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Abstract Underactuated robotic locomotion systems are commonly represented by
nonholonomic constraints where in mixed systems, these constraints are also com-
bined with momentum evolution equations. Such systems have been analyzed in the
literature by exploiting symmetries and utilizing advanced geometric methods. These
works typically assume that the shape variables are directly controlled, and obtain
the system’s solutions only via numerical integration. In this work, we demonstrate
utilization of the perturbation expansion method for analyzing a model example of
mixed locomotion system—the twistcar toy vehicle, which is a variant of the well-
studied roller-racer model. The system is investigated by assuming small-amplitude
oscillatory inputs of either steering angle (kinematic) or steering torque (mechanical),
and explicit expansions for the system’s solutions under both types of actuation are
obtained. These expressions enable analyzing the dependence of the system’s dynamic
behavior on the vehicle’s structural parameters and actuation type. In particular, we
study the reversal in direction of motion under steering angle oscillations about the
unfolded configuration, as well as influence of the choice of actuation type on conver-
gence properties of the motion. Some of the findings are demonstrated qualitatively
by reporting preliminary motion experiments with a modular robotic prototype of the
vehicle.
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1 Introduction

Underactuated systems whose dynamics is governed by nonholonomic constraints
have been a subject of extensive research for several decades (Bloch 2003; Bloch
et al. 2005; Neimark and Fufaev 2004). While the earliest example of a nonholonomic
system is the classical Chaplygin’s sleigh (Stanchenko 1989), other typical examples
of such systems are wheeled toy vehicles such as snakeboard (Ostrowski et al 1994),
roller racer (Krishnaprasad and Tsakiris 2001; Ostrowski et al. 1995; Zenkov et al.
1998; Bullo and Žefran 2002) and more (Chitta et al. 2005; Chitta and Kumar 2003;
Kelly et al. 2012; Dear et al, 2013). In addition, the dynamics of simple models of
swimming robots also share a similar structure, particularly microswimmers governed
solely by viscous drag effects (Shapere and Wilczek 1989; Hatton and Choset 2013;
Gutman and Or 2016), as well as the opposite physical extreme of large robots per-
forming inertia-dominated swimming in “perfect” (inviscid) fluid (Kanso et al. 2005;
Melli et al. 2006).

In the literature on robotic locomotion (Kelly and Murray 1995; Ostrowski and
Burdick 1998), many works have analyzed various locomotion systems subject to
nonholonomic constraints, studying aspects such as nonlinear controllability and gait
generation. One simple subclass of locomotion systems is principal kinematic systems
(Shammas et al. 2007), whose motion is time-invariant and depends only on geometric
trajectories of shape variables (e.g. joint angles). On the other hand, the snakeboard
and roller-racer examples belong to themore general class ofmixed systems, where the
motion is dynamic and governed also by momentum evolution in time. In a majority
of previous works, it has been assumed that the controlled inputs are shape variables,
which can be prescribed directly or via closed-loop feedback control in order to follow
periodic trajectories (gaits). On the other hand, there are many practical cases where
the controlled actuation is mechanical, i.e. forces or torques. For example, robotic
microswimmers are often actuated by applying a time-varying external magnetic field
which generates torques on magnetized parts of the swimmer (Dreyfus et al. 2005;
Gutman andOr 2014).Moreover,many systems do not employ closed-loop control due
to practical limitations and apply open-looposcillatory inputs instead (Vela et al. 2002).

In order to analyze locomotion systems under oscillatory inputs, Vela and Burdick
(2003a), Vela andBurdick (2003b) developed an averaging theory for studying asymp-
totic solutions while assuming small-amplitude inputs. This theory utilizes separation
of scales in the system’s solution into fast oscillatory dynamics and slow ’averaged’
dynamics. While this technique seems fairly general, it has been applied in Vela and
Burdick (2003a), Vela and Burdick (2003b) mainly for studying controllability and
feedback stabilization of locomotion systems, where the controlled inputs were again
limited to shape variables, i.e. kinematic actuation. Another asymptotic method which
has recently been employed for locomotion dynamics, and tomicroswimmers in partic-
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Fig. 1 a The twistcar toy vehicle, and b its planar two-link model

ular Gutman and Or (2014), Wiezel and Or (2016), is perturbation expansion (Nayfeh
2008). The main advantage of this method is that it results in explicit expressions
for the system’s approximate solution under small-amplitude inputs, in contrast to
other works in which solutions of the nonlinear equations of motion could only be
obtained via numerical integration. The explicit expressions obtained from pertur-
bation expansion enable analyzing dependence of the system’s dynamic behavior on
structural parameters and can also be utilized for optimizing the system’s performance.
To best of our knowledge, the perturbation expansion method has not yet been applied
to mixed locomotion systems governed by nonholonomic constraints combined with
momentum evolution.

The goal of this work is to demonstrate the utility of perturbation expansion method
for analysis of mixed locomotion systems, by providing a detailed investigation of a
particular example problem—the twistcar, which is a popular children’s toy vehicle
shown in Fig. 1a. The twistcar has two axles of passive wheels and its only actua-
tion is through cyclic oscillations of the steering handlebar, which makes it a highly
underactuated system. Nonholonomic constraints are induced by the assumption that
the wheels cannot slip sideways along the directions of their axles. We consider oscil-
latory inputs of either steering handlebar angle (kinematic) or the applied steering
torque (mechanical). Perturbation expansion method is used in order to obtain explicit
solutions under small amplitude approximation. It is shown that the cases of steer-
ing angle input and torque inputs differ fundamentally in terms of convergence or
divergence of the vehicle’s orientation angle. The latter case is further analyzed by
obtaining the averaged solution which evolves on a slower time scale. Moreover, we
show that changing the vehicle’s structural parameters can have a drastic effect on the
dynamics, and may even result in reversal of the direction of the vehicle’s net motion.

