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1 Introduction

Hamel’s formalism is a natural extension of Euler’s ideas of using nonmaterial velocity
in mechanics. Nonmaterial velocity carries information about system’s velocity, but is
not the rate of change of system’s configuration with respect to time. For a systemwith
finite number of degrees of freedom, nonmaterial velocity is a collection of velocity
components relative to a set of vector fields that span the fibers of the tangent bundle
of the configuration space. In the finite-dimensional setting, this development was
carried out by Hamel himself in Hamel (1904). Here we introduce Hamel’s formalism
for infinite-dimensional mechanical systems.

One of the reasons for using nonmaterial velocity is that the Euler–Lagrange equa-
tions are not always effective for analyzing the dynamics of a mechanical system of
interest. For example, it is difficult to study the motion of the Euler top if the Euler–
Lagrange equations are used to represent the dynamics. On the other hand, the use
of the angular velocity components relative to a body frame as pioneered by Euler
(1752) results in a much simpler representation of dynamics. In a similar fashion,
Euler (1757a, b, 1761) uses convective velocity to represent the dynamics of ideal
incompressible fluid. Euler’s approach was further developed by Lagrange (1788)
for reasonably general Lagrangians on the rotation group and by Poincaré (1901) for
arbitrary Lie groups (see Marsden and Ratiu 1999 for details and history).

The nonmaterial velocity used in Lagrange (1788) andPoincaré (1901) is associated
with a group action. Hamel (1904) obtained the equations of motion in terms of
nonmaterial velocity that is unrelated to a group action on the configuration space.
Hamel’s equations include both the Euler–Lagrange and Euler–Poincaré equations
(for the rigid body for example) as special cases.

As clearly seen from his paper, Hamel was particularly motivated by nonholonomic
mechanics. His formalism features the simplicity of an analytic representation of
constraints and the intrinsic absence of Lagrange multipliers in equations of motion.
It is exceptionally effective for studying (finite-dimensional) constrained systems and
understanding their dynamics, both analytically and numerically; see e.g., Bloch et al.
(2009), Ball and Zenkov (2015), Zenkov et al. (2012) and references therein.

As mentioned above, in finite dimensions nonmaterial velocity refers to velocity
components relative to a set of vector fields that span the fibers of the tangent bundle of
the configuration space. Alternatively, one interprets nonmaterial velocity as a result
of configuration-dependent velocity substitution. In the infinite-dimensional setting,
the former interpretation fails to work as generically bases fail to exist.

General properties of infinite-dimensional constrained systems are studied from the
field-theoretic viewpoint in e.g., Binz et al. (2002) andVankerschaver (2005, 2007a, b).
Infinite-dimensional nonholonomic mechanics, in relation to electromechanical sys-
tems, diffeomorphism groups, and optimal transport, has been utilized in Neimark
and Fufaev (1972) and Khesin and Lee (2009), respectively. At the moment, the gen-
eral theory of infinite-dimensional nonholonomic systems in the form of ordinary
differential equations on an infinite-dimensional configuration space does not exist.
As demonstrated by Ebin and Marsden (1970) (see also Ebin 2015), the use of the
infinite-dimensional formalism in combination with nonmaterial (spatial) velocity is
crucial for proving existence of solutions in fluid mechanics. Motivated by this and as
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a part of the development of Hamel’s formalism, we introduce the general theory of
infinite-dimensional nonholonomic systems.

Our paper develops the general formalism of Hamel’s equations in infinite-
dimensions with careful attention to the analytic setting in which the equations are
well defined. We also discuss mechanical examples, including a string, a constrained
string, and strings attached to rigid bodies. The differential equations describing these
systems are derived and analyzed.

Having in mind possible future applications to the dynamics of systems with non-
Banach configurationmanifolds (such as infinite-dimensional Lie groups), we develop
the formalism on convenient manifolds. These are (infinite-dimensional) manifolds
modeled on convenient spaces. A convenient space is a locally convex space with
‘tweaked’ topology. By definition, the c∞-topology on a locally convex space E is
the final topology with respect to all smooth curves γ : R → E , i.e., it is the finest
topology on E with respect to which the aforementioned curves are continuous. Recall
that smoothness is a bornological concept and is independent of the choice of topol-
ogy of a locally convex space. In general, the c∞-topology is finer than any locally
convex topology with the same collection of bounded sets. A locally convex vector
space is said to be c∞-complete or convenient if it is c∞-closed in any locally convex
space. For a Fréchet space, the c∞-topology coincides with the given locally convex
topology. In general, a convenient space is not a topological vector space.

A mapping between two convenient spaces is called smooth if it maps smooth
curves to smooth curves. The important property of the smooth mappings,

C∞(E × F, G) ∼= C∞(E, C∞(F, G)),

is known as the Cartesian closedness. We refer the reader to Kriegl andMichor (1997)
for details and proofs.

The use of such general spaces is natural in variational calculus and helps to clarify
various technical assumptions one needs to impose in the infinite-dimensional setting
with velocity constraints. Meanwhile, the complexity of proofs is unaffected by the
use of convenient analysis. Moreover, the results remain correct after a rollback to
‘simpler’ (e.g., Fréchet or Banach) manifolds.

Based on the earlier observations of the authors in the finite-dimensional setting and
recent publications on geometric continuum mechanics, we expect that the proposed
formalism will be useful in:

• Systematic derivation of simple representations of equations of motion in contin-
uum mechanics, which includes elimination of unnecessary Lagrange multipliers
from the equations of motion and singling out control directions when they are
inconsistent with configuration coordinates and/or do not commute.

• Multibody dynamics of systems with continuum components.
• Dynamics of contacting elastic rods (Gay-Balmaz and Putkaradze 2012, 2015),
molecular strands (Ellis et al. 2010), and certain non-Newtonian fluids (Gay-
Balmaz and Yoshimura 2015).

• Stability and qualitative analysis, including existence of conservation laws in con-
strained systems and Lyapunov function construction strategies for partial stability
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analysis, with applications to stability of rigid bodies with fins moving in a fluid,
fluid-filled bodies, and rolling elastic bodies.

• Development of structure-preserving integrators for constrained infinite-dimen-
sional systems.

The paper is organized as follows: In Sect. 2 we review the finite-dimensional Euler–
Lagrange, Euler–Poincaré, and Hamel equations. In Sect. 3, the infinite-dimensional
Hamel formalism is introduced. In Sects. 4 and 5, systems with constraints and sym-
metry are treated. In particular, systems with infinitely many constraints are studied,
which, in the presence of symmetry, requires a somewhat different approach than the
standard formalism for systems with symmetry. Numerous illustrative examples are
given.

2 Preliminaries

Lagrangian mechanics provides a systematic approach to deriving the equations of
motion as well as establishes the equivalence of force balance and variational princi-
ples.

2.1 The Euler–Lagrange Equations

A Lagrangian mechanical system is specified by a smooth manifold Q called the
configuration space and a function L : T Q → R called the Lagrangian. In many
cases, the Lagrangian is the kinetic minus potential energy of the system, with the
kinetic energy defined by aRiemannianmetric and the potential energy being a smooth
function on the configuration space Q. If necessary, nonconservative forces can be
introduced (e.g., gyroscopic forces that are represented by terms in L that are linear
in the velocity), but this is not discussed in detail in this paper.

In local coordinates q = (q1, . . . , qn) on the configuration space Q, we write
L = L(q, q̇). The dynamics is given by the Euler–Lagrange equations

d

dt

∂L

∂q̇i
= ∂L

∂qi
, i = 1, . . . , n.

These equations were originally derived by Lagrange (1788) by requiring that simple
force balance be covariant, i.e., expressible in arbitrary generalized coordinates. A
variational derivation of the Euler–Lagrange equations, namely Hamilton’s principle
(see Theorem 2.1 below), came later in the work of Hamilton (1834, 1835).

Let q(t), a ≤ t ≤ b, be a smooth curve in Q. A variation of the curve q(t) is a
smooth map β : [a, b]×[−ε, ε] → Q that satisfies the condition β(t, 0) = q(t). This
variation defines the vector field

δq(t) = ∂β(t, τ )

∂τ

∣
∣
∣
∣
τ=0

along the curve q(t).
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Theorem 2.1 The following statements are equivalent:

(i) The curve q(t), where a ≤ t ≤ b, is a critical point of the action functional

∫ b

a
L(q, q̇) dt

on the space of curves in Q connecting qa to qb on the interval [a, b], where we
choose variations of the curve q(t) that satisfy δq(a) = δq(b) = 0.

(ii) The curve q(t) satisfies the Euler–Lagrange equations.

We point out here that this principle assumes that a variation of the curve q(t) induces
the variation δq̇(t) of its velocity vector according to the formula

δq̇(t) := d

dt
δq(t).

For more details and a proof, see e.g., Bloch (2015) and Marsden and Ratiu (1999).

2.2 The Euler–Poincaré Equations

The classical Euler equations for freely rotating rigid body read

J �̇ = J� × �,

where � is the body angular velocity and J is the inertia tensor. First derived by Euler
(1752), these equations, as well as the Euler equation for an incompressible fluid flow,

∂v

∂t
+ ∇vv = −∇ p, div v = 0,

were generalized by Poincaré (1901, 1910) to any Lie algebra. These Euler–Poincaré
equations for a Lagrangian l(ξ) defined on a Lie algebra g are

d

dt

∂l

∂ξ
= ± ad∗

ξ

∂l

∂ξ
. (2.1)

These equations are variational, with variations satisfying certain constraints, as the
following theorem clarifies.

Theorem 2.2 Let g be a Lie algebra and l : g → R be a Lagrangian. The following
statements are equivalent:

(i) The variational principle

δ

∫ b

a
l(ξ(t)) dt = 0
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holds on g, using variations of the form

δξ = η̇ ± adξ η,

where η vanishes at the endpoints.
(ii) The Euler–Poincaré Eq. (2.1) hold.

See Bloch et al. (1996b), Cendra et al. (1988), Marsden (1992), Holm et al. (1998),
and Marsden and Ratiu (1999) for details, history, and proofs.

2.3 Lagrangian Mechanics in Non-Coordinate Frames

In many cases, the Lagrangian and the equations of motion have a simpler structure
when the velocity components are measured against a frame that is unrelated to the
system’s local configuration coordinates. An example of such a system is the rigid
body.

Let q = (q1, . . . , qn) be local coordinates on the configuration space Q and ui ∈
T Q, i = 1, . . . , n, be smooth independent local vector fields on Q defined in the same
coordinate neighborhood. In certain cases, some or all of the fields ui can be chosen
to be global vector fields on Q.

Let ξ = (ξ1, . . . , ξn) ∈ R
n be the components of the velocity vector q̇ ∈ T Q

relative to the frame u(q) = (u1(q), . . . , un(q)), i.e.,

q̇ = ξ i ui (q).

The Lagrangian of the system written in the local coordinates (q, ξ) on the velocity
phase space T Q reads

l(q, ξ) := L(q, ξ i ui (q)).

The coordinates (q, ξ) are Lagrangian analogue of noncanonical variables in Hamil-
tonian dynamics.

Define the structure functions ck
i j (q) by the equations

[ui (q), u j (q)] = ck
i j (q)uk(q),

i, j, k = 1, . . . , n. These quantities vanish if and only if the vector fields ui (q),
i = 1, . . . , n, commute.

