminorms, see Table 4. If the Sobolev or Cr range is smaller than the corresponding
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Table 4 Estimates of the critical value εc of the breakdown of the saddle torus and the critical exponent,
for the Sobolev and Cr seminorms, respectively

r εc,Hr Br εc,Cr B̂r

0.0 2.3659464613 0.2923785848 1.9990850327 0.0297868131

0.2 2.0586744062 0.0813569806 1.9861547446 0.0307922402

0.4 2.0004005665 0.0384265744 1.9837333445 0.0993803809

0.6 1.9871411293 0.0355595795 1.9834952022 0.2004862355

0.8 1.9840987055 0.0631748194 1.9833823470 0.3248803775

1.0 1.9834618324 0.1454271549 1.9833360406 0.4775151988

1.2 1.9833384372 0.2908069846 1.9833190481 0.6502075333

1.4 1.9833176436 0.4695009290 1.9833138158 0.8337511825

1.6 1.9833139955 0.6572301080 1.9833131090 1.0221473834

1.8 1.9833129682 0.8467031525 1.9833145987 1.2125264852

2.0 1.9833125000 1.0365736863 1.9833139383 1.4048686885

2.2 1.9833122392 1.2266035739 1.9833066911 1.5878751888

2.4 1.9833120811 1.4167235069 1.9833093694 1.7800335253

2.6 1.9833119793 1.6068996870 1.9833107898 1.9717868183

2.8 1.9833119103 1.7971125472 1.9833114583 2.1630388912

3.0 1.9833118614 1.9873500514 1.9833118090 2.3540487329

3.2 1.9833118254 2.1776042766 1.9833119188 2.5448764649

3.4 1.9833117977 2.3678696152 1.9833116434 2.7352870374

3.6 1.9833117758 2.5581420338 1.9833107989 2.9247764069

3.8 1.9833117582 2.7484190289 1.9833090236 3.1123520542

4.0 1.9833117441 2.9386999211 1.9833137278 3.3135418818
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Fig. 5 Fit for the affine expression of the critical exponents for the saddle torus, given by expressions (37)
and (36) of Conjecture 4.1, that is Br and B̂r (labeled as B′

r in this picture), respectively

regularity of the invariant curve, the associated norms do not explode and there are not
critical exponents. On the other side, if the range is too high, then there are numerical
instabilities in the computation of the Sobolev and Cr norms, since the high-order
Fourier coefficients are multiplied by very big weights.
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6 On Node-Focus Transitions in the Continuation of an Attracting Torus
up to Its Breakdown in a Dissipative System

In this section, we consider the 3D-FAF (29) with parameters b = 0.5 and c = 0.4.
Then, since bc = 0.2, the map is dissipative. We continue an attracting quasi-periodic
invariant torus with frequency the golden mean, and its 2-dimensional stable bundle,
from parameter ε = 0. In particular, for ε = 0 we can use the same expressions
we used for the initial approximations in Sect. 5, where the eigenvalues of �N are
0.5 and 0.4. It is then natural to use the algorithm based on complete reducibility,
see Sect. 3.3.3, so that we compute the attracting node torus and the slow and fast
invariant bundles (N S and N SS), their eigenvalues (λS = λ3 and λSS = λ2), and the
angles between bundles (αLN and αSS = α23). See Table 5 and Fig. 6.

The algorithm based on complete reducibility detects when this reducibility prop-
erty fails, and the dynamical observables provide an explanation of the failure. In the
present example, the real eigenvalues collide at a critical parameter

εA � 0.61129562,

Table 5 Continuation of an attracting node torus with respect to ε by using the complete reducibility
algorithm: continuation parameter, adjusting parameter, eigenvalues of the linearized equation and angles
between bundles

