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Abstract Wegive a constructivemethod for realising an arbitrary directed graph (with
no one-cycles) as a heteroclinic or an excitable dynamic network in the phase space
of a system of coupled cells of two types. In each case, the system is expressed as a
system of first-order differential equations. One of the cell types (the p-cells) interacts
bymutual inhibition and classifies which vertex (state) we are currently close to, while
the other cell type (the y-cells) excites the p-cells selectively and becomes active only
when there is a transition between vertices. We exhibit open sets of parameter values
such that these dynamical networks exist and demonstrate via numerical simulation
that they can be attractors for suitably chosen parameters.

Keywords Heteroclinic network · Excitable network · Coupled dynamical system

Mathematics Subject Classification 37C80 · 34C37

1 Introduction

Researchers in neuroscience often want to understand how the structure of the central
nervous system of animals relates to the function of the system both in healthy and in
diseased individuals, and much effort has been spent trying to model coupled neurons
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as networks of nonlinearly interacting cells (see, e.g. Izhikevich 2007; Ermentrout and
Terman 2010) and emergent dynamical properties of the network are clearly important
for an understanding of neural function from basic signal processing to high-level
cognition; for example, Kopell et al. (2014) suggest that the “Dynome” of possible
states of the network is just as critical as the physical “Connectome” of connections
between neurons and neural assemblies.

In addition to the physical network of coupled cells, the possible transient dynam-
ical states of the system may usefully be thought to form a network in phase space
of some type. A heteroclinic network is a finite set of dynamical states connected by
trajectories (defined more precisely below). This idea has been developed in a number
of models inspired by neural systems (Aguiar et al. 2011; Ashwin and Borresen 2004;
Wordsworth and Ashwin 2008; Komarov et al. 2009); see also winnerless competi-
tion dynamics (Rabinovich et al. 2001; Ashwin and Lavric 2010), stable heteroclinic
channels (Bick and Rabinovich 2010), and networks of unstable attractors (Neves
and Timme 2012). If there are no “direct connections” between states, there may be
excitable connections where a certain amplitude of impulsive perturbation at a state
is needed for a transition from one state to another, giving rise to an excitable net-
work (also defined below) whose structure will typically depend on the amplitude of
perturbation used.1

In a previous paper (Ashwin and Postlethwaite 2013), we proposed two construc-
tions to show how arbitrary graphs may be embedded or realised as a heteroclinic
network in the sense that there is a one-to-one mapping between vertices and edges
of the graph and dynamical states. That paper presents a “simplex network” and a
“cylinder network” of coupled cells that allow one to realise any finite directed graph
that is one-cycle free into phase space as a heteroclinic network. The vertices of the
graph correspond to equilibria that are saddles in phase space and the edges of the
graph correspond to connecting (heteroclinic) orbits in phase space. The constructions
in Ashwin and Postlethwaite (2013) require several different cell types; Field (2015)
has recently shown that it is possible to do this even if one restricts to just one cell type.

This paper aims to present an explicit construction to realise arbitrary graphs in
phase space as either heteroclinic or excitable networks. Not only this, we identify a
bifurcation from a heteroclinic network to an excitable network of the same topology
on changing a single parameter in the governing equations. In the former case the
vertices are saddle equilibria and the connections are heteroclinic. In the latter case the
vertices correspond to stable equilibria in the network that are sensitive to perturbations
in directions corresponding to the edges in the graph. The network construction uses
two cell types, where there is strong inhibition between cells of one type and strong
excitation of this cell type by the second cell type, reminiscent of neuronal systems.

We structure the paper as follows: after defining heteroclinic and excitable networks
in phase space, we give a simple motivating example (given in Eq. 3) of a system that
realises a cyclic graph between three nodes as either a heteroclinic or an excitable net-
work, depending on values of the parameters in the equations. In Sect. 2 we introduce

1 Excitable networks in this sense have been considered before (for example, see Ashwin et al. 2007), but
should not be confused with networks of coupled excitable units (for example see Lindner et al. 2004), that
may or may not have excitable networks in phase space, depending on the coupling.
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an explicit description of a coupled cell model (given in Eq. 5) that is parameterised
by a number of constants. The first main result, Theorem 2.3, shows that an arbitrary
finite directed network can be robustly realised as a heteroclinic network in the phase
space of this coupled cell system. Similarly, the second main result, Theorem 2.4,
shows that an arbitrary finite directed network can be robustly realised as an excitable
network for amplitude δ in the phase space of this coupled cell system. The minimum
amplitude is related to the distance of a parameter from a bifurcation point where the
saddles in the heteroclinic network are stabilised. In particular, the δ may be made as
small as desired by choosing parameters appropriately.

We give some numerical examples in Sect. 3 that realise the Kirk–Silber network
(Kirk and Silber 1994) of competition between two cycles using (5) in the two different
ways outlined in Sect. 2. In the presence of noise we note that typical trajectories
explore either cycle in a random manner. In Sect. 4 we discuss some implications
of the study, including generalisations that give networks in phase space where there
may be a mixture of heteroclinic and excitable connections, and where the excitable
connections may have various thresholds.

