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Abstract Numerical methods that preserve geometric invariants of the system, such
as energy, momentum or the symplectic form, are called geometric integrators. In this
paper we present a method to construct symplectic-momentum integrators for higher-
order Lagrangian systems. Given a regular higher-order Lagrangian L : T (k)Q → R

with k ≥ 1, the resulting discrete equations define a generally implicit numerical
integrator algorithm on T (k−1)Q× T (k−1)Q that approximates the flow of the higher-
order Euler–Lagrange equations for L . The algorithmequations are called higher-order
discrete Euler–Lagrange equations and constitute a variational integrator for higher-
order mechanical systems. The general idea for those variational integrators is to
directly discretize Hamilton’s principle rather than the equations of motion in a way
that preserves the invariants of the original system, notably the symplectic form and,
via a discrete version of Noether’s theorem, the momentum map. We construct an
exact discrete Lagrangian Le

d using the locally unique solution of the higher-order
Euler–Lagrange equations for L with boundary conditions. By taking the discrete
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Lagrangian as an approximation of Le
d , we obtain variational integrators for higher-

order mechanical systems.We apply our techniques to optimal control problems since,
given a cost function, the optimal control problem is understood as a second-order
variational problem.

Keywords Variational integrators · Higher-order mechanics · Optimal control ·
Discrete variational calculus

Mathematics Subject Classification 70G45 · 70Hxx · 49J15

1 Introduction

This paper is concerned with the design of geometric integrators for higher-order vari-
ational systems. The study of higher-order variational systems has regularly attracted a
lot of attention from the applied and theoretical points of view (see León andRodrigues
1985 and references therein). But recently there is a renewed interest in these systems
due to new and relevant applications in optimal control for robotics or aeronautics,
or the study of air traffic control and computational anatomy (Burnett et al. 2013;
Colombo and Martín de Diego 2014; Crouch and Silva Leite 1995; Gay-Balmaz et al.
2012a, b, 2011; Hussein and Bloch 2004; Machado et al. 2010; Noakes et al. 1989).

A continuous higher-order system is modeled by a Lagrangian on a higher-order
tangent bundle T (k)Q, that is, a function L : T (k)Q → R. The corresponding Euler–
Lagrange equations are a system of implicit 2k-order differential equations. Of course
the explicit integration of most of these Lagrangian systems is too complicated to
integrate directly or even it is generically not possible. In these cases, it is necessary
to discretize the equations taking approximations at several points in time over the
interval of integration.

Among the different numerical integrators that one canderive for continuous higher-
order systems, one of the most successful ideas is to discretize first the variational
principle (instead of the equations of motion) and to derive the numerical method
applying discrete calculus of variations (Marsden andWest 2001;Veselov 1988;Wend-
landt and Marsden 1997). The advantage of this procedure is that automatically we
have preservation of some of the geometric structures involved, like symplectic forms
or preservation of momentum, moreover, a good behavior of the associated energy.
These methods have their roots in the optimal control literature in the 1960s (Jordan
and Polak 1964).

In previous approaches (see, e.g., Benito et al. 2006; Colombo et al. 2012; Colombo
et al. 2013), the theory of discrete variational mechanics for higher-order systems was
derived using a discrete Lagrangian Ld : Qk+1 → R where Qk+1 is the cartesian
product of k + 1 copies of the configuration manifold Q. There, k + 1 points are
used to approximate the positions and the higher-order velocities (such as the standard
velocities, accelerations, jerks) and to represent in this way elements of the higher-
order tangent bundle T (k)Q.

We will see in this paper that the most natural approach is to take a discrete
Lagrangian Ld : T (k−1)Q × T (k−1)Q → R since actually the discrete variational

123



J Nonlinear Sci (2016) 26:1615–1650 1617

calculus is not based on the discretization of the Lagrangian itself, but on the dis-
cretization of the associated action. We will see that a suitable approximation of the
action ∫ h

0
L(q, q̇, . . . , q(k)) dt

is given by a Lagrangian of the form Ld : T (k−1)Q × T (k−1)Q → R. Moreover,
we will derive a particular choice of discrete Lagrangian which gives an exact corre-
spondence between discrete and continuous systems, the exact discrete Lagrangian.
For instance, if we take the Lagrangian L(q, q̇, q̈) = 1

2 q̈
2, the corresponding exact

discrete Lagrangian Le
d : T Q × T Q → R is

Le
d(q0, v0, qh, vh) =

∫ h

0
L(q(t), q̇(t), q̈(t)) dt

= 6

h3
(q0 − qh)

2 + 6

h2
(q0 − qh)(v0 + vh) + 2

h

(
v20 + v0vh + v2h

)

where q(t) is the unique solution of the Euler–Lagrange equations for L verifying
q(0) = q0, q̇(0) = v0, q(h) = qh , q̇(h) = vh for h small enough (see Sect. 2).

Observe from the previous example that now this theory of variational integrators
for higher-order systems is even simpler, since it fits directly into the standard discrete
mechanics theory for a discrete Lagrangian of the form Ld : M × M → R where
M = T (k−1)Q. We will show that if the original Lagrangian is regular then so is
the exact discrete Lagrangian, in the sense of Marsden and West (2001). Moreover,
in the corresponding applications, for instance in optimal control theory or splines
theory, typically we are dealing with initial and final boundary conditions which are
not necessary discretized, in contrast to previously proposed methods Bloch et al.
(2009), Lee et al. (2008), Leok and Shingel (2012).

The paper is structured as follows. In Sect. 2, we show that a regular higher-order
Lagrangian system has a unique solution for given nearby endpoint conditions using a
direct variational proof of existence and uniqueness of the local boundary value prob-
lem, which employs a regularization procedure. In Sect. 3 we introduce the notion
of exact discrete Lagrangian for higher-order systems and we design the construction
of variational integrators for higher-order Lagrangian systems taking approximations
of the exact discrete Lagrangian. We obtain the discrete Euler–Lagrange equations
for a discrete Lagrangian defined in the cartesian product of two copies of T (k−1)Q.
Section 4 is devoted to the study of the relation between the discrete and continu-
ous dynamics. We show the relation between the discrete Legendre transformations
and the continuous one, and we also show that the exact discrete Lagrangian asso-
ciated with a higher-order regular Lagrangian is also regular. Finally, in Sect. 5, we
apply our techniques to study optimal control problems for fully actuated mechanical
systems.
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2 Existence and Uniqueness of Solutions for the Boundary Value
Problem

2.1 Higher-Order Tangent Bundles

First we recall some basic facts about the higher-order tangent bundle theory. For more
details, see Crampin et al. (1986) and León and Rodrigues (1985).

Let Q be a differentiable manifold.We introduce the following equivalence relation
in the set Ck(I, Q) of k-differentiable curves from the interval I ⊆ R to Q, where
0 ∈ I . By definition, two curves γ1 and γ2 belonging toCk(I, Q) have contact of order
k at q0 = γ1(0) = γ2(0) if there is a local chart (ϕ,U ) of Q such that q0 ∈ U and

ds

dt s
(ϕ ◦ γ1(t))

∣∣∣
t=0

= ds

dt s
(ϕ ◦ γ2(t))

∣∣∣
t=0

,

for all s = 0, . . . , k. The equivalence class of a curve γ will be denoted by [γ ](k)0 .
The set of equivalence classes will be denoted by T (k)Q and it is not hard to show
that it has a natural structure of differentiable manifold. Moreover, τ kQ : T (k)Q → Q

where τ kQ

([γ ](k)0

) = γ (0) is a fiber bundle called the tangent bundle of order k of Q.

Clearly, T (1)Q = T Q.
From a local chart q(0) = (qi ) on a neighborhood U of Q with i = 1, . . . , n =

dim Q, it is possible to induce local coordinates (q(0), q(1), . . . , q(k)) on T (k)U =
(τ kQ)−1(U ) ≡ U × (Rn)k . Sometimes we will resort to the usual notation q(0) ≡ (qi ),

q(1) ≡ (q̇i ) and q(2) ≡ (q̈i ).
There is a canonical embedding jk : T (k)Q → T T (k−1)Q defined as jk([γ ](k)0 ) =

[γ (k−1)](1)0 , where γ (k−1) is the lift of the curve γ to T (k−1)Q; that is, the curve

γ (k−1) : I → T (k−1)Q is given by γ (k−1)(t) = [γt ](k−1)
0 where γt (s) = γ (t + s). In

local coordinates,

jk
(
q(0), q(1), q(2), . . . , q(k)

)
=

(
q(0), q(1), . . . , q(k−1); q(1), q(2), . . . , q(k)

)
.

2.2 Hamilton’s Principle and Considerations about the Existence and
Uniqueness of Solutions

Let L : T (k)Q → R be a Lagrangian of order k ≥ 1, of class Ck+1. Since our result
will be local, we assume from now on that Q is an open subset ofRn . Take coordinates(
q(0), q(1), . . . , q(k)

)
on T (k)Q ≡ Q × (Rn)k as before. We suppose that L is regular

in the sense that the Hessian matrix

(
∂2L

∂q(k)i∂q(k) j

)

is a regular matrix. Let also h > 0 be given. We can formulate Hamilton’s principle
as follows.
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Variational Principle 1 Find a Ck curve q : [0, h] → Q such that it is a critical
point of the action

Sh =
∫ h

0
L

(
q(t), q̇(t), . . . , q(k)(t)

)
dt

among those curves whose first k − 1 derivatives are fixed at the endpoints, that is,
with given values for q(0), q̇(0), . . . , q(k−1)(0) and q(h), q̇(h), . . . , q(k−1)(h).

Hamilton’s principle is a constrained problem in the Banach space Ck([0, h],Rn).
Now if q(t) is a solution to this problem that is not only Ck but C2k , then it satisfies
the well-known kth-order Euler–Lagrange equations1

k∑
j=0

(−1) j
d j

dt j
∂L

∂q( j)
= 0. (1)

For a regular Lagrangian, (1) can bewritten as an explicit 2k-order ordinary differential
equation. Existence and uniqueness of solutions for the initial value problem can be
guaranteedusingbasicODE theory.Doing the same for for the boundary value problem
of finding a solution q(t) of (1) with given values for q(0), q̇(0), . . . , q(k−1)(0) and
q(h), q̇(h), . . . , q(k−1)(h) requires different techniques. For instance, in Agarwal
(1986, Ch. 9) it is shown that there exists a unique solution to an explicit 2k-order
ODE with this kind of boundary conditions, for small enough h and close enough
boundary values. See also Eldering (2012) (Appendix A) for results on the existence,
uniqueness and smooth dependence on parameters of solutions of ODEs.

