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Abstract Wedevelop a theory of Lagrangian reduction on loop groups for completely
integrable systems after having exchanged the role of the space and time variables in
themulti-time interpretation of integrable hierarchies.We then insert the Sobolev norm
H1 in the Lagrangian and derive a deformation of the corresponding hierarchies. The
integrability of the deformed equations is altered, and a notion of weak integrability
is introduced. We implement this scheme in the AKNS and SO(3) hierarchies and
obtain known and new equations. Among them, we found two important equations,
the Camassa–Holm equation, viewed as a deformation of the KdV equation, and a
deformation of the NLS equation.

Keywords Hierarchy of integrable systems · AKNS hierarchy · Camassa–Holm
equation · Reduction by symmetry

Mathematics Subject Classification 37K05 · 37K10 · 70H33

1 Introduction

The classification of integrable systems through hierarchies of commuting flows such
as the AKNS hierarchy is a well-established theory which started with Ablowitz
et al. (1973, 1974), Date et al. (1983), Flaschka et al. (1983a), Newell (1985), Adler
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et al. (2000) and encompasses almost all other notions of integrability, such as multi-
Hamiltonian structures, Laxpairs, zero curvature relations (ZCR), τ -functions, bilinear
equations, and Painlevé hierarchies.We refer the interested reader to the very complete
book Scott (2006) and the references therein for more details on various other subjects
in the theory of integrable systems. Recently, the discovery and the study of equa-
tions involving non-local dispersion such as the Camassa–Holm equation opened a
new area in integrable systems. We refer to Camassa and Holm (1993), Fokas (1995),
Fuchssteiner (1996), Olver and Rosenau (1996), Qiao (2007), Novikov (2009) for
some well-studied equations of this type. Some of these equations are even physically
relevant as higher approximations of shallow water equations. We refer to Camassa
and Holm (1993), Dullin et al. (2004), Constantin and Lannes (2009) for physical
derivations of the CH equation. From this physical viewpoint, they are deformations
of classical integrable systems or higher-order approximations ofmore complete phys-
ical models. Despite these facts, it is well known that the integrability of the deformed
equations is slightly different from their classical counterpart. They have non-local
conservation laws (Camassa and Holm 1993; Lenells 2005), ZCRs without associated
Zakharov–Shabat spectral problems (Hone and Wang 2003; Constantin et al. 2006).
Perhaps, these difficulties explain why a classification of these equations, based on
hierarchies such as the AKNS hierarchy, is still missing. Notice that recently Novikov
(2009) made a classification using an ansatz for the form of the equations and a test for
their integrability, developed in Mikhailov and Novikov (2002). We will not follow
their approach here because our aimwas to understand each equation as a member of a
hierarchy only defined with a Lie algebra in the sense of Ablowitz et al. (1974), Newell
(1985). The key element that we will be using to develop such a theory is the fact that
these deformed equations correspond to classical equations when the parameter α of
the Helmholtz operator, or H1 norm, is set to 0. For example, the Camassa–Holm
equation (Camassa and Holm 1993) corresponds to KdV and the modified Camassa–
Holm equation (Fokas 1995; Qiao 2007) to mKdV. We will thus deform classical
integrable hierarchies such that the deformed equations will be recovered and shown
to correspond to a particular member of the original hierarchy.

Following Date et al. (1983), Flaschka et al. (1983a), Newell (1985), we will use
the loop group and multi-time interpretation of integrable hierarchies. The concept
of multi-times is fundamental in this formulation and makes sense of reduction pro-
cedures on the cotangent bundle of loop groups; see Pressley and Segal (1986) for a
detailed account on loop groups. In order to allow an equivalent Lagrangian formula-
tion, wewill extend these ideas by simply having a different interpretation of themulti-
times. In the standard theory, the space variable is fixed and the flows of the hierarchy,
or higher-order symmetries, are spanned by the time variable. In the new Lagrangian
interpretation, the time is fixed and the hierarchy is spanned by the space variable.
Notice that our Lagrangian theory is different from the pluri-Lagrangian systems ini-
tiated in Lobb and Nijhoff (2009) and further developed, for example, by Suris (2013).

In a second part, the usual L2 norm in the Lagrangian will be replaced by the H1

norm and the corresponding deformation of the hierarchy computed. This use of the
Sobolev norm is common to derive the CH equation as a geodesic motion on the group
of diffeomorphisms of first Sobolev class; see, for instance, Misiołek (1998), Holm
and Marsden (2005), or Guha (2007) for yet another use. This procedure allows us to
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Table 1 Summary of the equations derived in this work

g Ni j Standard equation Deformed equation Limit α2 → ∞
sl(2) (1, 2) NLS (2.26) CH-NLSa (3.18) HS-NLSa (3.31)

sl(2) (1, 3) KdV (2.23)/mKdV (2.24) CH (3.13)/mCH (3.15) HS (3.30)

CmKdV (2.25) CmCH (3.16) mHSa (3.32)

so(3) (1, 2) (2.35)a (3.25)a –

so(3) (1, 3) (2.39)a (3.28)a (3.32)a

The third columncorresponds to classical equations such asNLSorKdV, the next column their deformations,
and the last one exposes a few limiting cases with α2 → ∞. We only considered the first two flows for the
Lie algebra sl(2) and so(3), but other flow and Lie algebra could be derived in the same way.
a Possibly new equations

deform the entire classical hierarchies such as the AKNS hierarchy in order to recover
the CH equation among others.

The classical integrable equations and their deformations can thus be classified
through the Lie algebra g and the choice of space and time variables, or two-
dimensional slices Ni j indexed by (i, j). This is summarized in Table1, where the
asterisks denote possible new equations. Almost all the deformed equations are already
known except the deformation of the NLS equation, which reads

imt + uxx + 2σm(|u|2 − α2|ux |2) = 0, m = u − α2uxx , σ = ±1. (1.1)

Indeed, the weak integrability presented here does not guarantee its complete integra-
bility. Despite the possible non-integrability, it has been shown in Arnaudon (2016)
that the Eq. (1.1) contains solitary waves and even peaked standing waves with almost
elastic collisions. We want to mention that the CH-NLS equation is different from the
generalized NLS equation, first derived in Fokas (1995), Olver and Rosenau (1996)
and more recently studied by Lenells and Fokas (2009). For the derivation of this
equation, they used the bi-Hamiltonian property of the NLS and CH equations to find
an integrable extension of the NLS equation, without using the Helmholtz operator in
an intrinsic way. Other similar attempts for improving the NLS equation, but without
asking the integrability question, were made by Colin and Lannes (2009), Dumas et al.
(2016) with an improved dispersion, also involving the Helmholtz operator.

1.1 Structure of This Work

We will develop in Sect. 2.1 the Lagrangian description of integrable hierarchies with
central extensions, similarly to the R-matrix theory of Semenov-Tyan-Shanskiı̆ (1983).
The Lagrangian reduction theorem with central extension will be stated with the for-
malism of Marsden et al. (2007). It is worth mentioning that it seems to be the first
time that this theorem is stated in this form, with this type of central extension. This
new interpretation of the multi-times is then described in Sect. 2.2 as well as how
the corresponding Euler–Poincaré or equivalent Lie–Poisson equations arise on two-
dimensional slices of the multi-times. On these slices, the time coordinate will be the
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usual dynamical coordinate and the space coordinate will be seen as the parameter of
an infinite dimensional group or Lie algebra. The dynamics along the space coordinate
will then be made non-trivial with the help of the derivative cocycle. Examples such
as the AKNS hierarchy with SO(3) and another hierarchy with SO(3) will be shown
in Sect. 2.3. After having set up the Lagrangian reduction, the deformation using the
Sobolev norm is straightforward to implement in the Euler–Poincaré equation. In
Sect. 3, the deformation of the hierarchy is derived and its integrability is investigated.
As opposed to the classical case, where there is an equivalence between the Euler–
Poincaré equation and the associated isospectral problem, the Euler–Poincaré equation
cannot be directly interpreted as a ZCR. With the Fourier decomposition of the loop
algebra elements, parts of the Euler–Poincaré equation are trivially satisfied for the
highest powers of the loop, or spectral parameter λ, but are not valid in the deformed
Euler–Poincaré equation. We must therefore define a projection which removes these
terms and makes sense of the projected Euler–Poincaré equation, or projected ZCR.
The corresponding PDEs will then be said to be weakly integrable if they satisfy a
projected ZCR.