1.1 Heteroclinic and Excitable Networks in Phase Space

Consider an ODE with phase space x ∈ R
d , defined by

dx

dt
= ẋ = f (x), (1)

and suppose that the flow generated by the solution of this ODE starting at x0 is
x(t) = φt (x0). Let Bδ(x)denote the closed ball centred on x with radius δ > 0. For ξ an
equilibrium of (1) we define the stable and unstable setsWs(ξ) = {y : |φt (y)−ξ | →
0 as t → ∞} and Wu(ξ) = {y : |φt (y) − ξ | → 0 as t → −∞}; these are manifolds
if ξ is hyperbolic. Typically we will consider the case that all equilibria are hyperbolic.

Our definition of a heteroclinic network is substantially weaker than that given in
most of the literature (see below for further details); we say a set X ⊂ R

d is a (weak)
heteroclinic network (in phase space)2 if there is a set of equilibria {ξi }ni=1 such that

X = Xhet({ξi }) :=
n⋃

i, j=1

Wu(ξi ) ∩ Ws(ξ j )

and we say there is a heteroclinic connection from ξi to ξ j whenever

Wu(ξi ) ∩ Ws(ξ j ) �= ∅.

Weassume there are no homoclinic connections, i.e.Wu(ξi )∩Ws(ξi ) = {ξi }. Note that
this definition of heteroclinic network is weaker than that used inmost of the literature,

2 We refer to a “(weak) heteroclinic network (in phase space)” simply as a “heteroclinic network” for the
remainder of the paper.
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e.g. Kirk et al. (2012) and Ashwin and Postlethwaite (2013), in the following ways:
(a) we do not require any chain recurrence or even connectedness of the network; for
example, we do not exclude the possibility that the system is of gradient type; (b) we do
not require that the entire unstable set is contained in the network; (c) we do not require
that the equilibria are hyperbolic, although in typical cases the equilibria of heteroclinic
networks are saddles (if there are incoming and outgoing heteroclinic connections at
that equilibria), and the equilibria of proper excitable networks are sinks.

We say a set X ⊂ R
d is an excitable network (in phase space) for amplitude δ > 0

if there is a set of equilibria {ξi }ni=1 such that

X = Xexc({ξi }, δ) :=
n⋃

i, j=1

{φt (x) : x ∈ Bδ(ξi ) and t > 0} ∩ Ws(ξ j )

In other words, an excitable network is the union of a number of equilibria and the
set of trajectories within the stable manifolds of these equilibria that come within δ of
other equilibria. We say there is an excitable connection for amplitude δ > 0 from ξi
to ξ j whenever

Bδ(ξi ) ∩ Ws(ξ j ) �= ∅.

We say an excitable connection from ξi to ξ j has threshold δth(ξi , ξ j ) where

δth(ξi , ξ j ) := inf{δ > 0 : Bδ(ξi ) ∩ Ws(ξ j ) �= ∅}. (2)

An excitable network for amplitude δ is proper if all of its excitable connections have
finite threshold, i.e. if there is a δ′, with δ > δ′ > 0 such that there is no excitable
connection for amplitude δ′ from ξi to ξ j within the network. In this terminology, a het-
eroclinic connection from ξi to ξ j corresponds to there being an excitable connection
with zero threshold.

An excitable network X is forward (but not necessarily backwards) invariant
(φt (X) ⊂ X for all t > 0), while a heteroclinic network is both forward and backward
invariant (φt (X) ⊂ X for all t ∈ R). Observe also that any finite set of equilibria is
connected in an all-to-all manner by taking excitable connections with a large enough
amplitude.

Now consider a (finite) graph � = (V, E) with nv vertices V = {v1, . . . , vnv } and
ne directed edges E = {e1, . . . , ene }. We define α(k) and ω(k) so that ek is the edge
from vα(k) to vω(k). We say � is one-cycle free if α(k) �= ω(k) for all k and we will
assume henceforth that � is one-cycle free. We say a heteroclinic network X realises
the graph � if each vertex vi of � corresponds to an equilibrium ξi in X , and there
is an edge of � from vi to v j if and only if there is a connection from ξi to ξ j in X .
We say an excitable network X for amplitude δ realises the graph � if each vertex
vi in � corresponds to an equilibrium ξi in X and there is an edge in � from vi to
v j if and only if there is a connection in X for amplitude δ from ξi to ξ j . In Sect. 2,
Theorems 2.3 and 2.4, we present an explicit system, whereby any graph � can be
realised as a heteroclinic network or as an excitable network for some small δ > 0.

Note that for a givenODE and set of equilibria there can be amixture of heteroclinic
and excitable connections with different thresholds. Figure 1 illustrates this and shows
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(a) (b) (c)

Fig. 1 a Schematic diagram showing four equilibria for an example planar vector field. If we examine the
three equilibria ξ1, ξ2 and ξ3, there are heteroclinic connections from ξ2 to ξ3 and from ξ3 to ξ1. There is
an excitable connection with threshold δth > 0 that corresponds to the radius of the smaller black circle
around ξ1; for any δ > δth (see for example the larger red circle) there is a connection shown in red from
ξ1 to ξ2 with amplitude δ. b, c The excitable networks between the {ξi } for amplitudes δ < δth and δ > δth,
respectively; note that the heteroclinic network between these equilibria is b. The threshold corresponds
to the distance of the stable manifold (shown by the dotted line in a) of the saddle equilibrium ζ , from ξ1
(Color figure online)

how choosing different amplitudes may give rise to excitable networks with differing
topology.