Viewing ui as vector fields on T Q whose fiber components equal 0 (that is, taking
the vertical lift of the frame vector fields), one defines the directional derivatives ui [l]
for a function l : T Q → R in a usual way.

The evolution of the variables (q, ξ) is governed by the Hamel equations

d

dt

∂l

∂ξ j
= ck

i j
∂l

∂ξ k
ξ i + u j [l], (2.2)
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i, j, k = 1, . . . , n, coupled with equation q̇ = ξ i ui (q). These equations were intro-
duced in Hamel (1904) (see also Neimark and Fufaev 1972 and Bloch et al. 2009 for
details, history, and contemporary geometric exposition). If ui = ∂/∂qi , the Hamel
equations become the Euler–Lagrange equations.

2.4 Ideal Constraints

Assume now that there are velocity constraints imposed on the system.We confine our
attention to constraints that are linear and homogeneous in the velocity. Accordingly,
we consider a configuration space Q and a distribution D on Q that describes these
constraints. Recall that a distributionD is a collection of linear subspaces of the tangent
spaces of Q; we denote these subspaces by Dq ⊂ Tq Q, one for each q ∈ Q.

A curve q(t) ∈ Q is said to satisfy the constraints if q̇(t) ∈ Dq(t) for all t . This
distribution will, in general, be nonintegrable, i.e., the constraints will be, in general,
nonholonomic.1

As discussed in e.g., Suslov (1946) and Chetaev (1989), it is assumed in classical
mechanics that the constraints imposed on the system can be replacedwith the reaction
force. This means that after the force is imposed on the unconstrained system, the
constraint distribution D ⊂ T Q becomes a conditional invariant manifold of the
forced unconstrained Lagrangian system whose dynamics on this invariant manifold
is identical to that of the constrained system.

Definition 2.3 Constraints (either holonomic or nonholonomic) are called ideal if
their reaction force at each q ∈ Q belong to the null spaceD◦

q ⊂ T ∗
q Q ofDq ⊂ Tq Q.

As shown in Suslov (1946) and Chetaev (1989), the reaction force of ideal constraints
is defined uniquely at each state (q, q̇) ∈ T Q.

In summary, for a system subject to ideal constraints, the forced dynamics is equiva-
lent to the Lagrange–d’Alembert principle.We refer the reader to books Suslov (1946)
and Chetaev (1989) for a more detailed exposition and history of the concept of ideal
constraints.

Utilizing Hamel’s formalism and assuming the ideal velocity constraints read
ξm+1 = · · · = ξn = 0, the dynamics of the constrained system is given by (2.2)
for j = 1, . . . , m. The remaining n − m equations serve for computing the reaction
force and do not affect the dynamics of the system.

For the early development of these equations see Poincaré (1901) andHamel (1904).
We refer the readers toMarsden andRatiu (1999) andBloch et al. (2009) for the history
and development of variational principles for theEuler–Lagrange, Euler–Poincaré, and
Hamel equations, and to Ball et al. (2012) for the Hamilton–Pontryagin principle for
the Hamel equations.

1 Constraints are nonholonomic if and only if they cannot be rewritten as position constraints.
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(x, y)

θ

Fig. 1 The Chaplygin sleigh

2.5 The Chaplygin Sleigh

Here we describe the Chaplygin sleigh which is one of the simplest but nonetheless
instructive example of a nonholonomic mechanical system. The sleigh is essentially
a vertical blade moving on a horizontal plane, with no motion perpendicular to the
blade allowed. There is a single contact point of the blade and the plane, and the center
of mass of the blade coincides with this contact point. The sleigh is often thought of
as a balanced platform on the top of the blade. See Fig. 1 where the platform, the
blade, and the contact point are depicted as an oval, a bold segment, and a bold dot,
respectively.

Let θ be the angular orientation of the sleigh and (x, y) be the coordinates of the
contact point as shown in Fig. 1. The configuration space for the sleigh is the Euclidean
group SE(2) = SO(2)�R

2. We parametrize the elements of SE(2) as (θ, x, y). The
body frame is

∂

∂θ
, cos θ

∂

∂x
+ sin θ

∂

∂y
, − sin θ

∂

∂x
+ cos θ

∂

∂y
.

Using this frame,

θ̇ = ω, ẋ = v1 cos θ − v2 sin θ, ẏ = v1 sin θ + v2 cos θ, (2.3)

where ω is the angular velocity of the sleigh relative to the vertical line through the
contact point and where (v1, v2) are the components of the linear velocity of the
contact point in the directions along and orthogonal to the blade, respectively. Thus,
the constraint reads v2 = 0.

Having in mind infinite-dimensional generalizations of the Chaplygin sleigh, we
start using the complex configuration variable z = x + iy on the plane. Similarly, the
linear velocity relative to the body frame is written as v = v1 + iv2. Formulae (2.3)
become

θ̇ = ω, ż = eiθ v, (2.4)

whereas the constraint in this complex representation reads

v = v̄.
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Denote themass and themoment of inertia of the sleigh bym and J . The Lagrangian
is just the kinetic energy of the sleigh, which is the sum of the kinetic energies of the
linear and rotational modes of the sleigh. Therefore, the reduced Lagrangian of the
Chaplygin sleigh is

l = 1
2

(

Jω2 + mvv̄
)

.

The elements of the algebra se(2) = so(2)�C in the complex representation used
here are written as (iω, v), where iω ∈ so(2), ω ∈ R, and v ∈ C. The bracket
operation on the algebra se(2) reads

[(iω1, v1), (iω2, v2)] = (0, iω1v2 − iω2v1). (2.5)

Using (2.5), the constrained Hamel equations for the Chaplygin sleigh are computed
to be

ω̇ = 0, v̇ = 0. (2.6)

Recall that in (2.6) the quantity v is real-valued. The reduced dynamics of the Chap-
lygin sleigh is given by the constrained Hamel Eq. (2.6) along with the kinematic
Eq. (2.4).

Solving these equations gives

ω = const, v = const, θ = θ0 + ωt,

z =
⎧

⎨

⎩

z0 + eiθ0vt if ω = 0

z0 − iv

ω

(

ei(θ0+ωt) − eiθ0
)

if ω �= 0

and so generically the sleigh moves along a circle at a uniform rate.

3 Infinite-Dimensional Systems

Starting from this section, we no longer assume that systems have a finite number of
degrees of freedom. As the use of frames and bases in the infinite-dimensional setting
is unnatural, cumbersome, and not even always possible, we introduce a coordinate-
free approach to Hamel’s formalism. Thus, instead of frames, we use linear velocity
substitutions. These substitutions, however, are not induced by a (local) configuration
coordinate change.

3.1 Lagrangian Mechanics

Let M be an infinite-dimensional smooth manifold modeled on a convenient vector
space W and let T M be its kinematic tangent bundlewith the projectionπM : T M →
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M . Consider the initial inclusion map i : Q → M and the pullback vector bundle
P = i∗T M .2 The importance of the manifold Q will be demonstrated shortly.

A Lagrangian is a smooth function L : P → R. The dynamics for this Lagrangian
is defined in a usual way by Hamilton’s principle: The curve γ : [a, b] → Q is a
trajectory if

δ

∫ b

a
L dt = 0

along γ .
To demonstrate the necessity of the initial inclusion map in infinite-dimensional

mechanics, consider the wave equation

φt t = ∇2φ

on Rn . This is the Euler–Lagrange equation for the Lagrangian

L(φ, φ̇) = 1
2

〈

φ̇, φ̇
〉 − 1

2

〈∇φ,∇φ
〉

,

where 〈·, ·〉 is the standard Riemann metric on L2(Rn). This Lagrangian is defined on
the space P = H1 × L2 ⊂ L2 × L2 = T L2 and not on the entire T L2. Using our
notations, Q = H1 ⊂ L2 = M . See Marsden and Hughes (1983) for details.

3.2 Hamel’s Formalism and Hamilton’s Principle

Turning to Hamel’s formalism, let U be an open subset of M containing q ∈ Q and
let

U × W � (q, ξ) �→ (q, �qξ) ∈ π−1
M (U ) ⊂ T M (3.1)

be a fiber-preserving diffeomorphism that is linear in the second input. Hence, for
each q ∈ U , both �q : W → Tq M and �−1

q : Tq M → W are invertible bounded
linear operators smoothly dependent on q in an open subset i−1(U ) ⊂ Q. The latter
is verified by selecting the map (3.1) as a bundle chart on T M and using the Cartesian
closedness C∞(U × W, W ) ∼= C∞(U, C∞(W, W )) along with the fact that the space
of all bounded linear operators from a convenient vector space E to a convenient vector
space F is a closed linear subspace of C∞(E, F).3

Remark As pointed out in Marsden and Ratiu (1999), the space W and its dual are
chosen to be suitable, in the functional-analytic sense, to the problem in question.
As the Lagrangian fails to be defined, in general, on T M , it is necessary to consider

2 The map i satisfies the following property: A map f : N → Q is smooth if and only if i ◦ f : N → M
is smooth. Note that Q is usually not a submanifold of M . See Kriegl and Michor (1997) for details.
3 Here, U can be thought of as an open subset of a convenient space.
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various forms of equations of motion, such as weak and strong forms. In particular,
the weak form is important in understanding the existence of solutions as well as in
numerical methods. Further, the objects involvedmay not even be defined on the entire
T M but only on a dense subset already in the Banach case. See Marsden and Ratiu
(1999) for details and references.

For each q ∈ U and ξ ∈ W , the operator �q : W → Tq M introduced in (3.1)
outputs the vector �qξ ∈ Tq M .4 Thus, each ξ ∈ W defines the vector field

�ξ := ∪q∈U (q, �qξ)

on U , which usually will be written as

�ξ(q) := �qξ.

Given two vectors ξ, η ∈ W , define an antisymmetric bilinear operation [·, ·]q :
W × W → W by

�q [ξ, η]q = [�ξ,�η](q), (3.2)

where [·, ·] is the Jacobi–Lie bracket of two vector fields on the manifold M . Next,
for arbitrary ξ , η, ζ ∈ W , we have

�q
([[ξ, η]q , ζ ]q + [[η, ζ ]q , ξ ]q + [[ζ, ξ ]q , η]q

)

= [[�ξ,�η], �ζ ](q) + [[�η,�ζ ], �ξ ](q) + [[�ζ,�ξ ], �η](q) = 0,

implying, in view of invertibility of �q , the Jacobi identity for the bracket [·, ·]q .
Therefore, for each q ∈ U , the space W with the operation [·, ·]q is a Lie algebra,
denoted hereafter Wq .

The dual of [·, ·]q is, by definition, the operation [·, ·]∗q : Wq × W ∗
q → W ∗

q given
by

〈[ξ, α]∗q , η
〉

W := 〈

α, [ξ, η]q
〉

W , ξ, η ∈ W, α ∈ W ∗.

As in the finite-dimensional setting, let q̇ and δq denote the velocity and the virtual
displacement at q ∈ Q. From now on, the inverse images of q̇ and δq are written as
ξ, η ∈ W , that is, q̇ = �qξ and δq = �qη.

