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Abstract We investigate the edge-isoperimetric problem (EIP) for sets of n points
in the triangular lattice by emphasizing its relation with the emergence of the Wulff
shape in the crystallization problem. By introducing a suitable notion of perimeter and
area, EIP minimizers are characterized as extremizers of an isoperimetric inequality:
they attain maximal area and minimal perimeter among connected configurations.
The maximal area and minimal perimeter are explicitly quantified in terms of n. In
view of this isoperimetric characterizations, EIP minimizers Mn are seen to be given
by hexagonal configurations with some extra points at their boundary. By a careful
computation of the cardinality of these extra points, minimizers Mn are estimated to
deviate from such hexagonal configurations by at most Kt n3/4 + o(n3/4) points. The
constant Kt is explicitly determined and shown to be sharp.
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1 Introduction

This paper is concerned with the edge-isoperimetric problem (EIP) in the triangular
lattice

Lt := {m t1 + n t2 : m, n ∈ Z} for t1 := (1, 0) and t2 :=
(
1

2
,

√
3

2

)
.

Let Cn be the family of sets Cn containing n distinct elements x1, . . . , xn in Lt . The
edge perimeter |�(Cn)| of a set Cn ∈ Cn is the cardinality of the edge boundary � of
Cn defined by

�(Cn) := {(xi , x j ) : |xi − x j | = 1, xi ∈ Cn and x j ∈ Lt \ Cn}. (1)

Note that, with a slight abuse of notation, the symbol | · | denotes, according to the
context, both the cardinality of a set and the euclidean norm in R

2. The EIP over the
family Cn consists in characterizing the solutions to the minimum problem:

θn := min
Cn∈Cn

|�(Cn)|. (2)

Our main aim is to provide a characterization of the minimizers Mn of (2) as
extremizers of a suitable isoperimetric inequality (see Theorem 1.1) and to show that
there exists a hexagonal Wulff shape in Lt from which Mn differs by at most

Kt n
3/4 + o(n3/4) (3)

points (see Theorem 1.2). A crucial issue of our analysis is that both the exponent and
the constant in front of the leading term in (3) are explicitly determined and optimal
(see Theorem 1.4).

The EIP is a classical combinatorial problem. We refer to Bezrukov (1999), Harper
(2004) for the description of this problem in various settings and for a review of the
corresponding results available in the literature. The importance of the EIP is however
not only theoretical, since the edge perimeter (and similar notions) bears relevance in
problems frommachine learning, such as classification and clustering (see Trillos and
Slepcev 2016 and references therein). Note, however, that in this other more statistical
setting the edge perimeter is not defined for configurations contained in a specific
lattice, but for point clouds obtained as random samples.

We shall emphasize the link between the EIP and theCrystallization Problem (CP).
For this reason, we will often refer to the sets Cn ∈ Cn as configurations of particles
in Lt and to minimal configurations as ground states. The CP consists in analytically
explaining why particles at low temperature arrange in periodic lattices by proving
that the minima of a suitable configurational energy are subsets of a regular lattice. At
low temperatures, particle interactions are expected to be essentially determined by
particle positions. In this classical setting, all available CP results in the literature with
respect to a finite number n of particles are in two dimensions for a phenomenological
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energy E defined from R
2n , the set of possible particle positions, to R ∪ {+∞}. In

Heitmann and Radin (1980), Radin (1981) the energy E takes the form

E({y1, . . . , yn}) := 1

2

∑
i �= j

v2(|yi − y j |) (4)

for specific potentials v2 : [0,∞) → R ∪ {+∞} representing two-body interactions.
Additional three-body interaction terms have been included in the energy in Mainini
and Stefanelli (2014), Mainini et al. (2014a, b). We also refer the reader to E and Li
(2009), Flatley and Theil (2015), Theil (2006) for results in the thermodynamic limit
with a Lennard-Jones-like potential v2 not vanishing at a certain distance and to Blanc
and Lewin (2015) for a general review on the CP.

The link between the EIP on Lt and the CP resides on the fact that when only two-
body and short-ranged interactions are considered, the minima of E are expected to
be subsets of a triangular lattice. The fact that ground states are subsets of Lt has been
analytically shown inHeitmann andRadin (1980) andRadin (1981), respectively, with
v2 := vsticky, where vsticky is the sticky-disk potential, i.e.,

vsticky(�) :=

⎧⎪⎨
⎪⎩

+∞ if � ∈ [0, 1)
−1 if � = 1

0 if � > 1 ,

(5)

and v2 := vsoft, where vsoft is the soft-disk potential, i.e.,

vsoft(�) :=

⎧⎪⎨
⎪⎩

+∞ if � ∈ [0, 1)
24� − 25 if � ∈ [1, 25/24]
0 if � > 25/24 .

(6)

In particular with both the choices (5) and (6) for v2, we have that

E(Cn) = −|B(Cn)| (7)

for every Cn ∈ Cn . Here, the set

B(Cn) := {(xi , x j ) : |xi − x j | = 1, i < j, and xi , x j ∈ Cn} (8)

represents the bonds ofCn ∈ Cn . Note that the definition of B(Cn) in (8) is independent
of the order in which the elements of Cn are labeled. The number of bonds of Cn with
an endpoint in xi will be instead denoted by

b(xi ) = |{ j ∈ {1, . . . , n} : (xi , x j ) ∈ B(Cn) or (x j , xi ) ∈ B(Cn)}| (9)
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for every xi ∈ Cn . The link between the EIP and the CP consists in the fact that by
(1), (7), and (9) we have that

|�(Cn)| =
n∑

i=1

(6 − b(xi )) = 6n −
n∑

i=1

b(xi )

= 6n − 2|B(Cn)| = 6n + 2E(Cn) (10)

for every Cn ∈ Cn , since the degree of Lt is 6.
In view of (10) minimizing E among configurations in Cn is equivalent to the EIP

(2), and since for both the choices (5) and (6) for v2 by Heitmann and Radin (1980),
Radin (1981) ground states belong to Cn , the ground states of the CP correspond to the
minimizers of the EIP. Furthermore, in Heitmann and Radin (1980), Radin (1981) the
energy of ground states with n particles has been also explicitly quantified in terms of
n to be equal to

en := −�3n − √
12n − 3	 = −3n + 
√12n − 3� (11)

where �x	 :=max{z ∈ Z : z≤ x} and 
x� :=min{z ∈ Z : x ≤ z} denote the standard
right- and left-continuous functions, respectively. Therefore, (10) and (11) entails also
a characterization of θn in terms of n, i.e.,

θn = 6n + 2en = 2
√12n − 3�. (12)

A first property of the minimizers of (2) has been provided in Harper (2004),
Theorem 7.2 where it is shown that the EIP has the nested-solution property, i.e., there
exists a total order τ : N → Lt such that for all n ∈ N the configuration

Dn := {xτ(1), . . . , xτ(n)}

is a solution of (2) (see Proposition 2.1 and the discussion below for the definition
of τ ). Given the symmetry of the configurations Dn , we will refer to them as daisies
in the following. Since solutions of the EIP are in general nonunique, the aim of this
paper is to characterize them all.

In this paper, we provide a first characterization of the minimizers Mn of the EIP
by introducing an isoperimetric inequality in terms of suitable notions of area and
perimeter of configurations in Cn and by showing that the connected minimizers Mn

of the EIP are optimal with respect to it. We refer here the reader to (25) and (26) for
the definition of the area A(Cn) and the perimeter P(Cn) of a configuration Cn ∈ Cn .
Note also that we say that a configuration Cn is connected if given any two points
xi , x j ∈ Cn then there exists a sequence yk of points in Cn with k = 1, . . . , K for
some K ∈ N such that y1 = xi , yK = x j , and either (yk, yk+1) or (yk+1, yk) is in
B(Cn) for every k = 1, . . . , K − 1. It easily follows that minimizers of the EIP need
to be connected. Our isoperimetric characterization reads as follows.
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Theorem 1.1 (Isoperimetric characterization) Every connected configuration Cn ∈
Cn satisfies √

A(Cn) ≤ kn P(Cn), (13)

where

kn :=
√−2θn + 8n + 4

θn − 6
. (14)

Moreover, connected minimizers Mn ∈ Cn of the EIP correspond to those config-
urations for which (13) holds with the equality. Finally, connected minimizers attain
the maximal area an := −θn/2+ 2n + 1 and the minimal perimeter pn := θn/2− 3.

Notice that a similar isoperimetric result has been already achieved in the square
lattice in Mainini et al. (2014a) with a different method, based on introducing a
rearrangement of the configurations. Theorem 1.1 is instead proved by assigning to
each element x of a configuration Cn ∈ Cn a weight ωCn (x) that depends on Cn and
on the above-mentioned order τ [see (32)].