In principle, however, there could exist solutions to Hamilton’s variational prin-
ciple that are Ck but not C2k , and thus do not satisfy (1). Therefore, uniqueness of
solutions to the variational principle cannot yet be guaranteed. One possibility for
avoiding this situation is stating Hamilton’s principle in the (smaller) C2k context
from the beginning. In this section we proceed differently, acknowledging the fact
the variational principle makes sense in the Ck setting. We prove local existence and
uniqueness of Ck solutions to Hamilton’s principle from a direct variational point of
view. We will see that these solutions turn out to be automatically C2k , so they satisfy
Euler–Lagrange equations a posteriori.

Our argument for the existence and uniqueness of solutions will involve a regu-
larization procedure which follows closely the proof by Patrick (2006) for first-order
Lagrangians; the formulas, of course, reduce to those in Patrick (2006) for order 1, but
we introduce an additional modification using orthonormal polynomials. See also But-
tazzo et al. (1998), Giaquinta and Hildebrandt (1996) for discussions on the regularity
of extremals for variational problems.

1 For k = 1, recall writing δq̇ = ˙(δq) when deriving the Euler–Lagrange equations, assuming that q is C2.
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2.3 Nonregularity of Hamilton’s Principle

We want to determine whether there exists a unique solution curve to Hamilton’s
principle, given endpoint conditions that are close enough. The main obstacle for a
straightforward affirmative answer is that the local boundary value problem as stated
above is nonregular at h = 0. That is, the constraint function g : Ck([0, h], Q) →
(Rn)k × (Rn)k

g : q(·) �→
(
q(0), q̇(0), . . . , q(k−1)(0); q(h), q̇(h), . . . , q(k−1)(h)

)

maps into the diagonal of T (k−1)Q × T (k−1)Q for h = 0 and is not therefore a
submersion. For h 	= 0, the constraint function is a submersion.

The approach consists in replacing this problem by an equivalent one that is regular
at h = 0, and showing that locally there is a unique solution to the regularized problem.

2.4 Regularization

First we replace the space of curves on Q in the variational problem by the space of
curves on T (k)Q and include additional constraints. Denote an arbitrary curve by

(
q(t) = q[0](t), q[1](t), . . . , q[k](t)

)
∈ T (k)Q ≡ Q × (Rn)k,

t ∈ [0, h]. Here we have modified our notation for coordinates on T (k)Q, using
superscripts in square brackets to make a distinction with the actual derivatives of
q(t).

Variational Principle 2 Find a curve (q[0](t), q[1](t), . . . , q[k](t)) on T (k)Q, with
q[l] ∈ Ck−l([0, h],Rn), l = 0, . . . , k, such that it is a critical point of

Sh =
∫ h

0
L

(
q[0](t), q[1](t), . . . , q[k](t)

)
dt

subject to the constraints

q[ j+1](t) = dq[ j]

dt
(t), q[ j](0) = q[ j]

1 , q[ j](h) = q[ j]
2 , j = 0, . . . , k − 1,

where (q[0]
i , q[1]

i , . . . , q[k−1]
i ), i = 1, 2, are given points in T (k−1)Q.

Now reparameterize the curve by defining

Q[ j](u) = q[ j](hu), j = 0, . . . , k, u ∈ [0, 1].
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For h > 0, the curve (Q[0](u), . . . , Q[k](u)) satisfies an equivalent variational problem
as follows. Since h is a constant for each instance of the problem, we can use

1

h

∫ h

0
L

(
q[0](t), q[1](t), . . . , q[k](t)

)
dt =

∫ 1

0
L

(
Q[0](u), . . . , Q[k](u)

)
du

as an objective function. The first set of constraints becomes

0 = dq[ j]

dt
(t) − q[ j+1](t) =

(
1

h

dQ[ j]

du
(u) − Q[ j+1](u)

)
u=t/h

where j = 0, . . . , k − 1.
The reparametrized variational principle is the following.

Variational Principle 3 Find a curve
(
Q[0](u), . . . , Q[k](u)

)
on T (k)Q, Q[l] ∈

Ck−l([0, 1],Rn), l = 0, . . . , k, that is a critical point of

S =
∫ 1

0
L

(
Q[0](u), . . . , Q[k](u)

)
du,

subject to the constraints

dQ[ j]

du
(u) = hQ[ j+1](u), (2)

Q[ j](0) = q[ j]
1 , (3)

Q[ j](1) = q[ j]
2 , (4)

where j = 0, . . . , k − 1, and
(
q[0]
i , q[1]

i , . . . , q[k−1]
i

)
, i = 1, 2, are given points in

T (k−1)Q.

The objective S does not depend on h, and the constraints are smooth through h = 0.

Remark 2.1 For h = 0, the constraints (2) imply that Q[0](u), …, Q[k−1](u) remain
constant, which restricts the possible values of the endpoint conditions in order to
have a compatible set of constraints. More precisely, q[ j]

1 = q[ j]
2 for j = 0, . . . , k−1;

otherwise there would be no curves satisfying the constraints. This kind of restriction
also appears in the original variational principle 1. Moreover, the problem becomes
the unconstrained problem of finding a curve Q[k](u) ∈ C0([0, 1],Rn) such that it is
a critical point of

∫ 1

0
L

(
q[0], . . . , q[k−1], Q[k](u)

)
du.

This means
∂L

∂q[k]
(
q[0], q[1], . . . , q[k−1], Q[k](u)

)
= 0.
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Differentiating with respect to u, and using the fact that the Lagrangian is regular,
we obtain that Q[k](u) is constant.

In preparation for the next step for regularization, let us solve the constraints (2) to
get

Q[ j](u) = Q[ j](0) + h
∫ u

0
Q[ j+1](s) ds, j = 0, . . . , k − 1.

This means that the functions Q[ j](u), j = 0, . . . , k − 1, can be expressed in terms of
Q[ j](0), …, Q[k−1](0), the function Q[k](u) and h. For example, for k = 2 we have

Q[1](u) = Q[1](0) + h
∫ u

0
Q[2](s) ds,

Q[0](u) = Q[0](0) + h
∫ u

0
Q[1](s) ds

= Q[0](0) + huQ[1](0) + h2
∫ u

0

∫ s

0
Q[2](τ ) dτ ds

= Q[0](0) + huQ[1](0) + h2
∫ u

0
(u − τ)Q[2](τ ) dτ.

For a general k, and for j = 0, . . . , k−1, an iterated change of order of integration
yields

Q[ j](u) = Q[ j](0)+
k− j−1∑
i=1

hiui

i ! Q[ j+i](0)+hk− j
∫ u

0

(u − s)k− j−1

(k − j − 1)! Q
[k](s) ds. (5)

If the upper bound of summation is less than the lower bound, the sum is understood
to be 0.

Note that taking u = 1, the final endpoint data (q[0]
2 , . . . , q[k−1]

2 ) can now bewritten
as

q[ j]
2 = Q[ j](1) = q[ j]

1 +
k− j−1∑
i=1

hi

i ! q
[ j+i]
1 + hk− j

∫ 1

0

(1 − s)k− j−1

(k − j − 1)! Q
[k](s) ds, (6)

so we define

z[ j] =
∫ 1

0

(1 − s)k− j−1

(k − j − 1)! Q
[k](s) ds = 1

hk− j

⎛
⎝q[ j]

2 −
k− j−1∑
i=0

hi

i ! q
[ j+i]
1

⎞
⎠ . (7)

We will discuss the case h = 0 in Remark 2.2.
Now replace the curves and endpoint data by just Q[k](u), (q[0]

1 , . . . , q[k−1]
1 ), and

(z[0], . . . , z[k−1]), to get a new variational principle.
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Variational Principle 4 Given h, (q[0]
1 , . . . , q[k−1]

1 ) and (z[0], . . . , z[k−1]), find a con-
tinuous curve Q[k] : [0, 1] → R

n that is a critical point of

S =
∫ 1

0
L

(
Q[0](u), . . . , Q[k](u)

)
du,

where Q[0](u), …, Q[k−1](u) are defined as in (5) by

Q[ j](u) = q[ j]
1 +

k− j−1∑
i=1

hiui

i ! q[ j+i]
1 + hk− j

∫ u

0

(u − s)k− j−1

(k − j − 1)! Q
[k](s) ds,

j = 0, . . . , k − 1

subject to the constraints

∫ 1

0

(1 − s)k− j−1

(k − j − 1)! Q
[k](s) ds = z[ j], j = 0, . . . , k − 1.

Observe that the constraint functions do not depend on h and are linear on the curve
Q[k]. This variational principle is already regular through h = 0, as we will see when
we proceed to find the solutions later.

Remark 2.2 The data q[0]
1 , …, q[k−1]

1 , z[0], …, z[k−1] can be transformed into the end-
point conditions for the variational principle 3 in a straightforward way, for any h,
using (6) and (7). The converse (7) is possible only for h 	= 0, in principle. However,
if h = 0 let (Q[0](u), . . . , Q[k](u)) a solution for the variational principle 3 with
boundary conditions (q[0]

1 , . . . , q[k−1]
1 ) and (q[0]

2 , . . . , q[k−1]
2 ). Define z[ j] by the con-

straint in (4). Since Q[k] is constant and (1−s)k− j−1

(k− j−1)! > 0 in (0, 1), to different values

of Q[k] correspond different values of z[ j]. Then Q[k] is a solution of 4 with boundary
conditions q[0]

1 , …, q[k−1]
1 , z[0], …, z[k−1].

Finally, we will introduce a modification that will enable us to carry out the com-
putations in the next section easily. Consider the inner product on C0([0, 1],R) given
by

〈 f, g〉 =
∫ 1

0
f (s)g(s) ds.