Interpreting ξ as an independent variable that replaces q̇ (locally) defines the
Lagrangian as a smooth function of (q, ξ) on V × W :

l(q, ξ) := L(q, �qξ),

where we used the smoothness of the mapping V × W � (q, ξ) �→ �qξ ∈ π−1
M (U ).

The equations of motion written when (q, ξ) are selected as (local) coordinates on the
velocity phase space are called the Hamel equations.

4 Each vector from Tq M can be represented this way.
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Recall that, given a smooth curve q(t) ∈ Q, t ∈ [a, b], its variation is a smooth
one-parameter family of curves

[a, b] × [−ε, ε] � (t, τ ) �→ β(t, τ ) ∈ Q, such that β(t, 0) = q(t).

An infinitesimal variation, also known as variation field δq, is defined by

δq(t, τ ) := ∂

∂τ
β(t, τ ).

When this field is evaluated along the curve q(t), we write δq(t), i.e.,

δq(t) := δq(t, 0) = ∂

∂τ

∣
∣
∣
∣
τ=0

β(t, τ ). (3.3)

Thus, a variation of a smooth curve q(t) ∈ Q defines a curve η(t) ∈ W

δq(t) = �q(t)η(t).

Theorem 3.1 (Hamilton’s Principe for Hamel’s Equations). Let L : P → R be a
Lagrangian and l be its representation in local coordinates (q, ξ). Then, the following
statements are equivalent:

(i) The curve q(t), where a ≤ t ≤ b, is a critical point of the action functional

∫ b

a
L(q, q̇) dt

on the space of curves in Q connecting qa to qb on the interval [a, b], where we
choose variations of the curve q(t) that satisfy δq(a) = δq(b) = 0.

(ii) The curve q(t) satisfies the weak form of the Euler–Lagrange equations

∫ b

a

〈
δL

δq
− d

dt

δL

δq̇
, δq

〉

dt = 0. (3.4)

Furthermore, if δL/δq ∈ T ∗
q M and i∗Tq Q is dense in Tq M for every q ∈ Q, the

curve q(t) satisfies the strong form of the Euler–Lagrange equations

d

dt

δL

δq̇
− δL

δq
= 0. (3.5)

(iii) The curve (q(t), ξ(t)) is a critical point of the functional

∫ b

a
l(q, ξ) dt (3.6)
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with respect to variations δξ , induced by the variations

δq = �qη,

and given by

δξ = η̇ + [ξ, η]q . (3.7)

(iv) The curve (q(t), ξ(t)) satisfies the weak form of the Hamel equations

∫ b

a

〈

�∗
q

δl

δq
+

[

ξ,
δl

δξ

]∗

q
− d

dt

δl

δξ
, η

〉

dt = 0, η ∈ �−1
q (Tq Q) (3.8)

coupled with the equations q̇ = �qξ. If δl/δq ∈ T ∗
q M and i∗Tq Q is dense in

Tq M for every q ∈ Q, the curve (q(t), ξ(t)) satisfies the strong form of the
Hamel equations

d

dt

δl

δξ
=

[

ξ,
δl

δξ

]∗

q
+ �∗

q
δl

δq
(3.9)

coupled with the equation q̇ = �qξ .

For the early development of these equations in the finite-dimensional setting see
Poincaré (1901) and Hamel (1904).

Proof The equivalence of (i) and the weak form of the Euler–Lagrange Eq. (3.4) is
proved by integration by parts:

δ

∫ b

a
L(q, q̇) dt =

∫ b

a

(〈
δL

δq
, δq

〉

+
〈
δL

δq̇
, δq̇

〉)

dt =
∫ b

a

〈
δL

δq
− d

dt

δL

δq̇
, δq

〉

dt,

where 〈·, ·〉 is the paring of T ∗
q Q with Tq Q. The strong form of the Euler–Lagrange

Eq. (3.5) follows easily from a standard contradiction argument,5 which finishes the
proof of the equivalence of (i) and (ii).

To prove the equivalence of (i) and (iii), we first compute the quantities δq̇ and
d(δq)/dt . Recall that

δq(t) = ∂

∂τ

∣
∣
∣
∣
τ=0

β(t, τ ) = �q(t)η(t), where η(t) ∈ W.

5 If δL
δq − d

dt
δL
δq̇ �= 0 at some t0, and i∗Tq(t0) Q is dense in Tq(t0)M , there exists X ∈ Tq(t0) Q such that

〈
δL
δq − d

dt
δL
δq̇ , X

〉

> 0. Using continuity, it is straightforward to construct a variation of the curve q(t) for

which
∫ b

a
〈
δL
δq − d

dt
δL
δq̇ , δq(t)

〉

dt > 0, which is a contradiction.
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Using the definition (3.3) of the field δq, one concludes that

δ�q(t) = ∂

∂τ

∣
∣
∣
∣
τ=0

�β(t,τ ) = δq(t)
[

�q(t)
] = (

�q(t)η(t)
)[

�q(t)
]

. (3.10)

Hereafter, v[ f ] denotes the derivative of the function f along the vector filed v; in
particular, in (3.10) an operator-valued function is differentiated.

Similarly,

d
dt �q(t) = q̇(t)

[

�q(t)
] = (

�q(t)ξ(t)
)[

�q(t)
]

,

and therefore

δq̇ = (

�qη
)[�q ]ξ + �qδξ, d

dt δq = (

�qξ
)[�q ]η + �q η̇.

From δq̇ = d
dt δq, we obtain

�q
(

δξ − η̇
) = (

�ξ
)[�η](q) − (

�η
)[�ξ ](q) = [�ξ,�η](q) = �q [ξ, η]q ,

which implies formula (3.7).
To prove the equivalence of (iii) and the weak form of Hamel’s Eq. (3.8), we use

the above formula and compute the variation of the action (3.6):

δ

∫ b

a
l(q, ξ) dt =

∫ b

a

(〈
δl

δq
, δq

〉

+
〈
δl

δξ
, δξ

〉)

dt

=
∫ b

a

(〈
δl

δq
, �qη

〉

+
〈
δl

δξ
, η̇ + [ξ, η]q

〉)

dt

=
∫ b

a

〈

�∗
q

δl

δq
+

[

ξ,
δl

δξ

]∗

q
− d

dt

δl

δξ
, η

〉

dt.

If δl/δq ∈ T ∗
q M and i∗Tq Q is dense in Tq M for every q ∈ Q, then for each t the

subspace �−1
q(t)(i∗Tq(t)Q) is dense in W , and the variational derivative vanishes if and

only if the strong form of the Hamel Eq. (3.9) is satisfied. ��
Example 3.2 For an incompressible fluid flow in a compact domain D ⊂ R

3 with a
smooth boundary the configuration space is the groupDiff(D) of (volume-preserving)
diffeomorphism of D, which is a regular Lie group in convenient setting. Let q(t) be
a curve in this group, one may think of q(t) as a particular fluid flow. Following Euler
(1757a, b, 1761), one typically uses the spatial velocity ξ := q̇ ◦ q−1 ∈ Te Diff(D).
Selecting W = Te Diff(D) = X (D), the space of smooth vector fields on D tangent to
the boundary, and �q = T Rq gives q̇ = �qξ . Therefore, the use of spatial velocity in
fluid dynamics is an instance of infinite-dimensional Hamel’s formalism. The variation
formula (3.7) becomes

δξ = η̇ − adξ η ≡ η̇ + [ξ, η],
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where [·, ·] is the Jacobi–Lie bracket on D. The dynamics, in the form of Hamel’s
equations, reads

d

dt

δl

δξ
+ ad∗

ξ

δl

δξ
= 0.

The latter are the Euler–Poincaré equations, as established by Poincaré (1901) and
Arnold (1966).

Remark The convective representation of fluid dynamics is straightforward to obtain
by setting �q = T Lq . See Gay-Balmaz et al. (2012) for details on the convective
representation in continuum mechanics.

Example 3.3 For an inextensible string moving in the plane, the configuration mani-
fold is the space of smooth embeddingsEmb([0, 1],R2).Wewill viewR

2 as a complex
plane.

Given z ∈ Emb([0, 1],C), the inextensibility constraint reads ‖zs‖ = 1, 0 ≤ s ≤
1. For simplicity, we assume no resistance to bending. Therefore, the Lagrangian reads

L(z) =
∫ 1

0

1
2

(‖ż‖2 − λ(‖zs‖2 − 1)
)

ds,

where λ : [0, 1] → R is the Lagrange multiplier (tension). The boundary conditions
for the Lagrange multiplier are a part of the requirement δL = 0. For a free motion
of a string, these conditions read

λ|s=0 = λ|s=1 = 0. (3.11)

Let

ż = �zξ = zsξ, (3.12)

so the velocity components to be used to construct Hamel’s equations are represented
by a complex-valued function ξ = ξ(s). The real and imaginary parts of ξ are the
tangent and normal velocity components of the points of the string, as is illustrated in
Fig. 2.

The Lagrangian becomes

l =
∫ 1

0

1
2

(

z̄s zs ξ̄ ξ − λ(z̄s zs − 1)
)

ds,

Fig. 2 An inextensible planar string

123



256 J Nonlinear Sci (2017) 27:241–283

in which the density should be understood as a function of (zs, z̄s, ξ, ξ̄ ) and the
Lagrange multiplier λ.

Next, the bracket formula (3.2) for the string becomes

[�ξ,�η](z) = d

dτ

∣
∣
∣
∣
τ=0

(

(z + τ zsξ)sη − (z + τ zsη)sξ
)

= zs(ξsη − ηsξ) = �z[ξ, η]z .

That is,

[ξ, η]z = ξsη − ξηs . (3.13)

Instead of establishing the formulae for the dual bracket and dual operator �∗, it is
more efficient in this example to directly work with the variational principle.We have:

δl

δz
δz + δl

δξ
δξ + δl

δz̄
δz̄ + δl

δξ̄
δξ̄ , (3.14)

and since l is real-valued, the two last terms are obtained from the first two by conju-
gation. Thus, it is sufficient to evaluate the last two terms in (3.14):

δl

δz̄
δz̄ + δl

δξ̄
δξ̄ = δl

δz̄
δz̄ + δl

δξ̄

(

ξ̄s η̄ − ξ̄ η̄s
) − d

dt

δl

δξ̄
η̄

=
∫ 1

0

1
2

((

λzs − zs ξ̄ ξ
)

sδz̄ + z̄s zsξ
(

ξ̄s η̄ − ξ̄ η̄s
) − d

dt

(

z̄s zsξ
)

η̄
)

ds

− 1
2 z̄s zs

(

λ − ξ̄ ξ
)

η̄
∣
∣s=1
s=0

=
∫ 1

0

1
2

(

zs z̄ssξ ξ̄ + zs z̄sξ ξ̄s + λs z̄s zs + λzss z̄s − d
dt

(

z̄s zsξ
))

η̄ ds

− 1
2 z̄s zsλη̄

∣
∣
s=1
s=0,

which, after imposing the constraint

z̄s zs = 1, (3.15)

implies Hamel’s string equation

ξ̇ = ξ ξ̄s + λs + i�
(

λ − ξ̄ ξ
)

(3.16)

as well as the tension conditions (3.11). Here � = i zs z̄ss is the signed curvature of
the curve [0, 1] � s �→ z(s) ∈ C. One of the implications of (3.16) is

λs = Re
(

ξt − ξ ξ̄s
)

, (3.17)

it will be used to identify the Lagrange multiplier λ in terms of the state of the string.
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Using the identity

ξs + ξ̄s + z̄s zss
(

ξ − ξ̄
) = 0 (3.18)

that follows from (3.12) and (3.15), one obtains an alternative representation of
Eq. (3.16),

ξ̇ = −ξξs + λs + i�
(

λ − ξξ
)

. (3.19)

Either of the Eqs. (3.16) and (3.19) is equivalent to the Euler–Lagrange equations for
the string.