This method allows us to deform all members of the AKNS hierarchy in order to
recover equations such as the dispersive Camassa–Holm equation (Camassa andHolm
1993; Dullin et al. 2004) and the new CH-NLS equation (Arnaudon 2016). This will
be done in Sect. 3.2 for AKNS hierarchy and then for the SO(3) hierarchy.

2 Lagrangian Interpretation of Integrable Hierarchies

2.1 Reductions with a Central Extension

In this work, we will consider a particular type of reduction by symmetry where the
configuration manifold is the group of symmetry itself. The corresponding reduc-
tion is called the Euler–Poincaré or the Lie–Poisson reduction, for, respectively, the
Lagrangian or Hamiltonian mechanics; see Marsden and Ratiu (1999) for a complete
treatment. The Lie group in this section will be infinite dimensional and of the form
Map(R, G) where G is a Lie group. The R variable will be the space variable x of the
1+1 nonlinear PDEs that will be derived. The dynamics with respect to x will be made
non-trivial by using a central extension with a derivative cocycle. This system is differ-
ent from usual 1+1 PDEs coming from a reduction by symmetry; see Ellis et al. (2010),
Gay-Balmaz and Ratiu (2009) for example. Indeed, in the standard theory, the dynam-
ics on the space variable comes from an affine action of the group of symmetry on the
advected quantities. Here, the dynamics arises from a central extension with a cocycle.

2.1.1 Central Extension

We refer to Marsden et al. (2007) for a complete treatment of group extensions in
mechanics, and we will only recall useful facts without proofs. A central extension
Gc := G × V of a group G by a vector space V is characterized by the action of Gc

onto itself with a cocycle term in the extension of the group. A group 2 cocycle is a
bilinear map B(g, h) : G × G → R which satisfies a cocycle identity such that the
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group action (g, a) · (h, b) = (gh, a + b + B(g, h)) is associative. The Lie algebra of
Gc is centrally extended by the tangent space of the vector space V . We will always
use V = R and thus gc := g × R. The group cocycle drops to the Lie algebra by
differentiation to give a Lie algebra cocycle c(ξ, η) : g × g → R which satisfies a
cocycle identity such that the corresponding Lie bracket satisfies the Jacobi identity.
The adjoint and coadjoint actions are given by

ad(ξ,a)(η, b) = [(ξ, a), (η, b)] = ([ξ, η], c(ξ, η)) and (2.1)

ad∗
(ξ,a)(μ, m) = (ad∗

ξμ + mc(ξ, ·), 0), (2.2)

where (ξ, a), (η, b) ∈ gc and (μ, m) ∈ (gc)∗. We will also need the formulas for the
inverse of a group element and for the tangent of the left translation

(g, 0)−1 = (g−1,−B(g−1, g)), (g, 0)−1(ġ, 0) = (g−1ġ,−D2B(g−1, ġ)), (2.3)

where D2B stands for the derivative in the second slot of B.
For the present theory, there will be a space variable x . The dynamics along this

variable is assumed to be smooth andwill be given by the derivative cocycle B(g, h) =∫
g∂x hdx . The corresponding Lie algebra cocycle is

c(ξ, η) =
∫

〈ξ, ∂xη〉dx, (2.4)

where 〈·, ·〉 is the Killing form on the semi-simple Lie algebra g. We will always
consider semi-simple Lie algebras and periodic or vanishing boundary conditions.
The main point is, as always, to identify g with g∗ and to be able to freely perform
integrations by parts.

2.1.2 Lie–Poisson Equations with a Central Extension

The reduction procedure on the cotangent bundle of a Lie group leads to a Lie–Poisson
equation on the dual of the Lie algebra of this group.When using a central extension of
the Lie group, the variable in the center of the Lie algebra will always be a constant and
thus a standard kinetic term can be taken in the Hamiltonian.We refer toMarsden et al.
(2007),García-Naranjo andVankerschaver (2013) formore details of this construction.
The theorem can now be stated; see Marsden et al. (2007) for the proof.

Theorem 1 Let gc be the central extension of the Lie algebra g with cocycle c :
g × g → R and h : (gc)∗ → R be Hamiltonian function. The Lie–Poisson bracket is

{F, G}((L , a)) =
〈

L ,

[
δF

δL
,
δG

δL

]〉

+ a c

(
δF

δL
,
δG

δL

)

, (2.5)

and the Lie–Poisson equation is

∂t L = ad∗
δh
δL

L + a c

(
δh

δL
, ·

)

. (2.6)
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These equations simplify, by using the derivative cocycle, the Killing form and
a = 1, to

{F, G}(L) =
∫ 〈

L ,

[
δF

δL
,
δG

δL

]〉

dx +
∫ 〈

δF

δL
, ∂x

δG

δL

〉

dx,

∂t L − ∂x
δh

δL
= ad δh

δL
L .

(2.7)

Notice that the form of the Lie–Poisson equation is the same as the usual zero curvature
relation of integrable systems and is also the Lie–Poisson equation used in the R-
matrix derivation of integrable system; see Semenov-Tyan-Shanskiı̆ (1983), Błaszak
and Szablikowski (2009).

2.1.3 Euler–Poincaré Equations with Central Extension

Provided that the Legendre transformation exists, the derivation of the correspond-
ing Euler–Poincaré equation is straightforward. However, in the integrable systems
context, there is no Legendre transformation, and the Euler–Poincaré equation must
directly be derived from the variational principle.Wemust therefore state the following
Euler–Poincaré reduction theorem.

Theorem 2 Using the above definitions, the following statements are equivalent:

(1) Hamilton’s variational principle with Lagrangian L = ∫
L̃ dx : G → R holds

on Gc

δ

∫
L (g(t, x), ġ(t, x))dt = δ

∫∫
L̃ (g(t, x), ġ(t, x))dxdt = 0,

for arbitrary variations δg vanishing at the end points;
(2) g(t) satisfies the Euler–Lagrange equations on G;
(3) the constrained variational principle

δ

∫
l(M(t, x))dt = δ

∫∫

(M(t, x))dxdt = 0

holds on gc, using variations in the form

δ(M, 0) = (η̇ + [M, η], c(η, M)) , (2.8)

for arbitrary η vanishing at the end points;
(4) the Euler–Poincaré equation with central extension holds, that is,

∂

∂t

δ


δM
= ad∗

M
δ


δM
+ c(M, ·). (2.9)

As for the Lie–Poisson equation, the derivative cocycle and the Killing form help
simplifying the variation and the Euler–Poincaré equation

123



J Nonlinear Sci (2016) 26:1133–1160 1139

δ(M, 0) =
(

∂tη + [M, η],
∫

〈η, ∂x M〉 dx

)

,

∂

∂t

δ


δM
= adM

δ


δM
+ ∂x M.

(2.10)

Only the proof with derivative cocycle and semi-simple Lie group will be given as the
general case is not of interest for this work.