There is a subtle difference between existence of a heteroclinic connection between
two equilibria and existence of an excitable connection with threshold zero. More
precisely one can show the following difference:

Lemma 1.1 Consider a given ODE and two equilibria ξ1, ξ2.

• There is a heteroclinic connection from ξ1 to ξ2 if and only if there is a trajectory
x(t) such that

ξ1 = lim
t→−∞ x(t), and ξ2 = lim

t→+∞ x(t).

• There is an excitable connection from ξ1 to ξ2 with threshold zero if and only if
there are trajectories xδ(t), δ > 0 such that

lim
δ→0

lim inf
t→−∞ |xδ(t) − ξ1| = 0, and ξ2 = lim

t→+∞ xδ(t) for all δ > 0.

Proof This follows from considering the definitions of heteroclinic and excitable con-
nection. If there is an excitable connection, then for arbitrarily small amplitudes δ

there for each δ we have a trajectory xδ(t) that approaches closely to ξ1 in the limit
t → −∞; however, one may need to choose a different trajectory on reducing δ. 
�

Figure 2 illustrates that an excitable connection with threshold zero may be a con-
nection of “depth two” or greater (Ashwin and Field 1999) even if one can take the
same trajectory independent of δ in Lemma 1.1.

1.2 Example: A Cycle of Order Three

We now give a motivating example of how a directed graph can be used to design a
coupled cell system. Consider the three-node, three-edge cyclic graph in Fig. 3a. Using
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Fig. 2 Schematic diagram illustrating the difference between a heteroclinic connection and an excitable
connection with zero threshold. Four equilibria ξi are such that there is an excitable (but not a heteroclinic)
connection shown in red from any of the ξi , i = 1, 2, 3 to ξ4. Note that the alpha-limit set of the red
trajectory contains the heteroclinic cycle between the ξi , i = 1, 2, 3; it is a “depth two” connection (Ashwin
and Field 1999) (Color figure online)

(a) (b) (c) (d) (e)

Fig. 3 a Cyclic graph: three edges ei connect three vertices vi ; b schematic coupling architecture of the
six-cell network realising a. The p-cells classify the location when at the vertices of a while the y-cells
only become active during transition between vertices. c all the connections between the cells; the dashed
arrows indicate inhibitory, while the solid arrows indicate excitatory connections; d, e schematically show
the connections in phase space for this network, where in d ξi are saddles connected by heteroclinic
connections and e ξi are stable nodes that are connected by excitable connections for amplitude δ, with the
separatrices being the stable manifolds of the saddles ζi that are close to the ξi

two types of dynamical cells we construct a system consisting of six cells (given by
Eq. 3), as shown in Fig. 3b, where the full coupling between the cells is shown in
Fig. 3c. The p-cells classify the location (one p cell is active at each vertex of Fig. 3a),
while the y-cells only become active during transition between these vertices.

ṗ1 = p1
(
F

(
1 − p2

)
+ D

(
p21 p

2 − p4
))

+ E
(
−y21 p1 p2 + y22 p

2
3

)
+ ηpw1

ṗ2 = p2
(
F

(
1 − p2

)
+ D

(
p22 p

2 − p4
))

+ E
(
−y22 p2 p3 + y21 p

2
1

)
+ ηpw2

ṗ3 = p3
(
F

(
1 − p2

)
+ D

(
p23 p

2 − p4
))

+ E
(
−y23 p3 p1 + y22 p

2
2

)
+ ηpw3

ẏ1 = g
(
y1, A − Bp21 + C

(
y2 − y21

))
+ ηyw4

ẏ2 = g
(
y2, A − Bp22 + C

(
y2 − y22

))
+ ηyw5

ẏ3 = g
(
y3, A − Bp23 + C

(
y2 − y23

))
+ ηyw6

(3)

The w j are white noise processes, ηp and ηy are noise amplitudes and the function g
is given in Eq. (6). We choose a standard set of parameters [these lie within an open
region (12) of suitable parameters described in Sect. 2], and consider the effect of low
amplitude noise:
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Fig. 4 Trajectories for the coupled cell system (3), for four different parameter sets. In each panel, p1 is
shown by a blue solid line, p2 by a red dashed line, and p3 by a black dotted line. The y j components
are not shown: see Fig. 5. a The trajectory approaching a heteroclinic network; B = 2.5 and no noise;
ηp = ηy = 0. Note the cycling between three states while slowing-down typical of a heteroclinic cycle
attractor. b is as a except with nonzero noise; ηp = ηy = 10−3. Observe that the slowing-down is replaced
by an approximate periodicity induced by the noise. In c, parameters are chosen so there exists an excitable
network with no noise; B = 1.49, ηp = ηy = 0. The trajectory approaches a stable equilibrium that
depends on initial conditions. d is as in c except for nonzero noise; ηp = 10−3, ηy = 5× 10−2. Here, the
noise pushes the trajectory over the thresholds at each equilibria and cycling behaviour is seen [parameters
are as in (4), except where stated] (Color figure online)

A = 0.5, B = 1.8, C = 2, D = 10, E = 4, F = 2, ηp = ηy = 10−3. (4)

The connections between the cells in (3) are mostly inhibitory (negative feedback),
except for the connections shown in Fig. 3c as solid which represent excitatory con-
nections between selected cells in the sense that they provide positive feedback.
Theorem 2.4 from the next section can be used to deduce that there is a heteroclinic
cycle as shown schematically in Fig. 3d. Finally, for the same parameters as in (4)
except choosing B = 1.49, Theorem 2.3 shows that there is an excitable network as
shown schematically in Fig. 3e.