The simple planar model of the twistcar, shown in Fig. 1b, is in fact very similar to
the roller-racer model, which has been studied extensively in the literature on nonholo-
nomic mechanics (Krishnaprasad and Tsakiris 2001; Ostrowski et al. 1995; Zenkov
et al. 1998; Bullo and Žefran 2002). The main difference between the two models is
the fact that in the twistcar (TC), the relative angle of the steering link oscillates about
φ = 0 whereas in the roller-racer (RR) the link is “unfolded” and oscillates about
φ = π . The works (Krishnaprasad and Tsakiris 2001; Ostrowski et al. 1995; Zenkov
et al. 1998; Bullo and Žefran 2002) havemade two additional simplifying assumptions
on the roller-racer model, which are questionable: first, they assumed that the steering
link has zero mass and nonzero moment of inertia, which is unphysical. Second, they
assumed that the center-of-mass of the body link is located on the back axle (i.e. l1 = 0
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in Fig. 1b), while in reality this may result in tendency of the vehicle to tip over. Like
many other works on robotic locomotion systems, Krishnaprasad and Tsakiris (2001),
Ostrowski et al. (1995), Zenkov et al. (1998), Bullo and Žefran (2002) also assumed
that the actuation input is the steering angle φ(t) rather than the applied steering torque
τ(t). All these assumptions are relaxed in our present study. Furthermore, in order to
make our analysis accessible to a broader audience of the robotics research community,
we chose not to use advanced notions of geometric mechanics such as Lie groups and
Riemannian geometry as in previous works. Instead, the results are presented using
elementary terminology of linear algebra, vector calculus, and ordinary differential
equations.

The organization of the paper is as follows. The next section introduces the prob-
lem statement and notation, formulates the equation of motion, and presents numerical
simulation results that demonstrate interesting phenomena in the system’s dynamic
behavior. Section3 introduces asymptotic analysis of the system via perturbation
expansion method under small-amplitude inputs of either steering angle or torque,
and also analyzes the system’s averaged dynamics in the latter case. Closed-form
expressions for the solution are obtained, and their analysis explains the phenomena
observed via numerical simulations. Section4 reports preliminarymotion experiments
on a robotic prototype, that qualitatively demonstrate some of the theoretical results.
The closing section contains a concluding discussion of the results, their limitations,
and outlook for future extensions of the research.

2 Problem Formulation, Numerical Simulations and Reduced Equations

We now introduce the twistcar model, formulate its dynamic equations, and show
some simulation examples. The planar two-link model of the twistcar is shown in
Fig. 1b. For simplicity, it is assumed that the mass of the steering link is negligible and
both links have zero moment of inertia. The body link is thus represented by a mass
m concentrated at a point p which is located at a distance of l1 from the rear axle.

2.1 Constrained Equations of Motion

The generalized coordinates that describe the vehicle’s motion are chosen as the vector
q = (x, y, θ, φ)T, where x , y denote the position of p, θ is the orientation angle of
the body link, and φ is the steering joint’s relative angle. Components of the velocity
of p expressed in the body-fixed frame (x ′, y′) in Fig. 1b are defined as

(
vx
vy

)
=

(
cos θ − sin θ

sin θ cos θ

) (
ẋ
ẏ

)
(1)

A key factor in the vehicle’s motion is the inability of the two pairs of passive wheels
on the axles to slip sideways. This imposes limitations on the feasible velocities q̇
which are manifested by the two nonholonomic constraints:
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W(q)q̇ = 0, where

W(q) =
(

sin θ − cos θ l1 0
sin(θ + φ) − cos(θ + φ) l3 − l2 cosφ l3

)
(2)

The dynamic equations of motion can then be obtained using constrained Lagrange’s
equations (cf Murray et al. 1994) as:

Mq̈ = Eτ + W(q)T�, where

M =

⎡
⎢⎢⎣
m 0 0 0
0 m 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , E =

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ , (3)

and � = (λ1, λ2)
T is the vector of Lagrange’s multipliers representing the general-

ized constraint forces. Note that the matrix of inertia M in (3) is singular due to our
assumptions of massless steering link, hence the accelerations q̈ cannot be obtained
directly from (3). Differentiation of the nonholonomic constraints (2) with respect to
time yields:

W(q)q̈ + Ẇ(q, q̇)q̇ = 0. (4)

Combining Eqs. (3) and (4), one obtains the final equations of motion as a linear
system:

(
M −WT

W 0

) (
q̈
�

)
=

(
Eτ

−Ẇq̇

)

Importantly, this 6× 6 linear system has full rank in spite of the singularity of M.
Defining the state vector x = (q, q̇), the procedure described above yields a state
equation of the form ẋ = f(x, t), where the steering torque τ(t) is considered as a
given controlled input. In case where the steering angle φ(t) is the controlled input,
one has to rearrange the linear system formed by (3) and (4) so that τ(t) is an unknown
to be solved while the acceleration φ̈(t) is known.

