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Abstract We investigate prototypical profiles of point defects in two-dimensional
liquid crystals within the framework of Landau–de Gennes theory. Using boundary
conditions characteristic of defects of index k/2, we find a critical point of the Landau–
de Gennes energy that is characterised by a system of ordinary differential equations.
In the deep nematic regime, b2 small, we prove that this critical point is the unique
global minimiser of the Landau–de Gennes energy. For the case b2 = 0, we investigate
in greater detail the regime of vanishing elastic constant L → 0, where we obtain three
explicit point defect profiles, including the global minimiser.

Keywords Nonlinear elliptic PDE system · Singular ODE system · Stability ·
Vortex · Liquid crystal defects

1 Introduction

Defect structures are among the most important and visually striking patterns asso-
ciated with nematic liquid crystals. These are observed when passing polarised light
through a liquid crystal sample and are characterised by sudden, localised changes
in the intensity and/or polarisation of the light (Chandrasekhar and Ranganath 1986;
Gennes 1974). Understanding the mechanism that generates defects and predicting
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their appearance and stability is one of the central objectives of any liquid crystal
theory.

The mathematical characterisation of defects depends on the underlying model
(Ericksen 1990; Gennes 1974; Kléman 1983; Virga 1994). In the Oseen–Frank theory,
nematic liquid crystals are described by a vector field n defined on a domain � ⊂ R

d

taking values in S
d−1 (d = 2, 3), which describes the mean local orientation of the

constituent particles. Defects correspond to discontinuities in n Chandrasekhar and
Ranganath (1986), Kléman and Lavrentovich (2006), Virga (1994) and may be classi-
fied topologically. For example, for planar vector fields in two-dimensional domains
(i.e., d = 2 above), point defects may be characterised by the number of times n
rotates through 2π as an oriented circuit around the defect is traversed. For nonpolar
nematic liquid crystals, n and −n are physically equivalent; in this case, it is more
appropriate to regard n as taking values in RPd−1 rather than Sd−1. The classification
of point defects in two dimensions then allows for both integer and half-integer indices
k/2, k ∈ Z (Ball and Zarnescu 2011; Chandrasekhar and Ranganath 1986; Kléman
and Lavrentovich 2006), as n is constrained to turn through a multiple of π rather
than 2π on traversing a circuit. Prototypical examples of such defects are shown in
Figs. 1, 2, 3 and 4.

Fig. 1 Defects of index 1
2 (left) and − 1

2 (right)

Fig. 2 Defects of index 1 (left) and −1 (right)
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Fig. 3 Defects of index 3
2 (left) and − 3

2 (right)

Fig. 4 Defects of index 2 (left) and −2 (right)

A deficiency of the Oseen–Frank theory is that point defects in two dimensions,
which are observed experimentally, are predicted to have infinite energy;moreover, the
theory does not allow for half-integer indices [see Ball and Zarnescu (2011), Gennes
(1974)]. These shortcomings are addressed by the more comprehensive Landau–de
Gennes Q-tensor theory Gennes (1974). In this theory, the order parameter describing
the liquid crystal system takes values in the space of Q-tensors (or 3 × 3 traceless
symmetric matrices),

S0
def=

{
Q ∈ R

3×3, Q = Qt , tr(Q) = 0
}

.

Equilibrium configurations of liquid crystals correspond to local minimisers of the
Landau–de Gennes energy, which in its simplest form is given by

F[Q] def=
∫

�

{
L

2
|∇Q(x)|2 − a2

2
tr(Q2) − b2

3
tr(Q3) + c2

4

(
tr(Q2)

)2}
dx . (1.1)

Here Q ∈ S0, L > 0 is the elastic constant, and a2, c2 > 0, b2 ≥ 0 are material
parameters which may depend on temperature [for more details see Gennes (1974)].
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Fig. 5 Q-tensor defect of index 1
2 (left) and − 1

2 (right)

Fig. 6 Q-tensor defect of index 1 (left) and −1 (right)

One can visualise Q-tensors as parallelepipeds whose axes are parallel to the eigen-
vectors of Q(x) with lengths given by the eigenvalues (Copara et al. 2013).1 Figure 5
displays defects of index ± 1

2 using this representation, and Fig. 6 displays defects of
index ±1.2

This paper is a rigorous study of point defects in liquid crystals in two-dimensional
domains using Landau–de Gennes theory. We investigate equilibrium configurations
in the disc � = {(x, y) : x2 + y2 < R} subject to boundary conditions characteristic
of prototypical defects, namely that on ∂� = {(R cosφ, R sin φ)}, Q is proportional
to

Qk =
(
n ⊗ n − 1

3
I

)
, n = (

cos( k2φ), sin( k2φ), 0
)
.

