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Abstract We rigorously analyze the bifurcation of stationary so-called nonlinear
Bloch waves (NLBs) from the spectrum in the Gross–Pitaevskii (GP) equation with
a periodic potential, in arbitrary space dimensions. These are solutions which can be
expressed as finite sums of quasiperiodic functions and which in a formal asymptotic
expansion are obtained from solutions of the so-called algebraic coupled mode equa-
tions. Here we justify this expansion by proving the existence of NLBs and estimating
the error of the formal asymptotics. The analysis is illustrated by numerical bifurca-
tion diagrams, mostly in 2D. In addition, we illustrate some relations of NLBs to other
classes of solutions of the GP equation, in particular to so-called out-of-gap solitons
and truncated NLBs, and present some numerical experiments concerning the stability
of these solutions.
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1 Introduction

The nonlinear Schrödinger/Gross–Pitaevskii (GP) equation in d ∈ N dimensions,

i∂tψ = �ψ − V (x)ψ − σ |ψ |2ψ, x ∈ R
d , t ∈ R, (1.1)

with a real potential V : Rd → R is a canonical model in mathematics and physics.
It appears in various contexts, e.g., nonlinear optics (Sukhorukov and Kivshar 2002;
Efremidis et al. 2003) and Bose–Einstein condensation (Louis et al. 2003; Alexander
et al. 2006). See also, e.g., Sulem and Sulem (1999), Yang (2010) and Fibich (2015) for
mathematical and modeling background. Plugging eiωtϕ(x) into (1.1), where ω/(2π)

is the frequency of time-harmonic waves in nonlinear optics, and where ω is called the
chemical potential in Bose–Einstein condensation, we obtain the stationary problem

ωϕ +�ϕ − V (x)ϕ − σ |ϕ|2ϕ = 0. (1.2)

Here we consider the case that the potential V is real and periodic. For simplicity,
we let V be 2π -periodic in each coordinate direction, i.e.,

V (x + 2πe j ) = V (x) for all x ∈ R
d , j ∈ {1, . . . , d},

where e j denotes the j th Euclidean unit vector in R
d . In other words, we consider

the periodic lattice 2πZd . We make the basic assumption that V ∈ Hs−2(P) for some
s > d

2 , where P = (−π, π ]d . This smoothness assumption on V ensures Hs(P)-
smoothness of linear Bloch waves, i.e., solutions of (1.2) with σ = 0. See Sect. 1.1
for a review of spectral properties of

L = −�+ V

and linear Bloch waves. For suitable V the spectrum of L shows so-called spectral
gaps and in recent years a focus has been on the bifurcation of so-called gap solitons
from the zero solution at band edges into the gaps. These are localized solutions, which
in the near edge asymptotics have small amplitude and long wave modulated shape.
In detail, the asymptotic expansion at ω = ω∗ + ε2
 with 
 = ±1 is

ϕ(x) ∼ ε

N∑

j=1
A j (εx)ξn j (k

( j); x), (1.3)

where ξn j (k
( j); ·), j = 1, . . . , N are Bloch waves at the edge ω∗ and the A j are

localized solutions of a system of (spatially homogeneous) nonlinear Schrödinger
equations. See, for instance, Shi and Yang (2007), Dohnal et al. (2009), Dohnal and
Uecker (2009), Ilan and Weinstein (2010), and the references therein.

Here we seek solutions of (1.2) which can be expressed as a finite sum of M
quasiperiodic functions and call such solutions nonlinear Bloch waves (NLBs), with
quasiperiodicities determined from a selected finite subset of the Bloch waves at ω.
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NLBs have been studied in, for instance, Dohnal et al. (2009), Wang et al. (2009),
Zhang et al. (2009), Zhang and Wu (2009), Coles and Pelinovsky (2012), where in
Wang et al. (2009), Zhang et al. (2009), Zhang and Wu (2009) the approaches are
numerical and formal. They have also been observed even experimentally, see, e.g.,
Cristiani et al. (2002) for experiments in Bose–Einstein condensates. In Dohnal et al.
(2009) the special case of a bifurcation of NLBs into an asymptotically small spectral
gap for a separable periodic potential in two dimensions is studied rigorously. In
Coles and Pelinovsky (2012) the bifurcation of single component (M = 1) NLBs in
one dimension is proved, including results on secondary bifurcations and exchange
of stability. Similarly to Bloch waves in linear lattices NLBs can be understood as
the fundamental bounded oscillatory states of the nonlinear system. From the applied
point of view one motivation for studying NLBs is the continuation of gap solitons to
“out-of-gap” solitons, i.e., the continuation of localized solutions from one band edge
across the gap and into the spectrum on the other side of the gap, where their tails start
interacting with the NLBs. For this reason, the study of bifurcation of NLBs from the
zero solution has been mostly restricted to band edges. Here we show that nonlinear
Bloch waves bifurcate in ω from generic points in the spectrum of L and give their
asymptotic expansions in terms of solutions of the so-called algebraic coupled mode
equations (ACME), together with error estimates.

In addition to the rigorous analysis we illustrate our results numerically. For this we
focus on 2D, as this is much richer than 1D, and use the same potential as in Dohnal
and Uecker (2009), i.e.,

V (x) = 1+ 4.35W (x1)W (x2), x ∈ [−π, π ]2 (1.4)

with

W (s) = 1

2

[
tanh

(
7

(
s + 3π

5

))
+ tanh

(
7

(
3π

5
− s

))]
.

This represents a square geometry with smoothed-out edges. The function in (1.4) is
extended periodically to R

2 to obtain V : R2 → R. The numerical band structure
of L over the Brillouin zone B := (−1/2, 1/2]d , and also along the boundary of the
irreducible Brillouin zone, is plotted in Fig. 1a, b, respectively.We denote the so-called
high symmetry points in B for d = 2 by

� := (0, 0), X := (1/2, 0), X ′ := (0, 1/2), and M := (1/2, 1/2).

Example 1 Figure 2 shows a numerical bifurcation diagram of single component
(M = 1) NLBs for k = X , calculated with the package pde2path (Dohnal et al.
2014a; Uecker et al. 2014), together with example plots on the bifurcating branches.
A branch of NLBs bifurcates from the zero solution at ω = ω∗ for any ω∗ attained
by one of the band functions at k = X , i.e., at the ω-coordinate of any of the points
a, b, c, d in Fig. 1b. See Sect. 1.1 for the definition of band functions.
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Fig. 1 aBand structure of L over the Brillouin zoneB for the periodic potential (1.4); b along the boundary
� − X − M − � of the, so-called, irreducible Brillouin zone
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Fig. 2 Example 1: Bifurcation diagram of the first four bifurcating branches for k = X , i.e., branches
bifurcating from points a–d in Fig. 1b. Spectral bands are indicated by the black dashed line. The sign ±
in the branch labels stands for σ = ±1. The small panels show example solution plots of NLBs from the
bifurcation diagram, over the fundamental cell x ∈ (−π, π)2. At bifurcation we choose a real Bloch wave.
Then the imaginary parts are small near bifurcation, and we only plot them for a±. Roughly horizontal axis
corresponds to x1 in all plots
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In Sect. 7 we explain the method behind Fig. 2 and study in detail the bifurcations
of NLBs at the points marked A, B, C in Fig. 1b, relating the numerical calculations
to our analysis.

As already said, one motivation for studying NLBs is the intriguing properties of
their interaction with localized solutions, which we illustrate numerically in Sect. 8.
For instance, when a gap soliton is continued from the gap into the spectrum, we get a
so-called out-of-gap soliton (OGS) with oscillating (delocalized) tails, see also Yulin
and Skryabin (2003) and Johanson et al. (2011). In 1D, numerically these OGS can
be seen to be homoclinic orbits approaching NLBs, and essentially the same happens
in 2D. Moreover, the NLB can form building blocks of so-called truncated NLBs
(tNLBs), see also Alexander et al. (2006) and Wang et al. (2009). These are localized
solutions for ω in a gap which are close to a NLB on some finite interval but approach
0 as |x | → ∞. Then, continuing a branch of tNLBs from the gap into the spectrum, the
same interaction scenario as for GS happens, i.e., the tails of the tNLBs pick up NLBs
bifurcating from the gap edge into the spectrum, and the tNLBs become delocalized,
for which we use the acronym dtNLB. Note that both gap solitons and tNLBs have
been observed experimentally, see, e.g., Bersch et al. (2012) for experiments in optical
lattices. However, even in 1D at present it is unclear how to analyze OGS, tNLBs, and
dtNLBs rigorously, i.e., so far there only exist heuristic asymptotics, see Sect. 8 for
further comments.

Stability of most of these solutions is an open problem. Thus, at the end of the paper
we also give a numerical outlook on this and obtain stability of some NLBs in 1D,
and, consequently, stability of some tNLBs and some OGS and dtNLBs. In 2D, we did
not find stable NLBs for the potential V from (1.4), and we close with summarizing
the open questions. The broad spectrum of applications of NLBs clearly motivates our
rigorous bifurcation analysis.

In the remainder of this introduction we explain the linear band structure, a simple
analytical bifurcation result, formulate the main theorem, and describe the structure
of the paper in more detail.

1.1 Linear Bloch Waves

For k in the Brillouin zone, k ∈ B := (−1/2, 1/2]d , consider the Bloch eigenvalue
problem

(−�+ V (x))ξn(x, k) = ωn(k)ξn(x, k), x ∈ P

ξn(x + 2πem, k) = e2π ikm ξn(x, k), m ∈ {1, . . . , d}, (1.5)

where em is the mth Euclidean unit vector in R
d . The spectrum of L = −� + V

is continuous and is given by the union of the bands defined by the band structure
(ωn(k))n∈N, i.e.,

σ(L) =
⋃

n∈N
k∈B

ωn(k) =
⋃

l∈N
[s2l−1, s2l ], where s2l−1 < s2l ≤ s2l+1 for all l ∈ N,
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see Theorem 6.5.1 in Eastham (1973). The functions k 	→ ωn(k) are called band
functions. The Bloch waves ξn(x, k) have the form ξn(x, k) = pn(x, k)eik·x with
pn(x+2πem, k) = pn(x, k) for allm ∈ {1, . . . , d} and all x ∈ R

d . Clearly, bothωn(k)
and ξn(x, k) are 1-periodic in each component of k. We assume the normalization

‖ξn(·, k)‖L2(P) = ‖pn(·, k)‖L2(P) = 1 ∀n ∈ N ∀k ∈ B.

For a given point (k, ω) ∈ B × R in the band structure, i.e., with ω = ωn(k) for
some n ∈ N, also the point (−k, ω) lies in the band structure, which follows from the
symmetry

ωn(k) = ωn(−k) for all n ∈ N, k ∈ B. (1.6)

This symmetry is due to the equivalence of complex conjugation and replacing k 	→
−k in the eigenvalue problem (1.5). Hence, we also have the conjugation symmetry
of the Bloch waves, namely

ξn(x, k) = ξn(x,−k). (1.7)

For k ∈ ∂B ∩ B we have −k ∈ ∂B \ B and the point −k must be understood as the
Z
d -periodic image withinB. When k is one of the so-called high symmetry points, i.e.,

km ∈ {0, 1/2} for all m ∈ {1, . . . , d}, then k and−k are identified via this periodicity.
Equation (1.7) then implies that ξn(x, k) is real. This can be seen directly from the
eigenvalue problem (1.5), where km ∈ {0, 1/2} for all m ∈ {1, . . . , d} implies that
the boundary condition is real such that a real eigenfunction must exist. Note that the
above k-symmetries rely only on the realness of V .