2.2 Numerical Simulation Results

In order to motivate the explicit asymptotic analysis of the system, we now present
some simulations results where the system’s nonlinear equations of motion are
numerically integrated using ode45 command of MATLAB. Nominal values for the
parameters are chosen as m = 30 kg, l1 = l2 = 0.5m, l3 = 0.2m. A movie with
animations of all numerical simulations appears in the multimedia extension.

First, the case of steering angle actuation is considered, with the given harmonic
input φ(t) = 0.6sin(t) in radians, under initial conditions of q(0) = 0 and ẋ(0) = 0
while the initial values of ẏ(0), θ̇ (0) are enforced by the constraints (2). Figure2a, b
plot the body angle θ(t) and the forward speed vx (t), defined in (1). Figure2c plots
the trajectory of the point mass p in (x, y)-plane and snapshots of the vehicle at
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Fig. 2 Numerical simulation results of TC under harmonic input of steering angle: a forward speed vx (t),
b body angle θ(t). c Motion trajectory of the point p and snapshots of the vehicle
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Fig. 3 Simulation results of speed vx (t) under RR configurationwhere φ(t) oscillates aboutπ , for l3 = 0.2
(solid) and l3 = 0.6 (dashed)

times t = {0, 2π, 4π, 6π}. It can be seen that the vehicle accelerates forward but its
body angle undergoes diverging oscillations that result in a diverging curve of motion
trajectory of p. Interestingly, while θ(t) oscillates at the actuation frequency ω, vx (t)
appears to oscillate at twice the frequency, 2ω.

Next, motion under the roller-racer configuration is simulated, where the steering
angle input is given by φ(t) = π + 0.6sin(t). Figure3 shows the forward speed vx (t)
under two different lengths of the steering link: nominal value of l3 = 0.2m, and
larger value of l3 = 0.6m. Remarkably, the simulation results indicate a reversal in
the direction of motion—a short steering link causes backward motion while a long
steering link causes forwardmotion. The body angle θ(t), which is not shown, displays
behavior of diverging oscillations, similar to the previous simulation results shown in
Fig. 2b.

The last simulated case is of torque actuation which is given by the harmonic input
τ = sin(t) in Nm. Two initial values of the steering angle φ(0)were considered, 0 and
π , which correspond to TC and RR configurations, respectively. All other coordinates
are initially zero, as well as initial velocities q̇(0) = 0. Figure4a shows plots of the
body angle θ(t) in solid line and steering angle φ(t) in dashed line, for φ(0) = 0. A
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Fig. 4 Simulation results under harmonic torque input τ(t): a Angles θ(t) (solid) and φ(t) (dashed) for
φ(0) = 0, and φ(t) for φ(0) = π (dotted). b Motion trajectory of point p and snapshots of the vehicle for
φ(0) = 0. c Forward speed vx (t) for φ(0) = 0

noticeable difference from the previous case is the fact that both angles now undergo
slowly decaying oscillations. This implies that the vehicle slowly converges toward
motion along a straight line, as shown in the snapshots and trajectory of p in (x, y)-
plane in Fig. 4b. The forward speed vx (t) is shown in Fig. 4c. It indicates that after
an initial transient, the speed undergoes slowly decaying oscillations about mean
acceleration. Under roller-racer initial condition of φ(0) = π , the dotted line in
Fig. 4a denotes the simulated solution of the steering angle φ(t). It can be seen that
φ(t) rapidly diverges away from π and converges toward oscillations about 2π , i.e.
the steering link flips back to TC configuration.

The main goal of this work is to analyze solutions of the system using perturba-
tion expansion in order to explain the interesting phenomena observed in numerical
simulations. As a preparatory step toward this analysis, the equations of motion are
normalized and reduced, as discussed next.

2.3 Normalization and Reduction of the Dynamic Equations

First, the equations of motion are normalized by the total body length l = l1 + l2, the
mass m, and actuation frequency ω, so that velocities, forces and torques are scaled
by lω, mlω2 and ml2ω2, respectively. Additionally, two nondimensional parameters
are defined as α = l3/ l and β = l1/ l. For convenience, we keep the same notation
unchanged for all nondimensional quantities, while velocities and accelerations are
expressed with respect to the nondimensional time ωt .

Next, we exploit the invariance of the equations of motion with respect to rigid
body motion of the vehicle (gauge symmetry, cf. Shapere and Wilczek 1989; Kelly
andMurray 1995), and rewrite the dynamics in terms of a vector vb = (vx , vy, θ̇ , φ̇)T.
The nonholonomic constraints (2) in terms of vb in their nondimensional form are
given by

Wb(φ)vb = 0, where Wb(φ) =
(

0 −1 β 0
sin φ − cosφ α − (1 − β) cosφ α

)
. (5)

The nondimensional equation of motion in terms of vb is obtained from (3) by differ-
entiating (1) with respect to time as
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Mbv̇b + Bb(vb) = Eτ + Wb(φ)T�, where

Mb =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Bb =

⎡
⎢⎢⎣

−θ̇vy
θ̇vx
0
0

⎤
⎥⎥⎦ . (6)

Combining (6) with the time-derivative of (5), i.e. Wbv̇b + Ẇbvb = 0, yields a linear
6× 6 system in v̇b and � as:

(
Mb WT

b
Wb 0

) (
v̇b
�

)
=

(
E
0

)
τ −

(
Bb(vb)
Ẇbvb

)
(7)

It can be shown that the determinant of the 6× 6 matrix in (7) is α2β2, which gives
another reason why the case of β = 0, assumed in previous studies of this model, is
unphysical. In case where the steering angle φ(t) is the controlled input, one has to
swap the unknown τ(t) with φ̈(t), which amounts to simply interchanging the fourth
column of the 6× 6 matrix with the column vector (E,0) in the right hand side of (7).