We first introduce an ansatz

Y = u(r)
√
2

(
n(ϕ) ⊗ n(ϕ) − 1

2
I2

)
+ v(r)

√
3

2

(
e3 ⊗ e3 − 1

3
I

)
, (1.2)

1 The careful reader will note that tr(Q) = 0 implies that the eigenvalues cannot all be positive. In order
to obtain positive lengths for the axes, we add to each eigenvalue a sufficiently large positive constant (we
assume the eigenvalues of Q are bounded).
2 The figures represent the numerically computed solutions of (3.7), (3.8) for k = ±1,±2.
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and note that Y satisfies the Euler–Lagrange equations (2.6) for the Landau–deGennes
energy (1.1) provided that (u, v) satisfies a system of ODEs given by (3.7), (3.8). It
follows that for all parameters L , a, b, c, the ansatz Y is a critical point of the energy.

Next, we show that for every k ∈ Z, the critical point Y is actually the unique global
minimiser of the energy (1.1) in the low-temperature regime, i.e. for b2 sufficiently
small. Equivalently, in this regime, Y describes the unique ground-state configuration
for a two-dimensional index-k point defect. In general, it is very difficult to find a
global minimiser of a nonconvex energy. In this case we can deal with the nonlinearity
using properties of the defect profile (u, v) and the Hardy decomposition trick Ignat
et al. (2013). Similar ideas to prove global minimality are used in Shirokoff et al.
(2015) for a problem in diblock copolymers.

In the case b2 = 0, we also study the regime of vanishing elastic constant L → 0
[see the appendix of Nguyen and Zarnescu (2013) for a discussion of the physical
relevance of this regime] and show that it leads to a harmonic map problem for Y .
We find three explicit solutions—two biaxial and, for even k, one uniaxial—and show
that one of the biaxial solutions is the unique global minimiser of (1.1). The uniaxial
critical point is analogous to the celebrated “escape in third dimension” solution of
Cladis and Kléman (1992, 1972).

The profile and stability of liquid crystal defects have been extensively studied in
the mathematics literature (Bauman et al. 2012; Bethuel et al. 1992; Biscari and Virga
1997; Canevari 2015; Fatkullin and Slastikov 2009; Golovaty and Montero 2013;
Henao and Majumdar 2012; Ignat et al. 2014, 2015, 2013; Kralj et al. 1999; Gartland
and Mkaddem 1999). Let us briefly mention a few papers which bear directly on the
present work. In Kralj et al. (1999) the problem of investigating equilibria of liquid
crystal systems in cylindrical domains (effectively 2D discs) was studied numerically
for the Landau–de Gennes model under homeotropic boundary conditions (i.e. k = 2
above), subject to the so-called Lyuksyutov constraint tr(Q2) = a2/c2. The authors
compare three different solutions of this model corresponding to “planar positive”,
“planar negative” and “escape in third dimension”. They numerically explore the
energies of these solutions and find a crossover between the “planar negative” and
“escape in third dimension” solutions depending on the parameters b and L . For
b = 0, the “planar negative” solution is found to have lower energy than the other two.

In recent papers Ignat et al. (2013, 2014, 2015) the radially symmetric 3D point
defect, the so-called melting hedgehog, was studied within the framework of Landau–
de Gennes theory. The authors investigate the profile and stability of the defect as a
function of the material constants a2, b2, c2. In particular, it is shown that for a2 small
enough themelting hedgehog is locally stable, while for b2 small enough it is unstable.
We utilise some ideas introduced in the liquid crystal context in these papers to derive
our present results.

The paper is organised as follows: The mathematical formulation of the problem is
given in Sect. 2. In Sect. 3 we introduce an ansatz Y satisfying boundary conditions
characteristic of a point defect of index k/2, and show that Euler–Lagrange equations
simplify from a system of PDEs to a system of two ODEs. We establish the existence
of a solution of this system of ODEs, and thereby prove the existence of a critical point
of the Landau–de Gennes energy.
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In Sect. 4 we study qualitative properties of the solution in the infinitely low-
temperature regime, i.e. for b2 = 0. We study separately the case of fixed L > 0 and
the limit L → 0. The main result for fixed L is that for all k ∈ Z, Y is the unique
global minimiser of the Landau–de Gennes energy over H1(�,S0). Thus, for b2

sufficiently small, Y describes the unique ground state for point defects in 2D liquid
crystals. In the limit L → 0, we derive the corresponding harmonic map problem and
explicitly find three solutions—two biaxial and, for even k, one uniaxial. We show
that one of the biaxial solutions, Y−, is the unique global minimiser of the Dirichlet
energy. Section 5 contains a discussion of the results and an outlook on further work.