If f ∈ C0([0, 1],R) and V = (V1, . . . , Vn) ∈ C0([0, 1],Rn)we define the bilinear
operation

〈〈 f, V 〉〉 =
∫ 1

0
f (s)V (s) ds = (〈 f, V0〉, . . . , 〈 f, Vn〉) ∈ R

n .
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Then the integrals appearing in the constraints in the variational principle 4 are
〈〈a[k]

j , Q[k]〉〉, where a[k]
j are the polynomials

a[k]
j (s) = (1 − s)k− j−1

(k − j − 1)! , j = 0, . . . , k − 1.

These form a basis of the space of polynomials of degree at most k−1. Let us consider
a basis b[k]

j (s), j = 0, . . . , k − 1, of the same space of polynomials consisting of

orthonormal polynomials on [0, 1], and let (γ [k],i
j ), where i, j = 0, . . . , k − 1, be the

invertible real matrix such that a[k]
j (s) = γ

[k],i
j b[k]

i (s). For example, for k = 2,

a[2]
0 (s) = 1 − s, a[2]

1 (s) = 1,

and we can take for instance the orthonormal basis

b[2]
0 (s) = √

3(1 − 2s), b[2]
1 (s) = 1;

therefore,

γ
[2],0
0 = 1

2
√
3
, γ

[2],1
0 = 1

2 , γ
[2],0
1 = 0, γ

[2],1
1 = 1.

Using this matrix, the constraints can be rewritten as

z[ j] = 〈〈a[k]
j , Q[k]〉〉 = γ

[k],i
j 〈〈b[k]

i (s), Q[k]〉〉,

for j = 0, . . . , k−1. This allows us to reformulate the variational principle in an equiv-
alent way by replacing the data (z[0], . . . , z[k−1]) and constraints 〈〈a[k]

j , Q[k]〉〉 = z[ j]

by new data (w[0], . . . , w[k−1]) and constraints 〈〈b[k]
j , Q[k]〉〉 = w[ j], j = 0, . . . , k−1.

The old and new data are related by

k−1∑
i=0

γ
[k],i
j w[i] = z[ j]. (8)

Variational Principle 5 Given h, (q[0]
1 , . . . , q[k−1]

1 ) and (w[0], . . . , w[k−1]), find a
continuous curve Q[k] : [0, 1] → R

n that is a critical point of

Sh =
∫ 1

0
L

(
Q[0](u), . . . , Q[k](u)

)
du,

where Q[0](u), …, Q[k−1](u) are defined by

Q[ j](u) = q[ j]
1 +

k− j−1∑
i=1

hiui

i ! q[ j+i]
1 + hk− j

∫ u

0

(u − s)k− j−1

(k − j − 1)! Q
[k](s) ds, (9)
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subject to the constraints

∫ 1

0
b[k]
j (s)Q[k](s) ds = w[ j], j = 0, . . . , k − 1.

2.5 Solution of the Regularized Problem

Next, we will study the existence and uniqueness of solutions associated with varia-
tional principle 5. We will show that the boundary value problem is well posed, and
that even though the variational problem is posed on the space of Ck solutions, the
extremizers are C2k and hence satisfy the Euler–Lagrange equations.

We start the proof by showing the Ck+1 differentiability of the action Sh for the
variational principle 5. Next, we compute the gradient of Sh in order to solve the
equation “gradient of Sh perpendicular to constraint space.” After introducing an
orthogonal decomposition of the constraint space we obtain that Sh has a critical point
on the constraint set if and only if the orthogonal projection of the gradient of Sh is
0 and hence we can find the stationary curve for the variational principle 5. Using
the implicit function theorem we obtain existence and uniqueness of solutions for the
variational principle 5. Finally, we reverse the regularization to obtain a unique C2k

solution of the original variational principle.

2.5.1 Step 1—Ck+1 Differentiability of Sh:

Let Sh be given as in the variational principle 5, regarded as a real-valued map defined
on the Banach spaceC0([0, 1],Rn) of curves Q[k](u). We can also consider its restric-
tion to the Banach space Ck([0, 1],Rn). We are going to use the following lemma
Abraham et al. (1988).

Lemma 2.3 (Omega Lemma) Let E, F be Banach spaces, U open in E, and M a
compact topological space. Let g : U → F be a Cr map, r > 0. The map

�g : C0(M,U ) → C0(M, F) defined by �g( f ) = g ◦ f

is also Cr , and D�g( f ) · h = [(Dg) ◦ f ] · h.
The objective Sh is the composition of the maps

C0([0, 1],Rn)
i

C0([0, 1], T (k)Q)
�L

C0([0, 1],R)

∫
R

where i is defined by Q[k](u) �→ (Q[0](u), . . . , Q[k](u)). Here Q[0](u), . . . ,
Q[k−1](u) stand for the right-hand sides of (9). Both i and

∫
are bounded affine and

therefore C∞. By the Omega Lemma, �L is Ck+1 because L is Ck+1, and therefore
so is Sh .

If we regard Sh as defined on Ck([0, 1],Rn), we should append the inclusion
Ck([0, 1],Rn) ↪→ C0([0, 1],Rn) to the left side of the diagram above. This inclusion
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is C∞ because it is linear and bounded (‖Q[k]‖C0 ≤ ‖Q[k]‖Ck for all Q[k]). Then Sh
is Ck+1 also as a map defined on Ck([0, 1],Rn). In order to cover both cases, from
now on l will denote 0 or k interchangeably.

2.5.2 Step 2—Computing the Gradient of Sh:

Weneed a suitable notion of the gradient of Sh , in order to findwhere it is perpendicular
to the constraint space. In order to do that, let us first compute dSh[Q[k](u)], for Q[k] of
class Cl . The functions Q[0](u), …, Q[k−1](u) are defined by (9). Since Sh is smooth,
we will compute dSh using directional derivatives. For an arbitrary δQ[k] of class Cl ,
take a deformation Q[k]

ε (u) = Q[k](u) + εδQ[k](u) of Q[k](u). For j = 0, . . . , k − 1,
define the corresponding lower order curves as in (9) by

Q[ j]
ε (u) = q[ j]

1 +
k− j−1∑
i=1

hiui

i ! q[ j+i]
1 + hk− j

∫ u

0

(u − s)k− j−1

(k − j − 1)! Q
[k]
ε (s) ds, (10)

so Q[ j]
0 (u) = Q[ j](u) and

d

dε

∣∣∣∣
ε=0

Q[ j]
ε (u) = hk− j

∫ u

0

(u − s)k− j−1

(k − j − 1)! δQ[k](s) ds.

Denoting a[k]
j (u, s) = (u − s)k− j−1/(k − j − 1)! and Q(u) = (Q[0](u), . . . ,

Q[k](u)) for short, we have

dSh [Q[k](u)] · δQ[k](u) = d

dε

∣∣∣∣
ε=0

∫ 1

0
L

(
Q[0]

ε (u), . . . , Q[k]
ε (u)

)
du

=
∫ 1

0

⎛
⎝k−1∑

j=0

∂L

∂q[ j] (Q(u))hk− j
∫ u

0
a[k]
j (u, s)δQ[k](s) ds + ∂L

∂q[k] (Q(u))δQ[k](u)

⎞
⎠ du

=
k−1∑
j=0

∫ 1

0

∫ 1

s

∂L

∂q[ j] (Q(u))hk− j a[k]
j (u, s)δQ[k](s) du ds +

∫ 1

0

∂L

∂q[k] (Q(u))δQ[k](u) du

=
k−1∑
j=0

∫ 1

0

∫ 1

u

∂L

∂q[ j] (Q(s))hk− j a[k]
j (s, u)δQ[k](u) ds du +

∫ 1

0

∂L

∂q[k] (Q(u))δQ[k](u) du

=
∫ 1

0

⎛
⎝k−1∑

j=0

∫ 1

u

∂L

∂q[ j] (Q(s))hk− j a[k]
j (s, u) ds + ∂L

∂q[k] (Q(u))

⎞
⎠ δQ[k](u) du.

For each u ∈ [0, 1], the first factor in the integrand of the last expression is in (Rn)∗.
If 
 : (Rn)∗ → R

n denotes the index raising operator associated to the Euclidean inner
product, define

∇Sh[Q[k](u)](u) :=
⎛
⎝k−1∑

j=0

∫ 1

u

∂L

∂q[ j] (Q(s))hk− j a[k]
j (s, u) ds + ∂L

∂q[k] (Q(u))

⎞
⎠




.
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Since ∂L/∂q[0], …, ∂L/∂q[k] are Ck and the curve Q is Cl (l = 0 or l = k) , then
∇Sh[Q[k](u)] is Cl([0, 1],Rn). Then we have a vector field

∇Sh : Cl([0, 1],Rn) → Cl([0, 1],Rn)

which we call the gradient of Sh . By the Omega Lemma, ∇Sh is a Ck map.

2.5.3 Step 3—Orthogonal Decomposition of the Constraint Space and Critical
Points of Sh:

Let us now compute the tangent space to the constraint set. If we consider the inner
product on Cl([0, 1],Rn) given by

�V,W � =
∫ 1

0
V (u) · W (u) du,

then

dSh[Q[k](u)] · δQ[k](u) = �∇Sh[Q[k](u)], δQ[k](u)�.

The constraints g j [Q[k](s)] := 〈〈b[k]
j , Q[k]〉〉 = w[ j], j = 0, . . . , k − 1, in the

variational principle 5 are bounded and linear, and thereforeC∞, and the corresponding
derivatives are the same functions g j . Define

g = (g0, . . . , gk−1) : Cl([0, 1],Rn) → (Rn)k

so

E = Ker g ⊂ Cl([0, 1],Rn)

is the tangent space to the constraint set. They are actually parallel since the constraints
are linear. It is not difficult to show using the definitions that the space

E⊥ = {c jb[k]
j | c0, . . . , ck−1 ∈ R

n}

ofRn-valued polynomials of degree at most k−1 is indeed the �, �-orthogonal comple-
ment of E , which is then a split subspace (see “Appendix” for a proof). The orthogonal
projection P : Cl([0, 1],Rn) = E ⊕ E⊥ → E is given by

P
(
δQ[k](u)

)
= δQ[k](u) −

k−1∑
j=0

〈〈b[k]
j , δQ[k]〉〉 b[k]

j .