Furthermore, we observe that the isoperimetric constant kn given by (14) satisfies

kn ≤ 1√
6

for every n ∈ N,

with kn = 1/
√
6 if and only if n = 1 + 3s + 3s2 for some s ∈ N. Note that

for n = 1 + 3s + 3s2, as already observed in Harper (2004), the hexagonal daisy
D1+3s+3s2 is the unique minimizer of the EIP.

In the following,wewill often refer to lattice translations of D1+3s+3s2 as hexagonal
configurations with radius s ∈ N since each configuration D1+3s+3s2 can be seen as
the intersection ofLt and a regular hexagonwith side s. In order to further characterize
the solutions of the EIP, we associate to every minimizer Mn a maximal hexagonal
configuration HrMn

that is contained in Mn and we evaluate how much Mn differs
from HrMn

(see Sect. 3).
In view of the isoperimetric characterization of the ground states provided by The-

orem 1.1, we are able to sharply estimate the distance of Mn to HrMn
both in terms

of the cardinality of Mn \ HrMn
and by making use of empirical measures. We asso-

ciate to every configuration Cn = {x1, . . . , xn} the empirical measure denoted by
μCn ∈ Mb(R

2) (where Mb(R
2) is the set of bounded Radon measures in R

2) of the
rescaled configuration {x1/√n, . . . , xn/

√
n}, i.e.,

μCn := 1

n

∑
i

δxi /
√
n ,

and we denote by ‖·‖ and ‖·‖F the total variation norm and the flat norm, respectively
(see Whitney 1957 and (72) for the definition of flat norm). Our second main result is
the following.
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Theorem 1.2 (Convergence to the Wulff shape). For every sequence of minimizers
Mn in Lt , there exists a sequence of suitable translations M ′

n such that

μM ′
n

⇀∗ 2√
3
χW weakly* in the sense of measures,

whereχW is the characteristic function of the regular hexagonW defined as the convex
hull of the vectors

{
± 1√

3
t1, ± 1√

3
t2, ± 1√

3
(t2 − t1)

}
.

Furthermore, the following assertions hold true:

∣∣Mn \ HrMn

∣∣ ≤ Ktn
3/4 + o(n3/4), (15)∥∥∥μMn − μHrMn

∥∥∥ ≤ Ktn
−1/4 + o(n−1/4), (16)∥∥∥μM ′

n
− μHrMn

∥∥∥
F

≤ Ktn
−1/4 + o(n−1/4), (17)

and

∥∥∥∥μM ′
n
− 2√

3
χW

∥∥∥∥
F

≤ 2Ktn
−1/4 + o(n−1/4), (18)

where HrMn
is the maximal hexagon associated to Mn, and

Kt := 2

31/4
. (19)

The proof of Theorem 1.2 is based on the isoperimetric characterization of the min-
imizers provided by Theorem 1.1 and relies in a fundamental way on the maximality
of the radius rMn of the maximal hexagonal configuration HrMn

. The latter is essential
to carefully estimate the number of particles of Mn that reside outside HrMn

in terms
of rMn itself and the minimal perimeter pn . Thanks to this fine estimate we are able
to find a lower bound on rMn in terms of n only [see (69)]. In particular, the method
provides a lower bound for the radius rMn that allows us also to estimate from above
the discrepancy between the setsMn and HrMn

in the Hausdorff distance that is defined
by

dH(S1, S2) = max

{
sup
x∈S1

inf
y∈S2

|x − y|, sup
y∈S2

inf
x∈S1

|x − y|
}

for nonempty sets S1, S2 ⊂ R
2.
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Corollary 1.3 (Hausdorff distance)For anyminimizer Mn and its associatedmaximal
hexagon HrMn

there holds

dH
(
Mn, HrMn

) ≤ 2 · 31/4n1/4 + O(1). (20)

We observe that in view also of Theorem 1.1 estimates (15)– (18) and (20) provide
a measure in different topologies of the fluctuation of the isoperimetric configurations
in Lt with respect to corresponding maximal hexagons. Similar estimates have been
studied in the context of isoperimetric Borel sets with finite Lebesgue measure in
R
d , d ≥ 2. We refer the reader to Fusco et al. (2008) for the first complete proof of

the quantitative isoperimetric inequality in such setting, and to Cicalese and Leonardi
(2012), Figalli et al. (2010) for subsequent proofs employing different techniques.

Moreover, Theorem 1.2 appears to be an extension of analogous results obtained
in Au Yeung et al. (2012), Schmidt (2013) by using a completely different method
hinged on 
-convergence. In that context, the setW is the asymptoticWulff shape and
we will also often refer to W in this way. More precisely the minimization problem
(4) is reformulated in Au Yeung et al. (2012), Schmidt (2013) in terms of empirical
measures by introducing the energy functional

En(μ) :=
⎧⎨
⎩
∫
R2\diag

n

2
v2(

√
n|x − y|) dμ ⊗ dμ μ = μCn for some Cn ∈ Cn,

∞ otherwise

(21)

defined on the set of nonnegative Radon measures in R
2 with mass 1, where v2 is (a

quantified small perturbation of) the sticky-disk potential (Heitmann and Radin 1980).
In Au Yeung et al. (2012), Schmidt (2013) it is proved that the rescaled sequence of
functionals n−1/2(2En + 6n) 
-converges with respect to the weak∗ convergence of
measures to the anisotropic perimeter

P(μ) :=

⎧⎪⎪⎨
⎪⎪⎩

∫
∂∗S

ϕ(νS) dH1 if μ = 2√
3
χS for some set S of finite perimeter

and such that L2(S) := √
3/2,

∞ otherwise

(22)

where ∂∗S is the reduced boundary of S, νS is the outward-pointing normal vector to
S, L2(S) is the two-dimensional Lebesgue measure of S, H1 is the one-dimensional
measure, and the anisotropic density ϕ is defined by

ϕ(ν) := 2

(
ν2 − ν1√

3

)

for every ν = (ν1, ν2) with ν1 = − sin α and ν2 = cosα for α ∈ [0, π/6].
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Let us note here that the 
-convergence result provided in Au Yeung et al. (2012)
can be restated as a 
-convergence result for the edge perimeter. In fact, since the
energy functional En is such that

En(μCn ) = E(Cn) (23)

for every Cn ∈ Cn , by (10) we have that the functional Tn := En(μ) + 6n is such that

Tn(μCn ) = |�(Cn)|

and n−1/2Tn 
-converges with respect to the weak∗ convergence of measures to the
anisotropic perimeter P(μ).

Besides the completely independent method, the main achievement of this paper
with respect to Au Yeung et al. (2012), Schmidt (2013) is that of sharply estimating
the constant Kt in formulas (15), (16), and (17). The deviation of the minimizers from
the Wulff shape of order n3/4 was exhibited in Schmidt (2013) and referred to as the
n3/4-law. Here we sharpen the result from Schmidt (2013) by determining the optimal
constant in estimates (15), (16), and (17). We have the following.

Theorem 1.4 (Sharpness of the estimates) A sequence of minimizers Mni satisfying
(15)– (17) with equalities can be explicitly constructed for ni := 2 + 3i + 3i2 with
i ∈ N.

The proof of Theorem 1.4 is based on the estimate:

|Mn \ HrMn
| ≤ Knn

3/4 + o(n3/4) (24)

which holds true for the explicitly determined constant Kn introduced in (73). Estimate
(24) is a consequence of the lower bound for the radius rMn established in the proof
of Theorem 1.2, see (69). In fact, a sequence of minimizers M̄n satisfying (24) with
equality can be explicitly constructed. Note that such configurations M̄n are singled
out among configurations that present extra elements outside their maximal hexagon
HM̄n

in correspondence of only two consecutive faces of HM̄n
(see Fig. 6). Therefore,

to establish Theorem 1.4 is enough to show that

lim sup
n→∞

Kn = Kt

and to exhibit a subsequence ni that realizes the limit.
Finally, we notice that our method appears to be implementable in other settings

possibly including three-body interactions. This is done for the crystallization problem
in the hexagonal lattice Lh in a companion paper (Davoli et al. 2016). Furthermore,
we observe that analogous results to Theorem 1.2 were obtained in the context of the
crystallization problem in the square lattice in Mainini et al. (2014a, b) with a substan-
tially different method (even though also based on an isoperimetric characterization
of the minimizers) resulting only in suboptimal estimates.
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The paper is organized as follows. In Sect. 2, we introduce the notions of area A
and perimeter P of configurations Cn ∈ Cn , we define the order τ in Lt , and we
introduce the notion of weight ωCn . Furthermore, in Sect. 2.1 we provide the proof of
Theorem 1.1. In Sect. 3, we introduce the notion ofmaximal hexagons HrMn

associated
to minimizers Mn of (2) and we carefully estimate rMn from below in terms of n. In
Sect. 4, we use the latter lower bound in order to study the convergence to the Wulff
shape by providing the proof ofTheorems1.2 and 1.4 in Sects. 4.1 and 4.2, respectively.