2 Mathematical Formulation of the Problem

We consider the following Landau–deGennes energy functional on a two-dimensional
domain � ⊂ R

2,

F[Q] def=
∫

�

1

2
|∇Q(x)|2 + 1

L
f (Q) dx, Q ∈ H1(�;S0). (2.1)

Here L > 0 is a positive elastic constant, S0 denotes the set of Q-tensors defined
by

S0
def= {Q ∈ R

3×3, Q = Qt , tr(Q) = 0}

and the bulk energy density f (Q) is given by

f (Q) = −a2

2
|Q|2 − b2

3
tr(Q3) + c2

4
|Q|4,

where a2, c2 > 0 and b2 ≥ 0 are material parameters and |Q|2 def= tr(Q2).
We are interested in studying critical points and local minimisers of the energy

(2.1) for � = BR , where BR ⊂ R
2 is the disc of radius R < ∞ centred at 0, such

that Q satisfies boundary conditions corresponding to a point defect at 0 of index k/2.
Specifically, we define

Qk(ϕ) =
(
n(ϕ) ⊗ n(ϕ) − 1

3
I

)
, (2.2)

where

n(ϕ) =
(
cos

(
k

2
ϕ

)
, sin

(
k

2
ϕ

)
, 0

)
, k ∈ Z \ {0}, (2.3)

and I is the 3 × 3 identity matrix. The boundary condition is then taken to be

Q(x) = s+Qk(ϕ) for all x ∈ ∂BR, (2.4)
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where x = (R cosφ, R sin φ) and

s+ = b2 + √
b4 + 24a2c2

4c2
. (2.5)

The value of s+ is chosen so that s+Qk minimises f (Q). Critical points of the
energy functional satisfy the Euler–Lagrange equation:

L�Q = −a2Q − b2
[
Q2 − 1

3
|Q|2 I

]
+ c2Q|Q|2 in BR, Q = s+Qk on ∂BR,

(2.6)

where the term b2 13 |Q|2 I accounts for the constraint tr(Q) = 0.

3 Existence of Special Solutions

In general, it is difficult to find critical points of the Landau–de Gennes energy.
However, due to symmetry we are able to find a special class of solutions of the
Euler–Lagrange Eq. (2.6).

We consider the following ansatz, expressed in polar coordinates (r, ϕ) ∈ (0, R)×
[0, 2π ]:

Y (r, ϕ) = u(r)Fn(ϕ) + v(r)F3, (3.1)

where

Fn(ϕ)
def= √

2

(
n(ϕ) ⊗ n(ϕ) − 1

2
I2

)
, F3

def=
√
3

2

(
e3 ⊗ e3 − 1

3
I

)
, (3.2)

n(ϕ) is given by (2.3) and I2 = e1⊗e1+e2⊗e2 (ei denotes the standard basis vectors
in R

3). It is straightforward to check that |Fn|2 = |F3|2 = 1 and tr(FnF3) = 0, so
that Qk may be expressed as

Qk(ϕ) = 1√
2
Fn(ϕ) − 1√

6
F3.

It follows that Y (r, φ) satisfies the boundary conditions (2.4) provided

u(R) = 1√
2
s+, v(R) = − 1√

6
s+. (3.3)

Remark 3.1 For k = 2, Y (r, ϕ) satisfies hedgehog boundary conditions (see Fig. 6,
left), while for k = ±1, Y satisfies boundary conditions corresponding to a defect
of index ± 1

2 (Chandrasekhar and Ranganath 1986; Kléman and Lavrentovich 2006).
The − 1

2 -defect is also called a Y -defect because of its shape (see Fig. 5, right).
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We would like to show that the ansatz (3.1) satisfies the Euler–Lagrange Eq. (2.6)
provided u(r) and v(r) satisfy a certain system of ODEs. It is straightforward to check
that

�Y =
(
u′′(r) + u′(r)

r
− k2u(r)

r2

)
Fn(ϕ) +

(
v′′(r) + v′(r)

r

)
F3 (3.4)

and

Y 2 = −
√
2

3
uvFn(ϕ) + 1√

6

(
−u2 + v2

)
F3 + 1

3
|Y |2 I, |Y |2 = u2 + v2. (3.5)

Substituting (3.1), (3.4) and (3.5) into (2.6) we obtain

(
u′′(r) + u′(r)

r
− k2u(r)

r2

)
Fn(ϕ) +

(
v′′(r) + v′(r)

r

)
F3

= 1

L

(
−a2u +

√
2

3
b2uv + c2u

(
u2 + v2

))
Fn(ϕ)

+ 1

L

(
−a2v − 1√

6
b2

(
−u2 + v2

)
+ c2v

(
u2 + v2

))
F3. (3.6)

Taking into account that the matrices Fn(ϕ), F3 are linearly independent for any
ϕ ∈ [0, 2π ], we obtain the following coupled system of ODEs for u(r) and v(r):

u′′ + u′

r
− k2u

r2
= u

L

[
−a2 +

√
2

3
b2v + c2

(
u2 + v2

)]
,

v′′ + v′

r
= v

L

[
−a2 − 1√

6
b2v + c2

(
u2 + v2

)]
+ 1√

6L
b2u2, r ∈ (0, R).