1.2 The Bifurcation Problem

Remark 1 In the simplest scenario we can look for real solutions of (1.2) with the
quasiperiodic boundary conditions given by a single vector k∗ ∈ B, i.e.,

ϕ(x + 2πem) = ϕ(x)e2π ik∗,m for all x ∈ R
d ,m ∈ {1, . . . , d}. (1.8)

In this case the realness condition on ϕ requires

k∗ ∈
{
0, 1

2

}d
, (1.9)

such that the sought solution is 2π -periodic or 2π -antiperiodic in each coordinate
direction. We study bifurcations in the parameter ω. Classical theory for bifurcations
at simple eigenvalues, e.g., Theorem 3.2.2 in Nirenberg (1974), shows that if ω∗ =
ωn∗(k∗) for exactly one n∗ ∈ N, i.e.,ω∗ is a simple eigenvalue of L under the boundary
conditions (1.8), then ω = ω∗ is a bifurcation point. To this end define f (ϕ, ω) =
ωϕ+�ϕ−V (x)ϕ−σϕ3 and study f (ϕ, ω) = 0 on P under the boundary conditions
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(1.8). We have f (0, ω) = 0 for all ω ∈ R and fϕ(0, ω) = ω − L . As ω∗ is a simple
eigenvalue, we have the one-dimensional kernel

Ker( fϕ(0, ω∗)) = ξn∗(x, k∗)R.

Because L with (1.8) and (1.9) is self-adjoint, we have Ran( fϕ(0, ω∗)) ⊥L2(P)

Ker( fϕ(0, ω∗)). The transversality condition fωϕ(0, ω∗)ξn∗(x, k∗) /∈ Ran( fϕ(0, ω∗))
of Theorem 3.2.2 in Nirenberg (1974) thus holds because fωϕ(0, ω∗)ξn∗(x, k∗) =
ξn∗(x, k∗) ⊥L2(P) Ran( fϕ(0, ω∗)). As a result, the theorem guarantees the existence
of a unique non-trivial branch of solutions bifurcating from ω = ω∗.

Remark 2 Without the restriction to real solutions the eigenvalue ω∗ is never simple
due to invariances. In the real variables 
 := (ϕR, ϕI )

T , where ϕ = ϕR + iϕI , the
problem becomes

G(
,ω) =
(

ωϕR +�ϕR − V (x)ϕR − σ(ϕ2
R + ϕ2

I )ϕR

ωϕI +�ϕI − V (x)ϕI − σ(ϕ2
R + ϕ2

I )ϕI

)
= 0.

Since (1.2) possesses the phase invariance and the complex conjugation invariance,
we get that G is O(2) invariant, i.e.,

G(γ
,ω) = γG(
,ω) for all γ ∈ � := {( 1 0
0 −1

)
,
(
cos θ − sin θ
sin θ cos θ

) : θ ∈ [0, 2π)
}
.

Bifurcations can now be studied using the equivariant branching lemma, see, e.g.,
Mei (2000, Chapter 5), by restricting to a fixed point subspace of a subgroup of �.
The only non-trivial subgroup is

{(
1 0
0 1

)
,
(
1 0
0 −1

)}
with the fixed point subspace being

the vectors 
 with ϕI = 0 corresponding to real solutions of (1.2). Therefore, this
leads again to real solutions. Nevertheless, more complicated solutions than the single
component ones in Remark 1 can be studied. The most general real ansatz is

ϕ(x) =
2q+r∑

j=1
ϕ j (x), ϕ j (x + 2πem) = ei2πk

( j)
m ϕ j (x),m = 1, . . . , d (1.10)

with q, r ∈ N0, with k( j) ∈ B for all j = 1, . . . , 2q + r , such that k( j+q)=̇
− k( j), ϕ j+q = ϕ j for all j = 1, . . . , q, and with k( j) ∈ {0, 1/2}d , ϕ j (x) ∈ R

for j = 2q + 1, . . . , 2q + r . Here =̇ means equality modulo 1 in each coordinate.
While the use of the equivariant branching lemma should describe the bifurcation
problem and produce the effective Lyapunov–Schmidt reduction, we choose to carry
out a detailed analysis without this tool in order to obtain more explicit results. This
will allow us to provide estimates of the asymptotic approximation error.

Our aim is to prove a general bifurcation theorem for NLBs and, moreover, to
derive and justify an effective asymptotic model related to the Lyapunov–Schmidt
reduction in the bifurcation problem including an estimate on the asymptotic error.
In our approach we select a frequency ω∗ in the spectrum and choose N points
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{k(1)∗ , . . . , k(N )∗ } ⊂ B in the level set of the band structure at ω∗, such that for each j
we have ω∗ = ωn j (k

( j)∗ ) for some n j ∈ N. Our method requires that each of the points

{k(1)∗ , . . . , k(N )∗ } is either one of the high symmetry points k ∈ {0, 1/2}d or belongs to
a pair k, l with l=̇ − k. See (H1)–(H6) on page 13 for a summary of our assumptions.
We seek NLBs bifurcating from ω∗ and having the asymptotic form

ϕ(x) ∼ ε

N∑

j=1
A jξn j (x, k

( j)), (1.11)

at ω = ω∗ ± ε2. The coefficients A j , i.e., the (complex) amplitudes of the waves, are
given by solving the ACME as an effective algebraic system of N equations. Generally
a sum of N quasiperiodic functions with the quasiperiodicity of each given by one
of the vectors k( j) cannot be an exact solution of (1.2) as the nonlinearity generates
functions with other quasiperiodicities. Our ansatz for the exact solution is thus

ϕ(x) =
M∑

j=1
ϕ j (x), ϕ j (x + 2πem) = ei2πk

( j)
m ϕ j (x), m = 1, . . . , d

with M ≥ N and k( j) = k( j)∗ for j = 1, . . . , N . Importantly, this set {k(1), . . . , k(M)}
[defined in (3.2)] can be a proper subset of the level set. The subset may be finite
even if the level set is, for instance, uncountable. In fact, our assumption (H4)
ensures the finiteness. Besides, the subset {k(1), . . . , k(N )} can be much smaller than
{k(1), . . . , k(M)} and hence the effective ACME system can be rather small. The subset
has to satisfy only (H2–H6).

The major assumptions of our analysis are rationality (assumption (H4)) and cer-
tain non-resonance conditions (H5) on the k-vectors {k(1), . . . , k(N )}. In addition, the
solutions of the coupled mode equations need to satisfy certain symmetry (“reversibil-
ity”) and non-degeneracy conditions, see Definitions 2 and 3, in order for us to
guarantee that (1.11) approximates a solution ϕ of (1.2). The main result is the
following.

Theorem 1 Assume (H1)–(H6). There exist ε0 > 0 and C > 0 such that for all
ε ∈ (0, ε0) the following holds. If the ACMEs (2.3) have a reversible non-degenerate
solution A ∈ Vrev, then (1.2) with ω = ω∗ + ε2
 has a nonlinear Bloch wave solution
ϕ of the form (3.4), and

∥∥∥∥∥∥
ϕ(·)− ε

N∑

j=1
A jξn j (·, k( j))

∥∥∥∥∥∥
Hs (P)

≤ Cε3.

There are three relatively straightforward generalizations of the result. Firstly, the
periodic lattice 2πZd can be replaced by any lattice {∑d

j=1m ja j : m ∈ Z
d} with

linearly independent vectors {a1, . . . , ad} ⊂ R
d . Of course, the periodicity cell P

and the Brillouin zone B have to be redefined accordingly. Except for the examples
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in Sect. 6 the results, in particular Theorem 1, hold for a general lattice. Secondly,
the nonlinearity |ϕ|2ϕ can be replaced by other locally Lipschitz nonlinearities f (ϕ)

which are phase invariant and satisfy f (ϕ) = o(ϕ) for ϕ → 0. This may, however,
change the powers of ε in the expansion and the error estimate. Also, the linear operator
L can be generalized to self-adjoint second order differential operators with periodic
coefficients such that the asymptotic distribution of eigenvalues ωn(k) remains that in
(3.6).

1.3 The Structure of the Paper

In Sect. 2 we present a formal asymptotic approximation of nonlinear Bloch waves
and a derivation of the ACMEs as effective amplitude equations. In Sect. 3 we pose
conditions on the solution ansatz and the band structure which are necessary for our
analysis, and apply the Lyapunov–Schmidt decomposition to the bifurcation problem.
The invertible part of the decomposition is estimated in Sect. 4. The singular part and
its relation to the ACMEs is described in Sect. 5, where also the proof of the main
theorem is completed. In Sect. 6we present theACMEs and their solutions in the scalar
case (N = 1) and in the case of two equations (N = 2). Section 7 presents numerical
computations of nonlinear Bloch waves in two dimensions d = 2 for N = 1 and
N = 2. The convergence rate of the approximation error is confirmed by numerical
tests. Finally, in Sect. 8 we give a numerical outlook on the interaction of localized
solutions with NLBs, first for some 1D and 2D GS, and second for tNLBs, and we
report numerical experiments on stability of NLBs and other solutions.

2 Formal Asymptotics

Let ω∗ ∈ σ(L) and choose N ∈ N vectors k(1), . . . , k(N ) ∈ B in the level set of the
band structure at ω∗. For the asymptotics of nonlinear Bloch waves near ω∗ we make
an analogous ansatz to that used in Dohnal et al. (2009, §3) for nonlinear Bloch waves
near band edges in (1.2) with a separable periodic potential. Formally we write

ϕ(x) ∼ ε

N∑

j=1
A jξn j (x, k

( j)∗ )+ ε3
N∑

j=1
ϕ

(1)
j (x) for ω = ω∗ + ε2
 (ε → 0), (2.1)

where the amplitudes A j ∈ C are to be determined and where ϕ
(1)
j satisfies the

quasiperiodicity given by the vector k( j)∗ .
Substituting (2.1) in (1.2) we get at O(ε3) for each j ∈ {1, . . . , N }

(−�+ V (x)− ω∗)ϕ(1)
j (x) = 
A jξn j (x, k

( j)∗ )

−σ
∑

(α,β,γ )∈A j

AαAβ Aγ ξnα (x, k
(α)∗ )ξnβ (x, k(β)∗ )ξnγ (x, kγ∗ ),
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where

A j = {(α, β, γ ) ∈ {1, . . . , N }3 : k(α)∗ − k(β)∗ + k(γ )∗ − k( j)∗ ∈ Z
d}. (2.2)

The condition (α, β, γ ) ∈ A j in the sum ensures that the nonlinear terms have the

same quasiperiodicity as ϕ
(1)
j . Nonlinear terms generated by the ansatz (2.1) and

having other quasiperiodicity than one of those defined by k( j)∗ , j = 1, . . . , N have
been ignored in this formal calculation.