The Lagrange multiplier as a function of string’s state is obtained by solving the
differential equation

λss − �2λ + |ξs + i�ξ |2 = 0 (3.20)

subject to the boundary conditions (3.11). To derive Eq. (3.20), one differentiates
(3.17) with respect to s to obtain

λss = −|ξs |2 + Re
(

ξst − ξ ξ̄ss
)

. (3.21)

Formula (3.21) becomes (3.20) after a transformation using the identity

Re
(

ξst − ξ ξ̄ss + i�
(

ξt − ξ̄ ξs
)) = 0

that follows from (3.12) and (3.15).

Remark Alternatively, one defines the operator � by

�zξ := zs

|zs |ξ.

Because of the constraint |zs | = 1, the resulting Hamel equation is (3.16). However,
the bracket [ξ, η]z is now given not by (3.13) but by a slightly different formula. This
latter bracket is in fact induced by the (standard) bracket of the Lie algebra of the
infinite-dimensional group

G = {[0, 1] � s �→ g(s) ∈ SE(2)
}

.

To see that, the string dynamics should be interpreted as a motion on G specified by
the degenerate Lagrangian

l =
∫ 1

0

1
2

(

ξ̄ ξ − λ(z̄s zs − 1)
)

ds

123



258 J Nonlinear Sci (2017) 27:241–283

subject to the constraint

zs

|zs | = eiθ , (3.22)

where (θ, z) are the (standard) coordinates on SE(2) = SO(2)�C and ξ is the C-
component of the body velocity g−1ġ. One then composes the C-component of the
Euler–Poincaré equations on G and imposes constraint (3.22). This results in the string
Eq. (3.16). It is worth noticing that the derivation of these equations using formula
(3.12) is simper and more efficient.

3.3 The Hamilton–Pontryagin Principle

Here we utilize the Hamilton–Pontryagin principle of Yoshimura and Marsden
(2006a, b, 2007) for the derivation of Hamel’s equations. This approach provides
an alternative interpretation of Hamel’s formalism in general and of the bracket term
in particular. The Hamilton–Pontryagin principle for finite-dimensional systems of
Hamel type was introduced in Ball et al. (2012).

Recall that the Hamilton–Pontryagin principle identifies the trajectories for the
Lagrangian L : T Q → R with the critical points of the functional

∫ b

a

(

L(q, v) + 〈p, q̇ − v〉) dt,

and so the curves the functional is calculated along belong to the Whitney sum
T Q ⊕ T ∗Q. See Yoshimura and Marsden (2006a, b, 2007) for details, motivation,
and history.

Theorem 3.4 (The Hamilton–Pontryagin Principe for Hamel’s Equations). Let L :
P → R be a Lagrangian and l be its representation in local coordinates (q, ξ) on P.
Then, the following statements are equivalent:

(i) The curve (q(t), ξ(t), μ(t)) ∈ V × (W ⊕ W ∗) is a critical point of the action
functional

∫ b

a

(

l(q, ξ) + 〈

μ,�−1
q q̇ − ξ

〉)

dt

with respect to independent variations δq = �qη, δξ , and δμ, with η(a) =
η(b) = 0.

(ii) The curve (q(t), ξ(t), μ(t)) satisfies the weak form of the implicit Hamel equa-
tions

∫ b

a

〈

�∗
q

δl

δq
− μ̇ + [ξ, μ]∗q , η

〉

= 0,
δl

δξ
= μ, where η ∈ �−1

q (Tq Q),

together with the constraint ξ = �−1
q q̇.
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If δl/δq ∈ T ∗
q M and i∗Tq Q is dense in Tq M for every q ∈ Q, the curve

(q(t), ξ(t), μ(t)) satisfies the strong form of the implicit Hamel equations

�∗
q

δl

δq
− μ̇ + [ξ, μ]∗q = 0,

δl

δξ
= μ,

together with the constraint ξ = �−1
q q̇.

Proof From �−1
q �q = id we have

δ
(

�−1
q �q

)

= δ�−1
q �q + �−1

q δ�q = 0,

which implies

δ�−1
q = −�−1

q δ�q�−1
q .

Therefore, using earlier calculation,

δ(�−1
q q̇) =

(

δ�−1
q

)

q̇ + �−1
q δq̇

= −�−1
q δ�q�−1

q q̇ − ( d
dt �

−1
q

)

δq + d
dt

(

�−1
q δq

)

= −�−1
q δ�q�−1

q q̇ + �−1
q

d
dt �q�−1

q δq + η̇

= [

�−1
q q̇, η

]

q + η̇,

where η = �−1
q δq ∈ �−1

q (Tq Q).
Finally, taking the variation and using the above formula along with integration by

parts gives

δ

∫ b

a

(

l(q, ξ) + 〈

μ,�−1
q q̇ − ξ

〉)

dt

=
∫ b

a

(〈
δl

δq
, δq

〉

+
〈
δl

δξ
− μ, δξ

〉

− 〈

δμ, ξ − �−1
q q̇

〉 + 〈

μ, δ(�−1
q q̇)

〉
)

dt

=
∫ b

a

(〈
δl

δq
, �qη

〉

− 〈

μ̇, η
〉 + 〈

μ,
[

�−1
q q̇, η

]

q

〉 +
〈
δl

δξ
− μ, δξ

〉

− 〈

δμ, ξ

− �−1
q q̇

〉
)

dt

=
∫ b

a

(〈

�∗
q

δl

δq
− μ̇ + [

�−1
q q̇, μ

]∗
q , η

〉

+
〈
δl

δξ
− μ, δξ

〉

− 〈

δμ, ξ − �−1
q q̇

〉
)

dt.

Setting the latter equal to zero and noting that δξ is an arbitrary element of W yields
the desired results. ��
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4 Systems with Constraints

In this section, we consider systems with ideal velocity constraints, both holonomic
and nonholonomic. The dynamics of such systems is equivalent to the Lagrange–
d’Alembert principle. To simplify the exposition, in the rest of the paper, we assume
that δL/δq ∈ T ∗

q M and i∗Tq Q is dense in Tq M for every q ∈ Q, and thus all results
will be stated for strong equations of motion. Similar statements for weak equations
are straightforward to obtain.

4.1 The Lagrange–d’Alembert Principle

Recall that in this paper the constraints imposed on on the system are assumed linear
and homogeneous in the velocity. Such constraints are specified by a vector subbundle
D of the bundle P = i∗T M . The base of this subbundle is the manifold Q. This
subbundle will, in general, be nonintegrable.

One of the ways to construct a subbundle of P is to take a pullback (induced by the
initial inclusion map i : Q → M) of a distribution on the manifold M . Verification
of integrability of a distribution in the infinite-dimensional setting may be nontrivial
as the Frobenius theorem has not been established in the general infinite-dimensional
setting. See Kriegl and Michor (1997), Hiltunen (2000), Teichmann (2001), Filipović
and Teichmann (2003) for some of the infinite-dimensional versions of Frobenius
theorem.

The condition for a curve to satisfy the constraints is of course insufficient for
the development of constrained mechanics. One needs a mechanism for constructing
the vector field that captures the dynamics of the constrained system. For the ideal
constraints in the finite-dimensional setting, this is accomplished by a projection. Such
constraints define a submanifold of the velocity phase space and a projection onto this
submanifold.

For a projection to be meaningful in the infinite-dimensional case, a submanifold
has to be splitting. Thus, in the infinite-dimensional setting, we require that D is a
locally splitting subbundle of P . That is, for each q ∈ Q there exists a chart (U, h) of
M with i(q) ∈ U such that

T h(π−1
M (U ) ∩ D) = h(U ) × WD,

where the closed subspace WD of the model space W is splitting, or complemented,
i.e., there is a closed subspace WU of W such that WD ⊕ WU = W and the projection
πD uniquely determined by setting (Ker πD, Im πD) = (WU , WD) is continuous.
Note that the continuous projection πD in the convenient space W is automatically
smooth as a bounded linear mapping.6

6 Nonsplitting closed subspaces already exist inBanach spaces; formore information on splitting subspaces,
see Domański and Mastyło (2007) and references therein. The continuity of πD in a Banach space is a
consequence of the closed graph theorem. For more spaces with this property see Jarchow (1981).
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The following Lagrange–d’Alembert principle is known to be equivalent to the
dynamics of systems with ideal holonomic and nonholonomic constraints:

Definition 4.1 The Lagrange–d’Alembert equations of motion for the system are
those determined by

δ

∫ b

a
L(q, q̇) dt = 0,

where we choose variations δq(t) of the curve q(t) that satisfy δq(a) = δq(b) = 0
and δq(t) ∈ Dq(t) for each t where a ≤ t ≤ b.

This principle is supplemented by the condition that the curve q(t) itself satisfies the
constraints. Note that we take the variation before imposing the constraints; that is, we
do not impose the constraints on the family of curves defining the variation. This is well
known to be important to obtain the correct mechanical equations (see Arnold et al.
2006 and Bloch 2015 for a discussion of other types of constraints and references).

The Lagrange–d’Alembert principle is equivalent to the equations

d

dt

δL

δq̇
− δL

δq
∈ D◦

q , q̇ ∈ Dq . (4.1)

Here,

D◦
q = {

a ∈ T ∗
q M | 〈a, v〉 = 0, v ∈ Dq

}

.

One way to give a more explicit representation of dynamics (4.1), under certain
technical conditions, is to make use of the Euler–Lagrange equations with multipli-
ers. Let the fibers of the subbundle D be locally written as

Dq = {v ∈ Tq M | A(q) v = 0},
where A(q) for each q ∈ Q is a continuous linear operator on Tq M with values in the
vector space WU . For instance, if there is a single constraint imposed on the system,
A(q) is a linear functional. We assume smooth dependence of A(q) on q.

The constrained variations δq(t) ∈ Tq(t)Q satisfy the condition

A(q) δq = 0. (4.2)

Using Definition 4.1 and formula (4.2), one writes the equations of motion as

d

dt

δL

δq̇
− δL

δq
∈ Im A∗(q), A(q) q̇ = 0,

where A∗(q) : WU ∗ → T ∗
q M is the adjoint of A(q) and where the closure should be

understood as weak* closure. Thus, if A∗(q) has a weak* closed range,7 there exist

7 This holds if Tq M is a Fréchet space and A(q) has closed range, see Jarchow (1981) for details.
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Lagrange multipliers λ ∈ WU ∗
such that

d

dt

δL

δq̇
− δL

δq
= A∗(q) λ, A(q) q̇ = 0.