2 Isoperimetric Inequality

In this section, we introduce the notion of area and perimeter of a configuration in
Cn and we deduce various relations between its area, perimeter, energy and its edge
boundary including a isoperimetric inequality.

We define the area A of a configuration Cn ∈ Cn by

A(Cn) := |T (Cn)| (25)

where T (Cn) is the family of ordered triples of elements in Cn forming triangles with
unitary edges, i.e.,

T (Cn) :={(xi1 , xi2 , xi3) : xi1 , xi2 , xi3 ∈Cn, i1< i2< i3, and |xi j −xik |=1 for j �=k}.

The definition of A(Cn) is invariant with respect to any relabeling of the particles of
Cn .

In order to introduce the perimeter of a configuration in Cn let us denote by F(Cn) ⊂
R
2 the closure of the union of the regions enclosed by the triangles with vertices in

T (Cn), and by G(Cn) ⊂ R
2 the union of all bonds which are not included in F(Cn).

The perimeter P of a regular configuration Cn ∈ Cn is defined as

P(Cn) := H1(∂F(Cn)) + 2H1(G(Cn)) , (26)

where H1 is the one-dimensional Hausdorff measure. Note in particular that

P(Cn) = lim
ε↘0

H1
(
∂
(
∂F(Cn) ∪ G(Cn) + Bε

))

where Bε = {y ∈ R
2 : |y| ≤ ε}.

Since every triangle with vertices in T (Cn) contributes with 3 bonds to B(Cn), by
(7) and (25) we have that

3A(Cn) = 2 |B(Cn ∩ F(Cn))| − |B(Cn ∩ ∂F(Cn))|
= −2 E(Cn ∩ F(Cn)) − H1(∂F(Cn)). (27)

Thus, by recalling (26) and (27) the equality

H1(G(Cn)) = |B(Cn ∩ G(Cn))| = −E(Cn ∩ G(Cn))
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yields

P(Cn) = −2E(Cn ∩ F(Cn)) − 3A(Cn) − 2E(Cn ∩ G(Cn))

= −2E(Cn) − 3A(Cn),

and we conclude that

E(Cn) = −3

2
A(Cn) − 1

2
P(Cn). (28)

Notice that (28) allows to express the energy of a configuration Cn as a linear com-
binations of its area and its perimeter, and that by (10) an analogous relation can be
deduced for the edge boundary, namely

|�(Cn)| = 6n − 3A(Cn) − P(Cn). (29)

As already discussed in the introduction, in view of (10) we are able to combine the
exact quantification of the ground-state energy E established in Heitmann and Radin
(1980), Radin (1981) with the nested-solution property provided by Harper (2004),
Theorem 7.2. We record this fact in the following result that we state here without
proof.

Proposition 2.1 There exists a total order τ : N → Lt such that for all n ∈ N the
configuration Dn defined by Dn := {xτ(1), . . . , xτ(n)} which we refer to as daisy with
n points is a solution of (2), i.e.,

|�(Dn)| = min
Cn∈Lt

|�(Cn)| = θn, (30)

where θn is given by (12).

We remark that the sequence of daisy ground states {Dn} satisfies the property that

Dn+1 = Dn ∪ {xτ(n+1)}.

In particular, within the class of daisy configurations one can pass from a ground state
to another by properly adding atoms at the right place, determined by the order τ .

The total order provided by Theorem 2.1 is not unique. We will consider here the
total order τ on Lt defined by moving clockwise on concentric daisies centered at a
fixed point, as the radius of the daisies increases. To be precise, let xτ(1) be the origin
(0, 0) and let xτ(2) be a point in Lt such that there is an active bond between xτ(2)
and xτ(1). For i = 3, . . . , 7, we define the points xτ(i) ∈ Lt as the vertices of the
hexagon Hk with center xτ(1) and radius 1, numbered clockwise starting from xτ(2).
We then consider the regular hexagons Hk that are centered at xτ(1), and have radius
k and one side parallel to the vector xτ(2) − xτ(1), and proceed by induction on the
radius k ∈ N. To this aim, notice that the number of points of Lt contained in Hk

is nk := 1 + 3k + 3k2. Assume that all the points xτ(i), with i ≤ nk , have been
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Fig. 1 The total order τ is
defined by considering the
concentric hexagons centered in
xτ(1) with increasing radii, and
by ordering the points clockwise
within each hexagon

xτ(1)

xτ(2) xτ(3)

xτ(4)

xτ(5)xτ(6)

xτ(7)

xτ(8)

xτ(9) xτ(10) xτ(11)

xτ(12)

identified. We define xτ(1+nk ) as the point p ∈ Lt ∩ �k such that |p − xτ(nk )| = 1 and
p �= xτ(nk−1), where �k denotes the line parallel to the vector xτ(2)−xτ(1), and passing
through the point xτ(nk ). For i ∈ (nk + 1, nk+1], we then define xτ(i) by clockwise
numbering the points of Lt on the boundary of Hk (see Fig. 1).

We will write x <τ y referring to the total order τ described above. A weight
function ω is defined on Lt by the following

ω(x) := |{y ∈ Lt : |x − y| = 1 and y <τ x}|,

for every x ∈ Lt . We observe that ω assumes value 0 at the point xτ(1), value 1 at
xτ(2) (that is a point bonded to xτ(1)), and values 2 or 3 at all the other points in Lt

(see Fig. 2). Furthermore, we have that

E(Dn) = −
n∑

i=1

ω(xτ(i)) for every n ∈ N. (31)

and that Lt = {xτ(1), xτ(2)} ∪ �2 ∪ �3 with

�2 := {x ∈ Lt : ω(x) = 2} and �3 := {x ∈ Lt : ω(x) = 3}.

Moreover, for every configuration Cn we introduce a weight function ωCn defined
by

ωCn (x) := |{y ∈ Cn : |x − y| = 1 and y <τ x}|, (32)

for every x ∈ Cn (and thus depending on Cn). In this way Cn can be rewritten as the
union

Cn =
3⋃

k=0

Ck
n
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Fig. 2 The first elements of Lt
with respect to the order τ are
shown with their weight
assigned by the value of the
function ω appearing below
them

xτ(1)

xτ(2) xτ(3)

xτ(4)

xτ(5)xτ(6)

xτ(7)

xτ(8)

xτ(9) xτ(10) xτ(11)

xτ(12)

0

1 2

2

22

3

2

2 3 2

3

where

Ck
n := {x ∈ Cn : ωCn (x) = k} (33)

for k = 0, . . . , 3. We notice that ωCn (x) ≤ ω(x) for every x ∈ Cn and that |C0
n | is the

number of connected components of Cn .
In order to prove the isoperimetric inequality (13), we first express the energy, the

perimeter, the edge perimeter, and the area of a regular configuration Cn as a function
of the cardinality of the sets Ck

n .

Proposition 2.2 Let Cn be a regular configuration in Lt . Then

E(Cn) = −|C1
n | − 2|C2

n | − 3|C3
n |, (34)

A(Cn) = |C2
n | + 2|C3

n |, (35)

P(Cn) = 2|C1
n | + |C2

n |, (36)

|�(Cn)| = 6|C0
n | + 4|C1

n | + 2|C2
n |, (37)

for every n ∈ N.

Proof Fix n ∈ N, and let Cn be a regular configuration in Lt . In analogy to (31) there
holds

E(Cn) = −
n∑

i=1

ωCn (xi ).

For i = 0, . . . , n − 1, denote by Ci the subset of Cn containing the first i points of
Cn , according to the total order τ . If xτ(i) ∈ C0

n , then

A(Ci ) − A(Ci−1) = 0, P(Ci ) − P(Ci−1) = 0 and |�(Ci )| − |�(Ci−1)| = 6;
(38)
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if xτ(i) ∈ C1
n , then

A(Ci ) − A(Ci−1) = 0, P(Ci ) − P(Ci−1) = 2 and |�(Ci )| − |�(Ci−1)| = 4;
(39)

if xτ(i) ∈ C2
n , then

A(Ci ) − A(Ci−1) = 1, P(Ci ) − P(Ci−1) = 1 and |�(Ci )| − |�(Ci−1)| = 2;
(40)

whereas, if xτ(i) ∈ C3
n , we have

A(Ci ) − A(Ci−1) = 2, P(Ci ) − P(Ci−1) = 0 and |�(Ci )| − |�(Ci−1)| = 0.