Now Sh has a critical point on the constraint set (for any value of the constraints)
if and only if the projection P∇Sh of ∇Sh to the tangent space E of the constraint set
is 0.
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2.5.4 Step 4—Existence and Uniqueness for the Regularized Problem:

In order to find solutions to the variational principle 5, we solve

P∇Sh(Q
[k]) = P∇Sh(Q

[k]
E ⊕ Q[k]

E⊥) = 0

for Q[k]
E , near

Q[k] = 0, w[0] = · · · = w[k−1] = 0,

q[0]
1 = q̄[0], . . . , q[k−1]

1 = q̄[k−1], h = 0.

This can be solved using the implicit function theorem by requiring that the partial
derivative of P∇Sh(Q[k]) at the point Q[k] = 0 with respect to the space E is a
linear isomorphism. The variables w[0], . . . , w[k−1], q[0]

1 , . . . , q[k−1]
1 and h are seen

as parameters that can move in some neighborhood. Note that it is not necessary
to solve for Q[k]

E⊥ since it is completely determined by w[0], . . . , w[k−1] using the
constraint equations in variational principle 5.

In order to compute this partial derivative, take a deformation of Q[k] = 0 of the
form Q[k]

ε = εδQ[k]
E , where δQ[k]

E ∈ E . Recalling (10) and noting that h = 0, we have

d

dε

∣∣∣∣
ε=0

P
∂L

∂q[k] (Q
[0]
ε (u), . . . , Q[k]

ε (u)) = d

dε

∣∣∣∣
ε=0

P
∂L

∂q[k] (q̄
[0], . . . , q̄[k−1], Q[k]

ε (u))

= P
∂2L

∂q[k]2 (q̄[0], . . . , q̄[k−1], 0)δQ[k]
E (u) = ∂2L

∂q[k]2 (q̄[0], . . . , q̄[k−1], 0)δQ[k]
E (u)

−
k−1∑
j=0

〈〈
b[k]
j ,

∂2L

∂q[k]2 (q̄[0], . . . , q̄[k−1], 0)δQ[k]
E

〉〉
b[k]
j

= ∂2L

∂q[k]2 (q̄[0], . . . , q̄[k−1], 0)δQ[k]
E (u).

Here the inner products vanish because ∂2L
∂q[k]2 (q̄

[0], . . . , q̄[k−1], 0) is a constant

matrix (that is, it does not depend on u) and 〈〈b[ j], δQ[k]
E 〉〉 = 0 for j = 0, . . . , k − 1.

Then the derivative is precisely ∂2L
∂q[k]2 (q̄

[0], . . . , q̄[k−1], 0), seen as a linearmap from
E into itself, and if L is regular then it is an isomorphism.

By the implicit function theorem, there are neighborhoods W1 ⊆ (Rn)k ×
(Rn)k × R (with variables (q[0]

1 , . . . , q[k−1]
1 ;w[0], . . . , w[k−1]; h)) containing (q̄[0],

. . . , q̄[k−1]; 0, . . . , 0; 0) and Wl
2 ⊆ Cl([0, 1],Rn) containing the constant curve

Q[k](u) = 0, and a Ck map ψ : W1 → Wl
2 such that for each (q[0]

1 , . . . , q[k−1]
1 ;w[0],

. . . , w[k−1]; h) ∈ W1, the curve

Q[k] = ψ(q[0]
1 , . . . , q[k−1]

1 ;w[0], . . . , w[k−1]; h) ∈ Cl([0, 1],Rn)
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is the unique critical point in Wl
2 of the variational problem 5. Thus, ψ maps ini-

tial conditions, constraint values (which encode the final endpoint conditions for the
original problem) and h into Cl curves.

Let us now consider the cases l = 0 and l = k separately. Taking l = k, ψ has
values in Wk

2 ⊆ Ck([0, 1],Rn). Taking l = 0, ψ has values in W 0
2 ⊆ C0([0, 1],Rn).

However, since Ck([0, 1],Rn) ⊂ C0([0, 1],Rn), this ψ also provides the unique
solution among the C0 curves in a C0-open neighborhood of the curve u �→ 0, say
{Q[k](u) | ‖Q[k]‖0 < ε}.

2.5.5 Step 5—Reverse of the Regularization:

Let us now reverse the regularization in order to obtain a uniqueC2k solution of the vari-
ational principle 1.Leth 	= 0. For (q1, q2) = ((q[0]

1 , . . . , q[k−1]
1 ), (q[0]

2 , . . . , q[k−1]
2 )) ∈

(Rn)k×(Rn)k the corresponding values of z[0], . . . , z[k−1] are given by (7) and the val-
ues ofw[0], . . . , w[k−1] can be computed from (8) using the inverse matrix of

(
γ

[k],i
j

)
.

This defines a smooth function (w[0], . . . , w[k−1]) = �(q1, q2, h). Note that the con-
dition that q1 and q2 are close translates into the condition that (w[0], . . . , w[k−1]) is
close to 0.

Let h > 0 be such that (q̄[0], . . . , q̄[k−1]; 0, . . . , 0; h) ∈ W1. Define

W̃1 = {(q1, q2) ∈ (Rn)k × (Rn)k | (q1;�(q1, q2, h); h) ∈ W1}

and for each (q1, q2) =
(
(q[0]

1 , . . . , q[k−1]
1 ), (q[0]

2 , . . . , q[k−1]
2 )

)
∈ W1 define the curve

Q[0]
(q1,q2)

(u) according to (5) as

Q[0]
(q1,q2)

(u) =
k−1∑
i=0

hiui

i ! q[i]
1 + hk

∫ u

0

(u − s)k−1

(k − 1)! ψ (q1;�(q1, q2, h); h) (s) ds.

Since ψ takes values in the Ck curves, Q[0]
(q1,q2)

(u) is C2k by the reasoning leading to
equation (5).

Now reparameterize with t = hu to get a C2k curve

q[0]
(q1,q2)

(t) =
k−1∑
i=0

t i

i !q
[i]
1 +

(
t

u

)k ∫ t/h

0

(t/h − s)k−1

(k − 1)! ψ (q1;�(q1, q2, h); h) (s) ds

on Q, defined for t ∈ [0, h]. This curve is the unique solution of the variational
principle 1 with endpoint conditions q1 and q2.

This solution isC2k , and unique among the curves corresponding to Q[k] continuous
with ‖Q[k]‖0 < ε. These are the Ck curves q(t) on Q with ‖q(k)‖0 < ε/hk , which
are the Ck curves in some Ck neighborhood of the constant curve t �→ q̄[0].

123



1630 J Nonlinear Sci (2016) 26:1615–1650

3 The Exact Discrete Lagrangian and Discrete Equations for
Second-Order Systems

Next, we will consider second-order Lagrangian systems, motivated by the study of
optimal control problems. Let Q be a configuration manifold and let L : T (2)Q → R

be a regular Lagrangian.

Definition 3.1 Given a small enough2 h > 0, the exact discrete Lagrangian
Le
d : T Q × T Q → R is defined by

Le
d (q0, q̇0, q1, q̇1) =

∫ h

0
L (q(t), q̇(t), q̈(t)) dt,

where q : [0, h] → Q is the unique solution of the Euler–Lagrange equations for the
second-order Lagrangian L ,

d2

dt2
∂L

∂q̈
− d

dt

∂L

∂q̇
+ ∂L

∂q
= 0,

satisfying the boundary conditions q(0) = q0, q(h) = q1, q̇(0) = q̇0 and q̇(h) = q̇1.

Strictly speaking, the exact discrete Lagrangian is defined not on T Q × T Q but
on a neighborhood of the diagonal. For the sake of simplicity, we will not make
this distinction. Our idea is to take a discrete Lagrangian Ld : T Q × T Q → R as an
approximation of Le

d : T Q×T Q → R, to construct variational integrators in the same
way as in discrete mechanics (see Sect. 4). In other words, for given h > 0 we define
Ld(q0, v0, q1, v1) as an approximation of the action integral along the exact solution
curve segment q(t) with boundary conditions q(0) = q0, q̇(0) = v0, q(h) = q1, and
q̇(h) = v1. For example, we can use the formula

Ld(q0, v0, q1, v1) = hL (κ(q0, v0, q1, v1), χ(q0, v0, q1, v1), ζ(q0, v0, q1, v1)) ,

where κ , χ and ζ are functions of (q0, v0, q1, v1) ∈ T Q×T Q which approximate the
configuration q(t), the velocity q̇(t) and the acceleration q̈(t), respectively, in terms
of the initial and final positions and velocities. We can also, for instance, consider
suitable linear combinations of discreteLagrangians of this type, for instance,weighted
averages of the type

Ld(q0, v0, q1, v1) = 1

2
L

(
q0, v0,

v1 − v0

h

)
+ 1

2
L

(
q1, v1,

v1 − v0

h

)
,

or other combinations.

2 By this we mean, from now on, that there exists h0 > 0 such that for all h ∈ (0, h0) the definition or
proof holds.
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For completeness, we will derive the discrete equations for the Lagrangian
Ld : T Q × T Q → R, but these results are a direct translation of Marsden and West
Marsden and West (2001) to our case.

Given the grid {tk = kh | k = 0, . . . , N }, Nh = T , define the discrete path
space Pd(T Q) := {(qd , vd) : {tk}Nk=0 → T Q}. We will identify a discrete trajec-
tory (qd , vd) ∈ Pd(T Q) with its image (qd , vd) = {(qk, vk)}Nk=0 where (qk, vk) :=
(qd(tk), vd(tk)). The discrete action Ad : Pd(T Q) → R along this sequence is calcu-
lated by summing the discrete Lagrangian evaluated at each pair of adjacent points of
the discrete path, that is,

Ad(qd , vd) :=
N−1∑
k=0

Ld(qk, vk, qk+1, vk+1).