The last step of the reduction is the use of two permissible velocities v, u that auto-
matically satisfy the nonholonomic constraint (5), which are defined by the relation:

vb = wv(φ)v + wu(φ)u, where

wv (φ) =

⎛
⎜⎜⎝
cosφ − α

β sin φ

sin φ

0

⎞
⎟⎟⎠ , wu (φ) =

⎛
⎜⎜⎝

α(β2 + 1) sin φ

αβ(α − cosφ)

α(α − cosφ)

−(α − cosφ)2 − (1 + β2) sin2 φ

⎞
⎟⎟⎠ . (8)

The two orthogonal vector fields wv and wu span the null-space of the constraint
matrix Wb in (5). Moreover, wv represents velocity field under constant steering angle
(φ̇ = 0), i.e. motion of the vehicle along a circular arc. Substituting (8) into (6), one
obtains the reduced equations of motion in their final form, as:

v̇ = f (v, u, φ, τ )= fv(φ)v2 + fu(φ)u2 + fuv(φ)uv + fτ (φ)τ (9)

u̇ = g (v, u, φ, τ )=gv(φ)v2 + gu(φ)u2 + guv(φ)uv + gτ (φ)τ (10)

φ̇ = h(u, φ) = hu(φ)u. (11)

The explicit expressions of the functions fv(φ), gu(φ) etc. in Eqs. (9–11), appear in
Table1. The three scalar ODEs (8)–(10) encapsulate all the dynamics of the twistcar,
while the body velocities vb can be obtained from (8), and the body motion can be
obtained by integrating for θ(t) and then integrating (1) for x(t), y(t).

In case where the angle φ(t) is given as the controlled input, one can find u(t) and
u̇(t) from (11) and then eliminate τ(t) from (10) into (9) in order to obtain a single
linear time-varying ODE in the variable v(t) as:

v̇ = F
(
φ(t), φ̇(t)

)
v + G

(
φ(t), φ̇(t), φ̈(t)

)
, (12)
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Table 1 Expressions in equations (9)–(12)

where the functions F,G in (12) are also given in Table1.

3 Perturbation Expansion Analysis

We now derive the leading-order solution of the dynamics in (9)–(11) or (12) by utiliz-
ing the method of perturbation expansion (Nayfeh 2008), assuming small-amplitude
deviations from a nominal steering link angle of φ = 0 or φ = π .

3.1 The Case of Steering Angle Oscillatory Input

It is first assumed that the steering angle is prescribed as

φ(t) = φ0 + εsin(t) (13)

where ε � 1 and φ0 = 0 or π for TC or RR configuration, respectively. The variables
u(t) and v(t) in (9–10) and body angle θ(t) are expanded into power series in ε as:

v(t) = v0(t) + εv1(t) + ε2v2(t) + ε3v3(t) + · · ·
u(t) = u0(t) + εu1(t) + ε2u2(t) + ε3u3(t) + · · ·
θ(t) = θ0(t) + εθ1(t) + ε2θ2(t) + ε3θ3(t) + · · ·

(14)

Then, the functions F andG in (12) are expanded into Taylor series in their arguments
as

F
(
φ, φ̇

) = F (0, 0) + 1

1!
(

φ
∂

∂φ
+ φ̇

∂

∂φ̇

)
F

(
φ, φ̇

)

+ 1

2!
(

φ
∂

∂φ
+ φ̇

∂

∂φ̇

)2

F
(
φ, φ̇

) + · · · (15)
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G
(
φ, φ̇, φ̈

) = G (0, 0, 0) + 1

1!
(

φ
∂

∂φ
+ φ̇

∂

∂φ̇
+ φ̈

∂

∂φ̈

)
G

(
φ, φ̇, φ̈

)

+ 1

2!
(

φ
∂

∂φ
+ φ̇

∂

∂φ̇
+ φ̈

∂

∂φ̈

)2

G
(
φ, φ̇, φ̈

) + · · ·

where all the derivatives in (14) are evaluated at φ = φo, φ̇=φ̈=0. The leading-order
expressions for the forward speed vx and orientation angle θ are summarized in the
following proposition.