Figure 4 illustrates the attracting behaviour of this system: in the absence of noise (a)
and (c), the behaviour of the heteroclinic and excitable networks is quite different. In
the presence of noise, (b) and (d) are qualitatively similar due to the trajectories being
driven around the network by the noise. In Fig. 5 we show detailed time series of the
system, illustrating the transitions corresponding to edges between the vertices of the
directed graph. Note that y1 is “switched on” during the transition from ξ1 (p1 = 1) to
ξ2 (p2 = 1). Throughout this paper, we use a Heun integrator with timestep h = 0.01
for simulations of the noise-driven systems.

2 The Coupled System with Two Cell Types

Consider a directed graph � = (V, E), with vertices and edges defined as in Sect. 1.2.
Wewill realise this both as heteroclinic and as excitable networks in the phase space of
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(b)(a)

Fig. 5 Time series of transitions between ξ1 and ξ2. In each panel, p1 is shown as a blue solid line, p2 as
red dashed and y1 as black dotted. a has B = 1.8, ηp = ηy = 10−3, and corresponds to a heteroclinic
connection, b has B = 1.49, ηp = 10−3, ηy = 3 × 10−2 and corresponds to an excitable connection
[parameters are as in (4), except where stated] (Color figure online)

a set of coupled cells of two types: the p-cells are associated with the vertices V while
the y-cells are associated with the edges E . The system we consider has phase space
R
nv+ne and coordinates (p, y) = (p1, . . . , pnv , y1, . . . , yne ) ∈ R

nv+ne governed by:

d

dt
p j = p j

(
F

(
1 − p2

)
+ D

(
p2j p

2 − p4
))

+ E
(
−Z (o)

j (p, y) + Z (i)
j (p, y)

)

d

dt
yk = g

(
yk, A − Bp2α(k) + C

(
y2 − y2k

))

(5)
for j = 1, . . . , nv and k = 1, . . . , ne, where p2 = ∑nv

j=1 p
2
j , p4 = ∑nv

j=1 p
4
j ,

y2 = ∑ne
j=1 y

2
j and A, B,C, D, E, F are constants. The function g is defined by

g(yk, λ) = −yk

((
y2k − 1

)2 + λ

)
(6)

while the inputs to the p j cells from the y cells are:

Z (o)
j (p, y) =

∑

{k: α(k)= j}
−y2k pω(k) p j

Z (i)
j (p, y) =

∑

{k′: ω(k′)= j}
y2k′ p2α(k′).

(7)

Equations (5) have equilibria at ξ j = (0, . . . , 1, . . . , 0) ∈ R
nv+ne for j = 1, . . . , nv

where the “1” is in the j th position. That is, there are equilibria at points corresponding
to unit vectors where one of the p j is nonzero.

Note that ẏ = g(y, λ) has a hysteresis loop that can be switched by changing λ

through the interval [λ0, 0]where λ0 := −1; see Fig. 6; in this sense, perturbations that
reduce λ are excitatory while those that increase λ are inhibitory. The coupling and the
choice of parameters will be made so as to construct a network in phase space where
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Fig. 6 Bifurcation diagram of
ẏ = g(y, λ) [given in (6)] for
y ≥ 0 and λ ∈ R. Note that there
is a region of bistability between
the pitchfork bifurcation at
λ = λ0 := −1, y = 0 and the
saddle-node bifurcation at
λ = 0, y = 1

each connection goes once around a hysteresis loop within a subspace P� (defined in
the following section).

2.1 Dynamics of the Model

System (5) has symmetries Z(k)
2 given by yk 
→ −yk for each k and so the system is

equivariant under the action of the group

� =
ne∏

k=1

Z
(k)
2 .

We prove the existence of networks in phase space that realise the given graph and
are robust to perturbations that respect this symmetry. To this end we denote by ��

the subgroup of � corresponding to Z(�)
2 , and define the following subspaces of phase

space

Y� := fix(��) = {(p, y) : y� = 0}
W� :=

⋂

k �=�

fix(�k) = {(p, y) : yk = 0 if k �= �}

and

P� := {(p, y) : yk = 0 if k �= � and p j = 0 if j �= α(�) or ω(�)}

for � = 1, . . . , ne. The sets Y� andW� are invariant for all�-equivariant perturbations,
while the P� ⊂ W� are invariant for the flow generated by system (5) but not for
arbitrary�-equivariant perturbations.However,wewill show that there are connecting
orbits in the P� subspaces that are robust to small �-equivariant perturbations that
preserve the invariance of the larger subspace W�. We define

S :=
{
(p, y) : |p|2 = 1

}
≡ Snv−1 × R

ne (8)
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which is an nv−1-dimensional sphere in the p-coordinates. This is invariant and
normally attracting for F > 0 and so persists for appropriate choice of the parameters.
We interpret the parameters A, B,C, D, E, F in (5) as follows:

• The constant A determines the default dynamics of the variables yk : we assume
A ≥ 0 so that the equilibria ξ j are globally stable for B = C = 0.

• The constant B > 0 determines how much ξ j is destabilised by there being a
connection from that state. Let α(k) = j . Then if B > A + 1, ξ j will be linearly
unstable in the yk direction. If A + 1 > B > 0 then the state ξ j will be linearly
stable but excitable in the yk direction.