(41)

In view of (38)–(41), we obtain (34)–(37). ��
Wenotice that from (34),(35), and (36) we also recover (28), which in turn, together

with (37), yields

E(Cn) = −3

2
A(Cn) − 1

4
|�(Cn)| + 3

2
|C0

n | (42)

for every configuration Cn . Moreover, from the equality

3∑
i=0

|Ci
n| = n,

(35), and (36) it follows that

A(Cn) = 2n − 2|C0
n | − P(Cn). (43)

Note that in particular ifCn = Dn thenωCn (x) = ω(x). Furthermore, D0
n = {xτ(1)},

D1
n = {xτ(2)}, D2

n = �2 ∩ Dn , and D3
n = �3 ∩ Dn . Therefore, (34)–(42) yield

E(Dn) = −1 − 2|�2 ∩ Dn| − 3|�3 ∩ Dn|, (44)

A(Dn) = |�2 ∩ Dn| + 2|�3 ∩ Dn|, (45)

P(Dn) = 2 + |�2 ∩ Dn|, (46)

|�(Dn)| = 10 + 2|�2 ∩ Dn|, (47)

and by (42) and (43) we obtain

E(Dn) = −3

2
A(Dn) − 1

4
|�(Dn)| + 3

2
,
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and

A(Dn) = 2n − 2 − P(Dn)

for every n > 1.

Proposition 2.3 The following assertions are equivalent and hold true for every con-
nected configuration Cn:

(i) |�(Dn)| ≤ |�(Cn)|;
(ii) P(Dn) ≤ P(Cn);
(ii) A(Dn) ≥ A(Cn).

Proof The first assertion follows directly from (30) and is equivalent to the second by
(36) and (37). The second assertion is equivalent to the third by (29) and (30). ��

2.1 Proof of Theorem 1.1

In this subsection, we prove Theorem 1.1 by characterizing the minimizers of EIP as
the solutions of a discrete isoperimetric problem. We proceed in two steps.
Step 1 We claim that √

A(Dn) = kn P(Dn). (48)

Indeed, by (11), (12), (30), (44), there holds

θn

2
− 3n = en = E(Dn) = −1 − 2|�2 ∩ Dn| − 3|�3 ∩ Dn|. (49)

Equalities (12) and (47) yield

θn = |�(Dn)| = 10 + 2|�2 ∩ Dn|. (50)

Theorefore, by (49) and (50), we have

|�2 ∩ Dn| = θn

2
− 5, (51)

and

|�3 ∩ Dn| = −θn

2
+ n + 3. (52)

Claim (48) follows now by (45), (46), (51) and (52), and by observing that

√
A(Dn) = √|�2 ∩ Dn| + 2|�3 ∩ Dn| = √

θn/2 − 5 + 2(−θn/2 + n + 3)

= √−θn/2 + 2n + 1 = kn(θn/2 − 3) = kn(|�2 ∩ Dn| + 2) = kn P(Dn).
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Inequality (13) is a direct consequence of (48) and Proposition 2.3. By Propo-
sition 2.3 we also deduce that the maximal area and the minimal perimeter among
connected configurations are realized by A(Dn) = −θn/2 + 2n + 1 and P(Dn) =
θn/2 − 3, respectively.
Step 2We prove the characterization statement of Theorem 1.1. LetCn be a connected
configuration satisfying

√
A(Cn) = kn P(Cn). (53)

We claim that Cn is a minimizer. In fact, the claim follows from

|�(Dn)| ≤ |�(Cn)| = 6n − 3A(Cn) − P(Cn)

= 6n − 3(kn)
2(P(Cn))

2 − P(Cn)

≤ 6n − 3(kn)
2(P(Dn))

2 − P(Dn)

= 6n − 3A(Dn) − P(Dn) = |�(Dn)|

where we used (30) in the first inequality, (29) in the first and last equality, (28) in the
second, (53) in the third, Proposition 2.3 in the second inequality, and (48) in the third
equality.

Viceversa, let Mn be a connected minimizer. By (10), (36), and (37), P(Mn) =
P(Dn); by (28), A(Mn) = A(Dn). Thus (13) holds with the equality by (48). This
concludes the proof of the theorem.

3 Maximal Hexagons Associated to EIP Minimizers

In this section, we introduce the notion of maximal hexagons HrMn
associated to

minimizers Mn and we provide a uniform lower estimate of rMn in terms of n [see
(69)].

Fix a minimizer Mn . Let HMn
s be the family of the configurations contained in

Mn that can be seen as translations in Lt of daisy configurations D1+3s+3s2 for some
s ∈ N ∪ {0}, i.e.,

HMn
s := {Hs ⊂ Lt : Hs := D1+3s+3s2 + q for some q ∈ Lt and Hs ⊂ Mn}, (54)

and choose HrMn
to be a configuration inHMn

rMn
where

rMn := max{s ∈ N ∪ {0} : HMn
s �= ∅}. (55)

We will refer to HrMn
as the maximal hexagon associated to Mn . Notice that the

number of atoms of Mn contained in HrMn
is

n(rMn ) := 1 + 3 rMn + 3
(
rMn

)2
. (56)
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Fig. 3 A minimizer Mn is
represented by the set of dots
and its maximal hexagon HrMn
is given by the intersection of
Mn with the regular hexagon
ĤrMn

which is drawn in dark
color (blue) (Color figure online)

ĤrMn

In the following, we will often denote the minimal regular hexagon containing HrMn

by ĤrMn
(see Fig. 3), i.e.,

ĤrMn
:= F(HrMn

)

Following the notation introduced in Sect. 2 in (33), we decompose Mn as

Mn =
3⋃

k=0

Mk
n .

In the following proposition, we observe that if n > 6, then there exists a non-
degenerate maximal hexagon for every minimizer.

Proposition 3.1 For n ≤ 6, then the maximal hexagon HrMn
is degenerate for every

minimizer Mn of (2). If n > 6, then the maximal radius rMn of every minimizer Mn of
(2) satisfies rMn ≥ 1.

Proof It is immediate to check that for n = 1, |M1
n | = 0, and for n = 2 or n = 3,

|M1
n | = 1. A direct analysis of the cases in which n = 4, 5, 6, shows that 2 ≥ |M1

n | ≥
1. It is also straightforward to observe that for n = 0, . . . , 6, there holds r = 0.

We claim that for n ≥ 7 the radius rMn satisfies rMn ≥ 1. Indeed, assume that Mn

is such that rMn = 0. Then Mn does not contain any hexagon with radius 1 and hence,
for every x ∈ Mn we have that

b(x) ≤ 5. (57)

Property (57) is equivalent to claiming that every element of Mn contributes to the
overall perimeter of Mn , and the contribution of each element is at least 1. Therefore,

P(Mn) ≥ n.
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By Theorem 1.1, it follows that

θn

2
− 3 ≥ n, (58)

which in turn by (12) implies

√
12n − 3 − 2 ≥ 
√12n − 3� − 3 ≥ n,

that is

n2 − 8n + 7 ≤ 0,

which finally yields 1 ≤ n ≤ 7. To conclude, it is enough to notice that for n = 7,
θn/2 − 3 = 6, thus contradicting (58). ��

In view of Proposition 3.1 for every minimizer Mn with n > 6, we can fix a vertex
V0 of its (non-degenerate) hexagon ĤrMn

and denote by V1, . . . , V5 the other vertices

of ĤrMn
numbered counterclockwise starting from V0. For k = 0, . . . , 4, let us also

denote by sk the line passing through the side of ĤrMn
with endpoints Vk and Vk+1,

and let s5 be the line passing through V5 and V0.
In the followingwewill need to consider the number of levels of atoms inLt around

HrMn
containing at least one element of Mn . Denote by ek the outer unit normal to the

side sk of ĤrMn
and define

λk := max{ j ∈ N : s jk ∩ Mn �= ∅} (59)

where s jk are the lines of the latticeLt parallel to sk and not intersecting HrMn
, namely

s jk := sk +
√
3

2
jek

for j ∈ Z. Let also πk be the open half-plane with boundary sk and not intersecting
the interior of ĤrMn

.
We first show that Mn satisfies a connectedness property with respect to the

directions determined by the lattice Lt . To this purpose, we introduce the notion
of 3-convexity with respect to Lt .

Definition 3.2 We recall that

t1 := (1, 0) , t2 :=
(
1

2
,

1

2
√
3

)
, and define t3 := t2 − t1.

We say that a set S ⊂ Lt is 3-convex if for every p, q ∈ S such that q := m t i + p
for some m ∈ N and i ∈ {1, 2, 3} one has that q ′ := m′ t i + p ∈ S for every integer
m′ ∈ (0,m). Furthermore, we refer to the lines
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�
p
i := {q ∈ R

2 : q = r t i + p for some r ∈ R}

as the lines of the lattice Lt at p.