(3.7)

Boundary conditions at r = 0 follow from requiring Y to be a smooth solution of
(2.6), while boundary conditions at r = R are given by (3.3), as follows:

u(0) = 0, v′(0) = 0, u(R) = 1√
2
s+, v(R) = − 1√

6
s+. (3.8)

In order to show the existence of a solution Y of (2.6) of the form (3.1), we need
to establish the existence of a solution of the system of ODEs (3.7)–(3.8). We do this
using methods of calculus of variations. Substituting the ansatz (3.1) into the Landau–
de Gennes energy (2.1), we obtain a reduced 1D energy functional corresponding to
the system (3.7),
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E (u, v) =
∫ R

0

[
1

2

(
(u′)2 + (v′)2 + k2

r2
u2

)
− a2

2L
(u2 + v2) + c2

4L

(
u2 + v2

)2]
rdr

− b2

3L
√
6

∫ R

0
v(v2 − 3u2) rdr. (3.9)

The energy E is defined on the admissible set

S =
{
(u, v) : [0, R] → R

2
∣∣∣√ru′,

√
rv′, u√

r
,
√
rv ∈ L2(0, R), u(R) = s+√

2
,

v(R) = − s+√
6

}
. (3.10)

Theorem 3.2 For every L > 0 and 0 < R < ∞, there exists a global minimiser
(u(r), v(r)) ∈ [C∞(0, R) ∩ C([0, R])] × [C∞(0, R) ∩ C1([0, R])] of the reduced
energy (3.9) on S, which satisfies the system of ODEs (3.7) – (3.8).

Proof It is straightforward to show that E (u, v) ≥ −C for all (u, v) ∈ S. Therefore,
there exists a minimising sequence (um, vm) such that

lim
m→∞E (um, vm) = inf

S
E (u, v).

Using the energy bound, we obtain that (um, vm) ⇀ (u, v) in [H1((0, R); r dr) ∩
L2((0, R); dr

r )]×H1((0, R); r dr) (perhaps up to a subsequence). Using the Rellich–
Kondrachov theorem and the weak lower semicontinuity of the Dirichlet energy term
in E , we obtain

lim inf
m→∞ E (um, vm) ≥ E (u, v),

which establishes the existence of a minimiser (u, v) ∈ S. Since (u, v) is a minimiser
of E on S, it follows that (u, v) satisfies the Euler–Lagrange Eqs. (3.7). Then the
matrix-valued function Y : BR(0) → S0 defined as in (3.1) is a weak solution of the
PDE system (2.6), and thus is smooth and bounded on BR [see for instance Majumdar
and Zarnescu (2010)]. Since F3 is a constant matrix we have that v(r) = tr(Y F3) ∈
C∞(0, R) ∩ L∞(0, R). Similarly Fn is smooth on BR \ {0} hence u(r) = tr(Y Fn) ∈
C∞(0, R) ∩ L∞(0, R).

Furthermore, since u ∈ H1((0, R); r dr)∩L2((0, R); dr
r )we have for any [a, b] ⊂

(0, R] that u ∈ H1([a, b]) hence continuous. Moreover, we have:

u2(b) − u2(a) = 2
∫ b

a
u′(s)u(s) ds ≤

(∫ b

a
|u′(s)|2 sds

) 1
2
(∫ b

a
|u(s)|2 ds

s

) 1
2

.

Hence, taking into account that the right-hand side of the above tends to 0 as
|b − a| → 0 we get that u is continuous up to 0 so u ∈ C([0, R]) ∩ L2((0, R); dr

r )

and therefore u(0) = 0.
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Using the Euler–Lagrange equations for v, we obtain

v′(r) = 1

r

∫ r

0
g(u, v) s ds, r > 0

where g(u, v) = v
L

[
−a2 − 1√

6
b2v + c2

(
u2 + v2

)] + 1√
6L

b2u2. It follows that

limr→0 v′(r) = 0. Using again the equation for v at r = R, we get that v ∈ C1([0, R]).

�

Remark 3.3 Using maximum principle arguments, it is possible to show [see Majum-
dar and Zarnescu (2010)]

|Y |2 = u2 + v2 ≤ 2

3
s2+.

4 The Case b = 0: Properties of Y

In this section we concentrate on the problem (3.7) for the case b2 = 0. In this case,
the bulk energy f (Q) becomes the standard Ginzburg–Landau potential (that is, a
double well potential in |Q|2). We are then able to show that there is a unique global
minimiser (u, v) of the energy (3.9) and that this minimiser satisfies u > 0 and v < 0
on (0, R].
Lemma 4.1 Let L > 0, 0 < R < ∞, b2 = 0. Let (u, v) be a global minimiser of
(3.9) over the set S defined in (3.10). Then:

1. u > 0 on (0, R].
2. v < 0 and v′ ≥ 0 on [0, R].