Imposing the solvability condition, i.e., making the right hand side L2-orthogonal
to ξn j (·, k( j)∗ ), we get the algebraic coupled mode equations (ACMEs)


A j −N j (A1, . . . , AN ) = 0, j ∈ {1, . . . , N }, (2.3)

N j = σ
∑

(α,β,γ )∈A j

μα,β,γ, j AαAβ Aγ ,

μα,β,γ, j =
∫

P

ξnα (x, k
(α)∗ )ξnβ (x, k(β)∗ )ξnγ (x, k(γ )∗ )ξn j (x, k

( j)∗ )dx . (2.4)

To make the approximation (2.1) rigorous, we must account for the nonlinear terms
left out above and provide an estimate on the correction ϕ(x)−ε

∑N
j=1 A jξn j (x, k

( j)∗ ).

3 Solution Ansatz, Assumptions, Lyapunov–Schmidt Decomposition

As mentioned above, one of the difficulties of the analysis is that for a sum of N
functions f1, . . . , fN with distinct quasiperiodic conditions the nonlinearity | f1 +
· · · + fN |2( f1 + · · · + fN ) can generate functions with a new quasiperiodicity. If the
k-points defining these new quasiperiodic boundary conditions lie in the ω∗-level set
of the band structure, then a resonance with the kernel of the linear operator occurs.
Also, if the points generated by a repeated iteration of the nonlinearitymerely converge
to the level set, our techniques fail because a lower bound on the inverse of the linear
operator cannot be obtained. These obstacles are avoided if for a selected ω∗ ∈ σ(L)

assumptions (H4) and (H5) below hold.
We select N points {k(1)∗ , . . . , k(N )∗ } ⊂ B in the ω∗-level set of the band structure.

Suppose we seek solutions of (1.2) with ϕ given by the sum of quasiperiodic functions.
The ansatz ϕ(x) = ∑N

j=1 ϕ j (x) with quasiperiodic ϕ j such that ϕ j (x + 2πem) =
ei2πk

( j)∗,mϕ j (x) for all x ∈ R
d ,m ∈ {1, . . . , d} can be a solution of (1.2) only if each

term generated by the nonlinearity applied to this sum has quasiperiodicity defined by
one of the vectors in {k(1)∗ , . . . , k(N )∗ }, i.e., if the consistency condition

S3({k(1)∗ , . . . , k(N )∗ }) ⊂ {k(1)∗ , . . . , k(N )∗ } + Z
d , (3.1)

where

S3 : {k(1)∗ , . . . , k(N )∗ } → {k(α)∗ − k(β)∗ + k(γ )∗ : 1 ≤ α, β, γ ≤ N },
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is satisfied. In other words the consistency condition (3.1) says that all combinations
(α, β, γ ) for α, β, γ ∈ {1, . . . , N } must lie in ∪N

j=1A j , with A j from (2.2).

An example of a consistent ansatz for N > 1 is N = 2, d = 2 with k(1)∗ = X =
(1/2, 0), k(2)∗ = X ′ = (0, 1/2), like, e.g., forω∗ = s3 inDohnal andUecker (2009).On
the other hand, for ω∗ = s5, where N = 4, k(1)∗ = (kc, kc), k

(2)∗ = (−kc, kc), k(3)∗ =
(−kc,−kc), k(4)∗ = (kc,−kc) with kc ≈ 0.439, see Sec. 3.2.2.5 in Dohnal and Uecker
(2009), the ansatz is inconsistent. It is also inconsistent for typical ω∗ in the interior
of σ(L) with generic {k(1)∗ , . . . , k(N )∗ } in the level set. Therefore, we drop the consis-
tency condition and pursue the more general case where the nonlinearity generates
quasiperiodic functions with quasiperiodicity vectors k not necessarily contained in
{k(1)∗ , . . . , k(N )∗ }.

Hence,we define the set of k-points generated by iterations of the nonlinear operator

K := {k ∈ B : k ∈ S p
3 ({k(1)∗ , . . . , k(N )∗ })+ Z

d for some p ∈ N}, (3.2)

and write, with M ≥ N ,

K = (k( j))Mj=1, where k(i) = k(i)∗ for i = 1, . . . , N . (3.3)

At this point M = ∞ is possible but as explained below, our assumption (H4) ensures
M < ∞, i.e., only finitely many new vectors k are generated. Thus we can search for
a solution in the form of the sum of finitely many quasiperiodic functions

ϕ(x) =
M∑

j=1
ϕ j (x), ϕ j (x + 2πem) = ei2πk

( j)
m ϕ j (x), m = 1, . . . , d (3.4)

with ϕ j ∈ Hs(P). The choice of the function space for ϕ j is made clear below.
We make the following assumptions:

(H1) V ∈ Hs−2(P) for some s > d
2 , where P = (−π, π ]d ;

(H2) ω∗ ∈ σ(L) and k(1)∗ , . . . , k(N )∗ ∈ B are points in the ω∗-level set of the band
structure, i.e., there are n1, . . . , nN ∈ N such that

ωn1(k
(1)∗ ) = · · · = ωnN (k(N )∗ ) = ω∗;

(H3) each point k( j)∗ ∈ {k(1)∗ , ..., k(N )∗ } is repeated according to the multiplic-
ity of ω∗ at k = k( j)∗ . In detail, if q ≥ 1 band functions ωm1 , ..., ωmq

touch at (k, ω) = (k( j)∗ , ω∗), then q points in {k(1)∗ , ..., k(N )∗ } equal k( j)∗ and
{m1, ...,mq} ⊂ {n1, ..., nN };

(H4) the points k(1)∗ , . . . , k(N )∗ ∈ B have rational coordinates, i.e.,

k(1)∗ , . . . , k(N )∗ ∈ Q
d ∩ B;
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(H5) the intersection of the set K with the level set of the band structure at ω = ω∗
is exactly the set {k(1)∗ , . . . , k(N )∗ }, i.e.,

K ∩ Lω∗ = {k(1)∗ , . . . , k(N )∗ },

where

Lω∗ := {k ∈ B : ωn(k) = ω∗ for some n ∈ N};

(H6) for each k( j)∗ ∈ {k(1)∗ , . . . , k(N )∗ } the reflection w.r.t. the origin lies in the set too,
i.e.,

k( j)∗ ∈ {k(1)∗ , . . . , k(N )∗ } if and only if k( j ′)∗ ∈ {k(1)∗ , . . . , k(N )∗ },

where B � k( j ′)∗ =̇ − k( j)∗ and =̇ denotes congruence with respect to the 1-
periodicity in each component.

With (H3) the bifurcation from multiple Bloch eigenvalues is allowed. In one
dimension (d = 1) multiplicity is at most two, which occurs for so-called finite band
potentials, see, e.g., Maier (2008) and Dohnal (2014), and only at k = 0 or k = 1/2.
In higher dimensions (d > 1) crossing or touching of band functions is abundant in
generic geometries (potentials V ). Our results thus apply also to Dirac points in two
dimensions studied, e.g., in Fefferman and Weinstein (2012).

Due to the rationality condition (H4) the sought solution (3.4) is, in fact, periodic.
(H4) also ensures that the set K is finite (M < ∞). Indeed, iterating the operator S3 on
a set of points with rational coordinates on a d-dimensional torus generates a periodic
orbit, i.e., only finitely many distinct points are generated, and the number M depends
solely on k(1)∗ , . . . , k(N )∗ . Condition (H4) is satisfied, e.g., if {k(1)∗ , . . . , k(N )∗ } is a subset
of the high symmetry points of B, i.e., k( j)∗ ∈ {0, 1/2}d for all j = 1, . . . , N . This is
frequently the case for the locations of extrema defining a spectral edge. In general,
(H4) is, however, a serious limitation, and removing this assumption would be a major
improvement.

The non-resonance condition (H5) is satisfied, for instance, if ω∗ ∈ ∂σ(L), i.e., for
ω∗ at one of the band edges, and k(1)∗ , . . . , k(N )∗ are all the extremal points of the band
structure at which the edge ω∗ is attained.

The symmetry condition (H6) is needed in the persistence step of the proof, see

Sect. 5. Note that if k( j) ∈ Lω∗ , then also k
( j ′)∗ ∈ Lω∗ by (1.6) and the periodicity in k.

For k( j) ∈ intB, clearly, k( j ′)∗ = −k( j)∗ . For k( j) ∈ ∂B∩B is −k( j)∗ ∈ ∂B \B (e.g., for

d = 2,−k( j)∗ = (−1/2, a) with a ∈ (−1/2, 1/2)) and then k( j ′)∗ is the Zd -periodic

image of−k( j)∗ within B (e.g., k( j ′)∗ = (1/2, a)). Moreover, also (H6) is automatically
satisfied if {k(1)∗ , . . . , k(N )∗ } is a subset of the high symmetry points of B.

Note again that (k(i))Ni=1 as well as K may be proper subsets of Lω∗ . This is, for
instance, the case in 2D if Lω∗ = {(1/2, 0), (0, 1/2)}, where we could choose N = 1
(if ω∗ is simple), and K = {(1/2, 0)} or K = {(0, 1/2)}, which yields two decoupled
scalar bifurcation problems; see Sect. 6.2 for further discussion.
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The remaining two assumptions in Theorem 1 are non-degeneracy and reversibility
of A, defined as follows.

Definition 2 A ∈ C
N is a non-degenerate solution of (2.3) if the Jacobian1 J :=

DAF(A), where Fj (A) := 
A j −N j (A), has a simple zero eigenvalue.

Note that due to the phase invariance A 	→ eiνA, ν ∈ R of (2.3) the Jacobian is
singular.

Definition 3 A ∈ C
N is reversible if

A ∈ Vrev = {v ∈ C
N : vi = vi ′ for all i ∈ {1, . . . , N }},

where i ′ is given by B � k(i ′)=̇ − k(i).

Reversibility is a symmetry of the solution. The motivation for restricting to reversible
non-degenerate solutions A is to ensure the invertibility of J in the fixed point iteration
for the singular part of the Lyapunov–Schmidt decomposition in Sect. 5. Within Vrev
the phase invariance is, indeed, no longer present. The choice of Vrev in Definition 3 is
natural and based on the intrinsic symmetry (1.7) of the Bloch eigenfunctions which
ensures the j 	→ j ′ complex conjugation symmetry among the coefficients in (2.3)
and, hence, the possibility of reversible solutions. Note that (1.7) follows directly from
V (x) ∈ R.

Next, we assume (H1–H6) and use the Lyapunov–Schmidt decomposition in Bloch
variables together with the Banach fixed point theorem to prove the main result, i.e.,
Theorem 1, which justifies the formal asymptotics for solutions at ω = ω∗ +
ε2.

3.1 Lyapunov–Schmidt Decomposition

Due to the completeness of the Bloch waves (ξn(·, k))n∈N in L2(P) we can expand

ϕ j (x) =
∑

n∈N



( j)
n ξn(x, k

( j)) with 

( j)
n = (ϕ j (·), ξn(·, k( j)))L2(P) ∈ C. (3.5)

As the following lemma shows, working with ϕ j in the Hs(P) space is equivalent to

working with �( j) := (

( j)
n )n∈N ∈ l2s/d , where

l2s/d = {F = (Fn)n∈N ∈ l2 : ‖F‖2
l2s/d

=
∑

n∈N
(1+ n)2s/d |Fn|2 < ∞}.