ε a λSS = λ2 λS = λ3 αSS = α23

0.0000000000 3.8832220775 0.4000000000 0.5000000000 2.44979e−01

0.2000000000 3.8825174896 0.4020837925 0.4974087583 2.31429e−01

0.4000000000 3.8805105878 0.4096616727 0.4882077414 2.15809e−01

0.6000000000 3.8773582471 0.4367863921 0.4578897228 5.83418e−02

0.6100000000 3.8771703292 0.4436248363 0.4508313858 1.98262e−02

0.6110000000 3.8771513697 0.4454942403 0.4489395858 9.47391e−03

0.6112812500 3.8771460318 0.4468334169 0.4475940968 2.09229e−03

0.6112956166 3.8771457591 0.4472071096 0.4472200814 3.67750e−05
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Fig. 6 Continuation of an attracting node torus with respect to ε by using the complete reducibility algo-
rithm. Left eigenvalues of the linearized equation. Right angle between bundles
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and the distance between the fast and slow stable bundles goes to zero at a square
root rate. The collision of the eigenvalues at εA coincides with the smooth collision
between the fast and slow stable bundles. Notice that the tangent and the stable bundles
remain separated in this transition.

At εA there is a node-focus transition, after which the torus is reducible, but not
completely reducible. The torus is then of focus type: the eigenvalues λ2, λ3 of�N are
complex conjugated. In this situation, we can use the algorithm based on reducibil-
ity, see Sect. 3.3.2, to keep going with the continuation process of the torus and its
eigenvalues. In the continuation process, normal resonances (the failure of the second
Melnikov condition) play an important role. For instance, a sufficiently large step size
permits to cross those resonances. In our example, a small step size	ε = 10−3 makes
the algorithm to stop at εB � 0.77660160, while with larger step size 	ε = 10−1

the algorithm continues till εD � 0.88354197. These parameter values correspond to
resonances leading to focus-node transitions, in which the tori are again of attracting
node type. We emphasize that the topology of the fast and slow stable bundles could
be non-trivial, and they could be non-orientable. These problems can be overcome
by detecting normal resonances and recomputing the adapted frame to fit the invari-
ant bundles, and, in case these bundles are non-orientable, using tricks as performing
double covering (Haro and de la Llave 2007).

Instead of using the previous reducibility methods, we illustrate here the perfor-
mance of the algorithm based on hyperbolic block-diagonalizability, described in
Sect. 3.3.1. An advantage of the method is that it goes through all the changes of
the dynamical properties in the normal directions, and a drawback is that dynamical
information as Lyapunov multipliers and their associated bundles has to be computed
apart. Figure 7 shows several invariant tori and the corresponding (projectivized) slow
and fast bundles. With this algorithm, the continuation process crosses node-focus
transitions. In Fig. 8 we observe several resonances, some of which have been mag-
nified in Fig. 9. To the previously computed node-focus transitions and εB, εD, we
add, for instance, the ones at εF � 0.96631953 and εH � 0.97849103. We recall that
resonances, that correspond to tori of node type, appear in open sets of the space of
parameters, while tori of focus type appear in a Cantor set of parameters. See e.g.
Jorba and Simó (1992, 1996).

In order to analyze the dynamics and topology changes in resonances, we compute
the slow and fast stable bundles of the node tori (gray rows in Table 6) as invariant
bundles of the normal cocycle (�N , Rω), the corresponding indices, and we assign
signs to the Lyapunov multipliers in order to obtain the eigenvalues of the torus. See
Table 6. Both the slow and fast stable bundles can be computed applying the power
method (either forward or backwards) to the normal cocycle. We can compute the
corresponding indices by counting the number of turns of the bundles. This number
is the index

m

2
= β

2π
,

where β is the total angle the bundle runs when θ , the parameter on the torus, goes
from 0 to 2π . Both bundles have the same index. If the double-index m is even, then
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Fig. 7 Continuation of an attracting torus with respect to ε: (x,y)-projection of invariant tori (left) and
angles of slow and fast bundles with respect to the horizontal axis (right)
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Fig. 8 Continuation of an attracting torus with respect to ε by using the hyperbolic block-diagonalizability
algorithm. Left Lyapunov multipliers. Right angles between bundles
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Fig. 9 Continuation of an attracting torus with respect to ε by using the hyperbolic block-diagonalizability
algorithm: magnifications of Lyapunov multipliers (top) and angle between bundles (down) around several
resonances

the bundle is orientable, whereas if m is odd, the bundle is non-orientable. Moreover,
the sign of m gives the direction that the fiber rotates, either counterclockwise (+) or
clockwise (−). See the last column in Table 6. The parameters of this table marked in
bold correspond to the pictures in Fig. 7. In particular, ε = 0.0 and 0.6 correspond to
node tori with orientable bundles of index 0; ε = 0.87 corresponds to a focus torus;
and ε = 0.94 and 0.97486798 correspond to node tori with orientable bundles with
index −4, and non-orientable bundles with index −63