Proof The equivalence of (1) and (2) comes from general theory of Hamilton’s prin-
ciple. For (3), the reduced variations are computed using the action on the central
extension of G provided by the cocycle B(g, h) = ∫

g∂x hdx . With the left trivializa-
tion formula (2.3), a left trivialized generic element reads

(M, 0) = (g, 0)−1(ġ, 0) =
(

g−1ġ,−
∫

g−1∂x ġdx

)

,

and its variation decomposes as

δ(M, 0) = δ(g−1(ġ, 0)) =
(

δ(g−1ġ),−
∫

δ(g−1∂x ġ)dx

)

,

where the first slot gives the usual variation, namely δM = η̇ + [M, η] for arbitrary
η = g−1δg. The second term needs a little computation with integration by parts

−
∫

δ(g−1∂x ġ)dx =
∫

[−g−1δg∂x (g
−1ġ) + g−1δgg−1∂x gg−1 ġ − g−1∂x gg−1δġ

]
dx

=
∫

[
η∂x M + ηg−1∂x gM − g−1∂x gη̇ − g−1∂x gMη

]
dx .

Then, by noticing that

0 = 1

2

∫
∂x (g

−1gη̇)dx = 1

2

∫
∂x g−1gη̇ + g−1∂x gη̇ + ∂x η̇dx =

∫
g−1∂x gη̇ + ∂x η̇,

the second term in the previous calculation vanishes with proper boundary conditions
and similarly for the last two terms by using

0 =
∫

∂x (ηg−1gM)dx = 2ηg−1∂x gM + ∂x (ηM)

and 0 =
∫

∂x (g
−1gMη)dx = 2g−1∂x gMη + ∂x (Mη).

We can now compute the Euler–Poincaré equation with central extension from the
variational principle and prove (4)

δ

∫

(M)dt =

∫∫ ((
δ


δM
, 1

)

, (η̇ + [M, η], c(η, M))

)

dt dx dλ
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=
∫∫

δ


δM
(η̇ + [M, η]) dt dx +

∫
c(η, M) dt

=
∫∫ (

(−∂t + ad∗
M )

δ


δM
+ ∂x M

)

η dt dx .

We implicitly used the freedom of the form of the Lagrangian on the center of gc

to choose the kinetic term 1
2a2 with a ∈ R. Then, because ȧ = 0, we fixed a = 1

and recovered the Euler–Poincaré equations (2.9). We refer to Marsden et al. (2007),
García-Naranjo and Vankerschaver (2013) for a similar construction. 	


Provided the Legendre transformation is well defined, the Euler–Poincaré equation
(2.9) is equivalent to the Lie–Poisson equation (2.6). This can easily be seen by using
the relation between the conjugate momentum L and velocity M

L := δl(M)

δM
∈ g∗ or M := δh(L)

δL
∈ g.

2.2 Loop Group and Multi-time Theory

The idea ofmulti-times for integrable systemswas first introduced byDate et al. (1983)
and further developed in Flaschka et al. (1983a, b), Newell (1985).Wewill review here
the key ingredients of this theory and then explain the links with the previous reduction
theory.

2.2.1 Loop Groups and Loop Algebras

The phase space is constructed from a particular infinite dimensional Lie group, the
polynomial loop group; see Pressley and Segal (1986) for more details. For a semi-
simple Lie group G, the associated loop group is G̃ := Map(S1, G), maps from the
circle S1 with parameter λ to group G. We will consider the elements of G̃ through
their Fourier series around λ = 0, namely they will be polynomials with possibly an
infinite number of negative powers of λ. The Lie algebra of G̃ is then straightforward
to construct. From the Lie algebra g of G, the Lie algebra of G̃ is g̃ = Map(S1, g).
With theKilling form of the semi-simple Lie algebra g, one can also construct a pairing
on g̃ using the residue theorem. For two generic elements

∑
i ξiλ

i and
∑

i ηiλ
i , the

following calculation gives a simple form for the pairing

∑

i, j

〈ξiλ
i , η jλ

j 〉̃g :=
∑

i, j

1

2π i

∫

S1
〈ξi , η j 〉λi+ j dλ =

∑

i, j

〈ξi , η j 〉δi,−1− j . (2.11)

Notice that, the loop parameter λ is different from the space variable x of the previous
section. In fact, the finite dimensional Lie group G of the previous section will be
replaced by the loop group G̃. We will thus use functions of λ and x taking values in
a finite dimensional Lie group G or Lie algebra g.
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2.2.2 Multi-time Phase Space

Let the space–time manifold be a flat Riemannian manifold of countably infinite
dimensions defined as N := limn→∞R

n and endowed with the standard metric gi j =
δi j . The coordinates are denoted by a = (a1, a2, . . .). The choice of the letter a is
to emphasize that there is no particular time or space variable, just coordinates on
a manifold. In the following, we will consider hyperplanes of N spanned by two
variables, indexed by i and j . They are slices of the infinite dimensional space–time,
and they will be denoted as Ni j = span(ai , a j ) ⊂ N . As we will see later, i is fixed
at the beginning of the theory and j will be selected almost at the end to obtain a 1+1
PDE. In these slices, there will thus be two interpretations for the physical meaning
of ai and a j . We can either choose to set the spatial variable to be x := ai and the
time will be t := a j or the reverse. The first interpretation, introduced by Date et al.
(1983), Flaschka et al. (1983a, b), Newell (1985), is common in the literature and leads
to the standard Hamiltonian formalism. Surprisingly, the second interpretation seems
to have never been noticed before in this particular context, although it is an old idea
in field theory; see, for example, Caudrelier (2015), Caudrelier and Kundu (2015)
for other recent uses of this idea for the sine-Gordon equation or for the inclusion of
defects in integrable systems. We want to emphasize that the only difference lies in
the fact that one of the coordinates is selected at a different stage in the theory.

Going back to the full space–time manifold N , the phase space can in fact be
understood in the context of classical field theory. Indeed, it is the first jet bundle
J 1(N , G̃). We refer to Gotay et al. (1997), Castrillón López et al. (2001) for the
general constructions of this space in field theory. In our case, the bundle structure
N × G̃ → N is trivial; thus, the jet bundle is isomorphic to T ∗N ⊗ T G̃, the space
of linear maps from T N to T G̃. With the left trivialization of T G, the reduced phase
space is then (T ∗N ⊗ T G̃)/G̃ = T ∗N ⊗ g̃. This phase space can be reduced by
selecting a particular slice and is thus the phase space of a 1+1 PDE. A section of
the bundle T ∗N ⊗ g̃ → N , namely a map M : N → T ∗N ⊗ g̃, corresponds to the
projection of a map V : N → T ∗N ⊗ T G̃ only if the curvature of M vanishes for all
a. The curvature is defined as the covariant exterior derivative ofM with respect toM,
viewed as a connection on this bundle structure and is given by dMM = dM+[M,M].
In components, the curvature reads, for an elementM = ∑∞

i=1 M (i)dai ,

dMM =
∞∑

i, j=1

(∂a j M (i) − ∂ai M ( j) + [M (i), M ( j)])dai ∧ da j , (2.12)

where ∂ai denotes the partial derivative with respect to ai . The relation given by
dMM = 0 is called the zero curvature relation (ZCR) and contains an infinite number
of constraints (one for each pair (i, j)) for the fields inM.