4.2 The Constrained Hamel Equations

Given a nonholonomic system, that is, a Lagrangian L : P → R and constraint
distribution D, select the operators �q : W → Tq M , q ∈ U ⊂ Q, such that there
exist closed subspaces WD, WU ⊂ W with the properties W = WD ⊕ WU and
�q = �D

q ⊕ �U
q , where �D

q : WD → Dq and �U
q : WU → Uq and their inverses

are bounded linear operators smoothly dependent on q ∈ U . One way to choose the
operators �q is to use the above subbundle chart. In general, U �= Q, as numerous
finite-dimensional examples demonstrate.

Each q̇ ∈ T M is then uniquely written as

q̇ = �qξD + �qξU , where �qξD ∈ Dq , (4.3)

i.e., �qξD is the component of q̇ along Dq . Similarly, each α ∈ W ∗ can be uniquely
decomposed as

α = αD + αU ,

where αD and αU denote the component of α along the duals of WD and WU , respec-
tively. Actually, we have

αD = (

πD)∗ ◦ α|WD and αU =
(

id−(

πD)∗) ◦ α|WU ,

where
(

πD)∗ is the adjoint of πD. Using (4.3), the constraints read

ξ = ξD or ξU = 0.

This implies

δξ = δξD or δξU = 0.

The Lagrange–d’Alembert principle then implies the following theorem:

Theorem 4.2 The dynamics of a nonholonomic system is represented by the strong
form of constrained Hamel equations

(
d

dt

δl

δξ
−

[

ξD,
δl

δξ

]∗

q
− �∗

q
δl

δq

)

D
= 0, ξU = 0, q̇ = �qξD. (4.4)
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Example 4.3 Consider an inextensible stringmoving in the plane subject to the vanish-
ing normal velocity constraint. See Fig. 2. Onemay think of amotion of a ‘sharp’ string
on the horizontal ice. Using the notations introduced in Example 3.3, the constraint
reads

ξ = ξ̄ , (4.5)

i.e., ξ ∈ R. Equations (4.4) for the constrained string thus become

ξ̇ = ξξs + λs, (4.6)

ż = zsξ, (4.7)

supplemented by the inextensibility condition.
Identity (3.18) in the presence of constraint (4.5) implies

ξs = 0.

That is, all points of the string have the same speed, and (4.6) becomes

ξ̇ = λs . (4.8)

Using the boundary conditions (3.11), we conclude that

ξ̇ = 0.

Summarizing, ξ = const throughout the motion. This is in agreement with the
motion of the Chaplygin sleigh for which the velocity of the contact point relative
to the body frame is constant. Unlike the sleigh, the constrained string motion is not
completely determined by the initial state: Any solution of (4.7) is of the form

z = φ(s + ξ t),

where φ is an arbitrary twice-differentiable complex-valued function. The initial con-
ditions defineφ on the segment [0, 1]. Outside this segment, the functionφ is unknown,
unless, for example, the motion of the front end of the string is prescribed. The motion
of the constrained string is therefore purely kinematic: The string follows its front end
at a constant speed.

This behavior is similar to that of the degenerate Chaplygin sleigh specified by the
Lagrangian l = 1

2ξ ξ̄ and the constraint ξ = ξ̄ , where ξ = e−iθ ż. The Lagrangian is
degenerate as the term quadratic in θ̇ is absent, i.e., the moment of inertia of the sleigh
equals zero.

For the degenerate sleigh, the dynamics reads

ξ̇ = 0, ż = eiθ ξ,
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where θ(t) is an arbitrary function. Thus, the motions are not identified by the initial
conditions.8

Another remark about the string on ice is that, similar to SE(2)-snakes of Krish-
naprasad and Tsakiris (1994), it is almost holonomic: Adding a single (holonomic)
constraint z(0, t) = z(1, t) renders the system holonomic. The string becomes closed
and will slide, at a constant speed, along its initial shape.

5 Systems with Symmetry

Here we present infinite-dimensional analogues of some of the results of Bloch et al.
(1996a, 2009) on systems with symmetry. The mechanical and nonholonomic con-
nections, the momentum equation, and mechanics of systems with infinitely many
velocity constraints are discussed. Recall that δL/δq ∈ T ∗

q M and i∗Tq Q is dense in
Tq M for every q ∈ Q, and thus all results are stated for strong equations of motion.

5.1 The Lagrange–Poincaré Equations

Recall that in finite-dimensional mechanics with symmetry one starts with an action
of a Lie group G on the configuration space Q and Lagrangian and constraints (if any)
that are invariant with respect to the lifted action on the velocity phase space. The
quotient space Q/G, whose points are the group orbits, is called the shape space. It is
known that if the group action is free and proper, the shape space is a smooth manifold
and the projection π : Q → Q/G is a smooth surjective map with a surjective
derivative at each point. The configuration space thus has the structure of a principal
fiber bundle, with the group acting on the fibers by (left) multiplication.

We thus assume that in the general infinite-dimensional setting in the presence of
symmetry the manifold M is a principal fiber bundle (see Kriegl and Michor 1997 for
details in the infinite-dimensional case). The base of this bundle is a smooth manifold,
and the group G involved in the construction of this bundle may be finite- or infinite-
dimensional. In the latter case, the group is assumed regular (see Kriegl and Michor
1997 and Omori 1997).9

We denote the bundle coordinates (r, g) where r is a local coordinate in the base,
or shape space M/G, and g is a group coordinate. Such a local trivialization is char-
acterized by the fact that in such coordinates the group does not act on the factor r but
acts on the group coordinate by group multiplication. Thus, locally in the base, the
space M is isomorphic to the product M/G × G, and in this local trivialization the
map π becomes the projection onto the first factor. The model space of the manifold
M/G is denoted WB .

Recall that in general in the infinite-dimensional setting Lagrangians are defined
on the bundle P = i∗T M , where i : Q → M is the initial inclusion map and Q is
a manifold. We will assume in the rest of the paper that Q is a principal fiber bundle

8 Unlike the regular sleigh, for which θ̇ = const.
9 According to Kriegl and Michor (1997), all finite-dimensional Lie groups and all known infinite-
dimensional Lie groups are regular.
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with the same group G and that in the aforementioned local trivialization the group
component of the initial inclusion map is the identity map.

Definition 5.1 We say that the Lagrangian is G-invariant if L is invariant under the
induced action of G on P .

Both left and right actions may be of interest. Belowwe develop the formalism assum-
ing that the action is left; the case of the right action is similar.

We startwith the constructionof the operator�. Letgbe theLie algebra, and thus the
model space, of the group G. When the configuration space is a principal fiber bundle,
the group component of the operator � can be defined globally, as shown below. For
the fibers of T (M/G) we write the corresponding operator as ψr : WB → Tr (M/G),
i.e., ṙ = ψr ξ , whereas for the fibers of T G we set ġ := Lg∗ ◦ ϕr ζ , where q = (r, g)

in a local trivialization and ϕr : gr → g is a linear operator. The operators ψr and ϕr

and their inverses are, for each r ∈ Q/G, bounded, continuous, and depend smoothly
on r . This implies that the algebras g and gr are isomorphic. The bracket on the space
WB is

[ξ1, ξ2]r := ψ−1
r [ψrξ1, ψr ξ2],

whereas the bracket on gr is defined by

[ζ1, ζ2]gr := ϕ−1
r [ϕrζ1, ϕrζ2]g.

The use of the nonmaterial shape velocity is of importance already in the finite-
dimensional setting in some of the problem involving the rolling rigid body, such as
the rattleback. In a number of interesting finite-dimensional instances, it suffices to
use the shape velocity ṙ . The version of the infinite-dimensional formalism developed
here is motivated by the utility of nonmaterial velocity in accounting for fluid- and
elastic-type shapes.

The operator ϕr is important for accounting for various subbundle structures asso-
ciated with subspaces of the Lie algebra g. Such structures originate in the presence
of control inputs and/or velocity constraints, particularly in the motion generation
problems (see Ostrowski et al. 1994 and Bloch et al. 1996a for the details in the finite-
dimensional setting). In general, the position of these subspaces in the Lie algebra g
is shape-dependent. While this operator may not appear to be important in the current
part of the paper, it is more straightforward to introduce it here in order to make the
exposition of the rest of the paper more straightforward.

LetAs be a principal connection on the bundle Q → Q/G (see Kriegl and Michor
1997 for details on principal connections in the infinite-dimensional setting). Below
we will discuss how the structure of the Lagrangian facilitates the selection of a
connection. Tangent vectors in a local trivialization Q = Q/G × G at the point (r, g)

are denoted (x, y). We write the action of As on this vector as As(x, y).10 Using this
notation, we write the connection form in the local trivialization as

10 Here and below, the subscripts ‘c’ and ‘s’ stand for ‘convective’ and ‘spatial’, respectively.
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As(x, y) = Adg(yc + Acx),

where yc is the left translation of y to the identity and, since we are working locally
in shape space, we regard Ac as a g-valued one-form on Q/G.

The curvature of the principal connection As is the g-valued two-form

Bs(X1, X2) := dAs(hor X1, hor X2),

where X1 and X2 are two vector fields and hor X1 and hor X2 are their horizontal
components. In a local trivialization one writes

Bs((x1, y1), (x2, y2)) = Adg Bc(x1, x2). (5.1)

where x1, x2 ∈ T (Q/G), y1, y2 ∈ g, and where

Bc(x1, x2) = dAc(x1, x2) − [Acx1,Acx2]g.

The quantity yc +Acx regarded as an element of gr will be denoted ζ +Ax , i.e.,

yc + Acx = ϕr (ζ + Ax), x ∈ Tr (Q/G), ζ ∈ gr .

Thus, the velocity vector q̇ in such a representation is characterized by the components

ṙ and � = ζ + Aṙ ,

where ϕr ζ = g−1ġ ∈ g. The curvature of the connectionA on Q/G in this represen-
tation is hereafter denoted B.

With nonmaterial shape velocity being used, the velocity components become

ξ and � = ζ + Aψr ξ. (5.2)

Summarizing,

q̇ = �q(ξ,�) = (

ψr ξ, Lg∗ϕr (� − Aψr ξ)
)

. (5.3)

Theorem 5.2 The strong Lagrange–Poincaré equations11 for a system with a G-
invariant Lagrangian L : P → R are

d

dt

δl

δξ
− ψ∗

r
δl

δr
=

[

ξ,
δl

δξ

]∗

r
−

〈
δl

δ�
, iξψ∗

r B + 〈iξψ∗
r γ,ψ∗

r A〉

− 〈ψ∗
r γ, iξψ∗

r A〉 + 〈ψ∗
r E,�〉

〉

, (5.4)

11 Often, ∂l/∂� is viewed as an independent variable in these equations. See Cendra et al. (2001a; 2001b),
and Bloch et al. (2009) for the history, motivation, and finite-dimensional version of these equations.
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d

dt

δl

δ�
=

[

�,
δl

δ�

]∗

gr

+
〈

δl

δ�
, iξψ∗

r E
〉

, (5.5)

where B is the curvature of A, γ := ϕ−1
r ◦ dϕr , and E := γ − adA, so that γ and E

are gr ⊗g∗
r -valued one-forms on Q/G. The shape equation (5.4) and the momentum

equation (5.5) govern the reduced dynamics for the Lagrangian L. The full dynamics
is given by equations (5.4) and (5.5) along with the kinematic shape equation

ṙ = ψr ξ

and reconstruction equation

ġ = gϕr (� − iξψ∗
r A). (5.6)

Proof The principal step is to uncover the structure of the bracket terms in the Hamel
equations.Recall that these terms are induced by themap� defined in (5.3). Evaluating
the Jacobi–Lie brackets of two vector fields X1 and X2 whose components in local
trivialization are (ξi , ζi ), that is,

Xi = (

ψr ξi , Lg∗ϕr (ζi − Aψr ξi )
)

, ξi = const, ζi = const, i = 1, 2,

gives:

[

X1, X2
] = [(

ψr ξ1, 0
)

,
(

ψr ξ2, 0
)] + [(

ψr ξ1, 0
)

,
(

0, Lg∗ϕr (ζ2 − Aψr ξ2)
)]

+ [(

0, Lg∗ϕr (ζ1 − Aψr ξ1)
)

,
(

ψr ξ2, 0
)]

+ [(

0, Lg∗ϕr (ζ1 − Aψr ξ1)
)

,
(

0, Lg∗ϕr (ζ2 − Aψr ξ2)
)]

.