2 , respectively. In order to assign
a sign to the eigenvalues, notice that each subbundle of T × R

2 can be represented
by two curves in T × S

1 (or a single curve in T × P
1, as in Fig. 7). Then, if each of

the curves is fixed under iteration of the normal cocycle, we assign a positive sign to
the eigenvalue. Otherwise, if the copy is 2-periodic, that is, it is shipped to the other
copy, we assign a negative sign. Of course, the main assumption here is that the torus
is of node type, so the bundles are continuous. When the torus is of focus type (white
rows in Table 6) the eigenvalues are complex conjugated, the Lyapunovmultipliers are
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Table 6 Continuation of an attracting toruswith respect to ε by using the hyperbolic block-diagonalizability
algorithm: continuation parameter, adjusting parameter, eigenvalues of the linearized equation, angle
between bundles and index of the bundles
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In bold it appears the ε parameter values corresponding to pictures in Fig. 7

equal, and the stable bundle can not split in a direct sum of (real) invariant continuous
subbundles.

To conclude the study of this example, we consider now the mechanism of break-
down of the invariant torus.We observe that the angle αLN between the tangent and the
stable bundle tends to zero (see the green curve in Fig. 8, left and Table 6), while the
normal Lyapunov multipliers remain far from 1 (Fig. 8, right). This behavior indicates
that there is a collision between the tangent and the stable bundles that destroys the
invariant torus at a critical breakdown parameter εc. This mechanism of breakdown
is again a bundle merging scenario as in Sect. 5, but in this case the stable bundle is
2-dimensional. Moreover, there is a linear decay to zero given by the expression

αLN (ε) � 0.51022350 − 0.52017767 ε

123



1860 J Nonlinear Sci (2017) 27:1829–1868

Fig. 10 Continuation of an
attracting torus with respect to ε:
αLN close to breakdown
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Fig. 11 Continuation of an attractor torus with respect to ε: blow up of H2 and C1.5 seminorms (critical
value labeled with a blue line) (Color figure online)

supporting Conjecture 4.4, from which we extrapolate an approximation

εc,LN � 0.98086389

of εc (see Fig. 10). We also compute the H2 and C1.5 seminorms of the torus, which
at the critical value εc blows up as

H2(ε) � 0.08998717

(0.98091680 − ε)1.01837794
, C1.5(ε) � 0.16768158

(0.98092418 − ε)0.90596220
.

providing a new estimate

εc,H2 � 0.98091680, εc,C1.5 � 0.98092418,

of εc. Notice that, even though the last computed torus (that is of focus type), ε =
0.9787153549, is not extremely close to the breakdown, both estimates εc,LN , εc,H2

and εc,C1.5 differ in the fifth digit. See Fig. 11 for the results.
Moreover, to get information about the regularity of the torus at the breakdown,

we compute the linear expression of the critical exponents for different Hr and Cr

seminorms, given by Conjecture (4.1):
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Fig. 12 Fit for the affine expression of the critical exponents for the attracting torus, given by expressions
(36) and (37) of Conjecture 4.1, that is Br and B̂r (labeled as B′

r in this picture), respectively

Br � −0.98252283 + 0.99740066 r,

B̂r � −0.50195007 + 0.94279767 r,

respectively. In particular, the Hr seminorms explode for values r ≥ rc � 0.985083
and the Cr seminorms for r ≥ r̂c � 0.532405. See Fig. 12.

7 On the Fractalization of an Attracting Torus

In this section, we consider the 3D-FHF (30) with parameters b = 0.68, c = 0.1,
and d = 1. The case d = 0, that corresponds to a quasi-periodically forced dynam-
ical system, has been considered in Sosnovtseva et al. (1996), Haro and de la Llave
(2006a, 2007). The quasi-periodic arcs of the continuation of a torus with frequency
ω, corresponding to d = 0 and d = 1, are shown in Fig. 1b. We discuss below the
case d = 1.