Lemma 4 For s ≥ 0 the following norm equivalence holds. There exist constants
C1,C2 > 0 such that

C1‖ f ‖Hs (P) ≤ ‖F‖l2s/d ≤ C2‖ f ‖Hs (P) for all f ∈ Hs(P),

where F := (Fn)n∈N is related to f ∈ Hs(P) by (3.5).

1 Strictly speaking, the problem should first be rewritten in real variables to define a Jacobian, see the
discussion above Lemma 10, but for brevity we use this compact symbolic notation here.
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The proof is analogous to that of Lemma 3.3 in Busch et al. (2006), see also Dohnal
et al. (2009, §4.1). The main ingredients are firstly the fact that for c > 0 large enough
(such that c + ωn(k) > 0 for all n and k, e.g., c > − ess inf V ) the squared norm
‖ f ‖2Hs (P)

is equivalent to

∫

Rd

∣∣∣(c −�+ V (x))s/2 f (x)
∣∣∣
2
dx =

∑

n∈N
(c + ωn(k))

s‖pn(·, k)‖2L2(P)
|Fn|2

=
∑

n∈N
(c + ωn(k))

s |Fn|2.

Secondly, one uses the asymptotic distribution of bands ωn(k) in d dimensions, see
Hörmander (2007, p. 55): there are constants c1, c2, c3 > 0 such that

c1n
2/d ≤ ωn(k)+ c3 ≤ c2n

2/d ∀n ∈ N ∀k ∈ B. (3.6)

For the subsequent analysis we define for each k( j) ∈ K the set Ã j of indices
producing k( j) through the nonlinearity analogously to the definition of A j , i.e.,

Ã j := {(α, β, γ ) ∈ {1, . . . , M}3 : k(α) − k(β) + k(γ ) − k( j) ∈ Z
d}.

For the ansatz (3.4), (3.5) Eq. (1.2) is equivalent to the algebraic system

F ( j)
n ( ��) := (ωn(k

( j))− ω∗ −
ε2)

( j)
n + σG( j)

n = 0, j ∈ {1, . . . , M}, n ∈ N,

(3.7)

where

G( j)
n = 〈g j , ξn(·, k( j))〉L2(P) =

∫

P

g j (x)ξn(x, k( j))dx,

g j (x) =
∑

(α,β,γ )∈Ã j

∑

n,o,q∈N

(α)

n 

(β)
o 


(γ )
q ξn(x, k

(α))ξo(x, k(β))ξq(x, k
(γ ))

=
∑

(α,β,γ )∈Ã j

ϕαϕβϕγ .

Due to the kernel of the linear multiplication operator at ε = 0 in (3.7) we use a
Lyapunov–Schmidt decomposition in order to characterize the bifurcation from ω =
ω∗ (i.e., from ε = 0). For j ∈ {1, . . . , M} we let

I ( j) :=
{
N \ {n j } if 1 ≤ j ≤ N

N if j > N
,

and let IR := {( j, n) : j ∈ {1, . . . , M}, n ∈ I ( j)}
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and write

ϕ(x) = εϕsing(x)+ ψ(x), ϕsing(x) =
N∑

j=1
Bjξn j (x, k

( j)),

ψ(x) =
∑

( j,n)∈IR
�

( j)
n ξn(x, k

( j))

with 0 < ε � 1, Bj ∈ C and �( j) := (�
( j)
n )n∈N ∈ l2s/d . In other words we set

�( j) =
{

εBjen j +�( j) with �( j) ∈ l2s/d , �
( j)
n j = 0 for 1 ≤ j ≤ N

�( j) with �( j) ∈ l2s/d for j > N ,
(3.8)

where en j is the n j th Euclidean unit vector in RN. Analogously to ϕ j we also define

ψ j :=
∑

n∈I ( j)
�

( j)
n ξn(x, k

( j)).

This decomposition splits problem (3.7) into

F ( j)
n := (ωn(k

( j))− ω∗ −
ε2)�
( j)
n + σG( j)

n = 0, ( j, n) ∈ IR, (3.9)

F ( j)
n j := −ε3
Bj + σG( j)

n j = 0, j ∈ {1, . . . , N }. (3.10)

The following program is analogous to that in Dohnal et al. (2009) and Dohnal and
Uecker (2009). Namely, for (B1, . . . , BN ) ∈ C

N given, we first show the existence of
a small solution (�( j)) j∈N of the regular part (3.9) and then prove a persistence result
relating certain (reversible and non-degenerate) solutions (A1, . . . , AN ) ∈ C

N of (2.3)
to solutions (B1, . . . , BN ) ∈ C

N of the singular part (3.10) including an estimate on
their difference, and finally provide an estimate of ‖ϕ− ε

∑N
j=1 A jξn j (·, k( j)∗ )‖Hs (P).

4 Regular Part of the Lyapunov–Schmidt Decomposition

We define the following spaces and norms

S(s) :=
{
ϕ =

∑

j∈N
ϕ j : ϕ j ∈ Hs(P) ∀ j, ‖ϕ‖S(s) :=

∑

j∈N
‖ϕ j‖Hs (P) < ∞ and

∀ j∃k ∈ B such that ϕ j (x + 2πem) = ei2πkmϕ j (x),m = 1, . . . , d for a.e. x ∈ R
d
}

X (s) :=
{
�� = (�( j)) j∈N : ‖ ��‖X (s) :=

∑

j∈N
‖�( j)‖l2s/d < ∞

}
.
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Note that the condition k ∈ B in the definition of S(s) can be replaced by k ∈ R
d

because each k ∈ R
d can be written as k = k̃ + κ , where k̃ ∈ B and κ ∈ Z

d . Also
note that �� is a sequence of sequences. Similarly we denote

�� := (�( j))Mj=1 and �G := (G( j))Mj=1.

Clearly, the ansatz (3.4) satisfies ϕ ∈ S(s) if and only if ϕ j ∈ Hs(P) for all j ∈
{1, . . . , M}. Therefore, for the problem at hand, where the solution consists ofM < ∞
components ϕ j , the spaces S(s) and X (s) could be defined with finite sums over
j . However, since the use of infinite sums in the definitions does not increase the
complexity and since it may prove useful in future work on the case of irrational
coordinates of k( j)∗ , we keep these general definitions.

We will need the following two lemmas, the first following directly from Lemma 4.

Lemma 5 For s ≥ 0 there exist c1, c2 > 0 such that for all

S(s) � ϕ(·) =
∑

j∈N

∑

n∈N



( j)
n ξn(·, k( j)) we have c1‖ϕ‖S(s) ≤ ‖ ��‖X (s) ≤ c2‖ϕ‖S(s).

Lemma 6 For s > d/2 the space S(s) is an algebra, i.e., there is a constant c > 0
such that ‖ f g‖S(s) ≤ c‖ f ‖S(s)‖g‖S(s) for all f, g ∈ S(s).

Proof Wedefine the sets K f and Kg of k-points, which determine the quasiperiodicity
of the functions f j and g j , j ∈ N, i.e.,

K f := {k ∈ B : ∃ j ∈ N with f j (x + 2πem) = e2π ikm f j (x)

for all m = 1, . . . , d and a.e. x ∈ R
d},

Kg := {k ∈ B : ∃ j ∈ N with g j (x + 2πem) = e2π ikm g j (x)

for all m = 1, . . . , d and a.e. x ∈ R
d}.

We have

‖ f g‖S(s) =
∥∥∥∥∥∥

(
∑

α∈N
fα

)⎛

⎝
∑

β∈N
gβ

⎞

⎠

∥∥∥∥∥∥S(s)

=
∑

k( j)∈K f +Kg

k( j) distinct

∥∥∥∥∥∥

∑

k(α)+k(β)∈k( j)+Zd

fαgβ

∥∥∥∥∥∥
Hs (P)

≤ c
∑

k( j)∈K f +Kg

k( j) distinct

∑

k(α)+k(β)∈k( j)+Zd

‖ fα‖Hs (P)‖gβ‖Hs (P) = c‖ f ‖S(s)‖g‖S(s),

where the inequality follows by the triangle inequality and by the algebra property of
the Hs norm

‖uv‖Hs (P) ≤ C‖u‖Hs (P)‖v‖Hs (P) ∀u, v ∈ Hs(P) and s > d/2,

see Theorem 5.23 in Adams and Fournier (2003). ��
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Our result on the regular part of the Lyapunov–Schmidt decomposition is the fol-
lowing

Proposition 7 Assume (H1)–(H5) and let B := (B1, . . . , BN ) ∈ C
N be given (not

necessarily a solution of (3.10)). There exist ε0 > 0 and C = C(‖B‖l1) > 0 such for
all ε ∈ (0, ε0) there exists a solution �� ∈ X (s) of (3.9) such that

‖ ��‖X (s) ≤ Cε3.

Proof Writing (3.9) in the fixed point formulation

�
( j)
n = (ωn(k

( j))− ω∗)−1(ε2
�
( j)
n − σG( j)

n ) =: H ( j)
n ( ��), ( j, n) ∈ IR,

we seek a fixed point with ‖ ��‖X (s) ≤ const.ε3. Lemma 5 allows us to work inter-
changeably in S(s) in the physical variables. We show the contraction property of �H
within

DCε3 := { �� : ‖ ��‖X (s) ≤ Cε3}

for some C > 0.
The nonlinearity is

|ϕ|2ϕ = ε3|ϕsing|2ϕsing + ε2
(
2|ϕsing|2ψ + ϕ2

singψ
)

+ ε
(
2ϕsing|ψ |2 + ϕsingψ

2
)
+ |ψ |2ψ

such that we need to bound terms of the form ε3|ϕsing|2ϕsing, ε2|ϕsing|2ψ , εϕsing|ψ |2,
and |ψ |2ψ . Using the algebra property from Lemma 6 and the regularity of Bloch
waves, we obtain

ε3‖|ϕsing|2ϕsing‖S(s) ≤ cε3‖ϕsing‖3S(s) ≤ cε3

⎛

⎝
N∑

j=1
|Bα|‖ξn j (·, k( j))‖Hs (P)

⎞

⎠
3

≤ cε3‖B‖3l1 .

Similarly, for the remaining terms we have

ε2‖|ϕsing|2ψ‖S(s) ≤ cε2‖B‖2l1‖ψ‖S(s),

ε‖ϕsing|ψ |2‖S(s) ≤ cε‖B‖l1‖ψ‖2S(s),

‖|ψ |2ψ‖S(s) ≤ c‖ψ‖3S(s).

Next, thanks to assumptions (H3)–(H5) we have the uniform lower bound

|ωn(k
( j))− ω∗| > c > 0 for all ( j, n) ∈ IR .
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From (H4) follows that the j-set in IR is finite so that the minimum of |ωn(k( j))−ω∗|
in j can be taken. (H3) and (H5) ensure that the minimum is positive.

Collecting the above estimates, we thus have

‖ �H‖X (s) ≤ C
[
ε3‖B‖3l1 + ε2(‖B‖2l1 + |
|)‖ ��‖X (s) + ε‖B‖l1‖ ��‖2X (s) + ‖ ��‖3X (s)

]
.