2.2.3 Complete Integrability

Recall that the sectionM contains an infinite number of terms, each of them associated
with a space–time direction, namely M (i) is associated with the direction ai for every
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i . Each M (i) belongs to g̃ and also has infinitely many components. The section M
has therefore too many degrees of freedom, an infinite number of infinite dimensional
fields. For the complete integrability to arise, the number of independent fields of this
system must be drastically reduced. It is done with the help of a very simple construc-
tion. We first define a particular loop algebra element with an essential singularity at
λ = 0, or an infinite number of negative powers of λ, by

M (∞) :=
∞∑

i=1

Mi (a)λ−i , (2.13)

where the Mi are sections of the bundle N ×g → N . We will then use a shift operator
and projections on the loop algebra. The shift operator is the multiplication by a power
of λ, and the projections are projections on the two subalgebras with positive or strictly
negative powers of λ, denoted by P±. This decomposition in two subalgebra is crucial
in this construction and is at the root of the R-matrix formalism of Semenov-Tyan-
Shanskiı̆ (1983) or the Marsden–Weinstein reduction exposed in Newell (1985). With
these tools, we can define the other elements of the connection M as

M (i) := P+(λi M (∞)). (2.14)

With this particular construction, we have a one-to-one correspondence between M
and M (∞), and therefore, the system does only depend on one loop algebra element
M (∞). We can thus expect that the infinite number of constraints from the ZCR would
be enough to sufficiently reduce the number of independent fields. What we actually
expect to obtain from this ZCR is to reduce the infinite number of Mi to only a finite
number where the freedomwill be to choose the number of these independent fields by
selecting a particular M (i). Once a i is selected, M (∞) will be a function of M (i) through
the implicit relations given by the ZCR (2.12) on the slice Ni∞ = lim j→∞ Ni j . In
this case, they read

∂ai M (∞) + [M (∞), M (i)] = 0. (2.15)

The formula holds true in a more general setting and here is the proposition.

Proposition 3 Choose a vector w ∈ TaN, and because (2.12) holds on every slice
independently, it holds when one of the variable is a∞ := limi→∞ ai . This can be
written as a limit, where dMM : T N × T N → R,

lim
n→∞ dMM

(

w,
∂

∂an

)

= 0. (2.16)

The solution of this equation uniquely determines M (∞) as a function of M · w, the
contraction of the one form M and the vector field w. In the case when w = ∂

∂ai
, one

obtains (2.15).

Proof By rewriting the ZCR using the definition of M ( j) in the case of w = ∂
∂ai

, we
have
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∂

∂a j
P+(λi M (∞)) − ∂

∂ai
P+(λ j M (∞)) + [P+(λi M (∞)), P+(λ j M (∞))] = 0. (2.17)

Then, noticing that

lim
j→∞ λ− j P+(λ j M (∞)) = M (∞),

multiplying (2.17) by λ−i , taking the limit j → ∞ and together with λ− j P+(λi M (∞))

→ 0, we obtain the (2.15). 	

The explicit computation of the M j can be difficult depending on the Lie algebra

g, i , and the number of M j that one wants to obtain. The Mi will also depend on
M (k) through the ∂

∂ak
derivatives; thus, we leave the strict first jet bundle construction

of this theory. One can also think of selecting a vector field w which could contain
more elements and thus expect to obtain a higher-dimensional integrable hierarchy.
This is still an open problem because slices must first be extended to volumes and
nothing is clear anymore. Up to this point, we did not talk about dynamics of any of
these fields. The ZCR (2.15) will actually be the momentum–velocity relation needed
for any dynamical interpretation. This will be done in the next section, depending on
which formalism one wants to use.

2.2.4 From ZCR to Lie–Poisson or Euler–Poincaré Equations

In this section, we will show that the Euler–Poincaré or Lie–Poisson equations are the
same as the ZCR after some preparatory steps. The first step is to select an integer k
and compute the functions M j (M (k)), ∀ j using the ZCR (2.15) on the slice Nk∞.
The second step is to select a n, thus to fix a slice Nkn where the 1+1 PDE will live.
There is a third step before making any dynamical interpretation, namely decide what
will be the space and time variables. There are only two choices, and they will lead to
two different formalisms: Hamiltonian if x := ak , or Lagrangian if t := ak .

Theorem 4 Let the connection M satisfy the ZCR dMM = 0. For each slice Ni j , the

restricted ZCR dM(i j)
M(i j) = 0, where M(i j) = M (i)dai + M ( j)da j has an equivalent

Hamiltonian or Lagrangian formulation:

1. Hamiltonian If the space variable is x := ai , for L := M (i), the ZCR (2.15) on the
slice Ni∞ implicitly defines every M j as a function of L. If the time variable is then
t := a j , the Hamiltonian function is defined by h j (L) = ∫ 〈L , M ( j)(L)〉dx, and
the associated Lie–Poisson equation is the ZCR on the slice Ni j ; see Sect.2.1.2.

2. Lagrangian If the time variable is t := a j , for M := M ( j), the ZCR (2.15) on the
slice N j∞ implicitly defines every Mi as a function of M. If the space variable is
then x := ai , the Lagrangian function is defined by li (M) = ∫ 〈M, M (i)(M)〉dx,
and the associated Euler–Poincaré equation is the ZCR on the slice Ni j ; see
Sect.2.1.3.

This theorem relates the well-known Hamiltonian formulation of integrable hier-
archies on loop algebras (see Newell 1985; Semenov-Tyan-Shanskiı̆ 1983) to a new

123



1144 J Nonlinear Sci (2016) 26:1133–1160

Lagrangian formulation through the generalized ZCR structure. Indeed, by using an
abstract space–time manifold without any particular time or space variable, we were
able to find the Lagrangian interpretation by avoiding an inverse Legendre trans-
formation, which is the main obstacle to a comprehensive Lagrangian formalism of
integrable systems. We will illustrate this theory in the next section but before that,
we want to deeper address the question of the Legendre transformation.

2.2.5 Legendre Transformation

Wewill briefly explain here how to relate the Lagrangian and Hamiltonian formalisms
in our context with the Legendre transformation. In the Hamiltonian formalism, the
space variable x := ak is fixed once and for all and the hierarchy is then spanned with
the time variable t := an . The conjugate velocity to the momentum L := M (k) is
found by solving the recursive equations given by the ZCR (2.15) in the slice Nn∞,
up to the order n. For the standard hierarchies, n is always larger than k and the con-
jugate velocity will therefore contain up to n spatial derivatives. In the Lagrangian
formalism, the time variable is fixed and the space variable has to be selected using
the same procedure. Therefore, instead of spanning the integrable hierarchy with the
time variable, it is spanned with the space variable. The crucial point is that in the
Lagrangian setting, the equation will be written with more independent fields than it
would have been in the Hamiltonian setting. Hopefully, the Euler–Poincaré equations
can be simplified into a single one for the momentum (or i equations if there are i
momenta). This procedure of simplification can be seen as a Legendre transformation
because the resulting simplified equation will be the same as if we started in the Hamil-
tonian side. Even if from a computational point of view the Lagrangian interpretation
does not really differ from the standard approach, from a formal point of view it is
of course very different and will be crucial in the development of the deformation of
integrable hierarchies later in Sect. 3.

2.3 Application for Standard Hierarchies

In this section,wewill showhow to use this formalism to recover integrable hierarchies
such as the AKNS hierarchy. The main difficulty is to solve the ZCR or equivalently
solving an implicit recursive system of equations.

2.3.1 The AKNS Hierarchy

The Lie algebra for the AKNS hierarchy is sl(2), and the slices are given by x := a1
for any other times t := ai . For instance, selecting t := a2 will give the NLS flow
and t := a3 a flow which can be reduced to KdV/mKdV equation. We first recall the
fundamentals of this Lie algebra. The basis matrices are

e =
[
0 1
0 0

]

, f =
[
0 0
1 0

]

, h =
[
1 0
0 −1

]

, (2.18)
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and the commutations relations

[e, f ] = h, [e, h] = 2e, [ f, h] = −2 f. (2.19)

Wewill also use the notation ξ‖ for the component of ξ in theCartan subalgebra (which
is an element A proportional to h) and ξ⊥ = ξ − 〈ξ, h〉 h

〈h,h〉 for the complement of

ξ‖.
Hamiltonian derivation In the Hamiltonian formalism, one has to fix the space vari-
able x = a1; thus, the L operator is

L = λM0 + M1. (2.20)

By using the ZCR in the N1∞ slice, we can express every other Mi , especially M :=
M (3) = λ3M0 +λ2M1 +λM2 + M3 in terms of M1 only because M0 will be constant.
This amounts to solve the recursive relations defined by the ZCR (2.15)

λ0 : ∂x M0 = 0

λ−1 : ∂x M1 + [M2, M0] = 0

λ−2 : ∂x M2 + [M2, M1] + [M3, M0] = 0

...