Proof We define ũ := |u| and ṽ := −|v|. We note that since b2 = 0, (ũ, ṽ) is a global
minimiser of E on S. It follows from Theorem 3.2 that ũ ∈ C∞(0, R) ∩ C([0, R]),
ṽ ∈ C∞(0, R) ∩ C1([0, R]) and that (ũ, ṽ) satisfies the Euler–Lagrange Eqs. (3.7)
and boundary conditions (3.8) with b2 = 0.

Suppose for contradiction that ũ(r0) = 0 for some r0 ∈ (0, R). Since ũ is smooth
and nonnegative, it follows that ũ′(r0) = 0. On the other hand, the unique solution of
the initial-value problem for the second-order regular ODE satisfied by ũ (for given,
fixed ṽ):

ũ′′ + ũ′

r
− k2ũ

r2
= ũ

L

[
−a2 + c2

(
ũ2 + ṽ2

)]

on (r0, R) with initial conditions u(r0) = u′(r0) = 0 is given by ũ ≡ 0 identically.
But this contradicts the fact that ũ(R) = s+√

2
> 0. Therefore, ũ > 0 on (0, R), and

since u(R) > 0, it follows that u > 0 on (0, R].
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A similar argument shows that v < 0 on (0, R], which then allows us to establish
that v′ ≥ 0 on (0, R). Indeed, from the Euler–Lagrange equation for v, it follows that

v′(r) = 1

r

∫ r

0

v

L

[
−a2 + c2(u2 + v2)

]
s ds.

From Remark 3.3, we get that u2 + v2 ≤ a2

c2
, which together with the preceding

yields

v′ ≥ 0 on [0, R].

Since v(R) < 0, it follows that v(0) < 0, so that v < 0 on [0, R]. 
�
Proposition 4.2 Let L > 0, 0 < R < ∞, b2 = 0. There exists a unique solution of
(3.7), (3.8) in the class of solutions satisfying u > 0, v < 0 on (0, R).

Proof Existence follows from Theorem 3.2 and Lemma 4.1. To prove uniqueness, we
use the approach of Brezis and Oswald Brezis and Oswald (1986). Suppose that (u, v)

and (ξ, η) satisfy (3.7) with u, ξ > 0 and v, η < 0 on (0, R).
We obtain

�r u
u − �r ξ

ξ
= 1

L

(
c2(u2 + v2) − c2(ξ2 + η2)

)
, (4.1)

�r v
v

− �rη
η

= 1
L

(
c2(u2 + v2) − c2(ξ2 + η2)

)
, (4.2)

where �r u = u′′ + u′
r . Multiplying the first equation by ξ2 − u2 and the second

equation by η2 − v2, and then adding the two, we obtain

(
�r u

u
−�rξ

ξ

)
(ξ2−u2) +

(
�rv

v
− �rη

η

)
(η2 − v2)= − c2

L
(u2 + v2 − ξ2 − η2)2.

Multiplying by r , integrating over [0, R] and taking into account that u(R) = ξ(R),
v(R) = η(R), we obtain

∫ R

0

{[
(u/ξ)′ξ

]2 + [
(ξ/u)′u

]2 + [
(v/η)′η

]2 + [
(η/v)′v

]2}
r dr

+
∫ R

0

c2

L
(u2 + v2 − ξ2 − η2)2 r dr = 0.

This implies u(r) = k1ξ(r) and v(r) = k2η(r) for some k1, k2 ∈ R and every
r ∈ [0, R]. Therefore, due to the boundary conditions, we obtain k1 = k2 = 1, and
the proof is finished. 
�

Now we are ready to investigate the minimality of the solution of the Euler–
Lagrange Eq. (2.6) introduced in Sect. 3 with respect to variations P ∈ H1

0 (BR,S0).
We show that for b2 = 0, the solution Y given by (3.1) is the unique global minimiser
of energy (2.1).
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Theorem 4.3 Let b2 = 0 and let Y be given by (3.1) with (u, v) the unique global
minimiser of the reduced energy (3.9) in the set S (defined in (3.10)). Then Y is the
unique global minimiser of the Landau–de Gennes energy (2.1) in H1(BR;S0).