Proposition 1 Consider the twistcar model under oscillatory input of steering angle
φ(t) as given in (13). Under initial condition of v(0) = v0 for (12), the leading-order
solution of (6) is given by:

vx (t) = (σ − α)v0+ε2
(

β(σα−β)

4(σ−α)
v0+αβ(α+σβ)

2(σ − α)2
t

+ αβ(α − σβ)

4(σ−α)2
sin(2t)+β(β−σα)

4(σ−α)
v0 cos(2t)

)
+O(ε3) (16)

θ(t) = ε

(
v0σ(1− cos t)+ α

σ−α
sin(t)

)

+ ε3

(
σ

(
α2−3σαβ+σα+3β2−2

)
8(σ−α)2

v0(cos t − 1)

− α(σα−5σαβ−5β2+2β2−1)

8(σ−α)3
sin t − α

(
σαβ − σα+β2−2β2+1

)
24(σ −α)3

sin(3t)

− σ(α2−3σαβ + σα + 3β2−2)

72(σ−α)2
v0(1− cos(3t)) − αβ (σα + β)

2(σ−α)3
t cos t

)

+ O(ε4), (17)

where σ = 1 for φ0 = 0 and σ = −1 for φ0 = π .

Proof Wefirst obtain the leading-order solutionofv(t)by expanding (12). Substituting
(13)– (15) into (12) and rearranging in ε-orders yields a series of differential equations
for vi (t), which are solved iteratively. The zero-order equation is null, v̇0 = 0, which
implies that v0 = constant, and so is v1. The second-order part of (12) is given by:

v̇2 = (1−σα + β)(1−β)

(σ − α)2
v0 sin t cos t + α(αβ + σβ2 + σ)

(σ − α)3
cos2 t − σα

(σ − α)3
sin2 t.

Integration then yields the leading-order expression for v:

v (t) = v0 + ε2
(

αβ(α + σβ)

2(σ − α)3
t + α(αβ + σβ2 + 2σ)

4(σ − α)3
sin(2t)

+ (σα − β − 1)(1 − β)

4(σ − α)2
v0 (cos(2t) − 1)

)
+ O

(
ε3

)
(18)
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Next, expanding 1/hu(φ) in (11) as a Taylor series in φ and substituting (13), one
obtains the expression for u(t) as

u(t)= − ε
cos t

(σ − α)2
+ ε3

(β2 + σα)

4(σ − α)4
(cos t − cos(3t)) + O(ε4). (19)

For the forward speed vx , the relation (8) implies that vx = (cosφ − α)v + α(β2 +
1)u sin φ. Expanding about φ = φ0 and using (14) and (15), one obtains:

vx (t)=
(

σ − ε2σ sin2 t

2
− α

)
(v0 + ε2v2(t)) + σα(β2 + 1)ε2u1(t) sin t + O(ε3).

Substituting the expressions for v2 and u1 from (18) and (19) and rearranging, one
obtains the expansion of vx (t) in (16).

For the angular velocity, the relation (8) implies that θ̇ = vsinφ + uα(α − cosφ).

Expanding about φ = φ0 and using (13) and (14), one obtains:

θ̇ (t) = σ

(
ε sin t − ε3

6
sin3 t

)
(v0 + ε2v2(t))

+α

(
α − σ + σε2

2
sin2 t

)
(εu1(t) + ε3u3(t)) + O(ε3).

Substituting the expressions for v2, u1 and u3 from (18) and (19) and integrating under
zero initial conditions, the body angle θ(t) is then obtained as in (17). ��

The results in (16–17) explain the interesting observations from numerical simula-
tions, as follows. First, (16) implies that the forward speed vx (t) undergoes oscillations
in twice the actuation frequency while its mean value grows with constant rate a which
is proportional to ε2, given by:

a = ε2
αβ(α + σβ)

2 (σ − α)3
. (20)

Second, in (17) we not only obtained the leading-order terms for the body angle θ(t),
but also terms of O(ε3). The last term in (17) indicates that θ(t) undergoes oscillations
whose amplitude slowly diverges as ε3t cos(t).

In order to demonstrate the validity of the small-amplitude approximate solution,
Fig. 5a, b plot the solutions of θ(t) andvx (t), respectively, forφ0 = 0,α = 0.2,β = 0.5
and ε = 0.5, where the dashed curves denote leading-order expressions from (16) and
(17) while the solid curves are obtained from numerical integration of (6). In order to
test the scaling of the mean forward acceleration a in (20) as ε2, simulations under
a range of values of amplitudes ε were performed, and the slope of the time-varying
average of vx (t)was obtained using least-squares linear regression and plotted in solid
curve on a log-log scale in Fig. 5c, while the dashed line represents the leading-order
term in (20) which is proportional to ε2. The results show good agreement for values
up to ε ≈ 0.5 rad (5% error). Note that the discrepancy between the approximate and
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Fig. 5 Comparison of simulation results (solid) and leading-order approximation (dashed) under harmonic
input of steering angle φ(t): a Forward speed vx (t) and b body angle θ(t). c Log–log plot of mean forward
acceleration as a function of amplitude ε

numerical solutions is increasingwith time t . This is because in theory, the perturbation
expansion in (14) is valid as long as the terms ui, vi, θi remain as small as O(1). Since
both v2(t) and θ3(t) contain (secular) terms that diverge linearly in time, the expansion
is formally valid only for short times.

Next,we analyze the dependence of themean forward accelerationa on the vehicle’s
parameters. From (20), it can be seen that a vanishes for α = 0 or β = 0. That is,
using the assumption β = 0 as in previous works (Krishnaprasad and Tsakiris 2001;
Ostrowski et al. 1995; Zenkov et al. 1998; Bullo and Žefran 2002) implies that the
leading-order acceleration is only of order ε3. For oscillations about TC configuration
φ0 = 0, substituting σ = 1 into (20) reveals that a > 0 for all β > 0 and 0 < α < 1.
On the other hand, in case of oscillations about RR configuration φ0 = π , substituting
σ = −1 into (20) reveals that the sign of a depends on the sign of α −β, or physically
the length difference l3 − l1. In case where l3 > l1 the vehicle accelerates forward
(a > 0), whereas in the case where l3 < l1 it accelerates backwards (a < 0). This is
precisely the explanation to the direction reversal obtained in the simulation results in
Fig. 3.