We would like to point out that the discrete path space is isomorphic to the smooth
product manifold which consists on N + 1 copies of T Q, the discrete action inherits
the smoothness of the discrete Lagrangian, and the tangent space T(qd ,vd )Pd(T Q) at
(qd , vd) is the set ofmapsa(qd ,vd ) : {tk}Nk=0 → T T Q such that τT Q◦a(qd ,vd ) = (qd , vd)
where τT Q : T T Q → T Q is the canonical projection.

Hamilton’s principle seeks discrete curves {(qk, vk)}Nk=0 that satisfy

δ

N−1∑
k=0

Ld(qk, vk, qk+1, vk+1) = 0

for all variations {(δqk, δvk)}Nk=0 vanishing at the endpoints. This is equivalent to the
discrete Euler–Lagrange equations

D3Ld(qk−1, vk−1, qk, vk) + D1Ld(qk, vk, qk+1, vk+1) = 0, (11a)

D4Ld(qk−1, vk−1, qk, vk) + D2Ld(qk, vk, qk+1, vk+1) = 0, (11b)

for 1 ≤ k ≤ N − 1.
Given a solution {q∗

k , v∗
k }k∈Z of equations (11) and assuming that the 2n×2nmatrix

(
D13Ld(qk, vk, qk+1, vk+1) D14Ld(qk, vk, qk+1, vk+1)

D23Ld(qk, vk, qk+1, vk+1) D24Ld(qk, vk, qk+1, vk+1)

)

is nonsingular, it is possible to define the (local) discrete flow FLd : Uk ⊂ T Q×T Q →
T Q × T Q mapping (qk−1, vk−1, qk, vk) to (qk, vk, qk+1, vk+1) from (11) where Uk

is a neighborhood of the point (q∗
k−1, v

∗
k−1, q

∗
k , v∗

k ). The simplecticity and momentum
preservation of the discrete flow is derived in Marsden and West (2001).

Example 3.2 (Cubic splines) Let Q = R
n and L : T (2)Q ≡ (Rn)3 → R be the

second-order Lagrangian given by L(q, q̇, q̈) = 1
2 q̈

2.
It is well known that the solutions to the corresponding Euler–Lagrange equations

q(4) = 0 are the so-called cubic splines q(t) = at3+bt2 +ct +d, for a, b, c, d ∈ R
n .

We define Ld : (Rn × R
n) × (Rn × R

n) → R as follows. Write
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q(0) = q(h) − hq̇(h) + h2

2
q̈(h) + O(h3), (12a)

q(h) = q(0) + hq̇(0) + h2

2
q̈(0) + O(h3). (12b)

Given sufficiently close (q0, v0), (q1, v1) ∈ T Q we can use equations (12) to obtain
approximations of the acceleration of the exact solution joining these boundary con-
ditions at time h, which we call

a0 = 2

h2
(q1 − q0 − hv0) and a1 = 2

h2
(q0 − q1 + hv1).

Then we define

Ld(q0, v0, q1, v1) = h

2
(L(q0, v0, a0) + L(q1, v1, a1))

= (hv1 + q0 − q1)2

h3
+ (−hv0 − q0 + q1)2

h3
.

Solving the discrete second-order Euler–Lagrange equations for this discrete
Lagrangian, the evolution of the discrete trajectory is

qk+1 = qk−1 + 2hvk, (13a)

vk+1 = vk−1 + 4

(
vk − qk − qk−1

h

)
. (13b)

In the following section we will continue this example and show some simulations.

3.1 Discrete Legendre Transforms

We define the discrete Legendre transforms F
+Ld ,F

−Ld : T Q × T Q → T ∗T Q
which maps the space T Q × T Q into T ∗T Q. These are given by

F
+Ld(q0, v0, q1, v1) = (q0, v0,−D1Ld(q0, v0, q1, v1),−D2Ld(q0, v0, q1, v1)) ,

F
−Ld(q0, v0, q1, v1) = (q1, v1, D3Ld(q0, v0, q1, v1), D4Ld(q0, v0, q1, v1)) .

If both discrete fiber derivatives are locally diffeomorphisms for nearby (q0, v0) and
(q1, v1), then we say that Ld is regular.

Using the discrete Legendre transforms the discrete Euler–Lagrange equations (11)
can be rewritten as

F
−Ld(qk, vk, qk+1, vk+1) = F

+Ld(qk−1, vk−1, qk, vk).
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It will be useful to note that

F
−Ld ◦ FLd (q0, v0, q1, v1) = F

−Ld(q1, v1, q2, v2)

= (q1, v1, −D1Ld(q1, v1, q2, v2), −D2Ld(q1, v1, q2, v2))

= (q1, v1, D3Ld(q0, v0, q1, v1), D4Ld(q0, v0, q1, v1))

= F
+Ld(q0, v0, q1, v1),

that is,
F

+Ld = F
−Ld ◦ FLd . (14)

Remark 3.3 It is easy to extend this framework to higher-order mechanical systems.
Let L : T (�)Q → R be a regular higher-order Lagrangian. Given a small enough
h > 0, the exact discrete Lagrangian Le

d : T (�−1)Q × T (�−1)Q → R is defined by

Le
d

(
q(0)
0 , q(1)

0 , . . . , q(�−1)
0 ; q(0)

1 , q(1)
1 , . . . , q(�−1)

1

)
=

∫ h

0
L

(
q(t), q̇(t), . . . , q(�)(t)

)
dt,

where q(t) : I ⊂ R → Q is the unique solution of the Euler–Lagrange equations for
the higher-order Lagrangian L ,

�∑
j=0

(−1) j
d j

dt j
∂L

∂q( j)
= 0,

satisfying the boundary conditions q(0) = q(0)
0 , q̇(0) = q(1)

0 , . . . , q(�−1)(0) =
q(�−1)
0 , q(h) = q(0)

1 , q̇(h) = q(1)
1 , . . . , q(�−1)(h) = q(�−1)

1 .
The exact discrete Lagrangian is actually defined on a neighborhood of the diagonal

of T (�−1)Q×T (�−1)Q.We take Ld : T (�−1)Q×T (�−1)Q → R to be an approximation
of Le

d in order to construct variational integrators for higher-ordermechanical systems.

Given a discrete path {(q(0)
k , . . . , q(�−1)

k ) ∈ T (�−1)Q}|Nk=0, the corresponding dis-
crete action is defined as

Ad :=
N−1∑
k=0

Ld

(
q(0)
k , . . . , q(�−1)

k ; q(0)
k+1, . . . , q

(�−1)
k+1

)
.

Hamilton’s principle seeks discrete paths that satisfy δAd = 0 for all variations
{(δq(0)

k , . . . , δq(�−1)
k )|Nk=0} vanishing at the endpoints k = 0, N . This is equivalent to

the discrete higher-order Euler–Lagrange equations for Ld :

Di+�Ld

(
q(0)
k−1, . . . , q

(�−1)
k−1 ; q(0)

k , . . . , q(�−1)
k

)

+ Di Ld

(
q(0)
k , . . . , q(�−1)

k ; q(0)
k+1, . . . , q

(�−1)
k+1

)
= 0

for i = 1, . . . , � and k = 1, . . . , N − 1.
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4 Relationship Between Discrete and Continuous Variational Systems

Let L : T (2)Q → R be a regular Lagrangian and, for small enough h > 0, consider
the exact discrete Lagrangian defined before, that is, a function Le

d : T Q × T Q → R

given by

Le
d (q0, q̇0, q1, q̇1) =

∫ h

0
L (q(t), q̇(t), q̈(t)) dt,

where q : [0, h] → Q is the unique solution of the Euler–Lagrange equations for the
second-order Lagrangian L ,

d2

dt2
∂L

∂q̈
− d

dt

∂L

∂q̇
+ ∂L

∂q
= 0

satisfying the boundary conditions q(0) = q0, q(h) = q1, q̇(0) = q̇0 and q̇(h) = q̇1.
TheLegendre transformation associated to L is defined tobe themapFL : T (3)Q →

T ∗T Q given by (see León and Rodrigues (1985))

FL(q, q̇, q̈, q(3)) =
(
q, q̇,

∂L

∂q̇
− d

dt

∂L

∂q̈
,
∂L

∂q̈

)
.

We will see that there is a special relationship between the Legendre transform of
a regular Lagrangian and the discrete Legendre transforms of the corresponding exact
discrete Lagrangian Le

d .

Theorem 4.1 Let L : T (2)Q → R be a regular Lagrangian and Le
d : T Q×T Q → R,

the corresponding exact discrete Lagrangian. Then L and Le
d have Legendre trans-

formations related by

F
−Le

d (q(0), q̇(0), q(h), q̇(h)) = FL
(
q(0), q̇(0), q̈(0), q(3)(0)

)

F
+Le

d (q(0), q̇(0), q(h), q̇(h)) = FL
(
q(h), q̇(h), q̈(h), q(3)(h)

)
,

where q(t) is a solution of the second-order Euler–Lagrange equations.

Proof We begin by computing the derivatives of Le
d .

∂Le
d

∂q0
=

∫ h

0

(
∂L

∂q

∂q

∂q0
+ ∂L

∂q̇

∂q̇

∂q0
+ ∂L

∂q̈

∂q̈

∂q0

)
dt

=
∫ h

0

(
∂L

∂q

∂q

∂q0
+ ∂L

∂q̇

∂q̇

∂q0
−

(
d

dt

∂L

∂q̈

)
∂ q̇

∂q0

)
dt +

(
∂L

∂ q̈

∂ q̇

∂q0

) ∣∣∣h
0

=
∫ h

0

(
∂L

∂q

∂q

∂q0
+

(
∂L

∂q̇
− d

dt

∂L

∂ q̈

)
∂q̇

∂q0

)
dt,
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where we have used integration by parts and the fact that

∂q̇

∂q0
(0) = 0 and

∂q̇

∂q0
(h) = 0.

Therefore,

∂Le
d

∂q0
=

((
∂L

∂q̇
− d

dt

∂L

∂q̈

)
∂q

∂q0

) ∣∣∣h
0

+
∫ h

0

(
∂L

∂q
− d

dt

∂L

∂ q̇
+ d2

dt2
∂L

∂q̈

)
∂q

∂q0
dt.