Proof We take P ∈ H1
0 (BR;S0) and compute the difference in energy between Y+P

and Y ,

F(Y + P) − F(Y ) = I[Y ](P, P) + 1
L

∫
BR

c2
4 (|P|2 + 2 tr(Y P))2, (4.3)

where

I[Y ](P, P) = 1

2

∫

BR

|∇P|2 + 1

2L

∫

BR

|P|2
(
−a2 + c2|Y |2

)
(4.4)

, and we have used the fact that Y satisfies (2.6) in order to eliminate the first-order
terms in P . Thus, it is sufficient to prove that I[Y ](P, P) � C‖P‖L2 for every
P ∈ H1

0 (BR(0),S).
To investigate (4.4) we use a Hardy trick (see, for instance Ignat et al. (2013)). From

Lemma 4.1, we have that v < 0 on [0, R]. Therefore, any P ∈ H1
0 (BR,S0) can be

written in the form P(x) = v(r)U (x), where U ∈ H1
0 (BR,S0). Using Eq. (3.7) for

v, we have the following identity

v�v = v2

L

(
−a2 + c2|Y |2

)

and therefore

I[Y ](P, P) = 1

2

∑
i, j

∫

BR

|∇v(|x |)Ui j (x) + v(|x |)∇Ui j (x)|2 + �v(|x |)v(|x |)U 2
i j (x).

(4.5)

Integrating by parts in the second term above, we obtain

∑
i, j

∫

BR

�v vU 2
i j = −

∑
i, j

∫

BR

|∇v|2U 2
i j + 2∇v · ∇Ui j vUi j .

It follows that

I[Y ](P, P) = 1

2

∫

BR

v2 |∇U |2.

Using the fact that 0 < c1 ≤ v2 ≤ c2 (see Lemma 4.1) and the Poincaré inequality,
we obtain

I[Y ](P, P) ≥ C
∫

BR

|P|2.
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From (4.3), it follows that

F(Y + P) − F(Y ) ≥ C‖P‖2L2 , (4.6)

therefore Y is the unique global minimiser of the energy F . 
�
Remark 4.4 It is straightforward to use the continuity of the solutions (u, v) with
respect to the parameter b2 to show that for b2 small enough, the solution (ub, vb) of
(3.7)–(3.8) found in Theorem 3.2 generates a global minimiser Y of the energy (2.1).

4.1 Limiting Case L → 0

Next we consider the limit L → 0. We define the energy

EL(u, v) =
∫ R

0

[
1

2

(
(u′)2 + (v′)2 + k2

r2
u2

)
+ c2

4L

(
(u2 + v2) − a2

c2

)2
]
r dr.

For b = 0, EL coincides with the reduced energy (3.9) up to an additive constant.
We also define the following space:

H =
{
(u, v) : [0, R] → R

2 | √ru′,
√
rv′, u√

r
,
√
rv ∈ L2(0, R)

}
.

Lemma 4.5 In the limit L → 0 the following statements hold:

1. If (uL , vL) ∈ S (see (3.10)) and EL(uL , vL) ≤ C, then (uL , vL) ⇀ (u, v) in H

(perhaps up to a subsequence). Moreover, (u, v) ∈ S and u2(r)+ v2(r) = a2

c2
a.e.

r ∈ (0, R).
2. EL �-converges to E0 in S , where

E0(u, v) =
{∫ R

0
1
2

(
(u′)2 + (v′)2 + k2

r2
u2

)
r dr if u2 + v2 = a2

c2
,

∞ otherwise.
(4.7)

Proof The first statement follows from the energy estimate EL(uL , vL) ≤ C .
Next we show the �-convergence result. To do this we must check the following:

• for any (uL , vL) ∈ S such that (uL , vL) → (u, v) in S, we have that

lim inf
L→0

EL(uL , vL) ≥ E0(u, v);

• for any (u, v) ∈ S, there exists a sequence (uL , vL) ∈ S such that

lim sup
L→0

EL(uL , vL) = E0(u, v).
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The first part of the �-convergence result follows from the lower semicontinuity
of the Dirichlet term in the energy EL and the penalisation of the potential. To prove
the second part, we note that for any (u, v) ∈ S, we may take the recovery sequence
(uL , vL) = (u, v), for which the lim sup equality is clearly satisfied. 
�

Next we show that the global minimiser of E0 defines the unique global minimiser
of a certain harmonic map problem.

Theorem 4.6 Let 0 < R < ∞. There exist exactly two critical points of E0 over the
set S defined in (3.10). These are explicitly given by the following formulae:

u−(r) = 2
√
2s+

R|k|r |k|

r2|k| + 3R2|k| , v−(r) =
√
2

3
s+

r2|k| − 3R2|k|

r2|k| + 3R2|k| ,

u+(r) = 2
√
2s+

R|k|r |k|

3r2|k| + R2|k| , v+(r) =
√
2

3
s+

R2|k| − 3r2|k|

3r2|k| + R2|k| (4.8)

with s+ given by (2.5) with b2 = 0. If we define

Y± = u±Fn + v±F3,

then Y− is the unique global minimiser and Y+ is a critical point of the following
harmonic map problem:

min

{∫

BR

1

2
|∇Q|2

∣∣∣ Q ∈ H1(BR,S0), Q(R) = Qk, |Q|2 = 2

3
s2+ a.e. in BR

}
.