While for TC configuration (σ = 1) the mean acceleration a grows monotonically
with α and β, for RR configuration (σ = −1) it is natural to seek for optimal values
of α and β that maximize |a|. Substituting σ = −1 into (20) and using elementary
calculus, it can be shown that a has no global extremum in both α and β lying within
the interval (0,1). Nevertheless, for a given value of α, the optimal value for β is
β∗ = α/2, which gives maximal forward acceleration. On the other hand, if the value
of β is given then the optimal value of α is α∗ = β/(β + 2), which gives a minimum
value for a < 0, i.e. maximal backward acceleration. These optimal values can be
incorporated into design considerations of the vehicle.

3.2 The Case of Steering Torque Oscillatory Input

It is now assumed that controlled input is the steering torque τ(t), whose (normalized)
value is prescribed as

τ(t) = εsin(t), (21)
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Table 2 Expressions in equations (22)–(26)

where ε � 1. The following proposition gives the leading-order solution of the
dynamic equations of motion.

Proposition 2 Consider the twistcar model under oscillatory input of steering torque
τ (t) as given in (21). Under initial steering angle of φ(0) = π , the RR configuration
is unstable, and the angle φ(t) diverges away from π . Under initial condition of
φ(0) = u(0) = 0 and v(0) = v0 > 0, the steady-state solution of (9)–(11), after a
decaying transient, is given to leading order as:

φ (t) = ε(bφ sin t + cφ cos t) + O(ε2) (22)

u (t) = ε (bu sin t + cu cos t) + O(ε2) (23)

v (t) = v0 + ε2(avt + bv sin (2t) + cv (1 − cos (2t)) + O(ε3) (24)

where all the coefficients in (22–24) are given in Table2. The steady-state expressions
for the body angle θ(t) and forward speed vx (t) are given to leading order as:

θ(t) = ε
1 − α

αβ
(
(1 − α)2v20 + β2

) ((1 − α)(1 − cos t)v0 − β sin t) + O(ε3) (25)

vx (t) = (1 − α)v0 + ε2 (ax t+bx sin (2t) + cx (cos (2t) − 1)) + O(ε3) (26)

where the constants ax , bx , cx are also given in Table2.

Proof All functions of φ in the reduced dynamic equations (9–11) are expanded about
φ = 0 or φ = π . Expanding φ(t) = εφ1(t) + ε2φ2(t) + · · · and substituting (14)
into (9)–(11) while assuming u0 = 0, the zero-order dynamics again implies that
v0 =constant. The first-order dynamics is then obtained in matrix form as:

⎡
⎣ v̇1
u̇1
φ̇1

⎤
⎦ =

⎡
⎣0 0 0
0 (α-σ)(α+σβ)

αβ
v0

σ
αβ

v20
0 −(α − σ)2 0

⎤
⎦

⎡
⎣ v1
u1
φ1

⎤
⎦ +

⎡
⎣ 0

− 1
α2β2

0

⎤
⎦ sin(t) (27)

where σ = 1 for expansion about φ = 0 and σ = −1 for φ = π . This is the linearized
dynamics of (v, u, φ) about v = v0, u=0, and either φ = 0 or φ = π . One can see that
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the first-order dynamics of v in (20) is zero, hence its leading-order dynamics is of
O(ε2). The solution of (27) for u(t) and φ(t) consists of steady-state response of the
form sin(t +ψ) and transient response of the form eλi t , where λ1,2 are eigenvalues of
the 2× 2 lower sub-matrix in (27), which are given as

λ1 = (α − σ)

β
vo, λ2 = (α − σ)

α
σvo . (28)

In case of expansion about φ = π where σ = −1, it can be verified that either λ1
or λ2 is a positive real number for any v0 �= 0. Therefore, one concludes that the
RR configuration is an unstable (relative) equilibrium of the linearized system (27).
This explains the divergence of solutions from φ = π under torque input, which was
observed in numerical simulations (dashed line in Fig. 4a). For the TC configuration
where σ = 1, i.e. expansion about φ = 0, both eigenvalues have negative real part
for v0 > 0, implying that the transient response is decaying in time. The steady-state
solutions of u1(t) and φ1(t) in the linear system (27) are then obtained directly as in
(22), (23).

The second-order dynamics of v(t) is obtained by expanding (9) in φ and then
substituting (14), as:

v̇2(t) = −α(α2β + αβ2 − αβ − β2 + α − 1)u21 (t) + 1

β(1 − α)
v20φ

2
1(t)

− αβ2 − β3 − αβ − α

β
v0u1(t)φ1(t) + 1

αβ2(1 − α)
φ1(t) sin (t)

(29)

Substituting the expressions for u1(t) and φ1(t) from (22), (23) and integrating,
one obtains the solution of v2(t), and its steady-state part is given in (24)

For the angular velocity, the relation (8) implies that θ̇ = vsinφ + uα(α − cosφ).