• The constant C > 0 determines the mutual inhibition of the yk variables and
suppresses more than one hysteresis loop becoming active at any time.

• The constant D > 0 sets the rate of attraction to the equilibria ξ j in directions
tangent to S.

• The constant E > 0 is set to lie within a range (relative to D) so that when one
of the yk is active then there is a connection from ξα(k) to ξω(k) (see Fig. 8, and
Eq. 12 for details).

• The constant F > 0 sets the rate of attraction of the p dynamics towards S.
Lemma 2.1 The system (5) has an invariant set S (defined in 8); for F > 0 this set
attracts a neighbourhood of S.
Proof We show that if 
 := p2 = ∑nv

j=1 p
2
j then 
 → 1 as t → ∞ for typical initial

conditions. Note that

1

2

d

dt

 =

∑

j

p j ṗ j

= F
nv∑

j=1

p2j − Fp2
nv∑

j=1

p2j + D

⎛

⎝p2
nv∑

j=1

p4j − p4
nv∑

j=1

p2j

⎞

⎠

+ E

( ne∑

k=1

−y2k p
2
α(k) pω(k) +

ne∑

k′=1

y2k′ p2α(k′) pω(k′)

)

= F
(1 − 
).

Hence on a timescale determined by F > 0, we typically have 
 → 1 as t → ∞.
The only initial conditions where this is not the case will have p j = 0 for all j . 
�

2.2 Realisation of a Graph as a Heteroclinic Network

The following lemma shows that for an open region in parameter space the dynamics
of system (5) embeds the graph � as a heteroclinic network.

Lemma 2.2 Consider the system (5) with equilibria at ξ j for j = 1, . . . , nv . There is
an open set of A, B,C, D, E, F such that for each � = 1, . . . , ne there is a connecting
orbit from ξα(�) to ξω(�) within the three-dimensional invariant subspace P�.
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Proof For ease of exposition, and without loss of generality, suppose � = 1, α(�) = 1
and ω(�) = 2. The system within the invariant subspace P1 can be written

ṗ1 = p1
(
F

(
1 − p2

)
+ D

(
p21 p

2 − p4
))

− Ey21 p1 p2

ṗ2 = p2
(
F

(
1 − p2

)
+ D

(
p22 p

2 − p4
))

+ Ey21 p
2
1

ẏ1 = g
(
y1, A − Bp21

)
(9)

where p2 = p21 + p22. Then the linearised stability within P1 is given by

⎛

⎜⎜⎜⎜⎜⎜⎝

F
(
1 − 3p21 − p22

)

+D
(
3p21 p

2 − p42
)

−Ep2y21 p1
(
D

(
2p21 p2 − 4p32

) − 2Fp2 − Ey21
) −2Ep1 p2y1

p1
(
D

(
2p32 − 4p2 p21

)

−2Fp2 + 2Ey21
)

F
(
1 − 3p22 − p21

) + D
(
3p21 p

2 − p41
)

2Ep21 y1−y1(A − 2Bp1) 0 g′ (y1, A − Bp21
)

⎞

⎟⎟⎟⎟⎟⎟⎠

where g′(y, λ) := dg

dy
(y, λ). For the point ξ1 = (1, 0, 0) this becomes

⎛

⎝
−2F 0 0
0 −D 0
0 0 B − 1 − A

⎞

⎠

while for ξ2 = (0, 1, 0) it becomes

⎛

⎝
−D 0 0
0 −2F 0
0 0 −1 − A

⎞

⎠ .

Hence, we choose F > 0, D > 0, A > 0 and B > 1 + A so that ξ1 is a saddle with
unstable direction (0, 0, 1) and ξ2 is a stable node. Observe that for this choice both
ξ1 and ξ2 are hyperbolic and that all other eigenvalues in the direction of other pk are
−D and therefore stable.

As the subset C = S ∩ P1 (where p21 + p22 = 1) is attracting and invariant (by
Lemma 2.1), we consider the dynamics on C parameterised by (θ, y1) where p1 =
cos θ , p2 = sin θ and θ ∈ [0, 2π). From Eq. (9) we have

dθ

dt
= p1 p2D

(
p22 − p21

)
+ Ep1

(
p21 + p22

)

= D sin θ cos θ
(
sin2(θ) − cos2(θ)

)
+ Ey21 cos θ

= −D

4
sin 4θ + Ey21 cos θ

123



356 J Nonlinear Sci (2016) 26:345–364

so that in this subspace we have

dθ

dt
= −D

4
sin 4θ + Ey2 cos θ (10)

dy

dt
= −y

((
y2 − 1

)2 + A − B cos2 θ

)
(11)

where we drop the subscript from y1 = y for notational convenience.
We use (10) and (11) to deduce conditions on the parameters A, B, D, E that

guarantee existence of a saddle-to-sink connection from (θ, y) = (0, 0) to (θ, y) =
(π/2, 0) corresponding to existence of a heteroclinic connection from ξ1 to ξ2 within
P1. Note that the θ̇ = 0 nullclines are at cos θ = 0 or at y2 = D sin θ(2 cos2 θ − 1)
(shown by the dashed lines in Fig. 7). For D > 0 the latter has a unique maximum in
[0, π/2] at

θ̃ := sin−1
(

1√
6

)
, ỹ :=

√
D

√
6

9E
.