(4.9)

Proof The constraint u2 + v2 = a2

c2
may be incorporated through the substitution

u =
√
2

3
s+ sinψ, v = −

√
2

3
s+ cosψ, (4.10)

where ψ : (0, R] → R. In terms of ψ , the energy E0 is given up to a multiplicative
constant by

E0[ψ] = 1

2

∫ R

0

(
rψ ′2 + k2

r
sin2 ψ

)
dr. (4.11)

Critical points of E0 satisfy the Euler–Lagrange equation

(
rψ ′)′ = k2

r
sinψ cosψ (4.12)

and therefore belong to C∞(0, R). From (3.3) and (4.10), ψ satisfies the boundary
condition ψ(R) = π

3 + 2π j for j ∈ Z. Without loss of generality, we may take j = 0
[since ψ and ψ + 2π j correspond to the same (u, v)]. Therefore, we may take the
boundary condition as

ψ(R) = π

3
. (4.13)
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The Euler–Lagrange Eq. (4.12) may be integrated to obtain the relation

1

2
r2ψ ′2 − k2

2
sin2 ψ = −k2

2
α (4.14)

for some constant α ≤ 1. We claim that α = 0. First, we note that α < 0 would
imply that r2ψ ′2 is bounded away from zero, which is incompatible with E0[ψ] being
finite. Next, α = 1 would imply that sin2 ψ = 1 identically, which is incompatible
with the boundary condition (4.13). It follows that 0 ≤ α < 1. If α > 0, we may
define x(t) = ψ(exp t) for t ∈ (−∞, ln R). Then 1

2 ẋ
2 = k2

2

(
sin2 x − α

)
. It is an

elementary result (the simple pendulum problem) that x(t) is periodic with period
T (we omit the explicit expression for T ); this implies that ψ

(
e−T r

) = ψ(r). In

addition, A := ∫ τ+T
τ

sin2 x dt is strictly positive and independent of τ ; in terms of ψ ,
this implies that

∫ R

e−nT R

sin2 ψ

r
dr = nA

for n ∈ N. It follows that u2/r = 2
3 s

2+ sin2 ψ/r is not square-integrable, which is
incompatible with E0[ψ] being finite. Thus we may conclude that α = 0.

We claim now that any solution of (4.12) satisfies either rψ ′(r) = |k| sinψ or
rψ ′(r) = −|k| sinψ on the whole interval (0, R). For suppose χ(r) is a smooth
solution of (4.12), and that for some point r0 ∈ (0, R) we have that r0χ ′(r0) =
|k| sin χ(r0). Then regarding (4.12) as a regular second-order ODE on (0, R), we have
that the initial-value problem (4.12) with initial conditions ψ(r0) = χ(r0), ψ ′(r0) =
|k|
r0

sin χ(r0) has a unique smooth solution on (0, R), namely the one satisfying the

first-order equation χ ′(r) = |k|
r sin χ(r) on (0, R), which proves our claim.

Solving the first-order separable ODEs and applying the boundary conditions
(4.13), we obtain exactly two solutions ψ± satisfying

tan
ψ±(r)

2
= 1√

3

( r

R

)∓|k|
.

These correspond via (4.10) to (4.8).
It is straightforward to check using the definition of Y± and (3.4) that

�Y± = − 3

2s2+
|∇Y |2Y±, |Y±|2 = 2

3
s2+, Y±(R, ϕ) = Qk(ϕ).

Therefore, Y± are critical points of the harmonic map problem (4.9).
Next, we show that Y− is the unique global minimiser of the harmonic map problem

(4.9). Take P ∈ H1
0 (BR;S0) such that |Y− + P|2 = 2

3 s
2+. Then

1

2

∫

BR

|∇(Y− + P)|2 − 1

2

∫

BR

|∇Y−|2 = 1

2

∫

BR

|∇P|2 + 2
∑
i j

∇[Y−]i j · ∇Pi j .
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Integrating by parts and using the Euler–Lagrange equation for Y−, we obtain

2

3
s2+

∫

BR

∑
i j

∇[Y−]i j · ∇Pi j =
∫

BR

|∇Y−|2 tr(Y−P).

Using the fact that |P|2 = −2 tr(Y−P), we obtain

1

2

∫

BR

|∇(Y− + P)|2 − 1

2

∫

BR

|∇Y−|2 = 1

2

∫

BR

|∇P|2 − 3

2s2+
|∇Y−|2|P|2.

The fact that Y− is harmonic implies that

�v− = − 3

2s2+
v−|∇Y−|2,

and we have that v− < 0 on [0, R]. Therefore
1

2

∫

BR

|∇(Y− + P)|2 − 1

2

∫

BR

|∇Y−|2 = 1

2

∫

BR

|∇P|2 + �v−
v−

|P|2

Using the decomposition P = v(r)U and applying the Hardy decomposition trick
in exactly the same way as in the proof of Theorem 4.3, we obtain

1

2

∫

BR

|∇(Y− + P)|2 − 1

2

∫

BR

|∇Y−|2 ≥ C‖P‖2L2

Therefore Y− is unique global minimiser of harmonic map problem (4.9). 
�
Remark 4.7 It is straightforward to check that in the limit L → 0, the �-limit of the
Landau–de Gennes energy

F (Q) = 1

2

∫

BR

|∇Q|2 + c2

4L

(
|Q|2 − 2

3
s2+

)2

is exactly the harmonic map problem (4.9).