Next,

[(

ψr ξ1, 0
)

,
(

ψr ξ2, 0
)] = (

ψr [ξ1, ξ2]r , 0
)

,
[(

ψr ξ1, 0
)

,
(

0, Lg∗ϕr (ζ2 − Aψr ξ2)
)] = (

0, Lg∗dψr ξ1(ϕr (ζ2 − Aψr ξ2)
)

,
[(

0, Lg∗ϕr (ζ1 − Aψr ξ1)
)

,
(

0, Lg∗ϕr (ζ2 − Aψr ξ2)
)]

= (

0, Lg∗ϕr [ζ1 − Aψr ξ1, ζ2 − Aψr ξ2]gr

)

.

Summarizing the components of [X1, X2] are

ψr [ξ1, ξ2]r

and

Lg∗ϕr
(〈iψr ξ1E, ζ2〉 − 〈iψr ξ2E, ζ1〉 + 〈iψr ξ2γ,Aψr ξ1〉 − 〈iψr ξ1γ,Aψr ξ2〉

− (ψr ξ1)[Aψr ξ2] + (ψr ξ2)[Aψr ξ1] + [Aψr ξ1,Aψr ξ2]gr + [ζ1, ζ2]gr

)

.
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Applying the inverse of �q outputs the components

[ξ1, ξ2]r ∈ WB

and

〈iψr ξ1E, ζ2〉 − 〈iψr ξ2E, ζ1〉 + 〈iψr ξ2γ,Aψr ξ1〉 − 〈iψr ξ1γ,Aψr ξ2〉 − (ψr ξ1)[Aψr ξ2]
+ (ψr ξ2)[Aψr ξ1] + A([ψr ξ1, ψr ξ2]) + [Aψr ξ1,Aψr ξ2]gr

+ [ζ1, ζ2]gr ∈ gr .

Utilizing the formula

dω(X1, X2) = X1[ω(X2)] − X2[ω(X1)] − ω([X1, X2])

for the exterior derivative of one-forms, the definition of the curvature, and the Cartan
structure equation, the bracket

[

(ξ1, ζ1), (ξ2, ζ2)
]

r on WB ⊕ gr reads

(

[ξ1, ξ2]r ,
〈

iξ1ψ
∗
r E, ζ2

〉 − 〈

iξ2ψ
∗
r E, ζ1

〉 + 〈

iξ2ψ
∗
r γ, iξ1ψ

∗
r A

〉

−〈iξ1ψ∗
r γ, iξ2ψ

∗
r A〉 − ψ∗

r B(ξ1, ξ2) + [ζ1, ζ2]gr

)

. (5.7)

From (5.7), the components of the dual bracket [(ξ, ζ ), (α, β)]∗q are given by the
formulae

[ξ, α]∗r − 〈

β, iξψ∗
r B + 〈

iξψ∗
r γ,ψ∗

r A
〉 − 〈

ψ∗
r γ, iξψ∗

r A
〉 + 〈

ψ∗
r E, ζ

〉 〉

and [ζ, β]∗gr
+ 〈

β, iξψ∗
r E

〉

. (5.8)

Equations (5.4) and (5.5) then follow from Theorem 3.1 and formula (5.8). ��

In certain situations, it may be useful to know the formulae for variations. For
systems considered in this part of the paper, the general formula (3.7) transforms into

δξ = η̇ + [ξ, η]r ,
δ� = �̇ + [�,�]gr + 〈

iξψ∗
r E, �

〉 − 〈

iηψ∗
r E,�

〉 + 〈

iηψ∗
r γ, iξψ∗

r A
〉

− 〈

iξψ∗
r γ, iηψ∗

r A
〉 − ψ∗

r B(ξ, η),

where the curves η(t) ∈ WB and ϕr(t) �(t) ∈ g satisfy the boundary conditions
η(a) = η(b) = 0 and �(a) = �(b) = 0, respectively. The reconstruction Eq. (5.6)
is just the group component of the equation q̇ = �qξ .
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In the case that the material shape velocity is utilized, Eqs. (5.4) and (5.5) read

d

dt

δl

δṙ
− δl

δr
= −

〈
δl

δ�
, iṙB + 〈iṙγ,A〉 − 〈γ, iṙA〉 + 〈E,�〉

〉

,

d

dt

δl

δ�
= ad∗

�

δl

δ�
+

〈
δl

δ�
, iṙE

〉

.

whereas the reconstruction equation becomes

ġ = gϕr (� − iṙA).

Now assume that the G-invariant Lagrangian equals the kinetic minus potential
energy of the system and that the kinetic energy is given by a (weak) Riemannian
metric 〈〈 · , · 〉〉 on the configuration space Q. In such a setting, the isomorphism ϕr is
usually selected to be the identity map.

Definition 5.3 Themechanical connectionAmech is, by definition, the connection on
Q regarded as a bundle over shape space Q/G that is defined by declaring its horizontal
space at a point q ∈ Q to be the subspace that is the orthogonal complement to the
tangent space to the group orbit through q ∈ Q using the kinetic energy metric. The
locked inertia tensor I(q) : g → g∗ is defined by 〈I(q) ξ, η〉 = 〈〈ξQ(q), ηQ(q)〉〉,
where ξQ is the infinitesimal generator of ξ ∈ g and where 〈〈· , ·〉〉 is the kinetic energy
inner product.

Of course, in the infinite-dimensional setting the mechanical connection may fail to
exist when the group metric is not strong.12 It is certain to exist in the important case
of a finite-dimensional symmetry group.

Given a system with symmetry, one may use the mechanical connection to set up
Eq. (5.4) and (5.5). This choice of a connection changes the Lie algebra variables from
ζ to the local version of the locked group velocity �. With this connection choice the
kinetic energy metric becomes block-diagonal, that is,

〈〈q̇, q̇〉〉 = 〈〈ξ, ξ 〉〉 + 〈〈�,�〉〉.

For a rotating rigid body, the locked group velocity has the physical interpretation
of the body angular velocity.

Example 5.4 Here we revisit the planar string motion, but now derive the dynamics
with an emphasis on the SE(2) symmetry. We also assume that one of the ends of the
string is attached to a platform (a flat rigid body). Both the platform and string move
in the same horizontal plane.

The elements of the Euclidean group SE(2) are written using complex notation,
g = (eiθ , w), i.e., the points of theR2 are identified with complex numbers, as before.
The group SE(2) is the configuration space of the platform and simultaneously the
symmetry group of the entire system.

12 The orthogonal complement may not exist in nonHilbert spaces.
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The angular and linear velocities of the platform (measured relative to the platform)
are denoted ω ∈ R and v ∈ C, so that

(iω, v) := (i θ̇ , e−iθ ẇ) = g−1ġ

and the operator ϕ in (5.3) is the identity operator. The position of the string relative
to the platform is given by the embedding map z ∈ Emb([0, 1],C) subject to the
conditions z(0) = 0 and zs(0) = 1.

The absolute position of the points of the string is

w + eiθ z(s), (5.9)

and thus the velocity of the points of the string is given by

ẇ + eiθ (i zθ̇ + ż). (5.10)

Written relative to the platform’s frame, the absolute velocity of the point z of the
string reads

v + iωz + ż ≡ v + iωz + zsξ.

That is, the operator ψ is defined by ż = ψzξ = zsξ .
The Lagrangian reads

∫ 1

0

1
2

(

Jω2 + mv̄v + (

v̄ − iωz̄ + z̄s ξ̄
)(

v + iωz + zsξ
) − λ

(

z̄s zs − 1
))

ds,

where m and J are the mass and inertia of the platform. Recall that the quantities ω

and v are s-independent. The components of the mechanical connection denoted here
Aθ , Aw, and Aw̄, so that

ω = � − Aθ ż − Āθ
˙̄z, v = V − Aw ż − Āw̄

˙̄z,

are computed to be

Aθ = − imz̄

2
(

J (m + 1) + mz̄z
) , Aw = 1 − i zAθ

m + 1
, Aw̄ = i z̄Aθ

m + 1
.

The reduced dynamics is given by Eq. (5.4) and (5.5), where [·, ·]∗r is the dual of the
bracket (3.13) and [·, ·]∗gr

is the operator ad∗ on the algebra se(2).

5.2 Nonholonomic Systems with Symmetry

Recall that the manifolds M and Q are principal fiber bundles. The Lagrangian L and
constraint distribution D are now invariant with respect to the induced action of G on
P . Recall also that D is a (locally) splitting subbundle of P .
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Assumption 5.5 The constraints and the orbit directions span the entire tangent space
to the configuration space:

Dq + Tq Orb(q) = Tq Q,

for each q ∈ Q.13 If this condition is satisfied, we say that the principal case holds.

Let S be the subbundle ofD whose fiber at q is Sq = Dq ∩ Tq Orb(q). We assume
here that Sq �= {0}.14 The subbundle S is invariant with respect to the action of G
on P induced by the left action of G on M . We assume that S is a (locally) splitting
subbundle.15 Therefore, for each q ∈ Q there exist a subspace Uq ⊂ Orb(q) such that
Orb(q) = Sq ⊕ Uq and the subbundle U is (locally) splitting and G-invariant. Since
the distributions S and U are left-invariant, for each r ∈ Q/G there exist subspaces
bSr and bUr of the Lie algebra gr = bSr ⊕ bUr and an operator ϕr : gr → g such that in
a local trivialization

Sq = Lg∗ϕrb
S
r and Uq = Lg∗ϕrb

U
r .

The operators ϕr are constructed in such a way that bSr and bUr are fixed subspaces
of gr . Such an arrangement is necessary for accounting for constraint subspaces that
change their location in theLie algebra g of the symmetry group depending on system’s
shape configuration.

Let bS and bU be the bundles over Q/G whose fibers are the subspaces bSr and bUr
of gr . Given ζ ∈ gr , we write its components along these subspaces as ζS and ζU so
that for each r ∈ Q/G we have

g−1ġ = ϕrζ ≡ ϕrζ
S + ϕrζ

U , where ζS ∈ bSr and ζU ∈ bUr .