Expanding about φ = 0 and using the expansions of φ(t), u(t), v(t) in (23)–(25), one
obtains:

θ̇ = ε
1 − α

α
(
(1 − α)2v20 + β2

)
(

(1 − α)v0

β
sin t − cos t

)
+ O

(
ε3

)

Integrating under zero initial conditions, the leading-order solution of the body angle
θ(t) is obtained as in (25). Finally, the relation (8) implies that vx = (cosφ − α)v +
α(β2 + 1)usinφ. Expanding about φ = 0 and using the expansions of φ(t), u(t), v(t)
in (22)–(24) then gives (26). ��

In order to verify the expressions in Proposition 2, Fig. 6a–c plot numerical sim-
ulation values of the forward speed vx (t), steering angle φ(t) and body angle θ(t),
respectively, in solid lines for parameter values of α = 0.2, β = 0.5, v0 = 3 and
ε = 0.25. The leading-order approximations in (26), (22) and (25) are overlaid in
dashed lines on the plots. Approximation errors in φ(t), θ(t) also appear in solid
lines in Figs. 7a, b. The fast decay of transient response is hardly visible in the plots
(according to (28), its slowest component is e−4.8t ). It can be seen that the steady-state
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Fig. 6 Comparison of simulation results (solid) and leading-order approximation (dashed) under harmonic
input of steering torque τ(t): a forward speed vx (t), b steering angle φ(t), and c body angle θ(t)
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approximation works well for short times, yet for longer times its deviation from the
exact solution is diverging. More importantly, the leading-order approximation does
not capture the slow decay in oscillation amplitudes of φ(t), θ(t) and v(t), observed in
numerical simulations. One reason for this discrepancy is the fact that for long times,
the diverging term ε2avt in (24) is no longer of O(ε2), which violates the inherent
assumption of ε-scales in the expansion (14). More importantly, the leading-order
solution is based on expansion about a nominal constant value of v = v0 while the
actual mean value of v(t) increases with time due to the acceleration term ε2avt in
(24). In particular, the oscillation amplitudes of φ(t), θ(t) and v(t) in the leading-order
solution (22–24), which are given by the b, c coefficients in Table2, depend on v0 in
a monotonically decreasing way, so that the growth in v(t) causes the slow conver-
gence of the oscillations. It has been demonstrated in Chakon (2015) that updating the
value of v0 according to that of v(t) every several periods improves the accuracy of
the approximation drastically. This motivates the use of a “continuous update” of v0,
which is implemented by the averaging scheme of v(t) discussed next.

3.3 Improved Solution with Time-Averaged Speed

We now introduce an improved solution under oscillatory input of steering torque,
which is based on time-averaging of the speed v(t). From the leading-order solution
(24), it is observed that v(t) oscillates about a time-varying average value, which is
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denoted by v̄(t), whose slow rate of change is given by dv̄/dt =ε2av , where av is given
in Table2 and depends on the initial value v0. A continuous update of the approximate
solution in (22)–(24) can thus be obtained by replacing every instance of v0 in the
coefficients in Table2 with the slowly-varying average v̄(t). The time evolution of
v̄(t) is then governed by a nonlinear ODE, given by:

dv̄

dt
= ε2av = ε2

(α + β)(1 − α)

2αβ
(
(1 − α)2v̄2 + α2

) (
(1 − α)2v̄2 + β2

) (30)

Using separation of variables, an implicit solution for v̄(t) in (30) under initial condi-
tion v̄(0) =v̄0 is obtained as

2αβ

ε2(α + β)(1 − α)

(
(1 − α)4(v̄5 − v̄50)

+ (1 − α)2(α2 + β2)(v̄3 − v̄30) +α2β2(v̄ − v̄0)
)

= t (31)

The solution v̄(t) in (31) for ε=0.25, v̄0=3 is plotted as a dashed line in Fig. 7a,
overlaid with the solid line of numerical solution v(t) of (9). In order to compare
v̄(t) with the time-varying average of v(t) obtained numerically, the circles denote
discrete-time approximation of v̄(t) by taking a moving average of local extremum
points vk (marked by *) as v̄k = (vk−1 + 2vk + vk+1)/4. It can be seen that after an
initial transient, v̄(t) displays good agreement with the moving average v̄k . Next, we
calculate the improved approximation for the angles φ(t), θ(t) in (22), (23), which
is obtained by replacing every instance of v0 in Table2 with the time-varying mean
value v̄(t), whose solution is given in (31). The results are shown in Fig. 7b, c, where
the solid lines are approximation errors of φ(t), θ(t) under constant v0 whereas the
dashed lines are errors under the improved approximation using v̄(t). The plots reveal
significant improvement in the approximations for long times.

Finally, this improved solution can also be used in order to find explicit expressions
for the decay rate of the oscillation amplitudes of the angles φ(t) and θ(t) for long
times. At long times, the mean forward speed v̄ is large so that the term v̄5 in (31) is
dominating. Thus, it is concluded that for long times, the solution of (31) is v̄(t) ≈
dφ t0.2, where dφ is given in Table2. Substituting this into the amplitude coefficients
bθ , cθ , bφ, cφ in Table2 and assuming that v̄(t) 	 α,β , it is then concluded that for
long times, the oscillation amplitude of φ(t) decays as dφ t−0.4 while the oscillation
amplitude of θ(t) decays as dθ t−0.2, where dφ and dθ appear in Table2.