When ε = 0, the family (30) is a direct product of a rotation by angle a and the
classical Hénon map. Hence, the torus parameterized by K0(θ) = (θ, y0, z0), with

y0 = 1
2b

(
c − 1 + √

(c − 1)2 + 4b
)
and z0 = cy0, is a saddle torus, and its internal

dynamics is the rotation Rω by choosing a = ω.We also have straightforward formulas
for the stable and unstable bundles and their eigenvalues λ2 and λ3, respectively.

In a leading continuation,weuse the algorithmsbased on reducibility to continue the
torus with respect to the perturbation parameter ε, as well as the adjusting parameter,
a, and the eigenvalues of the linearized normal dynamics, λ2, λ3, which is reduced to
a constant cocycle. Recall that the Lyapunov multipliers are χ2 = |λ2| and χ3 = |λ3|.
The results are displayed in Table 7. We observe two phenomena related with the
dynamics in the invariant normal bundle described by the cocycle (�N , Rω). The
first phenomenon is a subcritical period-doubled bifurcation of the saddle torus at
εA � 0.26, after which the torus is an attracting node torus. Notice that, even though
the eigenvalue λ3 crosses −1, and so the maximal Lyapunov multiplier crosses 1, the
continuation jumps the critical bifurcation value εA, in which the torus is not normally
hyperbolic. The stable and unstable bundles before the bifurcation become the fast
and slow stable bundles, respectively, after the bifurcation.
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Table 7 Continuation results of an invariant torus of the 3D-FHF with respect to ε by using the complete
reducibility algorithm: continuation parameter, adjusting parameter, eigenvalues of the linearized equation,
angle between bundles and number of Fourier modes

ε a λ2 λ3 α23 NF

0.0000000000 3.8832220775 0.0932745366 −1.0721039594 9.13187e−01 64

0.2000000000 3.8651713720 0.0970480228 −1.0318728888 6.67596e−01 64

0.2500000000 3.8596395550 0.0997164626 −1.0054568522 5.80683e−01 64

0.2600000000 3.8584922585 0.1003912484 −0.9989884645 5.61563e−01 64

0.4000000000 3.8413214332 0.1217897138 −0.8282686012 2.07014e−01 64

0.4500000000 3.8348757982 0.1532988873 −0.6598206531 2.99487e−02 64

0.4561361791 3.8340819306 0.1657621720 −0.6104235380 6.03555e−03 512

0.4576004767 3.8338925143 0.1737158508 −0.5825237581 2.60643e−04 131,072

0.4576027468 3.8338922206 0.1737514561 −0.5824044644 2.51665e−04 1,048,576

While the first phenomenon is well understood from classical quasi-periodic bifur-
cation theory, the second phenomenon is less understood. The number of the Fourier
modes increases because the fast and slow stable bundles collide non-uniformly at a
parameter

εB � 0.45760275,

producing the collapse of the algorithm based on reducibility. The failure of the algo-
rithm detects this global phenomenon, in which the reducibility of the torus is lost.
Figure 13 reveals the (local) linear behavior with respect to ε of the angle α23 between
the fast and slow stable bundles (Haro and de la Llave 2006a; Bjerklöv and Saprykina
2008). By fitting α23, we obtain

α23(ε) � 1.78786134 − 3.90637328 ε,

for ε ≤ εB, so that we can extrapolate the critical non-uniform collision value, obtain-
ing

εB,23 � 0.45767806.

This bundle merging scenario does not lead to the breakdown of the torus, it only leads
to the loss of the reducibility. The phenomenon happens in the stable bundle, which
is at positive distance to the tangent bundle along the transition.