We conclude that for ε > 0 small enough �H maps DCε3 to itself.
Similarly, the contraction property of H follows by the same estimates as above,

the simple identities

|ψa |2 − |ψb|2 = 1
2

[
(ψa − ψb)(ψa + ψb)+ (ψa + ψb)(ψa − ψb)

]
,

|ψ2
a − ψ2

b | = |ψa + ψb||ψa − ψb|,
|ψa |2ψa − |ψb|2ψb = (|ψa |2 + |ψb|2)(ψa − ψb)+ ψaψb(ψa − ψb),

and by the algebra property. We find

‖ �H( ��a)− �H( ��b)‖X (s) ≤ C
[
ε2(‖B‖2l1 + |
|)+ ε‖B‖l1(‖ ��a‖X (s) + ‖ ��b‖X (s))

+‖ ��a‖2X (s) + ‖ ��b‖2X (s)

]
‖ ��a − ��b‖X (s)

for all ��a, ��b ∈ X (s). In conclusion, the existence of a solution �� ∈ DC(‖B‖l1 )ε3

follows. ��

5 Singular Part of the Lyapunov–Schmidt Decomposition, Persistence

The singular part (3.10) of the Laypunov-Schmidt decomposition is equivalent to the
extended algebraic coupled mode equations


Bj −N j (B1, . . . , BN ) = R j , j ∈ {1, . . . , N } (5.1)

with R j := ε−3G( j)
n j −N j (B1, . . . , BN ). Proposition 7 thus leads to the following

Corollary 8 Assume(H1)–(H5), and let (B1, . . . , BN ) ∈ C
N be a solution of (5.1).

There exist ε0 > 0 andC > 0 such that for all ε ∈ (0, ε0)Eq. (1.2)withω = ω∗+ε2


has a nonlinear Bloch wave solution ϕ of the form (3.4) such that

∥∥∥∥∥∥
ϕ(·)− ε

N∑

j=1
Bjξn j (·, k( j))

∥∥∥∥∥∥
Hs (P)

≤ Cε3.

Corollary 8 is of little practical use since G( j)
n j in (5.1) depend on the unknown ψ

such that solving (5.1) for (B1, . . . , BN ) explicitly is not possible. This problem can
be avoided by showing persistence of solutions (A1, . . . , AN ) ∈ C

N of the formally
derived explicit ACMEs (2.3) to solutions (B1, . . . , BN ) ∈ C

N of (5.1), which is our
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next step. We show that persistence holds for “reversible non-degenerate” solutions
(A1, . . . , AN ) ∈ C

N . The problem then reduces to finding reversible non-degenerate
solutions of the ACMEs.Writing the ACMEs as Fj (A1, . . . , AN ) = 0, Eq. (5.1) reads

Fj (B1, . . . , BN ) = R j , j ∈ {1, . . . , N }.

Lemma 9 Assume (H1). Given �� ∈ X (s) with ‖ ��‖X (s) < Cε3 we have

|R j | ≤ Cε2

for all j ∈ {1, . . . , N }, where C = C(‖B‖l1) > 0.

Proof Substituting for ϕ j , the decomposition (3.8), we get

R j = ε−3σG( j)
n j −N j (B1, . . . , BN ) =

= ε−1σ

⎧
⎨

⎩2
∑

(α,β,γ )∈A j

BαBβ〈ψγ (·)ξα(·, k(α))ξβ(·, k(β)), ξn j (·, k( j))〉L2(P)

+
∑

(α,β,γ )∈A j

BαBγ 〈ψβ(·)ξα(·, k(α))ξγ (·, k(γ )), ξn j (·, k( j))〉L2(P)

⎫
⎬

⎭

+ ε−2σ

⎧
⎨

⎩2
∑

(α,β,γ )∈A j

Bα〈ψβ(·)ψγ (·)ξα(·, k(α)), ξn j (·, k( j))〉L2(P)

+
∑

(α,β,γ )∈A j

Bβ〈ψα(·)ψγ (·)ξβ(·, k(β)), ξn j (·, k( j))〉L2(P)

⎫
⎬

⎭

+ ε−3σ
∑

(α,β,γ )∈A j

〈ψα(·)ψβ(·)ψγ (·), ξn j (·, k( j))〉L2(P).

With the Cauchy–Schwarz inequality, the regularity of Bloch waves, and using the
estimate ‖ψα‖Hs (P) ≤ Cε3 for all α, which follows from the assumption ‖ ��‖X (s) <

Cε3, we obtain the desired estimate for |R j |. ��
Next we let B = A+b, where similarly to A we denote B := (B1, . . . , BN )T . The

difference b solves

Jb = W(b), W(b) := R(A+ b)− (F(A+ b)− Jb), (5.2)

where F := (F1, . . . , FN )T , R := (R1, . . . , RN )T , and J = DAF(A) is the Jacobian2

of F at A. Due to F(A) = 0, we get that F(A + b) − Jb is at least quadratic in b so
that for |b| small we have (in the Euclidean norm | · |)

|F(A+ b)− Jb| ≤ c|b|2.

2 A symbolic notation for the Jacobian used again.
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As a result

|W(b)| ≤ c
{
ε2 + ε2|b| + |b|2

}
(5.3)

for |b| small, where the cε2 term comes from A-homogenous terms in R and ε2|b|
from linear terms in b.

We aim to apply a fixed point argument on b = J−1W(b) in a neighborhood
of 0 to produce a solution b with |b| < cε2. However, due to the phase invariance
A 	→ eiνA, ν ∈ R of F(A) = 0 the Jacobian J is not invertible. To overcome this
difficulty, we assume the non-degeneracy of A, see Definition 2. Second, we restrict A
and b to the reversible space Vrev, see Definition 3, in which J is invertible, as shown
below. Our precise requirements on Vrev are:

If 0 �= A ∈ Vrev, then

{
(i) ∃δ > 0 such that |Jb| > δ|b| for all b ∈ Vrev,

(ii) J−1W(b) ∈ Vrev for all b ∈ Vrev.
(5.4)

To check (i) and (ii) in (5.4), we first formulate b, A, F and J in real variables and
define the symmetry matrix Ŝ corresponding to the reversibility symmetry in Vrev. For
v ∈ C

N define v̂ := ( vR
vI

) ∈ R
2N , where vR ∈ R

N and vI ∈ R
N are the vectors of

real and imaginary parts of v. Then

v ∈ Vrev ⇔ v̂ = Ŝv̂, (5.5)

where

Ŝ =
(
P
−P

)
, P = (e1′ , e2′ , . . . , eN ′),

and ei is the i th Euclidean unit vector in R
N . Let us denote by Â, b̂, F̂ ∈ R

2N the
quantities A, b, F in real variables and let Ĵ ∈ R

2N×2N = DF̂ be the Jacobian of F̂.
The uniform boundedness property (i) in (5.4) follows since by the non-degeneracy

condition Ĵ has only one zero eigenvalue and for b ∈ Vrev is b̂ orthogonal to the
corresponding eigenvector. This is shown in the following

Lemma 10 If b,A ∈ Vrev,F(A) = 0, and if A is non-degenerate, then

b̂
T
v̂ = 0 for all v̂ ∈ ker(Ĵ) = span

{(
0 −I
I 0

)
Â
}

.

Proof The well-known fact ker(Ĵ) = span
{(

0 −I
I 0

)
Â
}
follows from the phase invari-

ance F(eiνA) = 0 for all ν ∈ R by rewriting it in real variables, differentiating in ν

and evaluating at ν = 0. Using now (5.5) for Â and b̂, we get

b̂
T
(
0 −I
I 0

)
Â = b̂

T
(
PT 0
0 −PT

)(
0 P
P 0

)
Â = −b̂

T
(
0 −I
I 0

)
Â.

��
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For (ii) in (5.4) let us first show that A, b ∈ Vrev ⇒ W(b) ∈ Vrev. Because of the
symmetry (1.7) and the symmetry (α, β, γ ) ∈ A j ⇔ (α′, β ′, γ ′) ∈ A j ′ we get from
(2.4) that μα′,β ′,γ ′, j ′ = μα,β,γ, j for all α, β, γ, j ∈ {1, . . . , N }. As a result, F has the
symmetry

F̂(Ŝv̂) = ŜF̂(v̂) for all v̂ ∈ R
2N . (5.6)

For A, b ∈ Vrev this results in F̂(Â+ b̂) = ŜF̂(Â+ b̂), i.e., F(A+ b) ∈ Vrev.
Next, differentiating (5.6), we get

F̂
′
(Ŝv̂)Ŝ = ŜF̂

′
(v̂) for all v̂ ∈ R

2N .

If A ∈ Vrev, then this translates for v = A to

ĴŜ = ŜĴ (5.7)

and for A, b ∈ Vrev we thus have Ĵb̂ = ĴŜb̂ = ŜĴb̂, so that Jb ∈ Vrev.
The last term in W is R, where R j = ε−3G( j)

n j − N j , j = 1, . . . , N . For N j the
above identity μα′,β ′,γ ′, j ′ = μα,β,γ, j implies that for A, b ∈ Vrev

N j = N j ′ .

For G( j)
n j we argue as follows. First, we define the symmetry map

S : �� 	→ S ��, where (S ��)( j) = �( j ′).

Lemma 11 �G commutes with S, i.e.,

�G(S ��) = S �G( ��).

Proof For all j ∈ {1, . . . , M} and n ∈ N we get, using (1.7),

G( j)
n (S ��) =

∑

(αβγ )∈Ã j

∑

m,o,q∈N



(α′)
m 
(β ′)

o 

(γ ′)
q

∫

P

ξm(x, k(α))ξo(x, k(β))

ξq(x, k
(γ ))ξn(x, k( j))dx

=
∑

(α′β ′γ ′)∈Ã j ′

∑

m,o,q∈N



(α′)
m 
(β ′)

o 

(γ ′)
q

∫

P

ξm(x, k(α′))ξo(x, k
(β ′))

ξq(x, k(γ ′))ξn(x, k
( j ′))dx

= G( j ′)
n ( ��).

��
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Lemma 12 If B ∈ Vrev, then there exists a solution �� of (3.9) with the properties as
in Proposition 7, and such that

�� = S ��.

Proof Defining ��sing via

��( j)
sing =

{
Bjen j , j ∈ {1, . . . , N },
0, j ∈ {N + 1, . . . , M},

we have �� = ε ��sing+ ��. Due to (H6) is B ∈ Vrev equivalent to S ��sing = ��sing. And
if S ��sing = ��sing, then the fixed point iteration �� 	→ �H( ��) preserves the symmetry
of ��, i.e.,

�� = S �� ⇒ �H( ��) = S �H( ��).

This is clear from the form

H ( j)
n = (ωn(k

( j))− ω∗)−1
(
ε2
�

( j)
n − σG( j)

n (ε ��sing + ��)
)

and from Lemma 11. ��
FromLemma 12we conclude that givenB ∈ Vrev, the full vector �� is S-symmetric,

i.e., �� = ε ��sing + �� = εS ��sing + S �� = S ��. Lemma 11 then yields for all j ∈
{1, . . . , N }

G( j)
n j = G( j ′)

n j .

Thanks to (H6) j ′ ∈ {1, . . . , N }, and in conclusion R ∈ Vrev for B = A+ b ∈ Vrev.
Summarizing, we have W ∈ Vrev for A, b ∈ Vrev. To conclude the proof of (ii) in

(5.4) we need to prove v ∈ Vrev ⇒ J−1v ∈ Vrev. From (5.7) we get within Vrev, where
J−1 is defined,

ŜĴ
−1

Ŝ−1 = Ĵ
−1

.