Let As be a connection defined in a local trivialization by the formula

As(ṙ , ġ) = Adg(ϕr (ζ + Aṙ)),

where ζ ∈ gr and where A is a gr -valued one-form on Q/G. This form is such that
the constraints in a local trivialization read

�U ≡ ζU + AU ṙ = 0. (5.11)

13 This is called the dimension assumption in the finite-dimensional setting, see Bloch et al. (1996a) for
details.
14 If Sq = {0}, a set of nonholonomic constraints is said to be purely kinematic.
15 Note that the intersection of two splitting subspaces may fail to be splitting already in a
Banach space. For the intersection of two subspaces to be splitting, additional assumptions are
necessary. According to Bill Johnson, asking that two subspaces are norm one complemented
and the space itself is uniformly convex is sufficient. See http://mathoverflow.net/questions/85492/
intersection-of-complemented-subspaces-of-a-banach-space for details.
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That is, the U-component of the connection A is defined by the constraints. The S-
component of A is arbitrary at the moment; later on we will see how the structure of
the Lagrangian affects the choice of this component.

As in Sect. 5.1, introduce the operator ψr : WB → Tr (M/G) (locally), so that
ṙ = ψr ξ and ξ is now the shape velocity component used instead of ṙ . Utilizing the
constrained Hamel Eq. (4.4) and the G-invariance of the constraint distribution D,
one obtains the reduced nonholonomic equations of motion from (5.4) and (5.5) by
projecting equation (5.5) onto the fibers of the bundle b∗

S and imposing constraints,
i.e., setting � = �S . Summarizing, we have:

Theorem 5.6 The strong form of the reduced nonholonomic dynamics is given by the
equations

d

dt

δl

δξ
− ψ∗

r
δl

δr
=

[

ξ,
δl

δξ

]∗

r
−

〈
δl

δ�
, iξψ∗

r B + 〈

iξψ∗
r γ,ψ∗

r A
〉

− 〈

ψ∗
r γ, iξψ∗

r A
〉 + 〈

ψ∗
r E,�S 〉

〉

, (5.12)

[
d

dt

δl

δ�

]

S
=

[[

�S ,
δl

δ�

]∗

gr

+
〈

δl

δ�
, iξψ∗

r E
〉]

S
, (5.13)

coupled with the kinematic shape equation

ṙ = ψrξ. (5.14)

In the above, the Lagrangian l is written as a function of (r, ξ,�), B is the curvature
of A on Q/G (see (5.1)), and the quantities γ and E are defined as in Theorem 5.2.
Note that the partial derivatives of l in (5.12) and (5.13) are evaluated before setting
� = �S , i.e., before imposing the constraints.

The shape and momentum Eqs. (5.12) and (5.13) can be rewritten as

d

dt

δlc
δξ

− ψ∗
r

δlc
δr

=
[

ξ,
δl

δξ

]∗

r
−

〈
δl

δ�
, iξψ∗

r B + 〈

iξψ∗
r γ,ψ∗

r A
〉

− 〈

ψ∗
r γ, iξψ∗

r A
〉 + 〈

ψ∗
r E,�S 〉

〉

,

d

dt

δlc
δ�S =

[[

�S ,
δl

δ�

]∗

gr

+
〈

δl

δ�
, iξψ∗

r E
〉]

S
,

where lc(r, ξ,�S) := l(r, ξ,�S) is the constrained reduced Lagrangian. These
equations follow directly from (5.12) and (5.13) as

δlc
δξ

= δl

δξ

∣
∣
∣
�=�S ,

d

dt

δlc
δξ

= d

dt

δl

δξ

∣
∣
∣
�=�S ,

δlc
δr

= δl

δr

∣
∣
∣
�=�S ,

δlc
δ�S = δl

δ�S

∣
∣
∣
�=�S .
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Note that in general

δlc
δ�S �= δl

δ�

∣
∣
∣
�=�S .

5.3 The Nonholonomic Connection

In the rest of the section, we assume that the Lagrangian equals the kinetic minus
potential energy, that the kinetic energy is given by a (weak) Riemannian metric on
the manifold M , and that the principal case holds (see Assumption 5.5).

Definition 5.7 The nonholonomic connection Anhc is, by definition, the connection
on the principal bundle Q → Q/G whose horizontal space at q ∈ Q is given by the
orthogonal complement to the space Sq = Dq ∩ Tq Orb(q) within the space Dq .

Similar to the remark on the existence of the mechanical connection, in the infinite-
dimensional setting, the nonholonomic connection may fail to exist when the group
metric is not strong, but is certain to exist when the symmetry group is finite-
dimensional.

Under the assumption that the distribution D is invariant and from the fact that the
group action preserves orthogonality (since it is assumed to preserve the Lagrangian
and hence the kinetic energy metric), it follows that the distribution and the horizontal
spaces transform to themselves under the group action. Therefore, the nonholonomic
connection in a local trivialization is defined by the formula

Anhc(ṙ , ġ) = Adg(yc + Acṙ), (5.15)

where yc ∈ g andwhereAc is a g-valued one-form on Q/G. Given q̇ = (ṙ , ġ) ∈ Tq Q,
the horizontal and vertical components of q̇ in a local trivialization are

(ṙ ,−Acṙ) and (0, yc + Acṙ).

In order to reflect the bundle structure associated with velocity constraints, we use
Definition 5.7 and the map ϕr and rewrite yc + Acṙ in (5.15) as ϕr (ζ + Aṙ), where

ζ = ζS + ζU , A = AS + AU , ζS + AS ṙ ∈ bS , ζU + AU ṙ ∈ bU .

Using the nonholonomic connection, define the group velocity � ∈ g by the formula

� = ζ + Aṙ .

The constraints then are represented by formula (5.11).
Let the kinetic energy metric in a local trivialization be written as

〈〈q̇, q̇〉〉 = 〈G(r) ṙ , ṙ〉 + 2〈K(r) ṙ , ζ 〉 + 〈I(r) ζ, ζ 〉. (5.16)
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The constrained locked inertia tensor IS : bS → (

bS
)∗ is given in a local trivializa-

tion by

〈IS(r) ζ1, ζ2〉 = 〈〈Lg∗ϕr ζ1, Lg∗ϕr ζ2〉〉, ζ1, ζ2 ∈ bS .

Similarly, define IU (r) : bU → (

bU
)∗, ISU (r) : bU → (

bS
)∗, and IUS(r) : bS →

(

bU
)∗ by

〈IU (r) ζ1, ζ2〉 = 〈〈Lg∗ϕr ζ1, Lg∗ϕr ζ2〉〉, ζ1, ζ2 ∈ bU ,

〈ISU (r) ζ1, ζ2〉 = 〈〈Lg∗ϕr ζ1, Lg∗ϕr ζ2〉〉, ζ1 ∈ bU , ζ2 ∈ bS ,

〈IUS(r) ζ1, ζ2〉 = 〈〈Lg∗ϕr ζ1, Lg∗ϕr ζ2〉〉, ζ1 ∈ bS , ζ2 ∈ bU ,

respectively.
Definition5.7 implies that the constrainedkinetic energymetricwritten as a function

of (ṙ ,�S) is block-diagonal, that is, it reads

〈

G(r) ṙ , ṙ
〉 +

〈

IS(r)�S ,�S 〉

.

Substituting ζ = �S − Aṙ in (5.16), one concludes that the S-component of the
nonholonomic connection satisfies the equation

〈(IS(r)AS − KS(r) + ISU (r)AU )

ṙ ,�S 〉

= 0.

This equation may or may not have a solution in the infinite dimensional setting. If
the restriction of the metric on the subspace bS is strong, the S-component of the
nonholonomic connection is well defined and reads

AS = I−1
S (r)KS(r) − I−1

S (r)ISU (r)AU .

The U-component of the nonholonomic connection is defined by the constraints. As
in Sect. 5.2, the reduced dynamics is given by Eqs. (5.12)–(5.14).

Example 5.8 Consider the planar motion of an inextensible string coupled with the
two identical Chaplygin sleighs. Assume that the ends of the string are attached at the
contact points of the sleighs and the plane. See Fig. 3 for the illustration of the basic
configuration.

The manifold M(= Q) for this system is SE(2) × SE(2) × Emb([0, 1],C), and
the system is invariant with respect to the diagonal action of the group SE(2) on M .
We identify the symmetry group with configurations of the sleigh at s = 0. In such a
representation, the position of the sleigh at the front end of the string (i.e., at s = 0)
is characterized by the element (eiθ0 , w0) ∈ SE(2), while the relative position of the
sleigh at the opposite end of the string is (eiφ1 , z1) ∈ SE(2), so that the absolute
position of that sleigh is

(eiθ1 , w1) = (eiθ0 , w0) · (eiφ1 , z1) = (ei(θ0+φ1), w0 + eiθ0 z1).
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w0

θ0

w1

θ1

Fig. 3 The string with Chaplygin sleighs attached at the ends

The angular and linear velocity (relative to the body frame) of the sleigh at the front
end of the string are

ω0 = θ̇0 and v0 = e−iθ0ẇ0,

while the angular and linear velocity of the other sleigh are

ω0 + φ̇1 and e−iφ1(v0 + i z1ω0 + ż1).

Thus, the constraints are

v̄0 = v0 and e−iφ1(v0 + i z1ω0 + ż1) = eiφ1(v̄0 − i z̄1ω0 + ˙̄z1). (5.17)

Formulae (5.17) define the operator ϕ and the constraint component of the nonholo-
nomic connection. Both are nontrivial for this coupled system.

Recall that the nonholonomic connection modifies the elements of the Lie algebra
of the symmetry group. The equations of motion that use such ‘shifted’ Lie algebra
elements are useful in numerous situations, including stability analysis of relative
equilibria. However, one may verify that this form of equations is rather complicated
for the system considered here. Below we give a simpler representation of system’s
dynamics using the operators introduced earlier for the sleigh and string.

Using the notations introduced in Sect. 2.5 and Example 3.3, parametrize the con-
figuration spaces of the sleighs as (θ j , w j ), j = 0, 1, wherew j = x j +iy j , and denote
the absolute position of the string by w ∈ Emb([0, 1],C). The Lagrangian reads

l = 1
2

(

Jω2
0 + mv̄0v0

) + 1
2

(

Jω2
1 + mv̄1v1

)

+
∫ 1

0

1
2

(

w̄sws ξ̄ ξ − λ(w̄sws − 1)
)

ds. (5.18)

Coupling is accomplished by matching the position of the sleighs and the string’s
ends:

w0 = w|s=0 and w1 = w|s=1. (5.19)
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That is, the string is attached at and can rotate freely around the contact point of each
sleigh.

The constrained Hamel equations for this system read

J ω̇0 = 0, (5.20)

mv̇0 = 1
2λ0

(

w̄0
s e

iθ0 + w0
s e

−iθ0
)

, (5.21)

J ω̇1 = 0, (5.22)

mv̇1 = − 1
2λ1

(

w̄1
s e

iθ1 + w1
s e

−iθ1
)

, (5.23)

ξ̇ = ξ ξ̄s + λs + i�
(

λ − ξ̄ ξ
)

, (5.24)

where, by definition, λ0 := λ|s=0, λ1 := λ|s=1, w0
s := ws |s=0, and w1

s := ws |s=1.
Equations (5.20), (5.22), (5.24) and the left-hand sides of (5.21), (5.23) have been
obtained earlier. The right-hand sides of (5.21) and (5.23) account for the coupling
constraints (5.19) and are obtained as projections of the external terms (i.e., those due
to integration by parts) associated with the Lagrange multiplier λ in (5.18) along the
sleigh directions.