Since q(t) is a solution of the Euler–Lagrange equations for L : T (2)Q → R, the
last term is zero. Therefore,

∂Le
d

∂q0
=

((
∂L

∂q̇
− d

dt

∂L

∂q̈

)
∂q

∂q0

) ∣∣∣h
0

=
(

−∂L

∂ q̇
+ d

dt

∂L

∂ q̈

)
(q(0), q̇(0), q̈(0), q(3)(0)),

(15)
because

∂q

∂q0
(0) = Id and

∂q

∂q0
(h) = 0.

On the other hand,

∂Le
d

∂ q̇0
=

∫ h

0

(
∂L

∂q

∂q

∂ q̇0
+ ∂L

∂ q̇

∂ q̇

∂ q̇0
+ ∂L

∂ q̈

∂ q̈

∂ q̇0

)
dt

=
∫ h

0

(
∂L

∂q

∂q

∂ q̇0
+ ∂L

∂ q̇

∂ q̇

∂ q̇0
−

(
d

dt

∂L

∂ q̈

)
∂ q̇

∂ q̇0

)
dt +

(
∂L

∂ q̈

∂ q̇

∂ q̇0

) ∣∣∣h
0

=
∫ h

0

(
∂L

∂q

∂q

∂ q̇0
+

(
∂L

∂ q̇
− d

dt

∂L

∂ q̈

)
∂ q̇

∂ q̇0

)
dt +

(
∂L

∂ q̈

∂ q̇

∂ q̇0

) ∣∣∣h
0

=
∫ h

0

(
∂L

∂q
− d

dt

∂L

∂ q̇
+ d2

dt2
∂L

∂ q̈

)
∂q

∂ q̇0
dt + ∂L

∂ q̈

∂ q̇

∂ q̇0

∣∣∣h
0

+
(

∂L

∂ q̇
− d

dt

∂L

∂ q̈

)
∂q

∂ q̇0

∣∣∣h
0
.

Since q(t) is a solution of the Euler–Lagrange equations, the first term is zero, and
using that

∂q̇

∂q̇0
(0) = Id,

∂q̇

∂q̇0
(h) = 0,

∂q

∂q̇0
(0) = 0, and

∂q

∂ q̇0
(h) = 0,

we have

∂Le
d

∂q̇0
= −∂L

∂q̈
(q(0), q̇(0), q̈(0)).
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Therefore,

F
−Le

d(q(0), q̇(0), q(h), q̇(h)) =
(
q(0), q̇(0),−∂Le

d

∂q0
(q(0), q̇(0), q(h), q̇(h)),

− ∂Le
d

∂q̇0
(q(0), q̇(0), q(h), q̇(h))

)

= FL(q(0), q̇(0), q̈(0), q(3)(0)).

With similar arguments, we can also prove that

∂Le
d

∂q1
=

(
∂L

∂q̇
− d

dt

∂L

∂ q̈

) (
q(h), q̇(h), q̈(h), q(3)(h)

)

and

∂Le
d

∂q̇1
= ∂L

∂ q̈
(q(h), q̇(h), q̈(h)),

and in consequence,

F
+Le

d (q(0), q̇(0), q(h), q̇(h)) = FL
(
q(h), q̇(h), q̈(h), q(3)(h)

)
.

��
In what follows we will study the relation between the regularity of the continuous

Lagrangian, given by the Hessian matrix

W =
(

∂2L

∂ q̈ ∂ q̈

)

and the regularity condition corresponding to the exact discrete Lagrangian Le
d : T Q×

T Q → R

Wd =
(
D13Le

d D14Le
d

D23Le
d D24Le

d

)
.

For the next theorem,we restrict ourselves to Lagrangians that can bewritten locally
as

L(q, q̇, q̈) = 1

2
gi j (q)q̈i q̈ j + q̈i fi (q, q̇) + V (q, q̇), (16)

where (gi j (q)) is a regular matrix for all q. It is also possible to write this condition
intrinsically by using ametric, a connection, a one-form and a function. This covers the
kind of Lagrangians that appear in interpolation problems (Gay-Balmaz et al. 2012a)
and in optimal control problems with cost functionals of the form 1

2

∫ T
0 ‖u‖2dt , where

u represents the control force applied to a system having a (first-order) Lagrangian of
mechanical type (see Sect. 5).
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Theorem 4.2 Let L : T (2)Q → R be a regular Lagrangian of the type (16). For small
enough h > 0, the corresponding exact discrete Lagrangian Le

d : T Q × T Q → R is
also regular.

Proof We will work locally. Given q0, q̇0, q1, q̇1, consider the curve q(t) that solves
the Euler–Lagrange equations with those boundary values, as in the definition of Le

d .
Using the Taylor expansions for q(t) and q̇(t), we can write

q(h) = q(0) + hq̇(0) + h2

2
q̈(0) + h3

6
q(3)(0) + O

(
h4

)
,

q̇(h) = q̇(0) + hq̈(0) + h2

2
q(3)(0) + O

(
h3

)
,

for h → 0. By differentiating these expressions with respect to the parameters q0 and
q̇0, we get two systems of equations from which we find

∂q̈

∂q0
(h) = 6

h2
Id+O

(
h2

)
,

∂q(3)

∂q0
(h) = 12

h3
Id+O (h) ,

∂q̈

∂q̇0
(h) = 2

h
Id+O

(
h2

)
,

∂q(3)

∂q̇0
(h) = 6

h2
Id+O (h) .

Analogously,

∂q̈

∂q1
(0) = 6

h2
Id+O

(
h2

)
,

∂q(3)

∂q1
(0) = −12

h3
Id+O (h) ,

∂q̈

∂q̇1
(0) = −2

h
Id+O

(
h2

)
,

∂q(3)

∂q̇1
(0) = 6

h2
Id+O (h) .

Let us compute D13Le
d . Denote by F the right-hand side of (15), so

∂Le
d

∂qi0
(q(0), q̇(0), q(h), q̇(h)) =

(
− ∂L

∂q̇i
+ d

dt

∂L

∂ q̈i

)(
q(0), q̇(0), q̈(0), q(3)(0)

)

= Fi
(
q(0), q̇(0), q̈(0), q(3)(0)

)
.

Recall that q(0), q̇(0), q̈(0), q(3)(0) are obtained as the initial conditions for the
higher-order Euler–Lagrange equations that correspond to the boundary conditions
q(0), q̇(0), q(h), q̇(h). We have

Fi = − ∂L

∂q̇i
+ ∂2L

∂q j∂q̈i
q̇ j + ∂2L

∂q̇ j∂q̈i
q̈ j + ∂2L

∂ q̈ j∂ q̈i
q(3) j .
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Then

∂2Le
d

∂q j
1 ∂qi0

= ∂Fi
∂qk

∂qk

∂q j
1

+ ∂Fi
∂q̇k

∂q̇k

∂q j
1

+ ∂Fi
∂q̈k

∂q̈k

∂q j
1

+ ∂Fi
∂q(3)k

∂q(3)k

∂q j
1

= ∂Fi
∂q̈k

∂ q̈k

∂q j
1

+ ∂Fi
∂q(3)k

∂q(3)k

∂q j
1

=
(

− ∂2L

∂ q̈k∂q̇i
+ ∂3L

∂q̈k∂q j∂q̈i
q̇ j + ∂3L

∂q̈k∂ q̇ j∂ q̈i
q̈ j + ∂2L

∂ q̇k∂ q̈i

+ ∂3L

∂ q̈k∂ q̈ j∂q̈i
q(3) j

)
∂ q̈k

∂q j
1

+ ∂2L

∂q̈k∂q̈i
∂q(3)k

∂q j
1

=
(

− ∂2L

∂ q̈k∂q̇i
+ ∂2L

∂q̇k∂q̈i
+ dWik

dt

)(
6

h2
δkj + O(h2)

)

+ ∂2L

∂q̈k∂q̈i

(
−12

h3
δkj + O(h)

)
.

In the expression above, the derivatives are evaluated at the arguments corresponding
to time 0 for each function. It is important to note that the first factor involves q̈(0)
and q(3)(0), which can blow up for h → 0, even in the simple case of cubic splines.
However, for L of the type (16) we have

∂2L

∂q̈k∂q̇i
= ∂ fk

∂q̇i
,

∂2L

∂q̇k∂ q̈i
= ∂ fi

∂q̇k
,

dWik

dt
= d

dt

∂2L

∂ q̈k∂q̈i
= d

dt
gik = ∂gik

∂ql
q̇l .

These expressions do not contain q̈ or q(3), so they are O(1) for h → 0. Therefore,

D13L
e
d(q(0), q̇(0), q(h), q̇(h)) = ∂2Le

d

∂q0∂q1
(q(0), q̇(0), q(h), q̇(h))

= −12

h3
W + O

(
1

h2

)
.

The remaining derivatives in Wd can be computed without using the special form
(16) of the Lagrangian.

D14L
e
d(q(0), q̇(0), q(h), q̇(h)) = ∂2Le

d

∂q0∂ q̇1
(q(0), q̇(0), q(h), q̇(h)) = 6

h2
W + O

(
1

h

)

D23L
e
d(q(0), q̇(0), q(h), q̇(h)) = ∂2Le

d

∂ q̇0∂q1
(q(0), q̇(0), q(h), q̇(h)) = 6

h2
W + O

(
1

h

)

D24L
e
d(q(0), q̇(0), q(h), q̇(h)) = ∂2Le

d

∂ q̇0∂ q̇1
(q(0), q̇(0), q(h), q̇(h)) = −2

h
W + O (1) .
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(q(0), q̇(0), q(h), q̇(h))

(q(0), q̇(0),−D1L
e
d,−D2L

e
d) (q(h), q̇(h), D3L

e
d, D4L

e
d)

(q(0), q̇(0), q̈(0), q(3)(0)) (q(h), q̇(h), q̈(h), q(3)(h))

F
−Le

d F
+Le

d

FL FL

Ψh
L

Fig. 1 Correspondence between the discrete Legendre transforms and the continuous Hamiltonian flow

Seeing Wd as a block matrix, a well-known result from linear algebra leads us to

detWd =
(

−12

h4

)dim Q

detW2 + O
(

1

h4 dim Q−1

)
.