In order to verify these expressions for long-time decay rates, Fig. 8 plots on a log-
log scale the discrete series of absolute-valued peak values of φ(t) and θ(t), marked
by * (minus steady-state value for θ ), for ε=0.5, v̄0= 1. The dashed lines denote the
long-time approximate expressions dφ t−0.4 and dθ t−0.2, represented as straight lines
with slopes of −0.4 and −0.2, respectively, on the log–log scale. The plot indicates
that this approximation captures the true decay rate of the angles φ(t) and θ(t) for
long times, which completes the analytic corroboration of all significant phenomena
that were observed in numerical simulations.
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Fig. 8 Comparison of
amplitudes at extremum values
of φ and θ (‘*’) with the
expressions for their long-time
decay rate (dashed) on log-log
scale.
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Fig. 9 The vehicle’s robotic prototype: a Twistcar configuration, b roller-racer configuration

4 Preliminary Experiments

Preliminarymotion experiments on amodular robotic prototype of the twistcar vehicle
were conducted, which only demonstrate some qualitative aspects of the theoretical
results presented in this work. Movies of these representative experiments appear in
the multimedia extension. The robotic prototype, which was constructed from VEX
robotics kit, is shown in Fig. 9. A DC servo motor (7.2V 2000mAh) with built-in
incremental encoder and batteries is mounted at the steering joint, and controlled by
an on-board microcontroller via RobotC environment of VEX. This basic controller
only enables dictating instantaneous power, which is proportional to angular velocity,
and is not suitable for more advanced feedback control. Additionally, the motor shaft
suffered from static friction torque which stops the motor when the power signal is
below some threshold, precluding the use of sinusoidal reference signals. Therefore,
we chose to use a square-wave input of power, which results in triangular wave for
the steering angle φ(t) with amplitude of ±53◦. The first motion experiment was at
TC configuration (oscillations about φ = 0), and the second experiment was at RR
configuration (oscillations about φ = π ). Snapshot images from the two experiments
are shown in Fig. 10a, b. The experiments demonstrate forward motion at twistcar
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Fig. 10 Movie snapshots from experiments under steering angle input of triangular wave: a Twistcar
configuration, b roller–racer configuration. c, dReversal of motion direction of the roller–racer by removing
a massive box that changes the distance l1

configuration and backwards motion at roller–racer configuration, as predicted by the
theoretical results. The experiments clearly show deviation of the motion trajectory
from a straight line to an arc. Nevertheless, due to lack of accurate position measure-
ments, it is not clear whether the source of this deviation is diverging oscillations of the
body angle θ , asymmetric oscillations of the steering angle φ due to inaccurate manual
homing and encoder’s drift, or asymmetry in rolling friction at the wheel’s bearings.

Finally, the purpose of the third experiment was demonstration of reversing the
direction of motion of the roller-race due to change in the ratio l1/ l3. In this exper-
iment, a rectangular heavy box was attached to the vehicle’s back axle, shifting the
body’s center-of-mass backwards l1 < l3, which, according to the theory, results in
forward motion. Then the box is removed, so that the center-of-mass position now
satisfies l1 > l3 and consequently, the direction is reversed and the vehicle begins to
move backwards, as expected. Illustration of this experiment is shown in Fig. 10c, d.
This experiment suffered from high sensitivity and low repeatability, probably due to
wear and misalignment of the motor shaft, which caused increased static friction and
backlashes. Additionally, intermittent events of sideways slippage of the wheels were
clearly observed for all motion experiments, which were not accounted by the theo-
retical model. Some future improvements of the experiments as well as the theoretical
model are discussed in the next section.

5 Conclusion

In thisworkwehave utilized themethod of perturbation expansion in order to explicitly
analyze the leading-order dynamics of the twistcar vehicle which is governed by
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momentum evolution and nonholonomic constraints of no-slip at the wheels. We have
relaxed some unphysical assumptions made by previous works on the roller-racer
model and considered both cases of steering torque and steering angle actuation of
harmonic input. Interesting dynamic phenomena have been observed numerically and
justified analytically, such as direction reversal of the roller-racer depending on the
vehicle’s parameters, and influence of the choice of controlled input on convergence
of the angles’ oscillations. Preliminary motion experiments with a robotic prototype
demonstrated the influence of vehicle’s parameters on the direction of motion under
open-loop controlled steering angle of triangular wave.

Some limitations of the work and proposed extensions of the research are listed
as follows. First, the few preliminary experiments shown here were conducted on a
prototype with limited control capabilities. We currently design an advanced robotic
prototype, equipped with a more sophisticated microcontroller for closed-loop control
of either steering torque or steering angle, which will enable overcoming mechanical
backlashes and static friction at the shaft. The new setupwill also include positionmea-
surement system, either by odometry using encoders on both wheels of the back axle,
or by using a camera tracking system, in order to enable quantitative measurements of
the vehicle’s motion. Motivated by observed events of wheels’ sideways slippage, we
currently investigate extension of the theoretical model in order to include stick-slip
transition under Coulomb’s friction model (cf. Fedonyuk and Tallapragada 2015) as
well as the effects of backlashes and frictional torques at the joints, which all give rise
to a hybrid dynamical system. Finally, the work can be extended to design of more
applicative control laws for steering and path following of the vehicle.
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