Note that by Definition 3.2 a set S is 3-convex if there is no line �
p
i of the lattice Lt at

a point p ∈ Lt \ S that is separated by p in two half-lines both containing points of
the set S.

Proposition 3.3 Let Mn be a minimizer. Then Mn is 3-convex.

Proof For the sake of contradiction assume that the minimizer Mn is a not 3-convex.
Then there exist a point p ∈ Lt \ Mn and i ∈ {1, 2, 3} such that the line �

p
i (see

Definition 3.2) is divided by p in two half-lines both containing points of Mn . We
claim that we can rearrange the n points of Mn in a new 3-convex configuration M̃n

such that |�(M̃n)| < |�(Mn)| thus contradicting optimality.
Denote for simplicity �0 := �

p
i and let �1, . . . , �m be all the other lines parallel to �0

that intersect Mn . Furthermore, let ck = |Mn ∩�k | for k = 1, . . . ,m. Starting from the
elements of the sequence {ck}, we rearrange them in a decreasing order, constructing
another set {dk} with the property that d0 ≥ d1 ≥ · · · ≥ dm . Finally, we separate the
elements of {dk} having odd indexes from those having even indexes and we rearrange
them in a new set { fk} obtained by first considering the elements of {dk} with even
indexes, in decreasing order with respect to their indexes, and then the elements of {dk}
having odd indexes, with increasing order with respect to their indexes. The set { fk}
constructed as above has the property that the two central elements have the maximal
value, and the values of the elements decrease in an alternated way by moving toward
the sides of the ordered set. Let k̄ be the index corresponding to the central element
of the set { fk}, if m is even, and to the maximum between the two central elements of
{ fk}, if m is odd.

As an example, if we start with a set {ck} = {9, 4, 2, 5, 3, 1, 17}, the sequence {dk}
is given by {17, 9, 5, 4, 3, 2, 1} and the sequence { fk} by {1, 3, 5, 17, 9, 4, 2}. Here
k̄ = 4.

Fix a point Pk̄ ∈ Lt and an angular sector S of amplitude 2π/3, with vertex in Pk̄ ,
whose sides σ1 and σ2 lay on the two lines departing from Pk̄ which are not parallel
to �0. Consider the points P0, . . . , Pk̄−1 ∈ σ1 ∩ Mn , such that

|Pk − Pk̄ | = k̄ − k for k = 0, . . . k̄ − 1.

Analogously, consider the points Pk̄+1, . . . , Pm ∈ σ2 ∩ Mn , satisfying

|Pk − Pk̄ | = k − k̄ for k = k̄ + 1, . . . ,m.

For k = 0, . . . ,m, let �̃k be the line parallel to �0 and passing through Pk . To construct
the set M̃n , we consider fk consecutive points on each line �̃k , starting from Pk .We note
that |M̃n| = |Mn| = n, the number of bonds in each line parallel to �0 has increased.
On the other hand, the number of bonds between different lines has not decreased.
Indeed, given two parallel lines with a and b points, respectively, the maximal number
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of bonds between these two lines is either 2a if a < b, or 2a − 1 if a = b. This
maximal value is achieved by construction by the modified configuration. Hence,

|�(M̃n)| < |�(Mn)|,

providing a contradiction to the optimality of Mn . ��
Since every minimizer Mn is 3-convex, the quantity λk introduced in (59) for

k = 0, . . . , 5 provides the number of non-empty levels of atoms in Mn ∩πk for n > 6.
In fact, by the definition of τ each partially full level contains at least one point in
(M1

n ∪ M2
n ) \ HrMn

. Hence,

5∑
k=0

λk ≤ |M1
n \ HrMn

| + |M2
n \ HrMn

|. (60)

On the other hand,

2|M1
n \ HrMn

| + |M2
n \ HrMn

| = P(Mn) − P(HrMn
) = pn − 6 rMn . (61)

Therefore, by (60) and (61),

5∑
k=0

λk ≤ pn − 6 rMn . (62)

In the remaining part of this section, we provide a characterization of the geometry
of Mn \ HrMn

for n > 6, by subdividing this set into good polygons Pk and bad
polygons Tk , and by showing that the cardinality of Mn \ HrMn

is, roughly speaking,
of the same order of magnitude as the one of the union of good polygons.

Given a minimizer Mn and its maximal hexagon HrMn
, we denote by HrMn+1 the

hexagon with side rMn + 1 and having the same center as HrMn
. In the following, we

denote the hexagon containing HrMn+1 by

ĤrMn+1 := F(HrMn+1).

We first show that, by the optimality of HrMn
, there exists an angular sector of 2π/3,

and centered in one of the vertices of ĤrMn+1, which does not intersect Mn . To this

end, we denote by V ′
i , i = 0, . . . , 5 the vertices of the hexagon ĤrMn+1, with the

convention that V ′
i lies on the half-line starting from the center of HrMn

and passing
through Vi .

Lemma 3.4 Let Mn be a minimizer with rMn > 0. Then

(i) The hexagon ĤrMn+1 presents at least a vertex, say V ′
j with j ∈ {0, . . . , 5}, that

does not belong to Mn.
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(ii) There exists k ∈ {0, . . . , 5} such that the open angular sector Sk of amplitude
2π/3, centered in V ′

k , and with sides s1k and s1k−1 (with the convention that

s1−1 := s15 ) is such that Sk ∩ Mn = ∅.
(iii) Every translation Ĥ of ĤrMn+1 by a vector t := n t1+m t2 with n,m ∈ Z that has

a vertex v /∈ Mn admits a vertex w /∈ Mn (possibly different from v) and an open
angular sector S of amplitude 2π/3 and centered in w such that S ∩ Mn = ∅.

Proof We begin by showing assertion (i). In view of the maximality of HrMn
there

exists a point p ∈ Lt on the boundary of ĤrMn+1 such that p /∈ Mn . Either p is already

a vertex of ĤrMn+1 or p is an internal point on the side of ĤrMn+1 parallel to s j for
some j . In this latter case, by the 3-convexity of Mn , either V ′

j or V
′
j+1 does not belong

to Mn and hence, also in this case assertion (i) holds true.
We now denote by V ′

j themissing vertex of the hexagon ĤrMn+1 and prove assertion

(i i). Let us consider the two half-lines in which V ′
j divides the line s1j . By the 3-

convexity of Mn , at least one of them does not intersect Mn . Analogously, if we
consider the two half-lines in which V ′

j divides the line s
1
j−1, by the 3-convexity of

Mn at least one of them does not intersectMn . Finally, if we consider the line s′ passing
through the center of HrMn

and V ′
j , the 3-convexity of Mn implies that the points of s′

whose distance from the center of HrMn
is bigger than rMn + 1 do not belong to Mn .

In view of the geometric position of such three half-lines departing from V ′
j , we can

conclude that the claim holds true by using once again the 3-convexity of Mn .
Let us conclude by observing that assertion (i i i) follows by a similar argument to

the one employed to prove assertion (i i). If the center of Ĥ is in Mn , then the same
argument works and we can chose w = v. If the center of Ĥ is not in Mn , then the
line passing through the missing vertex v and the center of Ĥ does not intersect Mn

outside Ĥ either for v or for the opposite vertex w with respect to the center of Ĥ . ��
In the following, we assume without loss of generality that the vertex V0 has been

chosen so that the index k in assertion (i i) of Lemma 3.4 is 0. Therefore, by assertion
(i i) of Lemma 3.4 we obtain that the open angular sector S0 of 2π/3, centered in V ′

0,
and with sides s10 and s15 is such that S0 ∩ Mn = ∅.