That is, for small enough h, if L is regular then Le
d is regular. ��

In what follows we denote (TQ×TQ)2 the subset of (TQ×TQ)× (TQ×TQ) given
by

(TQ × TQ)2 := {(q0, q̇0, q1, q̇1, q̃1, ˙̃q1, q2, q̇2) | π̄2(q0, q̇0, q1, q̇1) = π̄1(q̃1, ˙̃q1, q2, q̇2)}.

If L : T (2)Q → R is a regular Lagrangian then the Euler–Lagrange equations for
L gives rise to a system of explicit fourth-order differential equations

q(4) = �(q, q̇, q̈, q(3)).

Therefore, for h given, it is possible to derive the following application (see Agarwal
(1986))

�h
L : T (3)Q → T (3)Q

which maps (q(0), q̇(0), q̈(0), q(3)(0)) ∈ T (3)Q into (q(h), q̇(h), q̈(h), q(3)(h)) ∈
T (3)Q. Therefore, from Theorem 4.1 we deduce the commutativity of the diagram in
Fig. 1.
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(q0, q̇0, q1, q̇1) (q1, q̇1, q2, q̇2)

(q0, q̇0,−D1Ld,−D2Ld) (q1, q̇1, D3Ld, D4Ld) (q2, q̇2,−D1Ld,−D2Ld)

FLd

F
−Ld F

+Ld F
−Ld F

+Ld

F̃Ld
F̃Ld

Fig. 2 Correspondence between the discrete Lagrangian and the discrete Hamiltonian maps

Definition 4.3 The discrete Hamiltonian flow is defined by F̃Ld : T ∗T Q → T ∗T Q
as

F̃Ld = F
−Ld ◦ FLd ◦ (F−Ld)

−1. (17)

Alternatively, it can also be defined as F̃Ld = F
+Ld ◦ FLd ◦ (F+Ld)

−1.

Theorem 4.4 The diagram in Fig. 2 is commutative.

Proof The central triangle is (14). The parallelogram on the left-hand side is commu-
tative by (17), so the triangle on the left is commutative. The triangle on the right is
the same as the triangle on the left, with shifted indices. Then parallelogram on the
right-hand side is commutative, which gives the equivalence stated in the definition
of the discrete Hamiltonian flow. ��
Corollary 4.5 The following definitions of the discrete Hamiltonian map are equiva-
lent

F̃Ld = F
+Ld ◦ FLd ◦ (F+Ld)

−1,

F̃Ld = F
−Ld ◦ FLd ◦ (F−Ld)

−1,

F̃Ld = F
+Ld ◦ (F−Ld)

−1,

and have the coordinate expression F̃Ld : (q0, q̇0, p0, p̃0) �→ (q1, q̇1, p1, p̃1), where
we use the notation

p0 = −D1Ld(q0, q̇0, q1, q̇1),

p̃0 = −D2Ld(q0, q̇0, q1, q̇1),

p1 = D3Ld(q0, q̇0, q1, q̇1),

p̃1 = D4Ld(q0, q̇0, q1, q̇1).

CombiningTheorem (4.1)with the diagram inFig. 2 gives the commutative diagram
shown in Fig. 3 for the exact discrete Lagrangian.
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(q0, q̇0, q1, q̇1) (q1, q̇1, q2, q̇2)

(q0, q̇0, p0, p̃0) (q1, q̇1, p1, p̃1) (q2, q̇2, p2, p̃2)

(q(0), q̇(0), q̈(0), q(3)(0)) (q(h), q̇(h), q̈(h), q(3)(h)) (q(2h), q̇(2h), q̈(2h), q(3)(2h))

FLe
d

F
−Le

d F
+Le

d

F
−Le

d F
+Le

d

F̃Le
d

= Fh
H F̃Le

d
= Fh

H

FL FL FL

Fh
L Fh

L

Fig. 3 Correspondence between the exact discrete Lagrangian and the continuous Hamiltonian flow

Here, Fh
H denotes the flow of the Hamiltonian vector field XH associated with the

Hamiltonian H : T ∗T Q → R given by H = EL ◦ (FL)−1 where EL : T (3)Q → R

denotes the energy function associated to L (see León and Rodrigues 1985).

Theorem 4.6 Under these conditions we have that Fh
H = F̃Le

d
.

Example 4.7 (Cubic splines (cont.))Recall that in this example Q = R
n and L = 1

2 q̈
2.

Since the exact solutions for the second-order Euler–Lagrange equation for L can be
found explicitly, it is easy to show that the discrete exact Lagrangian is

Le
d(q0, v0, q1, v1) = 6

h3
(q0 − q1)

2 + 6

h2
(q0 − q1)(v0 + v1) + 2

h

(
v20 + v0v1 + v21

)
.

From the corresponding discrete second-order Euler–Lagrange equation, the evo-
lution is

qk+1 = 5qk−1 − 4qk + 2h(vk−1 + 2vk),

vk+1 = vk−1 + 2

h
(qk−1 − 2qk + qk+1).

It is interesting to note that both this exact method and method (13) preserve the
quantity

ϕ(qk, vk, qk+1, vk+1) = qk+1 − qk
h

− vk + vk+1

2
.

A simulation for method (13) is shown in Fig. 4.
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Fig. 4 Left simulation of the method (13) with q0 = (0, 0) v0 = (10, 10), qN = (10, 0), vN = (10, 20),
N = 21, depicting the computed points and velocities in the xy-plane (velocities are scaled). Right Error
in position and velocity for different values of h

4.1 Variational Error Analysis

Now we rewrite the result of Patrick (2006) and Marsden and West (2001) for the
particular case of a Lagrangian Ld : T Q × T Q → R.

Definition 4.8 Let Ld : T Q × T Q → R be a discrete Lagrangian. We say that Ld

is a discretization of order r if there exist an open subset U1 ⊂ T (2)Q with compact
closure and constants C1 > 0, h1 > 0 so that

|Ld(q(0), q̇(0), q(h), q̇(h), h) − Le
d(q(0), q̇(0), q(h), q̇(h), h)| ≤ C1h

r+1

for all solutions q(t) of the second-order Euler–Lagrange equations with initial con-
ditions (q0, q̇0, q̈0) ∈ U1 and for all h ≤ h1.

Following Marsden and West (2001), Patrick and Cuell (2009), we have the next
result about the order of our variational integrator.

Theorem 4.9 If F̃Ld is the evolution map of an order r discretization Ld : T Q ×
T Q → R of the exact discrete Lagrangian Le

d : T Q × T Q → R, then

F̃Ld = F̃Le
d

+ O(hr+1).

In other words, F̃Ld gives an integrator of order r for F̃Le
d

= Fh
H .

Note that given a discrete Lagrangian Ld : T Q × T Q → R its order can be cal-
culated by expanding the expressions for Ld(q(0), q̇(0), q(h), q̇(h), h) in a Taylor
series in h and comparing this to the same expansions for the exact Lagrangian. If the
series agree up to r terms, then the discrete Lagrangian is of order r .
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5 Application to Optimal Control of Mechanical Systems

In this section we will study how to apply our variational integrator to optimal con-
trol problems. We will study optimal control problems for fully actuated mechanical
systems, and we will show how our methods can be applied to the optimal control of
a robotic leg.

In the following we will assume that all the control systems are controllable, that is,
for any two points q0 and q f in the configuration space Q, there exists an admissible
control u(t) defined on some interval [0, T ] such that the system with initial condition
q0 reaches the point q f at time T (see Bloch 2003; Bullo and Lewis 2005 for example).

5.1 Optimal Control of Fully Actuated Systems

Let L : T Q → R be a regular Lagrangian and take local coordinates (q A) on Q where
1 ≤ A ≤ n. For this Lagrangian the controlled Euler–Lagrange equations are

d

dt

∂L

∂q̇ A
− ∂L

∂q A
= uA, (18)

where u = (uA) ∈ U ⊂ R
n is an open subset of Rn , the set of control parameters.

The optimal control problem consists in finding a trajectory of the state variables
and control inputs (q(A)(t), uA(t)) satisfying (18) given initial and final conditions
(q A(t0), q̇ A(t0)), (q A(t f ), q̇ A(t f )) respectively, minimizing the cost function

A =
∫ t f

t0
C(q A, q̇ A, uA)dt,

where C : T Q ×U → R.
From (18) we can rewrite the cost function as a second-order Lagrangian

L̃ : T (2)Q → R given by

L̃(q A, q̇ A, q̈ A) = C

(
q A, q̇ A,

d

dt

∂L

∂q̇ A
− ∂L

∂q A

)

replacing the controls by the Euler–Lagrange equations in the cost function (see Bloch
2003 for example).

Suppose that Q = R
n . Then we can define a discretization of the Lagrangian

L̃ : T (2)Q → R by a discrete Lagrangian L̃d : T Q × T Q → R,

L̃d(qk, vk, qk+1, vk+1) = h

2
L̃

(
qk + qk+1

2
,
vk + vk+1

2
,
2

h2
(qk+1 − qk − hvk)

)

+ h

2
L̃

(
qk + qk+1

2
,
vk + vk+1

2
,
2

h2
(qk − qk+1 + hvk+1)

)
.
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x

y

θ1

θ2

l1 l2

Fig. 5 Two-link manipulator

In the first term, we have computed an approximate value of the acceleration ak by
using the Taylor expansion qk+1 ≈ qk + hvk + h2

2 ak . For the second term, we have

approximated ak+1 using qk ≈ qk+1 − hvk+1 + h2
2 ak+1, as in Example 3.2.

Other natural possibilities for L̃d are, for instance,

L̃d(qk, vk, qk+1, vk+1) = hL

(
qk + qk+1

2
,
qk+1 − qk

h
,
vk+1 − vk

h

)

or

L̃d(qk, vk, qk+1, vk+1) = 1

2
L

(
qk, vk,

vk+1 − vk

h

)
+ 1

2
L

(
qk+1, vk+1,

vk+1 − vk

h

)
.