λ−i : ∂x Mi + [Mi , M1] + [Mi+1, M0] = 0 (2.21)

From the first equation, M0 is a constant in a1, and there are two choices for the
value of M0, an element proportional to the Cartan subalgebra or another element.
The first, which is the most common in the literature, is related to the first grading of
the underlying Kac–Moody algebra, and the second choice corresponds to the second
grading; see Newell (1985) for more details linked to the Kac–Moody algebras. The
two formulations are equivalent so we will stick to the first grading in this work
and denote M0 = A where A = ih is then particular element proportional to the
Cartan subalgebra. At this stage, one can remark that even if M is considered to be
the independent variable, the ZCR (2.15) still imposes some constraints on it. In this
case, the highest power must be constant. The third equation ∂x M1 + [A, M2] = 0
also implies that M1 has no component in the Cartan subalgebra. M⊥

2 can then be
computed using the fact that [A, [A, ξ ]] = −4ξ⊥ for arbitrary ξ and reads M⊥

2 =
− 1

4 [A, ∂x M⊥
1 ]. The parallel part of M2 is found from the next equation by projecting

out the perpendicular part

∂x M‖
2 = −[M⊥

2 , M⊥
1 ] = 1

4
[[A, ∂x M⊥

1 ], M⊥
1 ] = −1

8
∂x [M⊥

1 , [A, M⊥
1 ]],

where we used the Jacobi identity for the last step. With the vanishing (or periodic)
boundary conditions, we have M‖

2 = − 1
8 [M⊥

1 , [A, M⊥
1 ]]. From the very same equa-

tion, M⊥
3 can be calculated and is given by
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M⊥
3 = −1

4
[A, ∂x M⊥

2 ] − 1

4
[A, [M‖

2 , M⊥
1 ]].

By denoting U := M1, the ZCR on the slice N13, or equivalently the Lie–Poisson
equation reads

∂tU
⊥ + 1

4
∂3x U⊥ − 1

32
∂x [A, [U⊥, [U, [A, U ]]]] + 1

4
[U⊥, [U⊥, ∂xU⊥]] = 0,

(2.22)

where the last two terms are in fact the same. This is a dynamical equation for the
field U only and, by restricting its form, the KdV, mKdV, or coupled KdV (cKdV)
equations are recovered. Here is a summary, after rescaling time as t → 4t ,

UKdV =
[
0 u
1 0

]

⇒ ut + 6uux + uxxx = 0, (2.23)

UmKdV =
[
0 u

σu 0

]

⇒ ut + 6σu2ux + uxxx = 0, (2.24)

UcKdV =
[
0 u
v 0

]

⇒ ut + 6uvux + uxxx = 0, vt + 6uvvx + vxxx = 0,

(2.25)

where σ = ±1 will give the focusing or defocussing mKdV. One can check that the
first flow on N12 is indeed the NLS equation (focusing or defocussing for σ = ±1) is
found with

UNLS =
[
0 u

σu 0

]

⇒ iut + uxx + σu|u|2 = 0. (2.26)

The main reason why we only look at the a2 flow with the NLS reduction is that the
other two reductions for mKdV/KdV are trivial. This can be seen in the calculation of
the flow from the fact that one needs complex fields for a nonvanishing second flow
a2. This also explain the use of a complex constant A = ih, in order to also include
the NLS equation in the AKNS hierarchy.
Lagrangian derivation In the Lagrangian formalism, one has to fix t = a3, and then,
the M operator is

M = λ3A + λ2U⊥ + λV + W (2.27)

where A is still constant and U⊥, V, W are three independent fields with values in the
Lie algebra g and not the loop algebra. Solving the ZCR in order to find L = M1 is
trivial and gives

L = λA + U⊥. (2.28)

Then, the Euler–Poincaré equation, or ZCR in N13 expands in three equations for the
⊥ part
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∂tU
⊥ − ∂x W ⊥ + [U⊥, W ‖] = 0

−∂x V ⊥ + [U⊥, V ‖] + [A, W ⊥] = 0

−∂xU⊥ + [A, V ⊥] = 0, (2.29)

and two for the ‖ part

−∂x W ‖ + [U⊥, W ⊥] = 0

−∂x V ‖ + [U⊥, V ⊥] = 0. (2.30)

One can easily check that this set of equations is equivalent to the KdV flow derived in
the Hamiltonian formalism by expressing V, W in terms of U only. This computation
is the Legendre transformation from the velocity (U, V, W ) to the momentum U , as
described in Sect. 2.2.5.

2.3.2 SO(3)-Hierarchy

This hierarchy, based on SO(3), is not verywell known in the literature and has recently
been studied, for instance, by Ma (2013, 2014). The Cartan subalgebra can be taken
to be any element on the basis of the Lie algebra. We will choose e3, where the basis
of so(3) is the standard (e1, e2, e3) with the commutation relations

[e1, e2] = e3, [e1, e3] = e2 and [e2, e3] = e1. (2.31)

Following the AKNS scheme, we use A = ie3, where e3 is taken as the Cartan
subalgebra basis vector.
First flow of the hierarchy The Euler–Poincaré equation is found using the usual two
elements

L = λA + U⊥, M = λ2A + λU⊥ + V, (2.32)

and reads

∂tU
⊥ − ∂x V ⊥ + [U⊥, V ‖] = 0

−∂xU⊥ + [A, V ⊥] = 0

−∂x V ‖ + [U⊥, V ⊥] = 0. (2.33)

After computing the Legendre transformation, V can be expressed as

V ⊥ = −[∂xU⊥, A], V ‖ = −1

2
[U⊥, [U⊥, A]]. (2.34)

The 1+1 PDE, when U = ue1 + ue2, finally reads

i∂t u = uxx + 1

2
(u2 + u2)u. (2.35)
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This equation is a modification of the nonlinear Schrödinger equation where |u|2 is
replaced by the difference Re(u)2 − Im(u)2 together with appropriate conjugations.
This equation seems to be new, but does not have the U (1) phase symmetry. The other
choice of A, namely A = e3 and U = ue1 + ve2, leads to two coupled equations
already derived in Ma (2013, 2014).
Second flow of the hierarchy The second flow has the now usual elements

L = λA + U⊥, and M = λ3A + λ2U⊥ + λV + W. (2.36)

The Euler–Poincaré equation is then

∂tU
⊥ − ∂x W ⊥ + [U⊥, W ‖] = 0, −∂x W ‖ + [U⊥, W ⊥] = 0

−∂x V ⊥ + [U⊥, V ‖] + [A, W ⊥] = 0, −∂x V ‖ + [U⊥, V ⊥] = 0

−∂xU⊥ + [A, V ⊥] = 0. (2.37)

After the Legendre transformation, we obtain

V ⊥ = −[∂xU⊥, A], V ‖ = −1

2
[U⊥, [U⊥, A]]

W ⊥ = ∂2x U⊥ + 1

2
[A, [U⊥, [U⊥, [U⊥, A]]]], W ‖ = [U⊥, ∂xU⊥]. (2.38)

With U = ue1 + ve2, the coupled equations for u and v read

∂t3u = uxxx − 1

2
(3u2 − v2)ux − 2uvvx

∂t3v = vxxx + 1

2
(u2 − 3v2)vx − 2uvux . (2.39)

This equation is then a coupled mKdV equation for u and v, also found in Ma (2013)
and previously in the study of coupledmodified KdV equation of Tsuchida andWadati
(1998). One can further simplify this equation by setting u = v and recover the
modified KdV equation. This illustrates the fact that the first members of different
hierarchies are sometimes the same, owing in this case to the isomorphism between
the Lie algebras sl(2) and so(3).