If v ∈ Vrev, then v̂ = Ŝv̂ and

Ĵ
−1

v̂ = ŜĴ
−1

Ŝ−1 Ŝv̂ = ŜĴ
−1

v̂.

This shows that J−1v ∈ Vrev. We can thus finally solve the fixed point problem (5.2)
to obtain b with |b| < Cε2. Herewith we obtain the following

Proposition 13 Assume (H6) and let A be a reversible non-degenerate solution of
the coupled mode equations (2.3). There exist ε0 > 0 and C > 0 such that for all
ε ∈ (0, ε0) the following holds. Given �� ∈ X (s) with ‖ ��‖X (s) ≤ Cε3, there exists a
solution B ∈ Vrev of the extended coupled mode equations (5.1) such that
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|A− B| < Cε2.

Our main result, i.e., Theorem 1, for the bifurcation of nonlinear Bloch waves
follows from Corollary 8, Proposition 13 and the triangle inequality.

6 ACMEs for N = 1 and N = 2

We present here the complete solution structure of the ACMEs for the cases N = 1
and N = 2.

6.1 One Mode: N = 1

If N = 1, then necessarily also M = 1 since S3({k∗}) = {k∗} for each k∗ ∈ B. Hence,
N = 1 is always consistent. However, only for k∗ ∈ {0, 1

2 }d condition (H6) is satisfied.
The ACMEs (2.3) now have the scalar form


A − σμ|A|2A = 0, μ = ‖ξn∗(·, k∗)‖4L4(P)
> 0, (6.1)

where ξn∗(x, k∗) is the linear Bloch wave for the selected eigenvalue index n∗. Note
that n∗ has to be chosen such that (H3) holds. Clearly, nonzero solutions of (6.1)
satisfy

|A| =
√



σμ

,

which implies a bifurcation to the left in ω from ω∗ in the focusing case σ < 0 and to
the right in the defocusing case σ > 0.

6.2 Two Modes: N = 2

Also for N = 2 the solutions of the resulting ACMEs can be calculated explicitly.
We discuss only solutions with A1A2 �= 0. This is without any loss of generality
because if k(2)∗ ∈ −k(1)∗ + Z

d , then the reversibility A ∈ Vrev implies A2 = A1 and if
k(2)∗ /∈ −k(1)∗ + Z

d , then considering only one nonzero component in A is equivalent
to considering the case N = 1.

For N = 2 the form of the ACMEs depends on the choice of {k(1)∗ , k(2)∗ }. There are
the following two cases.

(a) Let

2k(1)∗ − k(2)∗ ∈ k(2)∗ + Z
d , i.e.,k(1)∗ ∈ k(2)∗ + {−1/2, 1/2}d . (6.2)

This can be easily seen to be the consistent case S3({k(1)∗ , k(2)∗ }) ⊂ {k(1)∗ , k(2)∗ }+Z
d ,

i.e., the case M = N = 2. In this case we have

123



604 J Nonlinear Sci (2016) 26:581–618

A1 = {(1, 1, 1), (1, 2, 2), (2, 2, 1), (2, 1, 2)},
A2 = {(2, 2, 2), (2, 1, 1), (1, 1, 2), (1, 2, 1)},

and the ACMEs read


A1 − σ
[
(μ1111|A1|2 + 2μ1221|A2|2)A1 + μ2121A

2
2A1

]
= 0,


A2 − σ
[
(μ2222|A2|2 + 2μ1221|A1|2)A2 + μ2121A

2
1A2

]
= 0,

(6.3)

where the obvious identities μ1221 = μ2112 and μ1212 = μ2121 have been used. A
simple calculation yields that solutions with both A1 and A2 nonzero satisfy

arg(A2) = arg(A1)− arg(μ2121)

2
+ q

π

2
, q ∈ Z,

|A1|2 = 


σ

γ − μ2222

γ 2 − μ1111μ2222
, |A2|2 = 


σ

γ − μ1111

γ 2 − μ1111μ2222
,

where γ := 2μ1221 + (−1)q |μ2121|.
A solution with A1, A2 �= 0 thus exists for sign(
) = sign(σ ) if and only if

sign(γ − μ2222) = sign(γ − μ1111) = sign(γ 2 − μ1111μ2222)

is satisfied either for q = 0 or q = 1. For sign(
) = − sign(σ ) the existence
follows if and only if

sign(γ − μ2222) = sign(γ − μ1111) = − sign(γ 2 − μ1111μ2222)

either for q = 0 or q = 1.
In order to satisfy the reversibility condition A ∈ Vrev, we need A2 = A1.

This is possible if and only if μ1111 = μ2222 such that |A1| = |A2|. The equality
A2 = A1 then follows if we choose

arg(A1) = arg(μ2121)− qπ

4
.

(b) If (6.2) does not hold, then we have an inconsistent case M > N = 2,

A1 = {(1, 1, 1), (1, 2, 2), (2, 2, 1)}, A2 = {(2, 2, 2), (2, 1, 1), (1, 1, 2)},

and the ACMEs have the form


A1 − σ(μ1111|A1|2 + 2μ1221|A2|2)A1 = 0,


A2 − σ(μ2222|A2|2 + 2μ1221|A1|2)A2 = 0.
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Solutions with both A1 and A2 nonzero satisfy

|A1|2 = 


σ

2μ1221 − μ2222

4μ2
1221 − μ1111μ2222

, |A2|2 = 


σ

2μ1221 − μ1111

4μ2
1221 − μ1111μ2222

.

Again, the reversibility condition can be satisfied (by choosing arg(A1) =
−arg(A2)) if and only if μ1111 = μ2222.

In one dimension d = 1 with N = 2 the only consistent cases satisfying (H6) are

{k(1)∗ , k(2)∗ } = {0, 1/2} and {k(1)∗ , k(2)∗ } = {−1/4, 1/4}.

In two dimensions d = 2 with N = 2 there are 12 possible sets {k(1)∗ , k(2)∗ } satisfying
(H6) and the consistency, namely
{(

0
0

)
,
( 1/2

0

)} {(
0
0

)
,
( 0
1/2
)} {(

0
0

)
,
(
1/2
1/2

)} {( 1/2
0

)
,
( 0
1/2
)}

{( 1/2
0

)
,
(
1/2
1/2

)} {( 0
1/2
)
,
(
1/2
1/2

)} {( 1/4
0

)
,
(−1/4

0

)} {( 0
1/4
)
,
( 0−1/4

)}
{(

1/4
1/4

)
,
(−1/4
−1/4

)} {(
1/4
−1/4

)
,
(−1/4

1/4

)} {(
1/2
1/4

)
,
(

1/2
−1/4

)} {(
1/4
1/2

)
,
(−1/4

1/2

)}
.

7 Numerical Examples in Two Dimensions d = 2

In the following numerical computations we use the package pde2path (Dohnal
et al. 2014a;Uecker et al. 2014) for numerical continuation and bifurcation in nonlinear
elliptic systems of PDEs. The package uses linear finite elements for the discretiza-
tion, Newton’s iteration for the computation of nonlinear solutions and arclength
continuation of solution branches. In the case N = 1 below we discretize P

2 by
2 ∗ 2002 = 80000 isosceles triangles of equal size. For example B below with N = 2
we use 2∗2802 = 156800 triangles. This fine discretization is needed only in the tests
of ε-convergence of the asymptotic error to ensure that the asymptotic error dominates
the discretization error. For all the numerical solutions (solution branches) presented
in this and the following sections we verified that these approximate PDE solutions
by standard error estimators and adaptive mesh-refinement.

For N = 1 we simply write ϕ(x) = eik∗·xη(x) and use real variables η = u1 + iu2
to obtain

0 = −
(

�u1
�u2

)
+ 2

(
k∗ · ∇u2
−k∗ · ∇u1

)
+ (|k∗|2 − ω + V (x))

(
u1
u2

)
+ σ(u21 + u22)

(
u1
u2

)

(7.1)

on the torusT2 = R
2/(2πZ2). For the consistent casewith N > 1wemayplugϕ(x) =

∑N
j=1 eik

( j)∗ ·xη j (x)with 2π -periodic η j into (1.2) and collect termsmultiplying eik
( j)∗ ·x

in separate equations. Settingη j = u( j)
1 +iu( j)

2 we obtain a real systemof 2N equations

for u = (u(1)
1 , u(1)

2 , . . . , u(N )
1 , u(N )

2 ).
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We may then use two methods to generate branches of NLBs. The first is to let
pde2path find the bifurcation points from the trivial branch u = 0 and then perform
branch switching to and continuation of the bifurcating branches. This is what we did
in Example 1 from the Introduction to obtain Fig. 2. However, as due to the phase
invariance the eigenvalues of the linearization of (7.1) are always double, this needs
some slight modification of the standard bifurcation detection and branch-switching
routines ofpde2path, see Dohnal et al. (2014b, §2.6.4). Thus, in the examples below
we alternatively use the asymptotic approximation ϕ(x) = ε

∑N
j=1 A jξn j (x, k

( j)∗ ) as
the initial guess in the Newton’s iteration for the first continuation step near ω = ω∗.

We choose the potential (1.4), which is the same as in Dohnal and Uecker (2009).
The band structure along the boundary of the irreducible Brillouin zone is plotted in
Fig. 1b, and in Example 1 we already gave an overview of the lowest bifurcations
at point X with N = 1. In the following examples we consider in more detail the
points marked (A),(B),(C). Note that (C) is not a case of high symmetry points as
k(1)∗ = −k(2)∗ = (1/4, 1/4) /∈ {0, 1/2}2.

7.1 Numerical Example for N = 1

For N = 1, d = 2 the only cases which satisfy (H6) are

k∗ = (0, 0), k∗ = (1/2, 0), k∗ = (0, 1/2), and k∗ = (1/2, 1/2).

k∗ = (1/2, 0)with N = 1was considered in Example 1, and in Sect. 7.2we reconsider
this k+ at point (B) in Fig. 1with N = 2.Herewepresent in somemore detail nonlinear
Bloch waves bifurcating from point (A) with k∗ = (1/2, 1/2).

Example A Wechoose k∗ = (1/2, 1/2) and ∂spec(−�+V ) � ω∗ = ω1(k∗) ≈ 1.703,
see point (A) in Fig. 1. This leads to μ = ‖ξ1(·, k∗)‖4L4(P)

≈ 0.0765, and choosing

 = σ and arg(A) = 0, we get

A = 1√
μ
≈ 3.6154.

Figure 3 shows the continuation diagram (in the (ω, ‖ϕ‖L2(P2))-plane) of the nonlinear
Bloch waves bifurcating from ω∗ for σ = −1 and σ = 1, the asymptotic curves
(ω∗ + 
ε2, ε|A|) for ε ≥ 0, and the error between the two in the log-log scale. The
observed convergence rate is 3.11, in agreement with Theorem 1. In Fig. 4 we plot
profiles ϕ and the asymptotic approximation εAξ1(x, k∗) at ω = ω∗ + ε2
 with
ε ≈ 0.12, i.e., close to the bifurcation point, see points (A1−) and (A1+) in Fig. 3,
and ϕ at ω ≈ 2.75 for σ = 1, i.e., far from the bifurcation, cf. point (A2+). The
asymptotic approximation is real since the Bloch wave ξ1(x, k∗) has been selected
real. This is possible as k∗ is one of the high symmetry points �, X, M .