Remark 4.8 For k even, there is another explicit solution of the harmonicmap problem
(4.9). Let

U = s+
(
m ⊗ m − 1

3
I

)
, (4.15)

where

m(r, φ) =
(

2R
k
2 r

k
2

Rk + rk
cos

(
kφ

2

)
,
2R

k
2 r

k
2

Rk + rk
sin

(
kφ

2

)
,
Rk − rk

Rk + rk

)
.
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Wenote thatU is uniaxial (i.e., two of its eigenvalues are equal). It is straightforward
to show that U is a critical point of the harmonic map problem (4.9). Computing
energies of Y+, Y− and U explicitly, we obtain

ED(Y−) = 2

3
|k|πs2+ < 2|k|πs2+ = ED(Y+) = ED(U ),

where ED(Q) = 1
2

∫
BR

|∇Q|2 is the Dirichlet energy.

Remark 4.9 The harmonic map (4.15) is an example of a more general construction.
Let ζ = x + iy, and let f (ζ ) be meromorphic. Let

m(x, y) =
(
2Re f, 2Im f, 1 − | f |2)

1 + | f |2 .

Then it is straightforward to show that m defines an S2-valued harmonic map (note
that |m| = 1), and that U := √

3/2(m ⊗ m − 1
3 I ) defines an S4-valued harmonic

map. The example (4.15) is obtained by taking f = (ζ/R)k/2, which corresponds to
the boundary conditions (2.4).

Remark 4.10 The results of (Bauman et al. 2012) imply that for |k| > 1 and b2 > 0,
the global minimiser Y of a reduced energy in the limit L → 0 approaches a harmonic
map different from Y−. In that case, the limiting harmonic map has |k| isolated defects
of index sgn(k)/2.

5 Conclusions and Outlook

We have found a new highly symmetric equilibrium solution Y of the Landau–de
Gennes model, relevant for the study of liquid crystal defects of the form (3.1). This
solution is valid for all values of parameters a, b, c, elastic constant L and index k.
The properties of this solution can be explored by investigating the system of ordinary
differential Eqs. (3.7) – (3.8).

Wehave provided a detailed study of solutionY in the deep nematic regimewhen the
material parameter b2 is small enough (see Kralj et al. 1999; Mkaddem and Gartland
2000) for a discussion on the physical relevance of this regime). In this case we have
shown that Y is a global minimiser of the Landau–de Gennes energy, provided (u, v)

is a global minimiser of the energy (3.9). In this sense, we have constructed the unique
ground state of the 2D point defect, and linked its study to analysing solutions of the
ordinary differential Eqs. (3.7) –(3.8).

In the limiting case L → 0 for b2 = 0, we have obtained for all k two explicit
defect profiles Y− and Y+ (see Fig. 7), defined in Theorem 4.6. The global minimiser
Y is equal to Y−. For even k, we obtain a third explicit profileU (see Fig. 9) defined in
Remark 4.8. It is straightforward to compute the eigenvalues of Y± andU (see Fig. 8),
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Fig. 7 Y− (left) and Y+ (right) defects for of strength 1

Fig. 8 Eigenvalues of
1-strength defects: Y− (solid),
Y+ (dashed), U (dotted)

Fig. 9 Uniaxial defect of
strength 1

λ
±
1 =

√
2

3
v±(r), λ

±
2 = − u±

√
2

− v±
√
6
, λ

±
3 = u±

√
2

− v±
√
6
, (5.1)

λ
U
1 = λ

U
2 = −1

3
, λ

U
3 = 2

3
. (5.2)

It is clear that the global minimiser Y−(r) is always biaxial except for points r = 0
and r = R, while the critical point Y+ is uniaxial at 0, R and the point of intersection
of λ

+
1 and λ

+
2 . Moreover, it is clear that λ3 is the smallest eigenvalue. The structure of

the defect profile Y+ bears a resemblance to the three-dimensional biaxial torus profile
(Mkaddem and Gartland 2000). However, whereas the biaxial torus is a candidate for
the ground state in three dimensions, in this two-dimensional setting Y+ has higher
energy than Y−, at least in the small-L regime. The profile U is always uniaxial and
its energy coincides with the energy of Y+ (Fig. 9).
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It is a very interesting and challenging task to find the ground state and universal
profile of the 2D defect for general parameters a, b, c, L . We are planning to tackle
this problem in the future.
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