3 Deformations of Integrable Hierarchies

Apart from classical completely integrable systems, there exist other interesting sys-
tems such as the Camassa–Holm equation, first derived in Camassa and Holm (1993)
and which admits peaked solitons, or peakons. It is of common agreement that their
complete integrability is of different flavor than classical integrable systems. From
our point of view, the main difference is that they do not fit into the present loop
group approach. Notice that a successful try had been made by Schiff (1998) where he
mapped the CH equation to a negative flow of the KdV hierarchy using a reciprocal
transformation. Indeed, the ZCR of the CH equation does not have a constant element
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for the highest power of λ, but the dynamical field itself as the ZCR is given by [see,
for example, Hone and Wang (2003)]

L =
[

0 1
−mλ + 1

4 0

]

, M =
[ 1

2ux −u − 1
2λ

−1

umλ + 1
4u − 1

8λ
−1 − 1

2ux

]

. (3.1)

Notice that we used the momentum m = u − α2uxx where α2 is the length scale
parameter.By lettingα2 → 0, the dispersiveCHequation reduces to theKdVequation,
but the ZCR of the dispersive CH equation will not converge to the ZCR of the
KdV equation, written in the AKNS matrix form. This means that the CH equation
has a different integrability flavor than the KdV equation. On top of that, their is no
AKNShierarchy for CH-type equations despite their close relationshipwith theAKNS
hierarchy. These differences are important because, from the equation standpoint, CH
is a deformation of KdV, but from the integrable system theory, they seem to have
nothing to do with each other. We will hereafter show how to deform the integrable
system theory developed above such that the CH equation, among others, can be
recovered. This will lead us to a definition of a weak integrability in the next section.

3.1 Weak Integrability

The present formulation of integrable systems using Lagrangian mechanics is the
key ingredient for a theory of deformation of integrable systems. By deformation, we
mean replacing the L2 norm by the H1 norm. This procedure introduces a length scale
parameter α such that when α → 0, the H1 norm becomes the L2 norm.We first recall
that, in classical mechanics, the metric can be defined by the Lagrangian if it is in a
quadratic form. We refer to Marsden and Ratiu (1999) for a precise account of this
fact. We do not have a proper quadratic form here because the momentum is related
to the velocity through the complicated recursive relations (2.15) as shown before.
Nevertheless, it is the best place to introduce the H1 norm. The deformed Lagrangian
can therefore be defined with the Sobolev norm as

l H1

i j (M ( j)) :=
∫

〈M ( j), M (i)(M ( j))〉 + α2〈∂x M ( j), ∂x M (i)(M ( j))〉dx

=
∫

〈M ( j), (1 − α2∂2x )M (i)(M ( j))〉dx . (3.2)

For the last equality, we rewrote the norm using an integration by parts and vanishing
boundary conditions. This exhibits the Helmholtz operator Λ := 1 − α2∂2x that we
will use throughout the rest of this work. This type of deformation is common in
the literature and allows singular solutions to exist. Indeed, the Green’s function of
Λ, given by e−|x |/α/(2α), is the famous peakon solution of the dispersionless CH
equation. We refer to Camassa and Holm (1993), Holm and Marsden (2005) and
subsequent works for different aspects of peakon solutions.

After having modified the Lagrangian with the Sobolev norm, the standard Euler–
Poincaré equation (2.9) can be derived and reads
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∂tΛM (i) = [M ( j), ΛM (i)] + ∂x M ( j), ∀i, (3.3)

for Λ := 1 − α2∂2x . We want to emphasize that M ( j) had already been fixed and
that the ZCR (2.15) on N j∞ had been used to express the corresponding momentum
M (i)(M ( j)) before the Euler–Poincaré equation was derived. This modification does
not change the implicit relation M (i)(M ( j)) but changes only the Euler–Poincaré
equation. From this modified Euler–Poincaré equation (3.3), one can try to compute
the Legendre transformation in order to, for instance, recover the CH equation. The
deformations will be computed in Sect. 3.2, but first, one has to be careful with the
integrability property or, saying differently how to come back to theZCR interpretation
from the Euler–Poincaré equations (3.3). Indeed, this is not a trivial operation, and
it can only be done after defining a weak ZCR, or projected ZCR. For convenience
here, we will only work with slices of the form Ni1 where x := a1 as flows with
higher-order space variables are more complicated and not much used for physical
applications, except maybe for the derivative NLS equation with t = a4 and x = a2;
see Flaschka et al. (1983a), Kaup and Newell (1978).

Definition 5 Let P A
1,k : g̃ → g̃ be a projection operator for polynomial loop algebras

depending only on A, the element in the Cartan subalgebra of g and k, which defines
a slice N1k for the equation in considerations. For an arbitrary Z = ∑k

i=−∞ Zi ∈ g̃,
the projection is given by

P A
1,k(Z) = Z − λk P+(λ−k Z) − λk−1P+(λ1−k〈Z , A〉A/〈A, A〉), (3.4)

where P+ stands for the projection onto positive powers of λ.

This projection corresponds to removing the Cartan subalgebra element of the Zk−1
and the full element Zk . We can then naturally define the notion of weak integrability.

Definition 6 The Lie algebra value 2 form (∂t M (1) − ∂x M (k) +[M (1), M (k)])ds ∧ dt
is said to be a weak ZCR if its projection under P A

1,k vanishes, namely

P A
1,k(∂t M (1) − ∂x M (k) + [M (1), M (k)]) = 0, (3.5)

or equivalently

∂t M (1) − ∂x M (k) + P A
1,k([M (1), M (k)]) = 0. (3.6)

If the weak ZCR is equivalent to a PDE, the PDE is said to be weakly integrable.

From this definition, we see that apart from being proportional to a power of α, the
projected terms are proportional to the two highest powers in λ that appear in the ZCR.
The equations proportional to these powers of λ are always naturally verified if α = 0;
indeed, we will see that one of them is of the form [U, U ] = 0, for a matrix U . Notice
that the weak ZCR (3.5) is still written in terms of the velocities in the Lagrangian, but
can be Legendre transformed to be expressedwith themomentum fields only. After the
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Legendre transformation, the ZCR will still be a weak ZCR, but it will be equivalent
to some nonlinear PDE, as the CH equation. In order to completely understand the
integrability of these systems, the isospectral problem must be understood. In the
non-deformed case, the isospectral problem is standard, but after the deformation, its
correct formulation is still an open problem.

We will display the exact projected terms for each equation later, but first we want
to sketch a possible research direction for this problem. For simplicity, we denote by L
and M the two loop algebra elements of the ZCR. The trick is similar for the Manakov
triple used for 2+ 1 integrable PDEs, namely instead of projecting out some terms of
the ZCR, one can recast it inside the commutator as

ΛLt − Mx + [ΛL , M − λk L] = 0, (3.7)

if k corresponds to the flow of M = M (k). Then, a direct calculation gives the spectral
problem for a wavefunction ψ(x, t, λ)

ψt = Mψ − λk Lψ

ψx = ΛLψ. (3.8)

This spectral problem is then isospectral if and only if

(Lψ)x = (Lx + LΛL)ψ = 0.

It remains an open problem to interpret and solve this spectral problem as it is rather
different from the Manakov triple. We will not address this problem here but rather
focus on the geometrical interpretation of the deformations of integrable systems.