123



J Nonlinear Sci (2016) 26:581–618 607

Fig. 3 Left: Bifurcation diagram in the (ω, ‖ϕ‖L2(P2))-plane for example A: N = 1, k∗ = ( 12 , 1
2 ).

Dashed lines: approximation ‖ϕ‖L2(P2) ∼ |A|√(ω − ω∗)/
 with 
 = σ = ±1. Curves bifurcating to
the left/right of ω∗ are for σ = ∓1, respectively. The spectrum of−�+V is plotted on the horizontal axis.
Right: error for σ = −1, where ϕasymp := εAξ1(x, k∗)

Fig. 4 Nonlinear Bloch waves for example A. a, b real and imaginary part of the approximation
εAξ1(x, (1/2, 1/2)) at ε = 0.12; c, d real and imag. part of ϕ at (A1−) in Fig. 3; e, f real and imag.
part of ϕ at (A1+) (σ = 1 and ω = ω∗ + σε2); g, h real and imag. part of ϕ at (A2+)

7.2 Numerical Examples for N = 2

We present computations for two consistent examples with N = M = 2, cf. Sect.
6.2(a), where the ACMEs (6.3) are valid. In example B we choose ω∗ ∈ ∂spec(−�+
V ) and in example C we take ω∗ ∈ int(spec(−�+ V )).

Example B We choose k(1)∗ = (1/2, 0), k(2)∗ = (0, 1/2), ∂spec(−� + V ) � ω∗ =
ω2(k

(1)∗ ) = ω2(k
(2)∗ ) ≈ 2.035, see point (B) in Fig. 1. Choosing real Bloch waves

ξ2(·, k(1)∗ ), ξ2(·, k(2)∗ ) (possible due to the real boundary conditions in (1.5)), we obtain

μ1111 = μ2222 = ‖ξ2(·, k(1)∗ )‖4L4(P)
≈ 0.0901,

μ2121 = μ1221 =
∫

P2
ξ2(x, k

(1)∗ )2ξ2(x, k
(2)∗ )2dx ≈ 0.003,
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where the equalities between the μ coefficients follow by the symmetry ξ2((x1, x2),
k(1)∗ ) = ξ2((x2, x1), k

(1)∗ ) and the fact that real Bloch waves ξ2(x, k
(1)∗ ), ξ2(x, k

(2)∗ )

have been chosen.
The resulting values of |A1| and |A2| are |A1| = |A2| ≈ 3.17567 and in order to

satisfy reversibility, we choose zero phases, such that

A1 = A2 ≈ 3.17567.

The non-degeneracy condition is satisfied as our computation of the eigenvalues of Ĵ
produces

λ1 ≈ −0.1223, λ2 = 0, λ3 ≈ 1.6332, λ4 = 2.

The continuation diagram in Fig. 5 plots the families of nonlinear Bloch
waves bifurcating from ω∗ for σ = −1 and σ = 1, the asymptotic curves(
ω∗ +
ε2, ε‖∑2

j=1 A jξ2(·, k( j)∗ )‖L2(P2)

)
for ε ≥ 0, and the ε-convergence of

the approximation error for this case. The solutions ϕ at the points (B−), i.e.,
ω = 1.8304, and (B+), i.e., ω = 2.2392, marked in Fig. 5 are plotted in Fig. 6
together with the asymptotic approximation ε

∑2
j=1 A jξ2(x, k

( j)∗ ) at ω = ω∗ + ε2


with ε ≈ 0.452 ≈ √
ω∗ − 1.8304 ≈ √

2.2392− ω∗. Despite the large value of ε, the
asymptotic approximation is relatively good.

Example C Finally, we take k(1)∗ = (1/4, 1/4), k(2)∗ = (−1/4,−1/4), int(spec(−�+
V )) � ω∗ = ω1(k

(1)∗ ) = ω1(k
(2)∗ ) ≈ 1.576, see Point (C) in Fig. 1. Fixing the free com-

plex phase of theBlochwaves by setting Im(ξ1((0, 0), k
(1)∗ ) = Im(ξ1((0, 0), k

(2)∗ ) = 0,
we obtain

Fig. 5 Left: bifurcation diagram in the (ω, ‖ϕ‖L2(P2))-plane for example B: N = 2, k(1)∗ =
(1/2, 0), k(2)∗ = (0, 1/2). Full lines: numerically computed solution ϕ; dashed lines: asymptotic approx-

imation ‖ϕ‖L2(P2) ∼
√

(ω − ω∗)/
‖∑2
j=1 A j ξ2(·, k( j)∗ )‖L2(P2) with 
 = σ = ±1. Right: error for

σ = −1, ϕasymp := ε
∑2

j=1 A j ξ2(x, k
( j)∗ )
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Fig. 6 Nonlinear Bloch waves for example B. a, b Real and imaginary part of the asymptotic approxi-

mation ε
∑2

j=1 A j ξ2(x, k
( j)∗ ) at ε = 0.452; c, d real and imaginary part of ϕ at (B−) in Fig. 5, i.e., for

σ = −1 and ω = ω∗ + σε2; e, f real and imaginary part of ϕ at (B+) in Fig. 5, i.e., for σ = 1 and
ω = ω∗ + σε2

μ1111 = μ2222 = μ1221 = ‖ξ1(·, k(1)∗ )‖4L4(P)
≈ 0.0526,

μ2121 =
∫

P2
ξ1(x, k

(2)∗ )2ξ1(x, k
(1)∗ )

2
dx ≈ 0.0412.

The identities μ1111 = μ2222 = μ1221 follow from ξ1(x, k
(2)∗ ) = ξ1(x, k

(1)∗ ), and
μ2121 ∈ R follows because Im(ξ1(x, k

(1,2)∗ )) happen to be antisymmetric in the x1 =
x2 direction. The resulting values of A1 and A2 (once again selected real due to
μ2121 ∈ R) are

A1 = A2 ≈ 2.242.

Also here the non-degeneracy condition is satisfied as our computation of the eigen-
values of Ĵ produces λ1 ≈ −0.9427, λ2 ≈ −0.828, λ3 = 0, λ4 = 2.

The continuation diagram from ω∗ for σ = −1 and σ = 1 and an error plot for
σ = −1 are in Fig. 7, and the solutionsϕ at the points (C∓) withω = 1.31, ω = 1.842,
are in Fig. 8 together with the asymptotic approximation ε

∑2
j=1 A jξ1(x, k

( j)∗ ) at

ω = ω∗ + ε2
 with ε ≈ 0.516 ≈ √
ω∗ − 1.31 ≈ √

1.842− ω∗.
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Fig. 7 Bifurcation diagram in the (ω, ‖ϕ‖L2(P2))-plane and error for σ = −1 for example C: N =
2, k(1)∗ = (1/4, 1/4), k(2)∗ = −k(1)∗

Fig. 8 Nonlinear Blochwaves for example C. aThe approximation ε
∑2

j=1 A j ξ1(x, k
( j)∗ )with ε = 0.516;

b, c ϕ at (C−) and (C+) resp. in Fig. 7. In b σ = −1 and ω = ω∗ − ε2 ≈ 1.31 and in c σ = 1 and
ω = ω∗ + ε2 ≈ 1.842

8 Gap Solitons, Out-of-Gap Solitons, and tNLBs

NLBs play an important role in the bifurcation structure of many other solutions of
(1.2). As the numerical computations below suggest, when solutions with decaying
tails are continued from spectral gaps into spectrum of −� + V , they delocalize as
the tails become oscillatory with the oscillation structure agreeing with a certain NLB.
This puts NLBs in a strong connection with other prominent solutions of (1.2).

8.1 1D Simulations

We first consider (1.2) in 1D with V (x) = sin2(πx
10 ), which is a standard choice in

1D. See Fig. 9a for the band structure, which shows the gaps (s2, s3) and (s4, s5). The
first five spectral edges are, approximately,

s1 ≈ 0.2832, s2 ≈ 0.2905, s3 ≈ 0.7468, s4 ≈ 0.8434, s5 ≈ 1.0568.

For suitable σ = ±1, so-called gap solitons bifurcate from the edges into a gap
(Aceves 2000; Agrawal 2001; Pelinovsky 2011). We display here gap soliton families
bifurcating for σ = 1 to the right from edge s2 and for σ = −1 to the left from s3. To
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(a) (b)

(e) (f) (g) (h)

(c) (d)

Fig. 9 a The band structure for V (x) = sin2( πx
10 ); b a bifurcation diagram of GS and NLBs for (1.2) in

1D, σ = 1. c, d plots of the GS at AGS and BGS resp.; e–h OGS and NLB at the remaining marked points

study these numerically, we consider (1.2) on a large domain x ∈ (−100, 100) with
Neumann boundary conditions and obtain the bifurcation diagram in Fig. 9b, where
moreover we restrict to real solutions.

The gap solitons can be continued in ω well into the gap. In fact, numerically they
can also be continued into the next spectral band (and even further into higher gaps
and bands), where they are called out-of-gap solitons (OGS) (Yulin and Skryabin
2003; Johanson et al. 2011). During this continuation the tails of the OGS pick up the
oscillations from the NLB that bifurcates at the first gap edge, where the continuation
family enters the spectrum, i.e., the A branch of OGS picks up the oscillations from
the NLB branch ANLB that bifurcates at s3 to the right. Moreover, the numerics then
show that the tails of the OGS are given by ANLB for all ω > s3. The same can be
observed for the B-family, where the OGS tails are given by BNLB for all ω < s2.
Thus, an OGS is a homoclinic orbit to a NLB.

Besides GSs the NLB plays a role in the delocalization of many other solutions.
In Fig. 10 we show two other solution branches for illustration. The B branch is an
example of a so-called truncated NLB (tNLB) (Alexander et al. 2006; Wang et al.
2009; Zhang et al. 2009). Point B0 at ω = 0.5 on that branch is obtained from using

ϕIG(x) = asech(x2/w), a = 0.5, w = 50, (8.1)

as an initial guess for a Newton loop for (1.2). It is homoclinic to 0 and composed of
three periods of the NLB bifurcating from s1 in the middle. That is why such solutions
are called truncated NLBs. By varying, e.g., w in (8.1), we can in fact produce tNLBs
composed of any number of periods of the NLB.

An important feature of tNLBs is that they do not bifurcate from 0, in contrast to
the GS. In fact, as a tNLB approaches the gap edge next to the ω value where its
building-block NLB bifurcates, it turns around while picking up a negative copy of
the pertinent NLB. See also Wang and Yang (2008) for a further discussion (in 2D).
On the other hand, tNLBs behave quite similarly to GS upon continuation through the
other gap edge: the tails again pick up the NLB bifurcating at the edge (the tNLBs
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Fig. 10 Big panel: bifurcation diagram of first NLB and example tNLBs and heteroclinics for V (x) =
sin2( πx

10 ), σ = 1; spectral bands in gray. For the B (tNLB) andC (heteroclinic) branches we continue from
ω = 0.5 in the positive and negative ω-direction. For the negative ω-directions we obtain folds close to s2,
cf. the inset. The NLB branch bifurcates from s1. Smaller panels: example plots, where the red dash-dotted
line indicates the s1-NLB at the respective ω-values. The tails of the tNLBs, and the zero level of the
heteroclinic, pick up the s3-NLB when entering the second band

in Fig. 10 pick up the NLB family bifurcating from s3 in Fig. 9), and afterward can
be continued to arbitrarily large ω as homoclinics to these NLBs, still being close to
the original NLB in the middle. For these delocalized tNLBs we suggest the acronym
dtNLBs.