Let us use the definition of the levels λk for k = 0, . . . , 5 introduced in (59) to
define a region R̂ that contains all extra points of Mn , i.e., points of Mn not contained
in HrMn

. We already know that we can take R̂ ⊂ (R2 \ ĤrMn
) ∩ (R2 \ S0). We define

the region R̂ as follows (see Fig. 4):

R̂ :=
( 5⋃

j=0

P̂j

)⋃( 5⋃
j=1

T̂ j

)
(63)

The set P̂0 in (63) is the polygon delimited by the lines s5, s10 , s
λ0
0 , s−r+1

5 and the sets
P̂k in (63) is defined by

P̂k :=
{
P̂1
k (λk) if λk ≤ λk−1 + 1,

P̂1
k (λk − λk−1 + 1) ∪ P̂2

k (λk − λk−1 + 1) if λk > λk−1 + 1,
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Fig. 4 Representation of the
region R̂ given by the union of
the polygons P̂j with
j = 0, . . . , 5 drawn in the
lightest color (yellow) and the
polygons T̂ j with j = 1, . . . , 5
drawn in the middle color
(green). Note that this picture
has a mere illustrative purpose
(the configuration is not a EIP
minimizer) (Color figure online)

ĤrMn

P̂1
P̂0

P̂2 P̂5

P̂3 P̂4

T̂1

T̂2

T̂3

T̂4

T̂5

for every k = 1, . . . , 5, where for every a ∈ [−2 rMn , 2 rMn ] we denote by P̂1
k (a) the

polygon contained between s1k , s
a
k , sk+1, s

−r+1
k+1 , and by P̂2

k (a) the set delimited by sak ,

sλk
k , sλk−1−r+1

k−1 , sλk−1
k−1 . Finally the sets T̂k are the region between P̂k−1 and P̂k or, more

precisely,

T̂k :={x ∈ R : x ∈ s jk−1
k−1 ∩ s jkk , with 1 ≤ jk−1 ≤ λk−1, 1 ≤ jk ≤ λk, jk−1 ≥ jk

and, if λk−1 > λk−2 + 1, jk−1 ≤ jk + λk−1 − λk−2}. (64)

Note that T̂1 by definition (64) reduces to a segment contained in the line s
−rMn
2 such

that

|T1| = min{λ0, λ1}. (65)

Furthermore, we consider the configurations Pk := P̂k ∩ Lt for k = 0, . . . , 5,
Tk := T̂k ∩ Lt for k = 1, . . . , 5, and R := R̂ ∩ Lt . We notice that Mn ⊂ HrMn

∪ R
and that

n = |HrMn
| + |R| − |R \ Mn|,
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where |HrMn
| = 1 + 3 rMn + 3

(
rMn

)2, and
|R| =

5∑
k=0

|Pk | +
5∑

k=1

|Tk | = rMn

5∑
k=0

λk +
5∑

k=1

|Tk |

where in the last equality we used that |Pk | = rMnλk for k = 0, . . . , 5. Furthermore,
for every x ∈ R and every k = 0, . . . , 5 there exists jk ∈ [−λk′ − 2r, λk] with
k′ := (k + 3)mod 6 and k′ ∈ {0, . . . , 5} such that x ∈ s jkk . Hence, in particular, every
x ∈ R is uniquely determined by a pair of indexes ( jk, jk′), with k′ �= k + 3 in Z6.

Proposition 3.5 Let H be the family of the configurations that can be seen as trans-
lations in Lt of the daisy configuration D1+3s+3s2 for s := rMn + 1 and that are
contained in HrMn

∪ R, i.e.,

H := {H ⊂ HrMn
∪ R : H = D1+3s+3s2 + q for s := rMn + 1 and some q ∈ Lt }.

Then there holds

|R \ Mn| ≥ |H|.

Proof Let h := |H|. We show by induction on m = 1, . . . , h that for every family
Hm ⊂ H with |Hm | = m, there exists a set VHm ⊂ R \ Mn with |VHm | = m, such
that the correspondence that associates to each v ∈ VHm a hexagon H ∈ Hm if v is a
vertex of Ĥ := F(H), is a bijection.

We remark that the thesis will follow once we prove the assertion for m = h.
The claim holds for m = 1 by reasoning in the same way as in the first assertion of
Lemma 3.4. Assume now that the claim is satisfied for m = m̄. Consider a family
Hm̄+1 = {H1, . . . , Hm̄+1} ⊂ H, and the polygon

Pm̄+1 :=
m̄+1⋃
i=1

Hi ⊂ HrMn
∪ R.

Furthermore, let us define

P̂m̄+1 := F(Pm̄+1).

We subdivide the remaining part of the proof into 4 steps.

Step 1 There exists a vertex ṽ of P̂m̄+1 that is not in Mn . Indeed, if all vertices of P̂m̄+1
belong to Mn , by 3-convexityPm̄+1 ⊂ Mn , and hence Hm̄+1 ⊂ Pm̄+1 ⊂ Mn , which
would contradict the maximality of rMn .

Step 2 By assertion (i i i) of Lemma 3.4 there exists a vertex w of P̂m̄+1 not in Mn and
an open angular sector S centered in w, amplitude 2π/3, and sides σ1, σ2 ⊂ Lt such
that S̄ ∩ Mn = ∅.
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Step 3 There exists a vertex v of P̂m̄+1 that is not in Mn and that corresponds to an
interior angle of P̂m̄+1 of 2π/3. In fact, P̂m̄+1 can have vertices with angles of 2π/3,
4π/3, and 5π/3 only. If the vertex w detected in Step 2 corresponds to an angle of
2π/3, there is nothing to prove. If w corresponds to an angle of 4π/3 or 5π/3, then
we have two cases.

Case 1 The intersection between S and the closure of P̂m̄+1 is empty. Then, for
every j = 1, 2, there exists v j ∈ σ j such that the segment with endpoints w and
v j denoted by wv j is contained in ∂P̂m̄+1 and v j is a vertex of P̂m̄+1. Furthermore,
v j /∈ Mn because v j ∈ S, and v j is associated to an angle of 2π/3, since S∩P̄m̄+1 = ∅.
The proof follows by taking v = v1.

Case 2 The intersection between S and the closure of P̂m̄+1 is nonempty. Without
loss of generality, we can assume that the two sides of the angular sector S are given
by

σ1 =
{
(α, β) ∈ R

2 : β = α t1 + w, α > 0
}

and

σ2 =
{
(α, β) ∈ R

2 : β = −α t2 + w, α > 0
}
.

Define

σ k
1 := σ1 −

√
3

2
k (0, 1) and σ k

2 := σ2 + k t1,

for k ∈ N. Since Pm̄+1 ∩ S is bounded, we can find

k1 := max{k ∈ N : σ k
1 ∩ Pm̄+1 ∩ S �= ∅}

and

k2 := max{k ∈ N : σ k
2 ∩ Pm̄+1 ∩ S �= ∅}.

For j = 1, 2, the intersection σ
k j
j ∩∂P̂m̄+1 ∩ S is a segment with at least one endpoint

v ∈ S corresponding to a vertex of ∂P̂m̄+1 associated to an angle of 2π/3.

Step 4 Let v be the vertex provided by Step 3. Then, there exists a unique Ĥ j̄ ∈ Hm̄+1

having v among its vertices. By the induction hypothesis on {Ĥ1, . . . , Ĥm̄+1} \ {Ĥ j̄ }
there exists a family of vertices {v j } j=1,...,m̄+1, j �= j̄ ⊂ R \ Mn such that v j is a vertex

of Ĥ j and for every i �= j , v j is not a vertex of Ĥi . The thesis follows then by setting
v j̄ = v, and by taking VHm̄+1 = {v1, . . . , vm̄+1}. ��

In view of Proposition 3.5 in order to estimate from below the cardinality of R\Mn ,
it suffices to estimate the cardinality ofH. To this end, we denote in the following by
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Ûk the closure of the region in R2 containing HrMn
and delimited, respectively, by s3,

s4, and s5 for k = 2, s4, s5, and s0 for k = 3, s5, s0, and s1 for k = 4, and s0, s1, and
s2 for k = 5. Notice that Tk ⊂ Ûk (see Fig. 5).

Lemma 3.6 There holds

|H| ≥
5∑
j=2

|Tj | − λ1 − 2λ2 − 2λ3 − 2λ4 − λ5 + 4. (66)

Proof For notational simplicity we will omit in the rest of this proof the dependence
of the radius rMn on the minimizer Mn . We begin by noticing that

|H| ≥
5∑

k=2

|Hk | (67)

where

Hk := {H ∈ H : H ⊂ Ûk and has a vertex in Tk}

for k = 2, 3, 4, 5. We claim that

|Hk | ≥ |Tk | − λk − λk−1 + 1 (68)

and we observe that (66) directly follows from (67) and (68).
The rest of the proof is devoted to show (68). Let x ∈ Tk and consider

( jk, jk−1, jk−2) such that x ∈ s jkk ∩ s jk−1
k−1 ∩ s jk−2

k−2 . In the following, we identify x
with the triple of indexes ( jk, jk−1, jk−2), and we write x = ( jk, jk−1, jk−2). Let Hx

be the hexagon with vertices x ,

v1 := ( jk − (r + 1), jk−1, jk−2 + (r + 1)),

v2 := ( jk − 2(r + 1), jk−1 − (r + 1), jk−2 + (r + 1)),

v3 := ( jk − 2(r + 1), jk−1 − 2(r + 1), jk−2),

v4 := ( jk − (r + 1), jk−1 − 2(r + 1), jk−2 − (r + 1)),

v5 := ( jk, jk−1 − (r + 1), jk−2 − (r + 1))