Applying the results given in Sect. 3, we know that the minimizers of the cost
function are obtained by solving the discrete second-order Euler–Lagrange equations

D1 L̃d(qk, vk, qk+1, vk+1) + D3 L̃d(qk−1, vk−1, qk, vk) = 0,

D2 L̃d(qk, vk, qk+1, vk+1) + D4 L̃d(qk−1, vk−1, qk, vk) = 0.

If the matrix
(
D13 L̃d D14 L̃d

D23 L̃d D24 L̃d

)

is regular, then one can define the discrete Lagrangian map to solve the optimal control
problem.

Example 5.1 (Two-link manipulator) We consider the optimal control of a two-link
manipulator which is a classical example studied in robotics (see, e.g., Murray et al.
1994 andOber-Blöbaumet al. 2011). The two-linkmanipulator consists of two coupled
(planar) rigid bodies with mass mi , length li and moments of inertia with respect to
the joints Ji , with i = 1, 2, respectively.

Let θ1 and θ2 be the configuration angles measured as in Fig. 5. If we assume one
end of the first link to be fixed in an inertial reference frame, the configuration of the
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system is locally specified by the coordinates (θ1, θ2) ∈ S
1 × S

1. The Lagrangian is
given by the kinetic energy of the system minus the potential energy, that is,

L(q, q̇) = 1

8
(m1 + 4m2)l

2
1 θ̇

2
1 + 1

8
m2l

2
2(θ̇1 + θ̇2)

2

+ 1

2
m2l1l2 cos(θ2)θ̇1(θ̇1 + θ̇2) + 1

2
J1θ̇

2
1

+ 1

2
J2(θ̇1 + θ̇2)

2 + g

(
1

2
m1l1 sin θ1 + m2l1 sin θ1 + 1

2
m2l2(θ1 + θ2)

)
,

where g is the constant gravitational acceleration.
Control torques u1 and u2 are applied at the base of the first link and at the joint

between the two links. The equations of motion of the controlled system are

u1 = − sin θ2l1l2m2θ̇2θ̇1 − 1

2
sin θ2θ̇

2
2 l1l2m2 + 1

2
m2l2 cos(θ1 + θ2)g

+
(
m2g cos θ1 + 1

2
g cos θ1m1

)
l1 +

(
1

4
m2l

2
2 + J2 + 1

2
cos θ2l1l2m2

)
θ̈2

+
(
cos θ2l1l2m2 +

(m1

4
+ m2

)
l21 + m2l22

4
+ J1 + J2

)
θ̈1,

u2 = 1

2
sin θ2l1l2m2θ̇

2
1 +

(
1

4
m2l

2
2 + J2 + 1

2
cos θ2l1l2m2

)
θ̈1

+ 1

2
m2l2 cos(θ1 + θ2)g +

(
1

4
m2l

2
2 + J2

)
θ̈2.

We look for trajectories (θ1(t), θ2(t), u(t)) of the state variables and con-
trol inputs for given initial and final conditions, that is, for given values of
(θ1(0), θ2(0), θ̇1(0), θ̇2(0)) and (θ1(T ), θ2(T ), θ̇1(T ), θ̇2(T )), andminimizing the cost
functional

A = 1

2

∫ T

0

(
u21 + u22

)
dt.

We construct the discrete Lagrangian L̃d : T (S1 × S
1) × T (S1 × S

1) → R, dis-
cretizing the Lagrangian L̃ : T (2)(S1 × S

1) → R given by

L̃(θ1, θ2, θ̇1, θ̇2, θ̈1, θ̈2) = 1

2

[
1

2
sin θ2l1l2m2θ̇

2
1 +

(
1

4
m2l

2
2 + J2 + 1

2
cos θ2l1l2m2

)
θ̈1

+ 1

2
m2l2 cos(θ1 + θ2)g +

(
1

4
m2l

2
2 + J2

)
θ̈2

]2

+ 1

2

[
1

2
sin θ2l1l2m2θ̇

2
1 +

(
1

4
m2l

2
2 + J2 + 1

2
cos θ2l1l2m2

)
θ̈1

+ 1

2
m2l2 cos(θ1 + θ2)g +

(
1

4
m2l

2
2 + J2

)
θ̈2

]2
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Fig. 6 Angles θ1 and θ2 for the optimal control of the two-link manipulator. Initially, the two links point
downwards; at T = 10 they point upwards
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Fig. 7 Evolution of the actual position of the two-link manipulator (detail for t ∈ [3, 6]). Sections of this
surface with the vertical plane t = t0 show the two links as they are positioned at time t0

taking the same discretization as in equation (12) to approximate the acceleration and
taking midpoint averages to approximate the position and velocity.

Figures 6 and 7 show the results from a numerical simulation of the method, tak-
ing the system from the stable mechanical equilibrium (θ1(0), θ2(0), θ̇1(0), θ̇2(0)) =
(−π/2, 0, 0, 0) to the unstable equilibrium (θ1(T ), θ2(T ), θ̇1(T ), θ̇2(T )) = (π/2, 0, 0,
0). We have used T = 10, N = 1000, m1 = 0.375, m2 = 0.25, l1 = 1.5, l2 = 1,
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J1 = m1l21
3 , J2 = m2l22

3 , and g = 9.8. In addition, the reader can find a video of the
simulation in www.youtube.com/watch?v=ZUUH0596a30. The algorithm generates
a sequence of velocities as well as positions, but we represent only the positions in the
figures.

We have also considered a different setting where the angle θ2 is restricted to
move between 0 and 170 degrees, inspired by an elbow joint. This range of motion is
enforced by adding a continuous, piecewise linear function V (θ2) to the cost function,
with slope −1000 for θ2 < 0◦, 0 for 0◦ < θ2 < 170◦, and 1000 for θ2 > 170◦.
We simulated the optimal trajectory with the same endpoint conditions and physical
parameters as above, with N = 200. A video of the resulting motion can be found in
www.youtube.com/watch?v=OxOFHdT7emQ.

6 Conclusions and Future Research

In this paper we design variational integrators for higher-order variational systems and
their application to optimal control problems. The general idea for those variational
integrators is to directly discretize Hamilton’s principle rather than the equations of
motion in a way that preserves the original system invariants, notably the symplectic
form and, via a discrete version of Noether’s theorem, the momentum map.

We show that a regular higher-order Lagrangian system has a unique solution for
given nearby endpoint conditions using a direct variational proof of existence and
uniqueness for the local boundary value problem using a regularization procedure
assuming only Ck differentiability (instead of C2k as in standard ODE theory).

We have seen that taking a discrete Lagrangian function Ld : T (k−1)Q ×
T (k−1)Q → R we obtain the appropriate approximation of the action

∫ h
0 L(q, q̇, . . . ,

q(k)) dt . Moreover, we derive a particular choice of discrete Lagrangian which gives
an exact correspondence between discrete and continuous systems, the exact discrete
Lagrangian. We show that if the original Lagrangian is regular then it is also the exact
discrete Lagrangian and how is the relation between the discrete Legendre transfor-
mations with the continuous one.

As future research, we are interested in the construction of an exact discrete
Lagrangian function for higher-order mechanical systems subject to higher-order con-
straints. The main point will be to show the existence and uniqueness of solutions
for the boundary value problem for higher-order systems subject to higher-order con-
straints.After it, one could define the exact discreteLagrangian for constrained systems
in a similar fashion that the ones shown in this work. Since optimal control problems
for the class of underactuated mechanical systems can be seen as constrained higher-
order variational problems, the extension of the constructions given in this work can
be useful to new developments in the field of geometric integration for optimal control
problems. The case of optimal control of nonholonomic systems will be developed.
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Appendix: A Technical Result for Sect. 2

Let E be the kernel of g, where g = (g0, . . . , gk−1) : Cl([0, 1],Rn) → (Rn)k and
g j [·] = 〈〈b[k]

j , ·〉〉. In the context of Sect. 2.5, E is the tangent space of the constraint
set defined using the linear constraints g j , and l is either 0 or k.

In this Appendix we show that the orthogonal complement of E is the space F of
R
n-valued polynomials of degree at most k − 1,

F = spanRn (b[k]
0 , . . . , b[k]

k−1) = {c j b[k]
j |c0, . . . , ck−1 ∈ R

n},

where b[k]
j , j = 0, . . . , k − 1, is a basis of the space of real-valued polynomials of

degree at most k − 1 consisting of orthonormal polynomials on [0, 1].
Lemma 6.1 F = E⊥, where the orthogonal complement is taken with respect to the
inner product �, � in Cl([0, 1],Rn).

Proof We will prove that E and F are orthogonal (with zero intersection) and that
their sum is the whole space Cl([0, 1],Rn).

Let e ∈ E and c j b[k]
j ∈ F .

�c j b[k]
j , e� =

∫ 1

0
(c j b[k]

j (u)) · e(u) du =
n∑

i=1

∫ 1

0
c ji b

[k]
j (u)ei (u)du

= c j ·
(∫ 1

0
b[k]
j (u)e1(u)du, . . . ,

∫ 1

0
b[k]
j (u)en(u)du

)

= c j · 〈〈b[k]
j , e〉〉 = c j · g j [e] = 0,

since e ∈ E = Ker g.
The fact that E ∩ F = {0} can be obtained either by using that the inner product is

nondegenerate or directly as follows. Take e ∈ E ∩ F , so e = c j b[k]
j . For all j ′, we

have 0 = g j ′ [e] = 〈〈b[k]
j ′ , c j b[k]

j 〉〉 = c j
′
, which means that e = 0.

Finally, take e ∈ Cl([0, 1],Rn). Write

e = e −
k−1∑
j=0

〈〈b[k]
j , e〉〉b[k]

j +
k−1∑
j=0

〈〈b[k]
j , e〉〉b[k]

j .

The third term is in F . The remaining part of the right-hand side is in E since for all
j ′,

〈〈
b j ′ , e −

k−1∑
j=0

〈〈b[k]
j , e〉〉b[k]

j

〉〉
= 〈〈

b j ′ , e
〉〉 −

k−1∑
j=0

δ j ′ j
〈〈
b j , e

〉〉 = 0.

Therefore, Cl([0, 1],Rn) = E + F . From the first part of the proof, we obtain that
there is an orthogonal decomposition Cl([0, 1],Rn) = E ⊕ F . ��
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