3.2 Deformed AKNS Hierarchy

Following the derivation of the AKNS hierarchy done in Sect. 2.3.1 but with the
deformed Lagrangian, we will derive the Camassa–Holm equation as well as other
equations. In the Lagrangian formalism, one has to fix t := a3, and the M operator is
then

M = λ3A + λ2U⊥ + λV + W, (3.9)

where A is still constant and U⊥, V, W are three independent fields. Solving the ZCR
in order to find L = M (1) is trivial, and after applying the Λ := 1− α2∂2x operator to
L , we readily have

L̂ := ΛL = λA + ΛU⊥. (3.10)

The Euler–Poincaré equation, or ZCR in the slice N13, expands in four equations for
the ⊥ part
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λ0 : ∂tΛU⊥ − ∂x W ⊥ + [ΛU⊥, W ‖] = 0
λ1 : −∂x V ⊥ + [ΛU⊥, V ‖] + [A, W ⊥] = 0
λ2 : −∂xU⊥ + [A, V ⊥] = 0
λ3 : [A,ΛU⊥] + [U⊥, A] = 0

(3.11)

and three for the ‖ part

λ0 : −∂x W ‖ + [ΛU⊥, W ⊥] = 0
λ1 : −∂x V ‖ + [ΛU⊥, V ⊥] = 0
λ2 : [ΛU⊥, U⊥] = 0

(3.12)

where the last equation of both systems is no more trivially satisfied and has to be
projected out with the projection operator P A

13. Indeed, one can check that the projec-
tion exactly removes these two terms. This example illustrates the fact that the lack of
complete integrability is rather small for the deformed equations and that with α2 = 0,
the projection does nothing.

The Legendre transformation can now be computed to obtain equation such as the
CH, mCH, and the new CH-NLS equation. First, the λ2 equation of (3.11) gives

V ⊥ = −1

4
[A, ∂xU⊥],

and then the λ equation of (3.12) yields

∂x V ‖ = [ΛU⊥, V ⊥] = −1

4
[ΛU⊥, [A, ∂xU⊥]].

This equation can only be weakly solved as

V ‖ = −1

4
∂−1

x ([ΛU⊥, [A, ∂xU⊥]]).

W ⊥ is non-local

W ⊥ = − 1

4
[A, ∂x V ⊥] − 1

4
[A, [V ‖,ΛU⊥]]

= − 1

4
∂2x U⊥ + 1

16
[A, [∂−1

x ([ΛU⊥, [A, ∂xU⊥]]),ΛU ]],

as well as the parallel part of W , which reads

∂x W ‖ =[ΛU⊥, W ⊥]
= − 1

4
[ΛU⊥, ∂2x U⊥] − 1

16
[ΛU⊥, [A, [∂−1

x ([ΛU⊥, [A, ∂xU⊥]]),ΛU ]]].
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3.2.1 CH and mCH Equations

In order to obtain the standard form of integrable wave equations, we have to fix the
form of U and rescale the time t → 4t . For UKdV defined in (2.23), one can check
that the CH equation is recovered

mt + 2mux + mx u + uxxx = 0, (3.13)

with the uxxx dispersive term; see Camassa and Holm (1993), Dullin et al. (2004).
The corresponding weak ZCR after simplification of the complex numbers is given by

L =
[
λ m
1 −λ

]

, M =
[
λ3 − 1

2λu − 1
4ux λ2 12ux − 1

2mu + 1
4uxx

λ2 − 1
2u −λ3 + 1

2λu + 1
4ux

]

. (3.14)

Notice that the term that we need to project out in order to recover the CH equation
(3.13) from the previous weak ZCR is

λ2([A,ΛU ] + [U, A]) + λ3[ΛU, U ] = α2uxx

[
−λ2 2λ3

0 λ2

]

.

For UmKdV, defined in (2.24), the dispersive mCH equation is obtained

mt + 2σ [m(u2 − α2u2
x )]x + uxxx = 0. (3.15)

In this case, P A
13 projects only [ΛU⊥, U⊥] = 0; thus, the weak ZCR has only a

projection for the λ3 term. The M operator reads

M =
[

λ3 − 1
2λ(u2 − α2u2x ) λ2u + λ 1

2ux − 1
2m(u2 − α2u2x ) + 1

4uxx

λ2u − 1
2λux − 1

2m(u2 − α2u2x ) + 1
4uxx −λ3 + 1

2λ(u2 − α2u2x )

]

.

Similarly to the CH equation, the term that we need to project out in order to recover
the dispersive mCH equation (3.15) from the previous weak ZCR is

λ2([A,ΛU ] + [U, A]) + λ3[ΛU, U ] = α2uxx

[ −λ2 2λ3

−2λ3 λ2

]

.

The mCH equation is already known to be integrable with a linear dispersion; see
Qiao (2007) for a recent derivation. We refer to Qiao (2007), Fokas and Liu (1996),
and references therein for more details on this equation, and we will not investigate
it further in the present work. The mCH equation with a third-order dispersion term
as we derived can easily be related to the linear dispersion by a change in variable
x → x + ct for an appropriate value of c. Finally, the general UcKdV defined in (2.25)
gives the coupled mCH equations

mt + 2[m(uv − α2uxvx )]x − 2m(uvx − uxv) + uxxx = 0
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nt + 2[n(uv − α2uxvx )]x + 2n(uvx − uxv) + vxxx = 0. (3.16)

These coupled equations have recently been found and studied byXia andQiao (2015).
The weak ZCR can be calculated, but we will not display it here.

3.2.2 Deformation of the NLS Equation

The deformation of the NLS equation, the first flow in the AKNS hierarchy, can be
computed and will give a new weakly integrable equation that we will call the CH-
NLS equation. Using the previous calculations of M = λ2A +λU⊥ + V and the NLS
form of U

ΛUNLS =
[

0 m
σm 0

]

, (3.17)

for complex-valued u and σ = ±1 for the focusing or defocussing case, we obtain the
CH-NLS equation on the slice N12

imt + uxx + 2σm(|u|2 − α2|ux |2) = 0, m = u − α2uxx , σ = ±1. (3.18)

In terms of u only, it is given by

iut − iα2uxxt + uxx + 2σu|u|2 − 2σα2u|ux |2
− 2σα2uxx |u|2 + 2σα4uxx |ux |2 = 0 (3.19)

but is not an evolutionary equation for u, as all the other deformed equations. The
weak ZCR of the CH-NLS equation is

L =
[

iλ m
m −iλ

]

, M =
[

iλ2 + i
2 (|u|2 − α2|ux |2) λu − i

2ux

λu + i
2ux −iλ2 − i

2 (|u|2 − α2|ux |2)

]

,

(3.20)

and, in contrary to the mCH equation, the projection with respect to the λ1 term
remains, because of the complex-valued fields. This equation is also Hamiltonian
with its Hamiltonian structure given by the non-canonical NLS Hamiltonian structure

J =
[

2σm∂−1
x m ∂x + 2σm∂−1

x m

∂x + 2σm∂−1
x m 2σm∂−1

x m

]

, (3.21)

and its associated Hamiltonian

P = i
∫

(mux − mux )dx . (3.22)

123



J Nonlinear Sci (2016) 26:1133–1160 1155

The Hamiltonian has an interpretation of momentum for the field m, standard in
the theory of the NLS equation. This Hamiltonian structure is actually the same as
for the NLS equation, and the modified definition of the momentum P leads to the
CH-NLS equation instead of the NLS equation. Note that the mass M = ∫ |m|2dx
is also conserved and could be associated with the S1 symmetry of the CH-NLS
equation. The interpretation of a mass and momentum for M and P is not clear, as
the Hamiltonian structure J does not produce the flow of space translations mt =
mx and phase shifts mt = im. Notice that there is no Galilean symmetry for this
equation. This is linked to the non-integrability of the CH-NLS equation. Indeed,
despite the weak integrability, this equation seems not to be completely integrable, as
a second compatible Hamiltonian structure as well as its associated Hamiltonian are
missing. For the NLS equation, the second Hamiltonian structure, which is a canonical
Hamiltonian structure, would generate the symmetry associated with the mass M and
momentum P . We will not investigate this equation further here, but we refer to
Arnaudon (2016) for more details about this equation.