5.4 Systems with Shape Constraints

Here we study systems with a ‘slim’ constraint distribution. That is, at each q ∈ Q, the
complimentary subspace ofDq ⊂ Tq M is ‘larger’ than the tangent space to the group
orbit at q. While this may happen when the symmetry group is infinite-dimensional
as well as when the system is finite-dimensional, our main objects of interest here are
systemswithfinite-dimensional symmetrygroup and constraint distributions of infinite
codimension. Assumption 5.5 does not hold for such systems, and the formalism of
Bloch et al. (1996a) and its infinite-dimensional analogue presented in Sect. 5.2 should
be modified.

Example 5.9 Consider the Chaplygin sleigh with an inextensible string attached at
and allowed to rotate around the contact point of the sleigh and the plane, as shown in
Fig. 4. Assume that the string is constrained as in Example 4.3. This system is SE(2)-
invariant. Using formulae (5.9) and (5.10) there, the condition of vanishing normal
velocity component is equivalent to

z̄s(v + iωz + ż) = zs(v̄ − iωz̄ + ˙̄z). (5.25)

w

θ

Fig. 4 The Chaplygin sleigh coupled to a constrained string

123



J Nonlinear Sci (2017) 27:241–283 277

Here the string position z is measured relative to the sleigh, and ω and v are the
sleigh’s angular and linear velocity measured relative to its frame. Formula (5.25)
imposes infinitely many constraints on the system, one for each s ∈ [0, 1].

For a generic string placement, constraints (5.25) exhaust the Lie algebra se(2).
Indeed, the vectors that span the constraint subspaces for s0 = 0 and 0 < s1 < s2 < 1
are verified to be R-independent if and only if

(z̄s z + zs ˙̄z)|s=s1(zs − z̄s)|s=s2 − (z̄s z + zs ˙̄z)|s=s2(zs − z̄s)|s=s1 �= 0,

which generically holds. The rest of the constraints are effectively imposed on the
shape degrees of freedom of the system, and thus Assumption 5.5 does not hold in
this example and is void in the rest of the paper.

We begin by developing a special version of the formalism for unconstrained G-
invariant systems. Using notations introduced in Sect. 5.1, this system is characterized
by the Lagrangian l(r, ξ, ζ ). Recall that ṙ = ψr ξ . In order to simplify the exposition,
we assume here thatϕr is the identity operator so that ġ = Lg∗ζ . Instead of the velocity
components (5.2), we will use

η = ξ + Cζ ∈ WB and ζ ∈ g,

where C : g → WB is a linear map. It depends parametrically and smoothly on r ∈ U ,
whereU is an open subset of Q/G. This is motivated by the structure of the constraints
(5.25). Thus, for the operator �q we have

q̇ = (ṙ , ġ) = �q(η, ζ ) = (

ψr (η − Cζ ), Lg∗ζ
)

.

The inverse of �q is

(η, ζ ) = �−1
q (ṙ , ġ) = (

ψ−1
r ṙ + CL−1

g∗ ġ, L−1
g∗ ġ

)

.

One can think of C as a connection on the local fiber bundle whose base and fiber are
open subsets of G and Q/G, respectively.

Theorem 5.10 The strong Lagrange–Poincaré equations are

d

dt

δl

δη
− ψ∗

r
δl

δr
=

[

η − Cζ,
δl

δη

]∗

r
+

〈
δl

δη
,ψ∗

r dC ζ

〉

,

d

dt

δl

δζ
= ad∗

ζ

(
δl

δζ
+ C∗ δl

δη

)

−
〈[

η − Cζ,
δl

δη

]∗

r
, C

〉

−
〈
δl

δη
, i(η−Cζ )ψ

∗
r dC + iCψ∗

r dC ζ

〉

.
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Proof The key step is to establish the bracket operation associated with the operator
�q . One begins with the computation of the Jacobi–Lie bracket

[�(η1, ζ1),�(η2, ζ2)] = [(ψ(η1 − Cζ1), L∗ζ1), (ψ(η2 − Cζ2), L∗ζ2)],

where ηi and ζi are constant vectors. For the M/G-component of the Jacobi–Lie
bracket, we have, using the chain rule:

[ψ(η1 − Cζ1), ψ(η2 − Cζ2)]M/G = ψ[η1 − Cζ1, η2 − Cζ2]r
−ψ(ψη1 − ψCζ1)[Cζ2] + ψ(ψη2 − ψCζ2)[Cζ1].

For the G-component, we obtain

[L∗ζ1, L∗ζ2]G = L∗[ζ1, ζ2]g = L∗ adζ1 ζ2.

Applying the inverse operator �q outputs the bracket operation on WB ⊕ g:

[(η1, ζ1), (η2, ζ2)] = ([η1 − Cζ1, η2 − Cζ2]r − (ψη1 − ψCζ1)[Cζ2]
+(ψη2 − ψCζ2)[Cζ1] + C adζ1 ζ2, adζ1 ζ2

)

.

Pairing with an element (α, β) ∈ W ∗
B ⊕ g∗, we obtain:

〈

α, [η1 − Cζ1, η2 − Cζ2]r − (ψη1 − ψCζ1)[Cζ2] + (ψη2 − ψCζ2)[Cζ1]
+ C adζ1 ζ2

〉

WB
+ 〈

β, adζ1 ζ2
〉

g = 〈[η1 − Cζ1, α]∗r + 〈α,ψ∗dCζ1〉WB , η2
〉

WB

+ 〈

ad∗
ζ1

(β + C∗α) − 〈[η1 − Cζ1, α]∗r , C〉WB − 〈α, i(η1−Cζ1)ψ
∗dC〉WB

− 〈α, iCψ∗dCζ1〉WB , ζ2
〉

g,

which yields the components of the dual bracket,

〈[η1 − Cζ1, α]∗r + 〈α,ψ∗
r dCζ1〉WB , (5.26)

〈

ad∗
ζ1

(β + C∗α) − 〈[η1 − Cζ1, α]∗r , C〉WB − 〈α, i(η1−Cζ1)ψ
∗
r dC〉WB

− 〈α, iCψ∗
r dCζ1〉WB . (5.27)

Utilizing the dual bracket (5.26) and (5.27) and composing Eq. (3.9) completes the
proof. ��

Next, assume that there exists a splitting distributionD alongwith its complimentary
distribution U such that the constraint η ∈ Dq reads

ξU + CU ζ = 0. (5.28)

Thus, the constraint is defined by the operator CU : g → Uq . This representation is, in
general, local, i.e., (5.28) represents the constraint on an open subset U of the shape
space Q/G. The operator CU is then extended to C : g → WB at each r ∈ U .
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There are, of course, infinitely many such extensions, and one needs to utilize
additional requirements to single out the desired one. Utilizing the general Hamel’s
equations established in Sect. 4.2, the reduced dynamics becomes

(
d

dt

δl

δη
− ψ∗

r
δl

δr
−

[

η − Cζ,
δl

δη

]∗

r
−

〈
δl

δη
,ψ∗

r dC ζ

〉)

D
= 0, (5.29)

(
d

dt

δl

δζ
− ad∗

ζ

(
δl

δζ
− C∗ δl

δη

)

+
〈[

η − Cζ,
δl

δη

]∗

r
, C

〉

+
〈
δl

δη
, i(η−Cζ )ψ

∗
r dC + iCψ∗

r dC ζ

〉)

D
= 0. (5.30)

If desired, one can give the representation of these equations using the constrained
Lagrangian and constrained versions of the velocity components η and ζ , as in the
approach in Sect. 5.2.
Example 5.9 (continued). Consider again the motion of the Chaplygin sleigh with the
flexible string attached. The normal velocity component of the string at each point is
constrained to be zero, as in (5.25). The system is SE(2)-invariant and the symmetry
group is also the configuration space of the sleigh. The Lagrangian of the system is
the sum of the kinetic energy of the sleigh and the string Lagrangian and reads

1
2

(

Jω2 + mv̄v
) +

∫ 1

0

1
2

((

v̄ − iωz̄ + z̄s ξ̄
)(

v + iωz + zsξ
) − λ

(

z̄s zs − 1
))

ds,

where ξ = z̄s ż is string’s shape velocity. The coupling is accomplished by setting

z|s=0 = 0, zs |s=0 = 1, ξ |s=0 = 0,

and the constraint is given by formula (5.25). We assume from now on that v > 0,
i.e., the string trails the sleigh.

Define the quantity η and the operator C by the formula

η = ξ + z̄s(v + iωz),

so that η is string’s absolute velocity. Doing so results in the Lagrangian

l = 1
2

(

Jω2 + mv̄v
) +

∫ 1

0

1
2

(

η̄η − λ(z̄s zs − 1)
)

ds.

The constraint in this representation reads η = η̄, which is formula (5.28) written for
the string. Equations (5.29) and (5.30) for the sleigh-string system become

J ω̇ = 0, (5.31)

mv̇ = λ|s=0, (5.32)

η̇ = ηηs + λs, (5.33)
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where v and η are real-valued. These equations should be amended with the coupling
conditions

η|s=0 = v. (5.34)

Note also that the position of the front end of the string coincides with the position of
the contact point of the sleigh and the plane.

Arguing as in Example 4.3, one concludes that η is independent of s. Thus, equation
(5.33) becomes

η̇ = λs . (5.35)

Equation (5.31) implies ω = const.
The tensionλ is obtainedby integrating (5.35)with respect to s and, sinceλ|s=1 = 0,

we conclude that

λ = (s − 1)η̇. (5.36)

Therefore,λ|s=0 = −η̇, which in combinationwith (5.32) and (5.34) yields v = const.
The velocity coupling condition then implies that the blademoves at the constant speed
η = v. Using (5.36), we conclude that λ = 0.

Summarizing, the Chaplygin sleigh with the constrained string attached generically
undergoes uniform circular motion. Nongeneric trajectories are straight lines. The
string (possibly after some period of time) follows the trajectory of the contact point
of the sleigh.

It is interesting to point out that in this example the shape dynamics (string’smotion)
is modulated by the group dynamics (skate’s motion). This is the opposite of typical
reconstruction in finite-dimensional constrained systems discussed in Bloch et al.
(1996a).

We note also that the qualitative dynamics of this system—uniform circular or
straight line motion—is consistent with the behavior of integrable Hamiltonian sys-
tems. One may raise the question of whether it is integrable in a more precise
sense—with infinitely many conserved quantities. We intend to return to this issue
in a forthcoming publication.

6 Conclusions

This paper introduced Hamel’s formalism for infinite-dimensional mechanical sys-
tems, proved some general results, and illustrated them with examples. A number of
topics remain outside the scope of the paper. For instance, the nature of nonholonomic
constraints in the infinite-dimensional setting should be studied in more detail and will
be addressed in a forthcoming publication. We also intend to develop Hamel’s formal-
ism for field theories and apply it for constructing structure-preserving integrators for
constrained continuum mechanical systems.
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Examples in this paper were intentionally kept relatively simple for pedagogical
reasons, and solutions there are classical, i.e., not generalized.More realistic examples,
including systems with generalized solutions, will be treated in the forthcoming paper
on the field-theoretic Hamel formalism.
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