(see Fig. 5 for an example of an hexagon Hx ∈ H2 with x ∈ T2).
Hx is contained in Ûk if for every j = 0, . . . , 5 there holds v j ∈ Ûk . This latter

condition is equivalent to checking that the following inequalities are satisfied

jk − 2(r + 1) ≥ −2r, jk ≤ λk,

jk−1 − 2(r + 1) ≥ −2r, jk−1 ≤ λk−1,

jk−2 − (r + 1) ≥ −2r, jk−2 + (r + 1) ≤ λk−2.
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Fig. 5 The region Û2 is shown
and the boundary ∂F(Hx ) of a
hexagon Hx ∈ H2 with vertex
x ∈ T2 is represented by a
continuous (red) line. Note that
this picture has a mere
illustrative purpose (the
configuration is not a EIP
minimizer) (Color figure online)

P1

ĤrMn

P̂1
P̂0

P̂2

T̂1

T̂2 ∂F (Hx)

Hence, if x = ( j j , jk−1, jk−2) ∈ Tk is such that

2 ≤ jk ≤ λk,

2 ≤ jk−1 ≤ λk−1,

− r + 1 ≤ jk−2 ≤ λk−2 − (r + 1),

then Hx ⊂ Ûk . By the definition of the sets Tk [see (64)], the previous properties
are fulfilled by every x ∈ Tk , apart from those points belonging to the portion of the
boundary of T̂k which is adjacent either to P̂k−1 or to P̂k . Denoting by T̃k this latter
set, claim (68) follows once we observe that

|T̃k | = |Tk | − λk − λk−1 + 1.

��
Moving from Proposition 3.5 and Lemma 3.6, we deduce the lower estimate on the
maximal radii rMn of the minimizers Mn of (2).

Proposition 3.7 Let Mn be a minimizer of (2) with maximal radius rMn . Then

rMn ≥ 
αn�
6

− 2 − 1

6

√

αn�2 − (αn)2 + 75 (69)

with

αn := √
12n − 3 . (70)

Proof For the sake of notational simplicity, we will omit in the rest of this proof the
dependence of the maximal radius rMn from Mn . By Proposition 3.5 and Lemma 3.6
we have
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|R \ Mn| ≥
5∑
j=2

|Tj | − λ1 − 2λ2 − 2λ3 − 2λ4 − λ5 + 4,

and so, by (62) and (65), we obtain

n = |HrMn
| + |R| − |R \ Mn|

≤ 1 + 3r2 + 3r+
5∑
j=0

|Pj |+
5∑
j=1

|Tj |−
5∑
j=2

|Tj |+λ1 + 2λ2 + 2λ3 + 2λ4 + λ5 − 4

≤ 1 + 3r2 + 3r + r
5∑
j=0

λ j + |T1| + λ1 + 2λ2 + 2λ3 + 2λ4 + λ5 − 4

≤ 1 + 3r2 + 3r + (r + 2)
5∑
j=0

λ j − 4

≤ 1 + 3r2 + 3r + (r + 2)(pn − 6r) − 4 = −3r2 + (pn − 9)r + 2pn .

Thus, the maximal radius satisfies the following inequality:

3r2 − (pn − 9)r + n − 2pn ≤ 0. (71)

Estimate (69) follows from (71) by solving (71) with respect to r and recalling that
pn = θn/2 − 3 by Theorem 1.1 and θn = 2
αn� by (12). ��

A direct consequence of (69) is the upper bound on the Hausdorff distance between
the sets Mn and HrMn

introduced in Corollary 1.3.

Proof of Corollary 1.3 Let Mn be a minimizer. We assume with no loss of generality
that n > 6 so that by Proposition 3.1 the maximal hexagon HrMn

is not degenerate.
Then

dH(Mn, HrMn
) ≤ max

i=0,...,5
λi .

Therefore, by (62) and (70) we obtain that

dH(Mn, HrMn
) ≤ pn − 6 rMn

≤ 9 +
√


αn�2 − (αn)2 + 75

=
√


αn�2 − (αn)2 + O(1)

≤ √
2
αn� + O(1) ≤ √

2
√√

12n − 3 + 1 + O(1)

≤ 2 · 31/4n1/4 + O(1)

where we used Proposition 3.7 in the second inequality. ��
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4 Convergence to the Wulff Shape

In this section, we use the lower bound (69) on the maximal radius rMn associated to
each minimizer Mn of (2) to study the convergence of minimizers to the hexagonal
asymptotic shape as the number n of points tends to infinity.

To this end, we recall from the introduction that W is the regular hexagon defined
as the convex hull of the vectors{

± 1√
3
t1, ± 1√

3
t2, ± 1√

3
t3

}
,

where ti are defined in Definition 3.2 for i = 1, 2, 3. Furthermore, in the following μ

will denote the measure

μ := 2√
3
χW ,

where χW is the characteristic function of W . We recall that by ‖ · ‖ we denote the
total variation norm and by ‖ · ‖F the flat norm defined by

‖μ‖F := sup

{∫
R2

ϕ dμ : ϕ is Lipschitz with ‖ϕ‖W 1,∞(R2) ≤ 1

}
(72)

for every μ ∈ Mb(R
2) (see Whitney 1957).

4.1 Proof of Theorem 1.2

In this subsection, we prove Theorem 1.2.
Step 1 We start by considering

Kn := 
αn�
6n3/4

√

αn�2 − (αn)2, (73)

where αn := √
12n − 3, see (70). In view of the definition of HrMn

, we observe that

|Mn \ HrMn
| = n − (1 + 3 (rMn )

2 + 3 rMn )

≤ n − 1 − 3

(
αn�
6

− 2 − 1

6

√

αn�2 − (αn)2 + 33

)2

− 3

(
αn�
6

− 2 − 1

6

√

αn�2 − (αn)2 + 33

)

= n − 
αn�2
12

+ 
αn�
6

√

αn�2 − (αn)2 + o(n3/4)

= 
αn�
6

√

αn�2 − (αn)2 + o(n3/4) (74)
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where we used Proposition 3.7 in the inequality. Therefore, by (73) and (74) we obtain
estimate (24), i.e.,

|Mn \ HrMn
| ≤ Knn

3/4 + o(n3/4).

Furthermore, since

∥∥∥μMn − μHrMn

∥∥∥ =
∣∣Mn�HrMn

∣∣
n

and HrMn
⊂ Mn , by (24) we also obtain that

∥∥∥μMn − μHrMn

∥∥∥ ≤ Knn
−1/4 + o(n−1/4). (75)

We now define

dn := 1 + 3 rMn + 3
(
rMn

)2
and consider the empirical measure μDdn

associated to the daisy Ddn . For every point
xi ∈ Ddn , we denote by Zi the Voronoi cell in Lt related to xi that is the regular
hexagon centered in xi with side 1/

√
3 and edges orthogonal to the three lattice

directions. Furthermore, let Zn
i := {x/√n : x ∈ Zi }. We observe that

∥∥∥ xi√
n

− x
∥∥∥
L∞(Zn

i )
≤ 1√

3n
, (76)

and

L2

(( dn⋃
i=1

Zn
i

)
�W

)
=

√
3

2
Knn

−1/4. (77)

For every ϕ ∈ W 1,∞(R2), we obtain that

∣∣∣ ∫
R2

ϕ dμDn −
∫
R2

ϕ dμ

∣∣∣ =
∣∣∣ 1
n

dn∑
i=1

ϕ
( xi√

n

)
− 2√

3

∫
W

ϕ dx
∣∣∣

= 2√
3

∣∣∣ dn∑
i=1

ϕ
( xi√

n

)
L2(Zn

i ) −
∫
W

ϕ dx
∣∣∣

≤ 2√
3

∣∣∣ dn∑
i=1

∫
Zn
i

(
ϕ
( xi√

n

)
− ϕ(x)

)
dx

∣∣∣+ 2√
3
‖ϕ‖L∞(R2)L2

⎛
⎝
⎛
⎝ dn⋃
i=1

Zn
i

⎞
⎠�W

⎞
⎠

≤ 2√
3
‖∇ϕ‖L∞(R2;R2)

dn∑
i=1

∫
Zn
i

∣∣∣ xi√
n

− x
∣∣∣ dx + 2√

3
‖ϕ‖L∞(R2)L2

⎛
⎝
⎛
⎝ dn⋃
i=1

Zn
i

⎞
⎠�W

⎞
⎠
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≤ 2

3
√
n

‖∇ϕ‖L∞(R2;R2)L2

⎛
⎝ dn⋃
i=1

Zn
i

⎞
⎠ + 2√

3
‖ϕ‖L∞(R2)L2

⎛
⎝
⎛
⎝ dn⋃
i=1

Zn
i

⎞
⎠�W

⎞
⎠

≤ 2

3
√
n

‖∇ϕ‖L∞(R2;R2)

L2(ĤrMn+1)

n
+ 2√

3
‖ϕ‖L∞(R2)L2

⎛
⎝
⎛
⎝ dn⋃
i=1

Zn
i

⎞
⎠�W

⎞
⎠

≤ ‖ϕ‖W 1,∞(R2)O(n−1/2) + ‖ϕ‖L∞(R2)Knn
−1/4, (78)

where we used (76) and (77) in the third and the last inequality, respectively.
By combining (75) with (78), we obtain that

μM ′
n

⇀∗ μ weakly* in Mb(R
2), (79)

and

∥∥μM ′
n
− μ

∥∥
F ≤ 2Knn

−1/4 + o(n−1/4), (80)

where M ′
n := Mn − qn , with qn ∈ Lt such that HrMn

= D1+3rMn+3r2Mn
+ qn .