3.3 Deformation of SO(3) Hierarchy

Following the same procedure as for the deformation of the AKNS hierarchy, we
proceed with the SO(3) hierarchy.
First flow of the hierarchy The L and M elements are

L = λA + ΛU⊥, M = λ2A + λU⊥ + V, (3.23)

and the corresponding Euler–Poincaré equation is

∂tΛU⊥ − ∂x V ⊥ + [ΛU⊥, V ‖] = 0
−∂xU⊥ + [A, V ⊥] = 0, −∂x V ‖ + [ΛU⊥, V ⊥] = 0.

(3.24)

Then, the Legendre transformation gives

V ⊥ = −[∂xU⊥, A], V ‖ = −∂−1
x [ΛU⊥, [∂xU⊥, A]].

The deformation of SO3-NLS equation (2.35) then reads

imt = uxx + 1

2
u

(
u2 − α2u2

x + u2 − α2u2
x

)
. (3.25)

Even if this equation seems to be new, the lack of U (1) symmetry makes it less
physically relevant, and we thus leave the analysis of this equation for future works.
Second flow of the hierarchy For this flow, the L and M elements are

L = λA + ΛU⊥, L = λ3A + λ2U⊥ + λV + W (3.26)
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, and the associated Euler–Poincaré equation is

∂tΛU⊥ − ∂x W ⊥ + [U⊥W ‖] = 0, −∂x W ‖ + [ΛU⊥W ⊥] = 0

−∂x V ⊥ + [ΛU⊥, V ‖] + [A, W ⊥] = 0, −∂x V ‖ + [ΛU⊥V ⊥] = 0

−∂xU⊥ + [A, V ⊥] = 0. (3.27)

After computing the Legendre transformation, we obtain

V ⊥ = −[∂xU⊥, A], V ‖ = −∂−1
x [ΛU⊥, [∂xU⊥, A]]

W ⊥ = ∂2x U⊥ + [A, [ΛU⊥, [∂−1
x (ΛU⊥, [∂xU⊥, A])]]], W ‖ = ∂−1

x [ΛU⊥, ∂2x U⊥].

The equation for ΛU = me1 + ne2 is then

mt + [m(ux m + vx n)]x − (uvx − vux )v + uxxx = 0

nt + [n(ux m + vx n)]x + (uvx − vux )u + vxxx = 0. (3.28)

This equation is similar to (3.16) except for the third term; there might exist a transfor-
mation between the two. If one restricts the form of U by setting v = u, the equation
becomes

mt + uxxx + 2m2ux + mx

(
u2 − α2u2

x

)
= 0 (3.29)

which is the modified CH equation (3.15). This result is compatible with the classical
hierarchy which gave the modified KdV equation. As in the classical case, the differ-
ence in terms of the form of the equations between the two hierarchies arises when
the full UcKdV element is considered.

3.4 Limiting Case: α2 → ∞

The limit α2 → ∞ is also interesting and corresponds to the high frequency limit
when ε → ∞ in the change in variables x → εx, t → εt . For the Camassa–Holm
equation, it gives the Hunter–Saxton (HS) equation (Hunter and Saxton 1991; Hunter
and Zheng 1994)

utx + uuxx + 1

2
u2

x = 0. (3.30)

This limit corresponds tomodifying theSobolevnormwith its equivalent norm
∫

u2
xdx .

In the case of cubic equation, the high frequency limitwhich corresponds to this pairing
has a different form, namely x → εx, t → ε2t . The limit of CH-NLS equation (3.18)
reads, after rescaling the time t → 2σ t

iuxxt = uxx |ux |2. (3.31)
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This equation seems to be new, but its analysis is beyond the scope of this work. The
same limit in the mCH equation yields

uxxt = uxx u2
x or uxt = 1

3
u3

x or vt = 1

4
v3 (3.32)

which is now a ordinary differential equation for v = ux , thus not interesting for us
here. The high frequency limit for the other equations will not be displayed here, but
might be interesting for further studies.

4 Conclusion

In this paper, we deformed the classical integrable system theory in order to derive
nonlinear equations with non-local terms such as the Camassa–Holm equation. The
central point of this deformation is in a systematic insertion of the Sobolev H1 norm
in hierarchies of integrable systems. In order to achieve this goal in a systematic way,
we replaced the standard L2 norm by the Sobolev norm in a Lagrangian which should
describe an integrable hierarchy. In order to derive such a Lagrangian formulation of
integrable systems, we first came back to the roots of integrability, written in terms of
multi-times and loop groups. Then, we took a slightly different direction by forgetting
for a moment the time or space interpretation of the coordinates in the so-called multi-
time space, associated with the different flows of the hierarchy. This step allowed
us to reverse the choice of time and space in the construction of the hierarchy of
equations and thus to interpret the usual zero curvature relation as an Euler–Poincaré
equation. This Euler–Poincaré equation is rather special as it is written on the dual of
a loop algebra and with an extra term coming from a derivative cocycle, responsible
for the spacial derivatives in the resulting nonlinear equations. This exchange of time
and space in the derivation of the hierarchy produced equations with more dependent
fields and thus led to coupled equations rather than a single equation. These coupled
equations can be simplified by expressing the extra fields in terms of a single one
(in the case x = a1) and is understood as a Legendre transformation. This Legendre
transformation then recovers the standard ZCR with its Hamiltonian Lie–Poisson
interpretation. Notice that we treated here the simplest case of quadratic Lagrangians,
written on semi-simple Lie algebras. Extensions such as non-semi-simple Lie algebras
treated for example in Ma (2009), or semi-direct products extensions, studied in the
context of theCH2equationbyHolmand Ivanov (2010), couldbe interestingdirections
to explore in this context.

From this viewpoint, the best choice that we have for the inclusion of the H1 norm
is in the Lagrangian. Then, the Legendre transform will give the usual notion for of
nonlinear equations with a single field and a notion of deformation of hierarchies of
integrable systems. The obtained equations do not form a hierarchy by themselves
as some of them will not be integrable. The complete integrability in terms of the
standard ZCR is thus altered for this deformation of hierarchies. Indeed, the classical
ZCR is no more valid, but a notion of projected ZCR can be defined such that the
equivalence between the deformed PDE and the deformation of the ZCR is retained.
These projected terms are always proportional to the highest powers in the spectral
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parameter λ, as well as to α2. From here, the link with an isospectral problem seems to
be lost, but we suggested a possibility to incorporate this extra terms in the commutator
of the ZCR, provided some extra conditions on the spectral problem hold. Even if most
of the equations found in this work are already known, this deformation theory relates
more closely the deformed equations with their classical limits given by α2 → 0. This
systematic approach led us to a classification in terms of deformed flows of deformed
equations summarized in Table1. In this classification, a new equation called the CH-
NLS equation (1.1) was found as a deformation of the NLS equation. The CH-NLS
equation could not yet be shown to be completely integrable and therefore raises the
question of understanding the link between the present notion of weak integrability
and the standard complete integrability. A final comment regarding the deformed
equations is that there might be a possibility of using the KAM theory of PDEs for our
deformed equations, such that the one described in Kuksin (2000). The main problem
here will be to treat the non-localities arising from the use of the inverse Helmholtz
operator, as we should view m as the dynamical variable for applying this theory. A
possibility to overcome this would be to expand the non-local terms up to some order
in α and restricting the validity of the approximated equation for solutions with low
wave numbers compared to the scale given by α . Then, maybe the KAM theory could
give some insights into the approximated equations, such as deriving approximated
solutions for them.
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