If D > 0 and E > 0, θ̇ > 0 whenever y > ỹ. We require that ỹ < 1 in order to rule
out the possibility of any equilibria in y > 1.

The ẏ = 0 nullclines are at y = 0 and B cos2 θ = (1− y2)2 + A. If B > 1+ A the
latter curve has a minimum in θ at y = 0 and maxima in θ at y = ±1 (dashed-dotted
line in Fig. 7a). Suppose that the line y = ỹ hits the y-nullcline first in [0, π/2] at θ̂ ;
this is given by

cos2 θ̂ = 1

B

⎛

⎝
(
1 − D

√
6

9E

)2

+ A

⎞

⎠ .

If π/4 < θ̂ < π/2 and 0 < ỹ < 1 then Fig. 7a shows that there will be a connection
as desired; hence some sufficient (but by no means necessary) conditions for there to
be a connection can be expressed as:

0 < A <
B

2
, 1+ A < B, 0 < D, 0 < E and

9E√
6

(
1 −

√
B

2
− A

)
< D <

9E√
6

(12)
Note that C, F do not affect this argument; however, C needs to be chosen to positive
and large enough to avoid spurious connections to other stable dynamics and F needs
to be positive for Lemma 2.1 to hold. Figure 8 illustrates that this set is nonempty and
open. 
�

To illustrate the effect of one component of the y dynamics becoming active and
giving a connection, we show in Fig. 9 the dynamics in p1 and p2 for (a) y1 = 0 and
(b) y1 ≈ 1. We summarise the construction above in the following Theorem:
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(a) (b)

Fig. 7 Phase plane for (θ, y) showing the nullclines in the region θ ∈ [0, π/2]. a The dashed line shows
θ̇ = 0 while the dash-dotted line shows ẏ1 = 0; equilibria are indicated by the small black discs. If the
nullclines have the given topology and are such that ỹ < 1 and π/4 < θ̂ < π/2, then there will be a
heteroclinic connection as shown (schematically as a solid red line). This can be achieved by choosing
constants that satisfy (12); see text for more details. b For larger values of B the heteroclinic connection
becomes an excitable connection (schematically as a solid red line) for amplitude δ (schematically as a
solid red line) and a new saddle equilibrium with y �= 0 appears (Color figure online)

(a) (b)

Fig. 8 Parameter region that satisfies the conditions (12) and permit a heteroclinic realisation are illustrated
here: a (A, B) can be chosen from the region shown inwavy lines. b For each choice there is anM < L such
that D, E can be chosen from the region shown inwavy lines, where L = 9/

√
6 andM = L(1−√

B/2 − A)

depend on A and B. The grey shaded region in a can be added to the allowable conditions if we permit
excitable realisations with small δ > 0. Note that not all of the networks are attracting, but for small enough
B and suitable choices of C, F , numerical simulations indicate that they are

Theorem 2.3 Given any finite directed graph, there is a nonempty and open set of
parameter values A, B,C, D, E, F such that the system (5) realises this graph as a
heteroclinic network in a way that is robust to all perturbations to the equations that
preserve the symmetries �.

Proof The previous calculations and Lemma 2.2 show that for the parameter region
identified in (12) with C > 0, F > 0 there are hyperbolic saddles {ξi } that are
connected by heteroclinic connections in the three-dimensional subspaces P� for each
�. These connections are robust to perturbations that preserve the symmetry� because
within the fixed point subspace Y� the equilibrium ξα(�) has one unstable direction and
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(a) (b)

Fig. 9 Dynamics of p1 and p2 on the unit circle in the case that y1 is associated with a connection from
v1 to v2, i.e. in the case α(1) = 1, ω(1) = 2. a For y = 0 note that both ξ1 and ξ2 are stable nodes; note
that ξ1 is unstable in the y1 direction. b For y1 ≈ 1. As y1 is increased from 0, the terms multiplied by E
in (5) removes ξ1 (and all symmetric images) in a series of bifurcations

all other directions are stable while ξω(�) is a sink. Moreover, P� ⊂ Y� and so there is
a connection that is of saddle-sink type. Transversality of this connection within the
invariant subspace means that it is robust to �-equivariant perturbations. 
�

Weconjecture that, in the case of a strongly connected graph�, for someopen subset
of the set of parameters in Theorem 2.3 this heteroclinic network realises the graph as
part of an asymptotically stable attractor that is a compact, chain recurrent invariant set.
As in Ashwin and Postlethwaite (2013), the large “embedding attractor” will typically
contain extra equilibria and connections but we conjecture that the proportion of time
that typical trajectories visit equilibria that do not correspond to those in � will be
very small and may go to zero as noise amplitude decreases; the larger attractor may
be “invisible” (Ilyashenko 2010) except on a subset that corresponds to an embedding
of �.