Finally, as there are “arbitrarily long” tNLBs, it is not surprising that there also exist
heteroclinics between 0 and NLBs. Upon continuation in ω these essentially behave
like tNLBs, see the C branch in Fig. 10 for an example.

A rigorous analysis of OGS, tNLBs, dtNLBs, and the above heteroclinics remains
an intriguing open problem, even in 1D. For the 1D case with narrow gaps a system of
first-order differential coupled mode equations for the envelopes of the linear gap edge
Bloch waves is derived in Yulin and Skryabin (2003). Under suitable conditions, this
system has spatial homoclinic orbits to nonzero fixed points, which thus corresponds to
dtNLBs or OGS. However, presently it is not clear how to make this analysis rigorous.
In Johanson et al. (2011) some explicit OGS solutions are given for the case of a 1D
discrete NLS. Concerning tNLBs, Zhang and Wu (2009) give so-called composition
relations, which, however, are rather heuristic. Delocalized (or generalized) solitary
waves also occur in other nonlinear equations, in particular from fluid dynamics. See,
e.g., (Boyd 1998, Chapters 1 and 6.4) for a review, and a guide to the literature for
rigorous existence proofs, for instance Sun and Shen (1994) for the case of the fifth-
order KdV equation. The solutions studied in this literature, however, typically have
exponentially small tails, which is different from our OGS and dtNLBs, where the
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amplitude of the tails is that of the NLBs, i.e., O(ε1/2) in the bifurcation parameter ε

as given by (2.1).

8.2 2D Simulations

In 2D similar effects as in Figs. 9 and 10 occur, but the solution structure becomes
much richer, also qualitatively. For instance, since in 1D the pertinent NLS amplitude
equation is scalar, there typically is only one GS bifurcating at some s j (modulo phase
invariance, and on-site or off-site effects, see Pelinovsky (2011)). In 2D, in many cases
the GS are described by systems of NLS equations, see Dohnal and Uecker (2009), and
theremay be various different GSs.Moreover, while typically in 1D different tNLBs at
fixed ω only differ in the number of NLB periods, and the number and arrangements
of “ups” and “downs,” in 2D we can easily produce qualitatively different tNLBs.
Accordingly, in the references already cited, in particular Wang and Yang (2008),
various families of 2D tNLBs have been studied, with focus on the fold structure near
one of the gap edges.

However, the continuation of either tNLBs or GSs into the other spectral band
seems to be much less studied, but see also Yang (2010). Here we restrict ourselves
to just illustrating the continuation of two (real) families of GS to OGS. We return
to the potential (1.4), and in Fig. 11 continue the σ = ±1 GS from the first gap
into the respective other spectral band. Numerically we again use a large domain
x ∈ (−40π, 40π)2 with Neumann boundary conditions. For the GS these boundary
conditions hardly matter, but the way in which the tails pick up NLBs as the GS enter
the spectral bands does significantly depend on the boundary conditions, as should
be expected. For instance, in (b) we find dislocations in the tail patterns along the
coordinate axes, and in (e) along one of the diagonals. Numerically, these dislocations
strongly depend on the chosen domain size and boundary conditions. Nevertheless, in
all cases considered the tails of the GS again pick up a pertinent NLB in large parts
of the domains. Figure 11 just gives two illustrations.

Note that in 2D there are typically a number of NLB families bifurcating from a
given point in the spectrum, cf. Theorem 1 with N > 1. At ω = s3 the level set of the
band structure is {(1/2, 0), (0, 1/2)}, i.e., to capture at least all the NLBs predicted by
Theorem 1 to bifurcate from s3, we must take N = 2. The resulting ACMEs are (6.3).
The NLB family B in Fig. 11, which happens to describe the oscillations in AOGS, has
A1 = A2 ∈ R. In general it is not clear how to choose the correct solution of ACME
which matches the tail oscillations in a given OGS in dD with d ≥ 2.

8.3 Remarks on Stability of NLBs, GS, tNLBs, OGS and dtNLBs

Dynamic stability of GS, NLBs, (localized and delocalized) tNLBs and OGS is an
important but widely open question. Previous work, mostly based on numerics and
formal asymptotics, includes the following: In Hwang et al. (2011) and Blank and
Dohnal (2011) it is shown that, so-called, on-site GSs in 1D are spectrally stable while
off-site ones are unstable. Shi et al. (2008) and Yang (2010) show that 2D GSs near
the spectral edge from which they bifurcate are spectrally unstable but can be stable
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Fig. 11 Continuation of 2D-GS from the first spectral gap to OGS, see the text for comments

further away from the edge. Next, Gaizauskas et al. (2012) give numerics and for-
mal asymptotics that indicate that GS near the middle of (narrow) band gaps may be
unstable due to a four wave mixing with the gap edge NLBs. In Konotop and Salerno
(2002) it is discussed that modulational instability of 1D NLBs bifurcating from gap
edges into the gap can lead to the formation of GS, while NLBs bifurcating from
the edge into the spectrum are stable. Some semi-analytical results on the stability of
NLB at the bottom of the band structure are given in Coles and Pelinovsky (2012),
where, together with the secondary bifurcations from NLBs, exchange of stability
results is derived under some assumptions, and numerical justifications and compar-
isons to numerical time integration are given. Regarding tNLBs, in Wang et al. (2009)
it is shown numerically that tNLB of the type B0 in Fig. 10, i.e., consisting of arbi-
trary many periods of NLBs of the same parity, can be stable, while tNLB on the
upper branch, consisting of up and down copies of the basic NLB, are generically
unstable.

Here we report some stability results from numerical time integration of (1.1) using
a Fourier split-step method. We plug ψ(t, x) = eiωtϕ(t, x) into (1.1) to obtain
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12 Numerical integration of (8.2) with initial data as random 10% perturbations of the indicated NLB
in a–d and OGS in e–h. The NLB branch s3+ appears stable near bifurcation and unstable otherwise. The
OGS family s2+ entering the spectrum at ω = s3 seems to inherit the (in)stability of the NLB

i∂tϕ = �ϕ − (V (x)− ω)ϕ − σ |ϕ|2ϕ. (8.2)

Since (1.1) is Hamiltonian, we can at best obtain spectral stability (but not linearized
stability) from linearization of (8.2) around a steady state ϕ(x, t) = ϕ0(x) of interest
(NLB, GS, tNLB, etc.). As initial conditions we choose random perturbations of the
steady state ϕ0, with perturbation amplitude 0.1 relative to the amplitude of ϕ0. These
perturbations yield a phase evolution, and thus here we concentrate on the solution
shape, i.e., we plot the supremum error ‖|ϕ(·, t)| − |ϕ0(·)|‖∞ of the modulus. This
should provide an indication regarding stability of the solutions at hand and motivate
further stability studies. Our numerical accuracy was checked by using smaller time
steps without visible changes of results, by comparison with a semi-implicit time
stepping, and we checked that ‖ϕ‖L2 was conserved up to six digits over the rather
long time intervals needed in some cases to detect instabilities.

We mostly focus on 1D and start with the NLBs. In order to draw a connection
between stability of NLBs and OGSs, we restrict ourselves to NLBs bifurcating at
gap edges in Fig. 9. We choose the periodicity cell x ∈ 
 = (−10, 10) for ϕ, which
corresponds to wave-vectors k = 0 and k = 1/2. However, the results appear to be the
same for larger domains, i.e., if we observe instabilities, then they are w.r.t. the same
spatial period. Below we use the symbol sn± to denote the NLB families bifurcating
from a spectral edge sn to the right and left, respectively.

Panels (a)–(d) in Fig. 12 are for the NLB branch s3+ in Fig. 9 for σ = 1. As an
example in (a), (b) we chooseω = 0.76 and observe a stable evolution up to t = 1000.
In (c), (d) the NLB at ω = 0.9, i.e., further away from the bifurcation edge, is shown
to be unstable. An analogous situation occurs for the s2− family of NLB for σ = −1.
It appears stable for ω ∈ (0.2, s2) and unstable for ω < 0.2.
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Our tests suggest that similar stability results (stability near the bifurcation edge and
instability otherwise) hold also for other NLB branches bifurcating into the spectral
bands in Fig. 9. The stability near the bifurcation edge is in agreement with Konotop
and Salerno (2002). The loss of stability of NLB away from a neighborhood of the
bifurcation point is presumably due to a secondary “loop” bifurcation as discussed in
Coles and Pelinovsky (2012).

Given the results on the NLBs from Fig. 12a–d, we may expect that the OGS with
tails picking up the s3+ NLBs at s3 inherit the (in)stability from the NLBs s3+ NLBs
and hence is stable at ω = 0.76 and unstable at ω = 0.9. This is, indeed, observed in
Fig. 12e–h. Note that one does not expect any instability from the GS “component” of
the OGS since we work with on-site GSs, which have been reported in Hwang et al.
(2011) and Blank and Dohnal (2011) to be stable.

Next, the NLB branch s1+ bifurcating from s1 to the right for σ = 1 is stable
throughout the first band and the first gap. Thus, another relevant question is whether
the associated tNLBs inherit this stability of their building blocks. In accordance with,
e.g., Wang et al. (2009), this is the case for tNLB consisting of copies of NLBs with
the right parity, i.e., only up or only down copies of s1+ NLBs; see for instance
the tNLBs B0 and C0 from Fig. 10. In a next step we then studied the stability of
dtNLBs obtained from the continuation of such tNLBs across the s3 gap edge. This
is in complete agreement with the stability of OGS, i.e., the dtNLBs obtained from
B0,C0 (see B1,C1 in Fig. 10) are stable for small ω−s3>0 but become unstable for
larger ω−s3. On the other hand, we found that tNLBs consisting of up and down
copies of NLBs (e.g., B2, C2 in Fig. 10) are unstable, as in Wang et al. (2009). For
instance, for C2 the leading down NLB is first converted into an up NLB, and then a
defect wanders to the right.

In 2D, the NLBs from Fig. 2 all appear modulationally unstable, with, however,
very long transients before the instability sets in for the branches bifurcating at smaller
ω, and this also holds for the other NLBs, for instance given in Sect. 7.2. Moreover,
the 2D-GS are expected to be unstable near bifurcation, but may become stable in the
middle of gaps, see Ilan and Weinstein (2010) for rigorous results in the semi-infinite
gap, and (Yang 2010, §6.4) for further heuristics. This agrees with our numerics, where
e.g., solutions on the AGS branch from Fig. 11 are numerically unstable for ω < 1.8,
then stable up to ω = s3. However, the OGS for ω > s3 with tails containing BNLB

NLBs is clearly unstable numerically.
Thus, besides analytical results regarding the existence and stability of tNLBs, OGS

and (d)tNLB, an interesting open problem is whether in 2D there exist potentials V
such that
(1) (1.1) has stable GS;
(2) (1.1) has stable NLBs bifurcating from gap edges;
(3) putting (1) and (2) together: (1.1) has stable OGS.
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