In order to avoid the problems caused by the lack of reducibility to a constant
cocycle, we use the algorithm based on hyperbolic block-diagonalizability to perform
the continuation for ε-values larger than εB. The algorithm computes the 2D stable
bundle and the corresponding cocycle (�N , Rω). Then, we compute the Lyapunov
multipliers χ2 and χ3 and the angle between the corresponding Lyapunov bundles
α23, as well as the angle between the tangent and the stable bundle αLN . The results
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Fig. 13 Continuation results of
an invariant torus of the 3D-FHF
with respect to ε by using the
complete reducibility algorithm:
angle between fast and slow
stable bundles near the transition
at εB
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Fig. 14 Continuation results of an invariant torus of the 3D-FHF with respect to ε by using the hyperbolic
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Fig. 15 Continuation results of
an invariant torus of the 3D-FHF
with respect to ε by using the
hyperbolic
block-diagonalizability
algorithm: magnification of
angle α23 inside a region
between εB and εC
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are summarized in Fig. 14. Besides observing the bundle collision at εB, we observe
one of the infinitelymany gaps inwhich the fast and slow stable bundles are continuous
and the torus is reducible. This main gap takes place between εC and εD. One tiny gap
appears inside the parameter interval [0.485, 0.489], see Fig. 15, between εB1 and εC1 .

In these gaps, the torus is reducible of attracting node type, and we can assign
a positive or negative sign to the Lyapunov multipliers to obtain the eigenvalues,
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Table 8 Continuation results of an invariant torus of the 3D-FHF with respect to ε by using the hyper-
bolic block-diagonalizability algorithm: continuation parameter, adjusting parameter, eigenvalues of the
linearized equation and number of Fourier modes

, ,

–

–

–

–

–

–

–

–

–

–

In bold it appears the ε parameter values corresponding to pictures in Fig. 16

depending on the action of the cocycle (�N , Rω) on the corresponding (continuous)
Lyapunov bundles. If the numerical method fails to discriminate that the angle α23
is strictly positive, we cannot classify the torus as reducible, and we assign ± to the
Lyapunov multipliers. Table 8 displays the results, where the rows in gray represent
parameters values where the torus is reducible. A remarkable fact is that, even though
the (normal) Lyapunov multipliers do not collide, the signs of the corresponding
eigenvalues have been changed in the tiny gap ]εB1 , εC1 [, providing new evidences of
the lack of reducibility between the gaps. In this example, however, the fast and slow
invariant bundles that we have computed in the reducible cases are orientable with
index 0.

The continuation slows downwhen increasing ε, since the number of Fouriermodes
to get accurate approximations of the invariant tori grows very fast. A view to the
invariant tori, see Fig. 16, left, reveals that the torus starts towrinkle, a phenomenon that
has been described as fractalization route (Kaneko 1984;Nishikawa andKaneko 1996)
in certain of quasi-periodically forced systems, in the context of strange nonchaotic
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Fig. 16 Continuation of an invariant torus of the 3D-FHF with respect to ε: (x,y)-projection of invariant
tori (left) and angles of slow and fast bundles with respect to the horizontal axis (right)
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attractors (Grebogi et al. 1984). A view to the invariant bundles, see Fig. 16, right, adds
to this description and explanation (Haro and de la Llave 2006a, 2007): the fact that the
torus experiments many reducible/non-reducible transitions (and strange nonchaotic
attractors do appear in the projective linearized dynamics) prevents the torus to have
a classical smooth bifurcation when the maximal Lyapunov multiplier crosses 1, and
produces the destruction of the torus (Haro and Simó 2005). This new fractalization
route, and its relation with lack of reducibility, deserves further study.

8 Conclusions

In this paper, we have introduced new numerical techniques for the computation of
quasi-periodic normally hyperbolic invariant tori in families of dynamical systems.
The algorithms explained here follow the idea of the parameterization method to solve
the invariance equation for the invariant torus and the adjusting parameter (and the
invariant bundles), and they are well settled in an a posteriori theorem (Canadell and
Haro 2016).

The high efficiency of these new numerical methods enables the study of regions in
parameter space in which tori are about to break. By monitoring several observables
of dynamical and regularity properties, we can detect how hyperbolicity properties
degenerate and extrapolate the parameter values in which tori are destroyed. We have
presented three mechanisms of breakdown of 1D-tori in families of 3D systems. The
examples inSects. 5 and6 illustrate twobundlemerging scenarios involving the tangent
and normal bundle, producing the breakdown of the torus, leading to conjectures 4.1
and 4.4. The example in Sect. 7 presents a new manifestation of a fractalization phe-
nomenon, related to a bundle merging scenario involving the fast and slow stable
bundles inside the stable bundle. We hope these numerical results and derived conjec-
tures spur future rigorous studies.
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