Some numerical evidence for these conjectures is given in the next section for a
specific example. In brief justification, if ξ1 has connections to ξ2 and ξ3 via y1 and
y2 then for large enough C , almost every trajectory on Wu(ξ1) is a connection to one
of ξ2 or ξ3. This is suggested by the dynamics of y1, y2 which are governed by:

dy1
dt

= −y1

((
y21 − 1

)2 + 1 + A − Bp21 + Cy22

)
(13)

dy2
dt

= −y1

((
y21 − 1

)2 + 1 + A − Bp21 + Cy21

)
. (14)

Fixing p1 = 1 and 1 + A − B = 0 and examining the phase plane for this system, if
C > 2/3 then all orbits are bounded in forward time and the only attractors for this
system are in y1 = 0 and y2 = 0. This is preserved for 1 + A − B close to zero.
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2.3 Realisation of a Graph as an Excitable Network

We give an additional result to show that a given graph can be realised as an excitable
network for amplitude δ > 0 for a range of parameter values:

Theorem 2.4 Given any finite directed graph, there is an open set of parameter values
A, B,C, D, E, F determining a minimum amplitude (threshold) δth > 0 such that (5)
realises this graph as an excitable network with amplitude δ for δ > δth but not for
δ < δth. This threshold may be chosen to be arbitrarily small by suitable choice of
parameters.

Proof We choose A, B,C, D, E, F as in Theorem 2.3 except we do not require 1 +
A − B < 0 meaning that the y1 nullcline may be detached from y1 = 0; see Fig. 7b.
That is, the curve B cos2 θ = (1 − y2)2 + A is undefined for 0 < y < δ̂, where it is
simple to show that

δ̂ =
√
1 − √

B − A;

see the dot-dashed curve in Fig. 7b. In this case ξ1 is a sinkwithin the invariant subspace
P1 and there is a nearby saddle ζ1 whose stable manifold forms part of the boundary
of Ws(ξ1). Let δ0 be the smallest distance from ξ1 to the stable manifold of ζ1.

More precisely, if we consider 1+A−B = ν > 0, ν � 1, then we can estimate δth,
the closest approach of Ws(ζ1) to ξ1 by δ̂, the point where the y1 nullcline intersects
θ = 0. This gives

δth =
√

ν

2
+ O(ν). (15)

for small ν; in other words, for δ > δth there will be a connection for amplitude δ

while for δ < δth we have Bδ(ξ1) ⊂ Ws(ξ1) and there is no connection for amplitude
δ. 
�

In the case of multiple outgoing directions there will be multiple directions with a
threshold of δth and a similar argument to that following Theorem 2.3 suggests that
for large enough C > 0 and δ > δth, almost all points in Bδ(ξk) are either in Ws(ξk)

or in Ws(ξ j ) for some ξ j that is connected via one of these outgoing directions.

3 Design of a System Possessing a Kirk–Silber Cycle

One of the simplest examples of a network that shows competition between two
heteroclinic cycles is the network of Kirk and Silber (1994) where two order-three
cycles (similar to that in Fig. 4) share a common edge. This is a useful system to
understand how the system switches at the “decision point” in response, e.g. to noise
of differing amplitudes in different components. In a forthcoming paper (Ashwin and
Postlethwaite 2015)we explore the statistics of the switching process in termsof escape
processes simultaneously along a number of heteroclinic or excitable connections; here
we indicate some of the issues in this example.
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Fig. 10 a Kirk–Silber network:
five edges ei connect four
vertices vi ; b schematic of the
coupling architecture of the
nine-cell network realising a; the
globally inhibitory connections
are not shown

(a)

v2

v3 v4

v1

e2 e3

e4 e5

e1

(b)

p3 p4

p1

y2 y3

y4 y5
y1

p2

Let us consider a specific example of a realisation of the network shown in Fig. 10a
using the coupled cell network illustrated in (b). To this end we consider the model
perturbed by additive noise wi :

ṗ1 = p1
(
F

(
1 − p2

)
+ D

(
p21 p

2 − p4
))

+ E
(
−y21 p1 p2 + y24 p

2
3 + y25 p

2
4

)
+ ηpw1

ṗ2 = p2
(
F

(
1 − p2

)
+ D

(
p22 p

2 − p4
))

+ E
(
−y22 p2 p3 − y23 p2 p4 + y21 p

2
1

)
+ ηpw2

ṗ3 = p3
(
F

(
1 − p2

)
+ D

(
p23 p

2 − p4
))

+ E
(
−y24 p3 p1 + y22 p

2
2

)
+ ηpw3

ṗ4 = p4
(
F

(
1 − p2

)
+ D

(
p24 p

2 − p4
))

+ E
(
−y25 p4 p1 + y23 p

2
2

)
+ ηpw4

ẏ1 = g
(
y1, A − Bp21 + C

(
y2 − y21

))
+ η1w5

ẏ2 = g
(
y2, A − Bp22 + C

(
y2 − y22

))
+ η2w6

ẏ3 = g
(
y3, A − Bp22 + C

(
y2 − y23

))
+ η3w7

ẏ4 = g
(
y4, A − Bp23 + C

(
y2 − y24

))
+ η4w8

ẏ5 = g
(
y5, A − Bp24 + C

(
y2 − y25

))
+ η5w9

(16)
where we choose the parameters as in (4) except we allow different noise amplitudes
in the yi directions. Figure 11a, b show a time series for this case, where the parameters
are chosen so that a heteroclinic network exists. Figure 11e shows a histogram of the
residence times near equilibria for a much longer time series.