Step 2Assertions (15)–(18) directly follow from (24), (75), and (80) since by (70) and
(73) a direct computation shows that

Kn = 
αn�
6n3/4

√

αn�2 − (αn)2

= 2

31/4

√⌈√
12n − 3

⌉
− √

12n − 3 + o(1)

= Kt

√⌈√
12n − 3

⌉
− √

12n − 3 + o(1) (81)

We notice here that Theorem 1.2 implies in particular the convergence (up to transla-
tions) of the empirical measures associated with the minimizers to the measure μ not
only with respect to the weak∗-converge of measures, but also with respect to the flat
norm [see (72)].

We remark that an alternative approach to the one adopted in Theorem 1.2 is that
of defining a unique n-configurational Wulff shape Wn for all the minimizer with n
atoms. For example, we could define

Wn := Ŵn ∩ Lt ,

where Ŵn is the hexagon with side pn/6 and center xτ(1). We remark that the O(n1/4)
estimate on the Hausdorff distance and the O(n3/4)-law still hold true by replacing
the maximal hexagon HrMn

with Wn .
More precisely, by Proposition 3.7 we have that

dH(Wn, HrMn
) ≤ 6

∣∣∣ pn
6

− r
∣∣∣ ≤

√

αn�2 − (αn)2 + O(1) (82)
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and that

|Wn \ HrMn
| ≤

∣∣∣3( ⌊ pn
6

⌋ )2 + 3
( ⌊ pn

6

⌋ )
− 3

(
rMn

)2 − 3 rMn

∣∣∣
= 3

( ⌊ pn
6

⌋
+ rMn + 1

)∣∣∣ ⌊ pn
6

⌋
− rMn

∣∣∣
≤ pn

6

√

αn�2 − (αn)2 + o(n3/4)

= 
αn�
6

√

αn�2 − (αn)2 + o(n3/4) (83)

for every minimizer Mn . Therefore, we obtain that

dH(M ′
n,Wn) ≤ O(n1/4)

by (20) and (82), and

∣∣M ′
n�Wn

∣∣ ≤ O(n3/4) (84)

by (24) and (84), with M ′
n := Mn − qn where qn ∈ Lt are chosen in such a way that

HrMn
= D1+3rMn+3r2Mn

+ qn .

Furthermore, from (84) it follows that

∥∥μM ′
n
− μWn

∥∥ =
∣∣M ′

n�Wn
∣∣

n
≤ O(n−1/4).

4.2 Proof of Theorem 1.4

In this subsection, we prove that the estimates (15)–(17) are sharp.
Step 1 In this step, we show that there exists a sequence of minimizers Mn such that,
denoting by Hr Mn

their maximal hexagons,

|Mn \ Hr Mn
| = Knn

3/4 + o(n3/4). (85)

We will explicitly construct the minimizers Mn . To this end, we denote by Ĥrn the
closure of the regular hexagon in R

2 with center in xτ(1) and side rn defined by

rn :=
⌈
αn�

6
− 1

6

√

αn�2 − (αn)2

⌉
,

and we introduce Hrn := Ĥrn ∩ Lt . Furthermore, we define

hn := pn
2

− 3rn
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Fig. 6 The form of a minimizer
Mn constructed in the proof of
Theorem 1.4 is shown. The
configuration Mn is contained in
the union of the hexagon Ĥrn
drawn in the darkest color (blue)
and the region Ân constructed
on two of its sides drawn in the
lightest color (yellow) (Color
figure online)

Ân

Ĥrn

hn

hn

rn

and we consider the region

Ân := {x + hn t2 : x ∈ Ĥrn } \ Ĥrn

that consists of two parallelograms of height hn constructed on two consecutive sides
of Hrn (see Fig. 6).

Let c := |(Ĥrn ∪ Ân) ∩ Lt |. We denote by Cc the configuration defined by

Cc :=
(
Ĥrn ∪ Ân

)
∩ Lt

and we observe that, by construction, the perimeter of Cc satisfies

P(Cc) = pn . (86)

We subdivide the remaining proof of the claim into two substeps.
Substep 1.1. We claim that for every n big enough there exists a minimizer Mn such
that

Hrn ⊆ Mn ⊆ Cc

and |Cc \ Mn| ≤ 2rn − 1.
We begin by observing that

c := |Cc| = |Hrn | + (2rn + 1)hn

= 1 + 3r2n + 3rn +
(
rn + 1

2

)
(pn − 6rn)

= −3r2n + pnrn + 1 + pn
2

. (87)

Then, a direct computation shows that

3s2 − pns − 1 − pn
2

≥ 0 (88)
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for every s ∈
[
αn�

6
− 3 − 1

6

√

αn�2 + 3,


αn�
6

− 3 + 1

6

√

αn�2 + 3

]
, and, for n

big enough,

3s2 + (2 − pn)s − 2 − pn
2

+ n ≥ 0 (89)

for every s ∈ R. In particular, (88) and (89) hold for s = rn and for n sufficiently
large, yielding

0 ≤ c − n ≤ 2rn − 1. (90)

We now observe that by the definition of Cc it is possible to remove up to 2rn − 1
points from Cc \ Hrn without changing the perimeter of the configuration. In view of
(90), we construct Mn by removing in such a way c − n points from Cc. It follows
from (86) that P(Mn) = pn and hence, the claim holds true.
Substep 1.2. Let Mn be the sequence of ground states constructed in the previous
substep. In view of (90), and of the definition of αn and pn , there holds

|Cn \ Hrn | = (2rn + 1)hn

= −6(rn)
2 − 3rn + pnrn + 1 + pn

2

= 
αn�
6

√

αn�2 − (αn)2 + o(n3/4). (91)

Moreover, by the definition of Mn we have that

|Cn \ Mn| ≤ 2rn − 1 = O(n1/2) = o(n3/4). (92)

The thesis follows from combining (91) and (92) since Hrn is by construction the
maximal hexagon of Mn .
Step 2 In this last step, we remark that

lim sup
n→+∞

Kn = Kt lim sup
n→+∞

√⌈√
12n − 3

⌉
− √

12n − 3 ≤ Kt ,

and that for those n j ∈ N of the form n j = 2 + 3 j + 3 j2 there holds

Kn j → 2

31/4
=: Kt (93)

as j → +∞.
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In fact, we have that

√
12n j − 3 =

√
12(1 + 3 j + 3 j2) + 9

= (6 j + 3)

√
1 + 12

(6 j + 3)2

= 6 j + 3 + 12

(6 j + 3)

[
1 +

√
1 + 12

(6 j + 3)2

] ,

which in turn yields

⌈√
12n j − 3

⌉
−√

12n j − 3 = 1 − 12

(6 j + 3)

[
1 +

√
1 + 12

(6 j + 3)2

] → 1

as j → +∞. ��
It is remarkable that the leading terms in the estimates (24), (75), and (80) estab-

lished in Step 1 of Theorem 1.2 are optimal for every n ∈ N as it follows from Step 1
of the proof of Theorem 1.4.

Finally, we notice that the bounded quantities Kn defined in (73) are 0 for every
n ∈ N that can be written as n = 1 + 3k + 3k2 for some k ∈ N. This reflects the fact
that for those n the daisy Dn is the unique minimizer, whose maximal hexagon HrDn
is the daisy itself. Therefore, Theorem 1.4 also entails that, by adding a point to every
EIP (2) with n = 1 + 3i + 3i2 for some i ∈ N, we pass not only from a problem
characterized by uniqueness of solutions to a problem with nonuniqueness, but also
from a situation of zero deviation of the minimizer from its maximal hexagon to the
situation in which minimizers include one that attains the maximal deviation.
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