Stone and Armbruster (1999) and Stone and Holmes (1990) have shown that for a
heteroclinic cycle, the mean residence time near equilibria scales like (−1/λ) log(η)

for small noise amplitude η, where λ is the expanding eigenvalue at the equilibrium.
We note that for the data shown in Fig. 11e, the residence times (not shown) near
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 11 Time series and histograms of residence times for the Kirk–Silber example in (16). a, b, e are for
the heteroclinic case [parameters as in (4), but with η j = 3×10−5 ( j = 1, . . . , 5)]. c, d, f for the excitable

case [parameters as in (4), but with B = 1.49 and η j = 3× 10−5 ( j = 1, . . . , 5)]. a, c Time series for the
p j (linestyles are: p1 blue solid, p2 red dashed, p3 magenta dotted, p4 black solid); b, d time series for
the y j , we only show y2 (blue solid line) and y3 (red dashed line). e, f Histograms of residence times near
equilibria for each case for a much longer time series (Color figure online)

equilibrium ξ2 are smaller than near the other three equilibria: this is due to the two
possible ‘escape routes’ from that equilibrium.

3.1 Bifurcation to an Excitable Kirk–Silber Network

If B > A + 1, the equilibria ξ j are connected to form an excitable network. We
consider this same example (16) with parameters as in (4) except for B = 1.49, and
η j = 3 × 10−5. In this case there are excitable connections with threshold

δth :≈
√
1 − √

B − A ≈ 0.07071

from (15). Figure 11c, d shows a time series for this case. Figure 11f shows a histogram
of the residence times near equilibria for a much longer time series. Similarly to the
heteroclinic case, we note that the residence times near ξ2 appear to be smaller than
near the other equilibria due to the presence of two possible escape routes. We also
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note that the shape of the distributions of escape times in the heteroclinic and excitable
cases appears to be different.

In particular, very long residence times are more likely in the excitable case than
in the heteroclinic case (the former distribution has a fatter tail). This can be seen in
comparison with Fig. 11e, f; although the timescales are different (due to the different
parameters), we have scaled the x-axes so that the mean residence times appear at the
same position in each figure (these are approximately 10.3 and 42.3, respectively), and
the fatter tail in (f) can be clearly seen, along with a much more peaked distribution
in (e).

In contrast to the case for the heteroclinic network, we expect the residence times for
the excitable network will be governed by a Kramers-type of escape process giving
rise an exponential tail in the residence times. This and other statistical properties
of switching and residence times near heteroclinic and excitable networks are being
investigated in a forthcoming work (Ashwin and Postlethwaite 2015).

4 Discussion

The main results of the paper are the constructive model (5) and Theorems 2.3 and
2.4 that give open sets of parameter values where one can robustly realise an arbitrary
directed graph as an attracting heteroclinic network or an excitable network in phase
space.

Although the noise-free dynamics of the network is to some extent trivial (there
will be slowing-down heteroclinic dynamics visiting a sequence of equilibria that
depends on the initial condition for the heteroclinic network, or the trajectory will
remain at the first stable equilibrium for the excitable network), the dynamics of
the networks become much more interesting in the presence of noise. It is known
that addition of low noise to an attracting heteroclinic network can lead to random
switching around a heteroclinic network in a temporally fairly regularmanner (Ashwin
and Postlethwaite 2013); similarly, addition of noise to an excitable network leads also
to random switching around an excitable network.We explore elsewhere the switching
probabilities and residence times near equilibria as a function of the noise strengths
and parameter values (Ashwin and Postlethwaite 2015).

Similarly, addition of very small inputs in the form of impulses to the yk variables
allows one to control transitions between states in a way that depend on inputs and
current state—and so perform finite state computing in the system (5) in a manner
similar toAshwin andBorresen (2004), Ashwin et al. (2007), Neves andTimme (2012)
andWordsworth andAshwin (2008). It will be interesting to explore the computational
potential of this network. Our construction is “wasteful” in the sense that only one
cell will be active at any time; the encoding of states is very sparse compared to
what nervous systems presumably achieve. It will be a challenge to see whether this
construction can be adapted to achieve more dense encoding without losing the high
level of control of the dynamics.

Our concept of an excitable network (in phase space) needs to be distinguished from
the more general concept of a network of excitable systems. A network of the latter
type may or may not realise the former as a network in phase space, depending the
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nature and strength of the coupling. For example, networks of excitable systems (see
for example Hütt et al. 2012; Kinouchi and Copelli 2006) may have many excitable
states corresponding to various combinations of cells being active.

The boundary between heteroclinic and excitable network dynamics for (5) is on
the line B = 1 + A and corresponds to a subcritical pitchfork bifurcation of the
equilibria ξk within the invariant subspace P� for each outgoing direction y� from ξk .
By considering A� and B� (i.e. A, B depending on �) one can clearly design networks
using (5) that mix heteroclinic and excitable connections with thresholds δ� that may
vary from one connection to another.

The presence of microscopic noise in the heteroclinic network will result in trajec-
tories wandering around the embedded graph with random choice of outgoing edges at
each node. For A and B independent of k and low amplitude noise, this will appear to
be a one-stepMarkov process with a distribution of residence times. However, varying
Ak and Bk in the heteroclinic network case introduces the possibility of “lift-off” and
“memory” of the system trajectories in (5) as discussed for a related system in Ashwin
and Postlethwaite (2013). If the transition past a node is sufficiently fast compared to
previous nodes, the transition probabilities between nodes may depend not just on the
current state but on previously visited states; this will be dependent on the eigenvalues
of the equilibria ξk . This gives the possibility of designing a systemwithmore complex
time correlations than a one-step Markov process.
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